Blow-ups of \mathbf{P}^{2} and root systems of type D

By
Jun-ichi Matsuzawa and Akiko Omura

1. Introduction

Nonsingular cubic surfaces in $\mathbf{P}^{3}(\mathbf{C})$ are obtained by blowing up 6 points on \mathbf{P}^{2}. Also it is well known that geometry of cubic surfaces is closely related to the root system and Weyl group of type E_{6}; (i) The symmetry of the 27 lines on nonsingular cubic surface can be described by the root system and Weyl group of type E_{6}. (ii) In the middle homology lattice of cubic surface, the orthogonal complement of the class of canonical divisor is isomorphic to the root lattice of type E_{6}. (iii) The semi-universal deformation of simple singularity of type E_{6} can be described by a Cartan subalgebra of Lie algebra of type E_{6}. Furthermore a nonsingular cubic surface can be regarded as a compactification of a generic fiber of this deformation.

For certain class of rational surfaces, the geometry of surfaces is closely related to infinite root systems and the moduli space for the surfaces are constructed in terms of root systems and periods [9].

In this paper, we construct rational surfaces related to the root system and Weyl group of type D_{m}. We discuss the moduli problem of the surfaces.

In sections 2 and 3, we show the relation between surfaces X_{m} obtained by blowing up m points on \mathbf{P}^{2} and the root systems and Weyl groups of type D_{m}. In section 4, we prove the theorem of Torelli type for the pairs of X_{m} and a certain anticanonical divisor of X_{m} in terms of the root systems and Weyl groups of type D_{m}. In section 5, we construct a family $\varphi: \mathfrak{X} \rightarrow S$ of the surfaces $X_{2 n+3}$, where the base space S is the quotient space of the Cartan subalgebra of simple Lie algebra of type $D_{2 n+3}$ by its Weyl group.

The nonsingular fiber \mathfrak{X}_{s} can be regarded as a compactification of the fiber of semi-universal deformation of the simple singularity of type $D_{2 n+3}$. So the relation between X_{m} and the simple singularity of type $D_{2 n+3}$ is similar to that between Del Pezzo surfaces and the simple singularities of type E (see Remark 5.10). In section 6, we show the relation between the surface $Z_{2 n+2}$ obtained by blowing up $X_{2 n+2}$ and the root system of type $D_{2 n+2}$. Also we can construct a family $\varphi: \mathfrak{X} \rightarrow$ S of these surfaces $Z_{2 n+2}$, where the base space S is the quotient space of the Cartan subalgebra of simple Lie algebra of type $D_{2 n+2}$ by its Weyl group. The
fiber can be also regarded as a compactification of the fiber of semi-universal deformation of the simple singularity of type $D_{2 n+2}$.

The period mapping of semi-universal deformation $\mathfrak{W} \rightarrow S$ of simple singularity of type D_{m} is studied by Looijenga and Saito ([8], [15]). We give a concrete description of the period mapping for the families constructed in section 5 and 6 in terms of the root system and Weyl group of type $D_{2 n+3}$ and $D_{2 n+2}$.

In sections 5 and 6 , we define a meromorphic 2 -form ω on \mathfrak{X}. Denote by $\Delta \subset S$ the discriminant variety of φ and by $\mathfrak{D}_{s}(s \in S \backslash \Delta)$ the anticanonocal divisor on \mathfrak{X}_{s} such that the restriction of ω to \mathfrak{X}_{s} has poles along \mathfrak{D}_{s}. Then the monodromy group of $\pi_{1}(S \backslash \Delta)$ on $H_{2}\left(\mathfrak{X}_{s} \backslash \mathfrak{D}_{s} ; \mathbf{Z}\right)$ is isomorphic to the Weyl group of type D_{m} and $\pi_{1}(S \backslash \Delta)$ acts on the period domain as a reflection group which is isomorphic to the Weyl group of type D_{m}.

2. \mathbf{P}^{2} with several points blown up

Let C be a conic in \mathbf{P}^{2}, L a line tangent to C and P a point on $L \backslash C$. By \mathbb{C} we denote the set of all such pairs (C, L, P) and an elements of \mathbb{C} is said to be the framing. Assume $m \geq 4$ in this paper.

Definition 2.1. For a framing (C, L, P), we say that m points P_{1}, \ldots, P_{m} on $C \backslash L$ are in general position if m points P_{1}, \ldots, P_{m} are distinct and if P and any two of them are not collinear.

Let P_{1}, \ldots, P_{m} be m points on $C \backslash L$ in general position. Let

$$
p: X_{m} \rightarrow \mathbf{P}^{2}
$$

be the blowing up of \mathbf{P}^{2} at P_{1}, \ldots, P_{m} and P. Then put $E_{P}=p^{-1}(P), E_{1}=$ $p^{-1}\left(P_{1}\right), \ldots, E_{m}=p^{-1}\left(P_{m}\right)$. Let \bar{L}, \bar{C} be the proper transforms of L and C. Then $D=\bar{L}+\bar{C}$ is an anticanonical divisor on X_{m}.

Definition 2.2. Let $(C, L, P)\left(\right.$ resp. $\left.\left(C^{\prime}, L^{\prime}, P^{\prime}\right)\right) \in \mathbb{C}$. Let X_{m} (resp. X_{m}^{\prime}) be surface obtained by blowing up P (resp. P^{\prime}) and m points on $C \backslash L$ (resp. $C^{\prime} \backslash L^{\prime}$) in general position. Put $D=\bar{L}+\bar{C}$ (resp. $D^{\prime}=\bar{L}^{\prime}+\bar{C}^{\prime}$).

Then we say that the pairs $\left(X_{m}, D\right)$ and $\left(X_{m}^{\prime}, D^{\prime}\right)$ are isomorphic if there exists an isomorphism $\phi: X_{m} \rightarrow X_{m}^{\prime}$ such that

$$
\phi(\bar{C})=\bar{C}^{\prime}, \phi(\bar{L})=\bar{L}^{\prime}
$$

Lemma 2.3. Let $(x: y: z)$ be homogeneous coordinate of \mathbf{P}^{2}, C a conic defined by $z^{2}=x y, L$ a line defined by $x=0$ and $P=(0: 0: 1)$.

Let $\left(C^{\prime}, L^{\prime}, P^{\prime}\right), X_{m}^{\prime}, D^{\prime}$ be as above. Then there exist m points P_{1}, \ldots, P_{m} in general position with respect to the framing (C, L, P) which have the following property;

Let X_{m} be the surface obtained by blowing up P, P_{1}, \ldots, P_{m}, then there exists an isomorphism $\Phi: X_{m} \rightarrow X_{m}^{\prime}$ such that

$$
\Phi(\bar{C})=\bar{C}^{\prime}, \quad \Phi(\bar{L})=\bar{L}^{\prime}
$$

By this lemma, we may assume (C, L, P) as in the lemma.
Proposition 2.4. Let (C, L, P) be as above. Let P_{1}, \ldots, P_{m} (resp. P_{1}^{\prime}, \ldots, P_{m}^{\prime}) be m points on $C \backslash L$ in general position respectively. Let $p: X_{m} \rightarrow \mathbf{P}^{2}$ (resp. $p^{\prime}: X_{m}^{\prime} \rightarrow \mathbf{P}^{2}$) be the blowing up $P, P_{1}, \ldots, P_{m}\left(\right.$ resp. $\left.P_{1}^{\prime}, \ldots, P_{m}^{\prime}\right)$.

Put $E_{i}=p^{-1}\left(P_{i}\right)$ (resp. $E_{i}^{\prime}=p^{\prime-1}\left(P_{i}^{\prime}\right)$). Put $D=\bar{L}+\bar{C}$ (resp. $D^{\prime}=\bar{L}^{\prime}+$ \bar{C}^{\prime}), where \bar{L}, \bar{C} (resp. $\bar{L}^{\prime}, \bar{C}^{\prime}$) are proper transforms of L, C. Let $P_{i}=\left(1: s_{i}^{2}: s_{i}\right)$ $\left(\right.$ resp. $P_{i}^{\prime}=\left(1: s_{i}^{\prime^{2}}: s_{i}^{\prime}\right)$).

Then there exists isomorphism $\Phi:\left(X_{m}, D\right) \rightarrow\left(X_{m}^{\prime}, D^{\prime}\right)$ such that $\Phi\left(E_{i}\right)=E_{i}^{\prime}$ $(i=1, \ldots, m)$ if and only if there exists $\alpha \in \mathbf{C}^{*}$ such that

$$
s_{i}=\alpha s_{i}^{\prime} \quad(i=1, \ldots m)
$$

Proof. Let A be an element of $P G L(3, \mathbf{C})$ such that $A(C)=C, A(L)=L$, $A(P)=P$. Then line defined by $y=0$ is tangent to C at $(1: 0: 0)$ and passes through P. Therefore A maps the point $(1: 0: 0)$ to itself. Since A also satisfies that $A((0: 0: 1))=(0: 0: 1)$ and $A((1: 0: 0))=(1: 0: 0)$, we have

$$
A=\left(\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right)
$$

Since $A(C)=C$, we have $c^{2}=a b$. Therefore

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \alpha^{2} & 0 \\
0 & 0 & \alpha
\end{array}\right)
$$

The result follows from this.
Proposition 2.5. Let $p: X_{m} \rightarrow \mathbf{P}^{2}$ be as above and $L_{i}(1 \leq i \leq m)$ the proper transform of the line passing through P and P_{i}. Let I be a subset of $\{1, \ldots, m\}$ and assume the number \#I is even. Then we have the Hirzebruch surface Σ_{1} of degree 1 by contracting L_{i} for $i \in I$ and E_{j} for $j \in\{1, \ldots, m\}-I$. Contracting (-1) section of Σ_{1} further, we get another framing $\left(C^{\prime}, L^{\prime}, P^{\prime}\right) \in \mathbb{C}$, where C^{\prime}, L^{\prime} are the images of \bar{C}, \bar{L} and P^{\prime} is the image of (-1)-section of Σ_{1}.

Proof. By contracting L_{i} for $i \in I$ and E_{j} for $j \in\{1, \ldots, m\}-I$, we have \mathbf{P}^{1} bundle over \mathbf{P}^{1}. Therefore the resulting surface is isomorphic to the Hirzebruch surface Σ_{r} of degree r for some r.

$$
p^{\prime}: X_{m} \rightarrow \Sigma_{r} .
$$

Let $f, s\left(\in H_{2}\left(\Sigma_{r} ; \mathbf{Z}\right)\right)$ be the classes of a fiber and the $(-r)$-section S of Σ_{r}. Let $\bar{c}^{\prime}=a f+b s$ be the class of $p^{\prime}(\bar{C})$, then $b=2$, because a fiber of Σ_{r} intersect $p^{\prime}(\bar{C})$ at 2 points. Since

$$
0 \leq p^{\prime}(\bar{C}) \cdot S=(a f+2 s) \cdot s=a-2 r
$$

we have

$$
a \geq 2 r .
$$

Also

$$
4=p^{\prime}(\bar{C}) \cdot p^{\prime}(\bar{C})=4 a-4 r .
$$

Thus we have $r=a-1$. Since $a \geq 2 r$, we have $r \leq 1$. Therefore r is 0 or 1 .
Let D be the section of Σ_{r}. Since the class of D is $x f+s(x \in \mathbf{N})$ and

$$
D \cdot D=2 x-r,
$$

we have

$$
D \cdot D \equiv S \cdot S \quad(\bmod 2)
$$

If we take $D=p^{\prime}\left(E_{P}\right)$, then

$$
p^{\prime}\left(E_{P}\right) \cdot p^{\prime}\left(E_{P}\right)=-1+\# I
$$

is odd. Therefore $S \cdot S$ must be odd. Hence we have $r=1$.
The remaining part of proposition is obvious.

3. Homology and root system

In this section, we shall study the exceptional curves of the first kind on X_{m} and the homology groups of X_{m} and $X_{m} \backslash D(D=\bar{C}+\bar{L})$. The root systems of type D_{m} can be realized in the middle homology group of X_{m}. The Weyl group can be regarded as the automorphism group of the configuration of the exceptional curves of the first kind. It is similar to the realization of the root systems and Weyl groups of type E_{6} in that of cubic surfaces.

Let $e_{P}, e_{1}, \ldots, e_{m} \in H_{2}\left(X_{m} ; \mathbf{Z}\right)$ be the classes of the exceptional curves E_{P}, E_{1}, \ldots, E_{m} defined in section 2. Let $l \in H_{2}\left(X_{m} ; \mathbf{Z}\right)$ be the class of total transform of line. Then we have next proposition.

Propositon 3.1. (1) $H_{2}\left(X_{m} ; \mathbf{Z}\right)$ is generated by $l, e_{P}, e_{1}, \ldots, e_{m}$.
(2) The intersection pairing on X_{m} is given by

$$
\begin{gathered}
l^{2}=1, \quad e_{P}^{2}=-1, \quad e_{i}^{2}=-1 \quad(i=1, \ldots, m), \\
l \cdot e_{P}=0, \quad l \cdot e_{i}=0 \quad(i=1, \ldots, m), \\
e_{i} \cdot e_{P}=0 \quad(i=1, \ldots, m), \quad e_{i} \cdot e_{j}=0 \quad(i \neq j \text { and } i, j=1, \ldots, m) .
\end{gathered}
$$

(3) The class of canonical divisor on X_{m} is $k_{m}=-3 l+e_{P}+e_{1}+\cdots+e_{m}$.

Now we consider the homology exact sequence:

$$
\xrightarrow{\partial_{4}} H_{2}\left(X_{m} \backslash D ; \mathbf{Z}\right) \xrightarrow{i_{.}} \quad H_{2}\left(X_{m} ; \mathbf{Z}\right) \xrightarrow{j_{.}} H_{2}\left(X_{m}, X_{m} \backslash D ; \mathbf{Z}\right)
$$

The intersection pairing in $H_{2}\left(X_{m} ; \mathbf{Z}\right)$ can be extended to the bilinear form on $H_{2}\left(X_{m} ; \mathbf{Z}\right) \otimes_{\mathrm{Z}} \mathbf{R}$. Put

$$
\begin{aligned}
& Q=\operatorname{ker} j_{*} \subset H_{2}\left(X_{m} ; \mathbf{Z}\right), \\
& R=\{\alpha \in Q \mid \alpha \cdot \alpha=-2\} .
\end{aligned}
$$

Lemma 3.2. Let Q and R be as above. Then we have

$$
H_{2}\left(X_{m} \backslash D ; \mathbf{Z}\right) \cong Q
$$

Proof. By the definition of Q, we have a following short exact sequences

$$
0 \longrightarrow H_{3}\left(X_{m}, X_{m} \backslash D ; \mathbf{Z}\right) \xrightarrow{\partial_{*}} H_{2}\left(X_{m} \backslash D ; \mathbf{Z}\right) \xrightarrow{i_{*}} Q \rightarrow 0 .
$$

Therefore we have only to prove that $H_{3}\left(X_{m}, X_{m} \backslash D ; \mathbf{Z}\right)=0$. By the duality,

$$
\begin{aligned}
H_{3}\left(X_{m}, X_{m} \backslash D ; \mathbf{Z}\right) & \cong H^{1}(D ; \mathbf{Z}) \\
& \cong H_{1}(D ; \mathbf{Z})^{*}
\end{aligned}
$$

Since $D=\bar{C}+\bar{L}, \bar{C} \cong S^{2}, \bar{L} \cong S^{2}$ and $\bar{C} \cap \bar{L}=\{p t\}$, then $H_{1}(D ; \mathbf{Z})=0$.
Proposition 3.3. The lattice Q is given by

$$
Q=\left\{\begin{array}{l|l}
\alpha \in H_{2}\left(X_{m} ; \mathbf{Z}\right) & \begin{array}{l}
\alpha \cdot\left(2 l-e_{1}-\cdots-e_{m}\right)=0 \\
x \cdot\left(l-e_{P}\right)=0
\end{array} \tag{3.1}
\end{array}\right\}
$$

and R is a root system of type D_{m} in $Q \otimes_{\mathrm{z}} \mathbf{R}$ and generates Q. The set

$$
\prod=\left\{e_{1}-e_{2}, \ldots, e_{m-1}-e_{m},-\left(l-e_{P}-e_{m-1}-e_{m}\right)\right\}
$$

is a basis of R.
Proof. By the duality $H_{2}\left(X_{m}, X_{m} \backslash D ; \mathbf{Z}\right) \cong H^{2}(D ; \mathbf{Z}), \operatorname{ker} j_{*}$ is the lattice whose elements are orthogonal to the classes of the components of D. Since the classes of \bar{C} and \bar{L} are $\bar{c}=2 l-e_{1}-\cdots-e_{m}$ and $\bar{l}=l-e_{P}$ respectively, we have (3.1).

$$
\begin{array}{r}
\text { Let } \alpha=a l+b_{P} e_{P}+b_{1} e_{1}+\cdots+b_{m} e_{m} \in Q . \quad \text { By }(3.1), \\
2 a+b_{1}+\cdots+b_{m}=0, \\
a+b_{P}=0 .
\end{array}
$$

Thus

$$
Q=\left\{\begin{array}{l|l}
\alpha \in H_{2}\left(X_{m} ; \mathbf{Z}\right) & \begin{array}{l}
\alpha=a\left(l-e_{P}-e_{1}\right)+\left(a+b_{1}\right) e_{1}+\cdots+b_{m} e_{m}, \\
a+\left(a+b_{1}\right)+\cdots+b_{m}=0
\end{array} \tag{3.2}
\end{array}\right\} .
$$

Let $\alpha=a l+b_{P} e_{P}+b_{1} e_{1}+\cdots+b_{m} e_{m} \in R$. Then $a^{2}-\left(b_{P}^{2}+b_{1}^{2}+\cdots+b_{m}^{2}\right)=-2$. It follows from $a+b_{P}=0$ that $b_{1}^{2}+\cdots+b_{m}^{2}=2$. Thus

$$
R=\left\{ \pm\left(e_{i}-e_{j}\right), \pm\left(l-e_{P}-e_{i}-e_{j}\right), i \neq j, i, j=1, \ldots, m\right\}
$$

Thus we have the proposition.
Proposition 3.4. There are $2^{m-1}+2 m$ exceptional curves of the first kind on X_{m}. They are the exceptional curves of the blowing up $p: X_{m} \rightarrow \mathbf{P}^{2}$, the proper transforms of the lines passing through P and P_{i}, the proper transforms of the curves of degree $a(1 \leq a \leq[m / 2])$ passing through $2 a$ distinct points of $\left\{P_{1}, \ldots, P_{m}\right\}$ and P with multiplicity $a-1$.

Proof. Let $\bar{c}=2 l-e_{1}-\cdots-e_{m}, \bar{l}=l-e_{P}$ be the classes of \bar{C}, \bar{L}. Let E be an exceptional curve of the first kind and $e=a l-b_{P} e_{P}-\sum_{i=1}^{m} b_{i} e_{i}$ its class. Since E is exceptional curve of the first kind, we have

$$
\begin{gather*}
1=-k_{m} \cdot e=3 a-b_{P}-\sum_{i=1}^{m} b_{i} \tag{3.4}\\
-1=e \cdot e=a^{2}-b_{P}^{2}-\sum_{i=1}^{m} b_{i}^{2} \tag{3.5}
\end{gather*}
$$

Also we have

$$
\begin{gather*}
\bar{C} \cdot D=2 a-\sum_{i=1}^{m} b_{i} \geq 0, \tag{3.6}\\
\bar{L} \cdot D=a-b_{P} \geq 0 \tag{3.7}
\end{gather*}
$$

By (3.4) and (3.6) we have

$$
1=3 a-b_{P}-\sum_{i=1}^{m} b_{i} \geq a-b_{P}
$$

It follows from this and (3.7) that

$$
b_{P} \leq a \leq b_{P}+1
$$

Thus we have $a=b_{P}$ or $a=b_{P}+1$.
(i) Suppose $a=b_{P}$. By (3.5) we have

$$
\sum_{i=1}^{m} b_{i}^{2}=1
$$

Thus there exist i such that $b_{i}= \pm 1$ and $b_{j}=0(j \neq i)$. By (3.4) we have $2 a-$ $b_{i}=1$ and $a=1$ if $b_{i}=1, a=0$ if $b_{i}=-1$. Now we have $2 m$ exceptional classes

$$
e_{1}, \ldots, e_{m}, l-e_{P}-e_{1}, \ldots, l-e_{P}-e_{m} .
$$

These are the classes of exceptional curves of the blowing up p and that of the proper transforms of the lines passing through P and P_{i}. Let \mathscr{L}_{1} be the set of these classes.
(ii) Suppose $a=b_{P}+1$. By (3.4) we have

$$
\sum_{i=1}^{m} b_{i}=2 a .
$$

By (3.5) we have

$$
\sum_{i=1}^{m} b_{i}^{2}=2 a .
$$

Thus

$$
0=\sum_{i=1}^{m} b_{i}^{2}-\sum_{i=1}^{m} b_{i}=\sum_{i=1}^{m} b_{i}\left(b_{i}-1\right) .
$$

Since $b_{i}\left(b_{i}-1\right) \geq 0$, we have $b_{i}\left(b_{i}-1\right)=0$ for all i. Therefore

$$
b_{i}=0,1 .
$$

Now we have exceptional classes

$$
a l-(a-1) b_{P}-e_{i_{1}}-\cdots-e_{i_{2 a}} .
$$

Let \mathscr{L}_{2} be the set of these classes. Since

$$
\sum_{i=0}^{[m / 2]}\binom{m}{2 i}=2^{m-1}
$$

we have $\# \mathscr{L}_{2}=2^{m-1}$.
If we take m skew classes $l_{1}, \ldots l_{m}$ in \mathscr{L}_{1}, then there exists only one class l_{m+1} in \mathscr{L}_{2} such that $l_{m+1} \cdot l_{i}=0(1 \leq i \leq m)$. This class is nothing but the class of the curve D on X_{m} whose image under the contraction p^{\prime} in the proof of Proposition 2.5 is the (-1)-section of Hirzebruch surface Σ_{1}. Thus for every class e of \mathscr{L}_{2}, there exist the exceptional curve of the first kind on X_{m} whose class is e.

We next define 2-cycle of $X_{m} \backslash D$. Let $E_{i}=p^{-1}\left(P_{i}\right), E_{j}=p^{-1}\left(P_{j}\right), B_{i}=E_{i} \cap$ $\bar{C}, B_{j}=E_{j} \cap \bar{C}$. Let T be a tubular neighborhood of \bar{C} in X_{m} such that $T \cap E_{i}$ and $T \cap E_{j}$ are fibers. Let γ be a injective path in \bar{C} from B_{i} to B_{j} and put

$$
\begin{equation*}
\Gamma_{i, j}=\left.\left(E_{i} \backslash\left(E_{i} \cap T\right)\right) \cup \partial T\right|_{\gamma} \cup\left(E_{j} \backslash\left(E_{j} \cap T\right)\right) \tag{3.3}
\end{equation*}
$$

Then we can take the orientation such that $i_{*}\left(\left[\Gamma_{i j}\right]\right)=e_{i}-e_{j}$, where $\left[\Gamma_{i j}\right]$ is the homology class of $\Gamma_{i j}$.

Furthermore let $L_{j} \subset \mathbf{P}^{2}$ be a line passing P and P_{j}. Let \bar{L}_{j} be its proper transform. Then the homology class of \bar{L}_{j} is $l-e_{P}-e_{j} \in H_{2}\left(X_{m} ; \mathbf{Z}\right)$. Let $B_{j}^{\prime}=$ $L_{j} \cap \bar{C}$. Let γ^{\prime} an injective path in \bar{C} from B_{i} to B_{j}^{\prime}. Then we can define $\Gamma_{i j}^{\prime}$ similarly.

$$
\begin{gather*}
\Gamma_{i, j}^{\prime}=\left.\left(E_{i} \backslash\left(E_{i} \cap T\right)\right) \cup \partial T\right|_{\gamma^{\prime}} \cup\left(\bar{L}_{j} \backslash\left(\bar{L}_{j} \cap T\right)\right), \tag{3.3}\\
i_{*}\left(\left[\Gamma_{i, j}^{\prime}\right]\right)=e_{i}-\left(l-e_{P}-e_{j}\right) .
\end{gather*}
$$

Let $\alpha_{1}, \ldots, \alpha_{m} \in H_{2}\left(X_{m} \backslash D ; \mathbf{Z}\right)$ be the homology classes of $\Gamma_{1,2}, \ldots, \Gamma_{m-1, m}$, and $\Gamma_{m-1, m}^{\prime}$.

Corollary 3.5. $H_{2}\left(X_{m} \backslash D ; \mathbf{Z}\right)$ is generated by $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$. The intersection paring is given by

$$
\alpha_{i} \cdot \alpha_{j}= \begin{cases}-2 & i=j \\ 1 & |i-j|=1, i, j \neq m \\ 1 & \{i, j\}=\{m-2, m\} \\ 0 & \text { otherwise }\end{cases}
$$

Proof. By Lemma 3.2 and Proposition 3.3, it is clear that $H_{2}\left(X_{m} \backslash D ; \mathbf{Z}\right)$ is generated by $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$. Since $\alpha_{i} \cdot \alpha_{j}=i_{*}\left(\alpha_{i}\right) \cdot i_{*}\left(\alpha_{j}\right)$, the intersection paring is given as above.

It is well known that there is close relation between a cubic surface and a Weyl group of type E_{6}. We have the same relation between X_{m} and the Weyl group of type D_{m}.

Proposition 3.6. The group

$$
W=\left\{\begin{array}{l|l}
g \in \operatorname{Aut}\left(H_{2}\left(X_{m} ; \mathbf{Z}\right)\right) & \begin{array}{l}
g(\bar{c})=\bar{c}, g(\bar{l})=\bar{l} \\
g(\alpha) \cdot g\left(\alpha^{\prime}\right)=\alpha \cdot \alpha^{\prime} \text { for } \alpha, \alpha^{\prime} \in H_{2}\left(X_{m} ; \mathbf{Z}\right)
\end{array}
\end{array}\right\} .
$$

is isomorphic to the Weyl group of type D_{m}.
Proof. It is clear that W contains the group generated by reflections with respect to the elements of R, which is isomorphic to the Weyl group of type D_{m}.

Let $g \in W$ and $g\left(e_{i}\right)=a l+b e_{P}+b_{1} e_{1}+\cdots+b_{m} e_{m}$. It follows from the condition $g(\alpha) \cdot g\left(\alpha^{\prime}\right)=\alpha \cdot \alpha^{\prime}\left(\forall \alpha, \forall \alpha^{\prime} \in H_{2}\left(X_{m} ; \mathbf{Z}\right)\right)$ that

$$
\begin{aligned}
& g\left(e_{i}\right) \cdot g(\bar{c})=e_{i} \cdot \bar{c}=1, \\
& g\left(e_{i}\right) \cdot g(\bar{l})=e_{i} \cdot \bar{l}=0, \\
& g\left(e_{i}\right) \cdot g\left(e_{i}\right)=e_{i} \cdot e_{1}=-1 .
\end{aligned}
$$

On the other hand, since $g(\bar{c})=\bar{c}, g(\bar{l})=\bar{l}$, we have

$$
\begin{gathered}
g\left(e_{i}\right) \cdot g(\bar{c})=g\left(e_{i}\right) \cdot \bar{c}=2 a+b_{1}+\cdots+b_{m}=1, \\
g\left(e_{i}\right) \cdot g(\bar{l})=g\left(e_{i}\right) \cdot \bar{l}=a+b=0, \\
g\left(e_{i}\right) \cdot g\left(e_{i}\right)=a^{2}-b^{2}-b_{1}^{2}-\cdots-b_{m}^{2}=-1 .
\end{gathered}
$$

Thus we have

$$
g\left(e_{i}\right)=\left\{\begin{array}{l}
e_{j}, \\
l-e_{P}-e_{j} .
\end{array}\right.
$$

for some j. Therefore there exists an element σ of the symmetric group S_{m} such that

$$
g\left(e_{i}\right)=\left\{\begin{array}{l}
e_{\sigma(i)}, \\
l-e_{P}-e_{\sigma(i)} .
\end{array}\right.
$$

Since g satisfies that $g(\bar{c})=\bar{c}$ and $g(\bar{l})=\bar{l}, g$ is determined uniquely. It follows from $g(\bar{c})=\bar{c}$ that

$$
2 g(l)=2 l-\left(e_{1}+\cdots+e_{m}\right)+\left\{g\left(e_{1}\right)+\cdots+g\left(e_{m}\right)\right\} .
$$

Since the coefficient of l in the left-hand side is even, the number of the indices i that satisfy $g\left(e_{i}\right)=l-e_{P}-e_{\sigma(i)}$ must be even. Therefore the order of W is equal to that of the Weyl group of type D_{m}.

Let $\mathscr{L}\left(X_{m}\right)$ be the set of exceptional classes given in Proposition 3.4. The Weyl group $W\left(D_{m}\right)$ acts on $\mathscr{L}\left(X_{m}\right)$.

Propositon 3.7. (i) There are 2 orbit of $\mathscr{L}\left(X_{m}\right)$ under the action of $W\left(D_{m}\right)$. One is $W\left(D_{m}\right)$-orbit \mathscr{L}_{1} of e_{1} and another is $W\left(D_{m}\right)$-orbit \mathscr{L}_{2} of e_{P}.
(ii) Let $M=\left\{l_{1}, \ldots, l_{s}\right\}$ be a maximal set of mutually skew classes, i.e. $l_{i} \cdot l_{j}=$ $0(i \neq j)$. Then $s=m+1$. The set M consists of m elements of \mathscr{L}_{1} and one element of \mathscr{L}_{2}.
(iii) Let $\mathscr{E}\left(X_{m}\right)$ be the set of ordered set of mutually skew lines:

$$
\mathscr{E}\left(X_{m}\right)=\left\{\left(l_{1}, \ldots, l_{m} ; l_{m+1}\right) \mid l_{i} \cdot l_{j}=0(i \neq j), l_{i} \in \mathscr{L}_{1}(1 \leq i \leq m), l_{m+1} \in \mathscr{L}_{2}\right\} .
$$

Then the Weyl group $W\left(D_{m}\right)$ acts on $\mathscr{E}\left(X_{m}\right)$ simply transitively .
Proof. (i) Straightforward.
(ii) If $M \cap \mathscr{L}_{2}=\varnothing$, then $M \subset \mathscr{L}_{1}$. In this case we have $\# M=m$. But there exists one element e of \mathscr{L}_{2} such that e is skew to the elements of M. Thus we have $M \cap \mathscr{L}_{2} \neq \varnothing$ and let $l_{s} \in M \cap \mathscr{L}_{2}$. By the action of $W\left(D_{m}\right)$, we may assume $l_{s}=e_{P}$. The set of the elements of $\mathscr{L}\left(X_{m}\right)$ that are skew to e_{P} is $M^{\prime}=$ $\left\{e_{1}, \ldots, e_{m}\right\}$. Thus we have $s=m+1$.
(iii) As in the proof of (ii), l_{m+1} determine the set $\left\{l_{1}, \ldots, l_{m}\right\}$ uniquely. Therefore $W\left(D_{m}\right)$ acts on $\mathscr{E}\left(X_{m}\right)$ transitively. Since $\# \mathscr{L}_{2}=2^{m-1}$ by Propositon 3.4, \# $\mathscr{E}\left(X_{m}\right)=2^{m-1} m$!. This is the order of $W\left(D_{m}\right)$. Thus we have (iii).

4. Torelli theorem for the pairs $\left(X_{m}, D\right)$

Let $(C, L, P) \in \mathbb{C}$ be a framing defined in section 2. Let X_{m} be a surface obtained by blowing up \mathbf{P}^{2} at P and m points P_{1}, \ldots, P_{m} on $C \backslash L$ in general position.

$$
p: X_{m} \rightarrow \mathbf{P}^{2}
$$

Put $D=\bar{C}+\bar{L} . \quad$ By Lemma 2.3, we may assume $C: z^{2}=x y, L: x=0$ and $P(0: 0: 1)$. We next define meromorphic 2-form ω_{0} on X_{m}. Let V_{1}, V_{2}, V_{3} be open sets of \mathbf{P}^{2} defined by

$$
\begin{aligned}
& V_{1}=\left\{\left(1: x_{1}: y_{1}\right) \in \mathbf{P}^{2}\right\}, \\
& V_{2}=\left\{\left(x_{2}: 1: y_{2}\right) \in \mathbf{P}^{2}\right\}, \\
& V_{3}=\left\{\left(x_{3}: y_{3}: 1\right) \in \mathbf{P}^{2}\right\} .
\end{aligned}
$$

Then we define a meromorphic 2-form ω_{0}^{\prime} on \mathbf{P}^{2} by

$$
\omega_{0}^{\prime}= \begin{cases}\frac{d x_{1} \wedge d y_{1}}{2 \pi \sqrt{-1}\left(y_{1}^{2}-x_{1}\right)} & \text { on } V_{1}, \tag{4.1}\\ \frac{d x_{2} \wedge d y_{2}}{2 \pi \sqrt{-1} x_{2}\left(x_{2}-y_{2}^{2}\right)} & \text { on } V_{2}, \\ \frac{d x_{3} \wedge d y_{3}}{2 \pi \sqrt{-1} x_{3}\left(1-x_{3} y_{3}\right)} & \text { on } V_{3} .\end{cases}
$$

Put

$$
\omega_{0}=p^{*} \omega_{0}^{\prime}
$$

Lemma 4.1. Let $\Gamma_{i, j}, \Gamma_{i, j}^{\prime}$ be the 2 -cycles defined by (3.3), (3.3)' and $P_{i}=$ $\left(1: s_{i}^{2}: s_{i}\right)(i=1, \ldots, m)$. Then we have

$$
\begin{aligned}
& \int_{\Gamma_{i, j}} \omega_{0}=s_{i}-s_{j}, \\
& \int_{\Gamma_{i, j}^{\prime}} \omega_{0}=s_{i}+s_{j}
\end{aligned}
$$

Proof. Since $E_{i}=p^{-1}\left(P_{i}\right), E_{j}=p^{-1}\left(P_{j}\right)$, we have

$$
\int_{E_{i} \backslash\left(E_{i} \cap T\right)} \omega_{0}=\int_{E_{j} \backslash\left(E_{j} \cap T\right)} \omega_{0}=0 .
$$

Therefore

$$
\int_{\Gamma_{i, j}} \omega_{0}=\int_{\left.\partial T\right|_{y}} \omega_{0} .
$$

The point of $C \backslash L$ can be parameterized by ($\left.1: s^{2}: s\right), s \in \mathbf{C}$. Then by the residue formula, we have

$$
\begin{aligned}
\int_{\left.\partial T\right|_{\gamma}} \omega_{0} & =2 \pi \sqrt{-1} \int_{\gamma} \operatorname{Res}_{\bar{C}} \omega_{0} \\
& =\int_{\gamma} d s \\
& =\int_{s_{j}}^{s_{i}} d s \\
& =s_{i}-s_{j}
\end{aligned}
$$

We next calculate $\int_{\Gamma_{i, j}^{\prime}} \omega_{0}$. Since $\int_{L_{j}} \omega_{0}^{\prime}=0$, we have

$$
\int_{\bar{L}_{j} \backslash\left(\bar{L}_{j} \cap T\right)} \omega_{0}=0 .
$$

Since $L_{j} \cap C=\left\{\left(1: s_{j}^{2}: s_{j}\right),\left(1: s_{j}^{2}:-s_{j}\right)\right\}$,

$$
\begin{aligned}
\int_{\Gamma_{i, j}^{\prime}} \omega_{0} & =\int_{\left.\partial T\right|_{y^{\prime}}} \omega_{0} \\
& =2 \pi \sqrt{-1} \int_{\gamma^{\prime}} \operatorname{Res}_{\bar{C}} \omega_{0} \\
& =\int_{\gamma^{\prime}} d s \\
& =\int_{-s_{j}}^{s_{i}} d s \\
& =s_{i}+s_{j}
\end{aligned}
$$

Thus the lemma follows.
Let ω be a meromorphic 2 -form such that ω has poles only along D. We can define a map

$$
\chi_{\omega}: Q \rightarrow \mathbf{C}
$$

by

$$
\begin{equation*}
\chi_{\omega}(\alpha)=\int_{\Gamma} \omega, \quad \alpha \in Q \tag{4.2}
\end{equation*}
$$

where Γ is a 2-cycle of $X_{m} \backslash D$ such that α is the image of the class of Γ under i_{*}. Now we have the theorem of Torelli type for our framed surfaces.

Theorem 4.2. Let $(C, L, P)\left(\right.$ resp. $\left.\left(C^{\prime}, L^{\prime}, P^{\prime}\right)\right)$ be an element of \mathbb{C} and $p: X_{m}$ $\rightarrow \mathbf{P}^{2}$ (resp. $\left.p^{\prime}: X_{m}^{\prime} \rightarrow \mathbf{P}^{2}\right)$ the morphism obtained by blowing up $P\left(\right.$ resp. $\left.P^{\prime}\right)$ and m points P_{1}, \ldots, P_{m} (resp. $P_{1}^{\prime}, \ldots, P_{m}^{\prime}$) on $C \backslash L$ (resp. $\left.C^{\prime} \backslash L^{\prime}\right)$ in general position.

Put $D=\bar{C}+\bar{L}$ (resp. $D^{\prime}=\bar{C}^{\prime}+\bar{L}^{\prime}$). Let ω (resp. ω^{\prime}) be one of meromorphic 2-forms on X_{m} (resp. X_{m}^{\prime}) which has poles only along D (resp. D^{\prime}). For ω (resp. ω^{\prime}), let $\chi_{\omega}: Q \rightarrow \mathbf{C}$ (resp. $\chi_{\omega^{\prime}}^{\prime}: Q^{\prime} \rightarrow \mathbf{C}$) be the mapping defined as (4.2).

If $\phi: H_{2}\left(X_{m} ; \mathbf{Z}\right) \rightarrow H_{2}\left(X_{m}^{\prime} ; \mathbf{Z}\right)$ is an isometry such that
(1) $\phi(\bar{c})=\bar{c}^{\prime}, \phi(\bar{l})=\bar{l}^{\prime}$,
(2) there exists $\varrho \in \mathbf{C}^{*}$ such that $\phi^{*}\left(\chi_{\omega^{\prime}}\right)=\varrho \chi_{\omega}$,
then there exists an isomorphism $\Phi:\left(X_{m}, D\right) \rightarrow\left(X_{m}^{\prime}, D^{\prime}\right)$ which induces ϕ and maps \bar{C} to \bar{C}^{\prime} and \bar{L} to \bar{L}^{\prime}.

Proof. It follows from the condition (1) and Proposition 3.6 that there exists $\sigma \in S_{m}$ such that $\phi\left(e_{i}\right)=e_{\sigma(i)}^{\prime}$ or $l-e_{P}^{\prime}-e_{\sigma(i)}^{\prime}$ and that the number of i such that $\phi\left(e_{i}\right)=l-e_{P}^{\prime}-e_{\sigma(i)}^{\prime}$ is even.

Let $L_{i}(i=1, \ldots, m)$ be the line in \mathbf{P}^{2} which passing through P and P_{i}. Let \bar{L}_{i} be a proper transform of L_{i}. It follows from the Proposition 2.5 that we may assume that $\phi\left(e_{P}\right)=e_{P^{\prime}}, \phi\left(e_{i}\right)=e_{i}^{\prime},(i=1, \ldots, m)$. By Lemma 2.3, we may assume that conics C, C^{\prime} are given by $z^{2}=x y$, lines L, L^{\prime} are the line given by $x=0$ and that P and P^{\prime} are the point $(0: 0: 1)$, where $(x: y: z)$ is a homogeneous coordinate of \mathbf{P}^{2}.

Let $\left(1: s_{i}^{2}: s_{i}\right),\left(1: s_{j}^{\prime 2}: s_{j}^{\prime}\right)$ be coordinates of P_{i}, P_{j}^{\prime} respectively. Then by Lemma 4.1 and the condition (2) of the theorem, we have

$$
s_{i}^{\prime}=\varrho s_{i} \quad i=1, \ldots, m
$$

Thus the theorem follows from Propositon 2.4.

5. A family of \mathbf{P}^{2} with $2 n+3$ points blown up

Let \mathfrak{G} be a Cartan subalgebra of simple Lie algebra $\mathfrak{s o}(2(2 n+3)$, C) of type $D_{2 n+3}$ and W its Weyl group. Then $S=\mathfrak{F} / W \cong \mathbf{C}^{2 n+3}$. In this section, we construct a family of the surfaces $X_{2 n+3}$ whose base space is S. To do it, we construct a family $\mathfrak{?}$) of surfaces whose general fiber is double covering of Hirzebruch surface of degree n branched along a hyperelliptic curve. The general fiber is also isomorphic to a blowing up of $X_{2 n+3}$ at one point.

Let

$$
\begin{aligned}
\mathfrak{G} & =\left\{\left(h_{1}, \ldots, h_{m},-h_{1}, \ldots,-h_{m}\right) \in \mathbf{C}^{2 m}\right\} \\
& =\left\{\left(h_{1}, \ldots, h_{m}\right) \in \mathbf{C}^{m}\right\} .
\end{aligned}
$$

The quotient

$$
\mathfrak{H} \rightarrow S=\mathfrak{H} / W
$$

is given by

$$
h=\left(h_{1}, \ldots, h_{m}\right) \mapsto\left(a, b_{1}, b_{2}, \ldots, b_{2 n+2}\right),
$$

where $a=h_{1} \cdots h_{m}, b_{i}=(-1)^{i} \sigma_{i}\left(h_{1}^{2}, \ldots, h_{m}^{2}\right), \sigma_{i}$ is the i-th elementary symmetric polynomial.

For $s=\left(a, b_{1}, b_{2}, \ldots, b_{2 n+2}\right) \in S$, put

$$
f_{s}=x^{2 n+2}+b_{1} x^{2 n+1}+\cdots+b_{2 n+2}
$$

Then

$$
F_{1}\left(x_{1}, y_{1}, z_{1}, s\right)=z_{1}^{2}+x_{1} y_{1}^{2}+2 a y_{1}+f_{s}\left(x_{1}\right)=0
$$

is the semi-universal deformation of singularities of type D_{m}.
Put

$$
\mathscr{U}_{i}=\left\{\left(x_{i}, y_{i}, z_{i}, s\right) \in \mathbf{C}^{3} \times S \mid F_{i}\left(x_{i}, y_{i}, z_{i}, s\right)=0\right\}, \quad 1 \leq i \leq 4,
$$

where

$$
\begin{aligned}
& F_{1}\left(x_{1}, y_{1}, z_{1}, s\right)=z_{1}^{2}+x_{1} y_{1}^{2}+2 a y_{1}+f_{s}\left(x_{1}\right), \\
& F_{2}\left(x_{2}, y_{2}, z_{2}, s\right)=z_{2}^{2}+x_{2} y_{2}^{2}+2 a x_{2}^{n+2} y_{2}+x_{2}^{2 n+2} f_{s}\left(x_{2}^{-1}\right), \\
& F_{3}\left(x_{3}, y_{3}, z_{3}, s\right)=z_{3}^{2}+x_{3}+2 a x_{3}^{n+2} y_{3}+y_{3}^{2} x_{3}^{2 n+2} f_{s}\left(x_{3}^{-1}\right), \\
& F_{4}\left(x_{4}, y_{4}, z_{4}, s\right)=z_{4}^{2}+x_{4}+2 a y_{4}+y_{4}^{2} f_{s}\left(x_{4}\right) .
\end{aligned}
$$

We can glue $\mathscr{U}_{1}, \mathscr{U}_{2}, \mathscr{U}_{3}, \mathscr{U}_{4}$ as follows and denote by \mathfrak{Y} :

$$
\begin{gathered}
x_{1}=x_{4}, \\
y_{1} y_{4}=1, \\
x_{2}=x_{3},
\end{gathered} \quad x_{1} x_{2}=1, \quad y_{3}=1, \quad y_{1} x_{2}^{n}=y_{2}, ~ 子, ~ z_{2}=z_{1} y_{4} .
$$

For $s \in S$ denote by \mathfrak{Y}_{s} the fiber of the projection $\mathfrak{Y} \rightarrow S$.
Remark 5.1. The glueing formula for $\left(x_{i}, y_{i}\right)$ is same as (5.2) below for Hirzebruch surface Σ_{n}.

Lemma 5.2. Put

$$
\Delta=\left\{s \in S \mid x f_{s}(x)-a^{2}=0 \text { has multiple roots. }\right\} .
$$

If $s \in S \backslash \Delta$, there exists $(C, L, P) \in \mathbb{C}$ and $2 n+3$ points $P_{1}, \ldots, P_{2 n+3}$ on $C \backslash L$ in general position such that \mathfrak{Y}_{s} is isomorphic to a surface obtained by blowing up P, Q, $P_{1}, \ldots, P_{2 n+3}$, where $C \cap L=\{Q\}$.

Proof. We fix $s \in S \backslash \Delta$. Put $U_{i}=\mathscr{U}_{i} \cap \mathfrak{Y}_{s}(i=1, \ldots, 4)$. If $a \neq 0, \mathfrak{Y}_{s}$ has no singularity on $x_{1}=0$. Thus we assume $x_{1} \neq 0$. Since

$$
\begin{equation*}
x_{1} F_{1}=x_{1} z_{1}^{2}+\left(x_{1}\left(y_{1}+\frac{a}{x_{1}}\right)\right)^{2}+x_{1} f_{s}\left(x_{1}\right)-a^{2} \tag{5.1}
\end{equation*}
$$

and $X_{1}=x_{1}, Y_{1}=x_{1}\left(y_{1}+\frac{a}{x_{1}}\right)$ and $Z_{1}=\sqrt{x_{1}} z_{1}$ is a local coordinate, \mathfrak{y}_{s} has no singularity on U_{1}.

If $a=0$, we can prove \mathfrak{V}_{s} has no singularity on U_{1} when $x_{1} \neq 0$. If $x_{1}=0$, we have

$$
F_{1}\left(0, y_{1}, z_{1}, s\right)=z_{1}^{2}+f_{s}(0) .
$$

Since $s \in S \backslash \Delta, f_{s}(0) \neq 0$. Therefore since $\frac{\partial F_{1}}{\partial z_{1}}=2 z_{1} \neq 0, \mathfrak{Y}_{s}$ has no singularity on
U_{1}. U_{1}.

Furthermore since

$$
\left.\frac{\partial F_{4}}{\partial x_{4}}\right|_{y_{4}=0}=1
$$

then \mathfrak{Y}_{s} has no singularity on U_{4}.

Since $U_{2} \backslash U_{1}$ is the set defined by $x_{2}=0$ and $\left.\frac{\partial F_{2}}{\partial z_{2}}\right|_{x_{2}=0}=2 z_{2}, F_{2}\left(0, y_{2}, 0, s\right)=1$,
has no singularity on U_{2}. \mathfrak{Y}_{s} has no singularity on U_{2}.

Since $U_{3} \backslash\left(U_{2} \cup U_{4}\right)$ is the set defined by $x_{3}=y_{3}=0$ and

$$
\left.\frac{\partial F_{3}}{\partial x_{3}}\right|_{x_{3}=y_{3}=0}=1
$$

\mathfrak{Y}_{s} has no singularity on U_{3}.
Therefore \mathfrak{Y}_{s} is nonsingular. Let Σ_{n} be the Hirzebruch surface of degree n,

$$
\Sigma_{n}=\left\{\left(\zeta_{0}: \zeta_{1}: \zeta_{2}\right)\left(u^{\prime}: v^{\prime}\right) \in \mathbf{P}^{2} \times \mathbf{P}^{1} \mid s^{n} \zeta_{0}=t^{n} \zeta_{1}\right\}
$$

Let $W_{1}, W_{2}, W_{3}, W_{4}$ be open coverings of Σ_{n},

$$
\left.\begin{array}{ll}
W_{1}=\left\{\left(\zeta_{0}: \zeta_{1}: \zeta_{2}\right)\left(u^{\prime}: v^{\prime}\right) \in \Sigma_{n} \mid v^{\prime} \neq 0, \zeta_{0} \neq 0\right\} & \left(x_{1}, y_{1}\right)=\left(u^{\prime} / v^{\prime}, \zeta_{2} / \zeta_{0}\right) \\
W_{2}=\left\{\left(\zeta_{0}: \zeta_{1}: \zeta_{2}\right)\left(u^{\prime}: v^{\prime}\right) \in \Sigma_{n} \mid u^{\prime} \neq \zeta_{1} \neq 0\right\} & \left(x_{2}, y_{2}\right)=\left(v^{\prime} / u^{\prime}, \zeta_{2} / \zeta_{1}\right) \\
W_{3}=\left\{\left(\zeta_{0}: \zeta_{1}: \zeta_{2}\right)\left(u^{\prime}: v^{\prime}\right) \in \Sigma_{n} \mid u^{\prime} \neq 0, \zeta_{2} \neq 0\right\} & \left(x_{3}, y_{3}\right)=\left(v^{\prime} / u^{\prime}, \zeta_{1} / \zeta_{2}\right) \tag{5.2}\\
W_{4}=\left\{\left(\zeta_{0}: \zeta_{1}: \zeta_{2}\right)\left(u^{\prime}: v^{\prime}\right) \in \Sigma_{n} \mid v^{\prime} \neq 0, \zeta_{2} \neq 0\right\} & \left(x_{4}, y_{4}\right)=\left(u^{\prime} / v^{\prime}, \zeta_{0} / \zeta_{2}\right)
\end{array}\right\}
$$

Let H be a curve on Σ_{n} defined as follows:

$$
\begin{aligned}
x_{1} y_{1}^{2}+2 a y_{1}+f_{s}\left(x_{1}\right)=0 & \text { on } W_{1}, \\
x_{2} y_{2}^{2}+2 a x_{2}^{n+2} y_{2}+x_{2}^{2 n+2} f_{s}\left(x_{2}^{-1}\right)=0 & \text { on } W_{2}, \\
x_{3}+2 a x_{3}^{n+2} y_{3}+y_{3}^{2} x_{3}^{2 n+2} f_{s}\left(x_{3}^{-1}\right)=0 & \text { on } W_{3}, \\
x_{4}+2 a y_{4}+y_{4}^{2} f_{s}\left(x_{4}\right)=0 & \text { on } W_{4} .
\end{aligned}
$$

It follows from the way to glue $U_{1}, U_{2}, U_{3}, U_{4}$ that \mathfrak{Y}_{s} is a double covering of Σ_{n} branched along H

$$
v: \mathfrak{9}_{s} \rightarrow \Sigma_{n}
$$

The curve H is a hyperelliptic curve of genus $n+1$ ramified at the points $\left(\beta_{1},-a / \beta_{1}\right), \ldots,\left(\beta_{2 n+3},-a / \beta_{2 n+3}\right) \in W_{1}$ and $(0,0) \in W_{3}$, where $\beta_{1}, \ldots, \beta_{2 n+3}$ are the roots of the equation $x f_{s}(x)-a^{2}=0$ (If $a=\beta_{i}=0$, we take $(0,0) \in W_{4}$ instead of $\left.\left(\beta_{i},-a / \beta_{i}\right) \in W_{1}\right)$.

Let $F_{i}(i=1, \ldots, 2 n+3)$ be the fiber of Σ_{n} defined by $u^{\prime} / v^{\prime}=\beta_{i}$ and F_{∞} the fiber defined by $v^{\prime} / u^{\prime}=0$. Then for $i=1, \ldots, 2 n+3, \infty$, the inverse image $v^{-1}\left(F_{i}\right)$ is a union of two lines;

$$
v^{-1}\left(F_{i}\right)=F_{i, 1} \cup F_{i, 2}, \quad F_{i, 1}, F_{i, 2} \simeq \mathbf{P}^{1}
$$

Since $v^{-1}\left(F_{i}\right) \cdot v^{-1}\left(F_{i}\right)=0, F_{i, 1} \cdot F_{i, 1}=F_{i, 2} \cdot F_{i, 2}=-1$. Since $F_{i, 1} \cong F_{i, 2} \cong \mathbf{P}^{1}, F_{i, 1}$, $F_{i, 2}(i=1, \ldots, 2 n+3, \infty)$ are exceptional curves of the first kind.

We next blow down the exceptional curves $F_{i, j(i)}(j(i) \in\{1,2\}, i=1, \ldots$, $2 n+3$), and $F_{\infty, 1}$. Then we have \mathbf{P}^{1}-bundle over \mathbf{P}^{1}. Therefore it is the Hirzebruch surface Σ_{r} of degree r for some r. Then we need the following lemma.

Lemma 5.3. $r=0,1$. We can choose $j(i)$ such that $r=1$.

$$
\mu: \mathfrak{Y}_{s} \rightarrow \Sigma_{1} .
$$

Proof of Lemma 5.3. Let

$$
S^{(n)}=\left\{\left(\zeta_{0}: \zeta_{1}: \zeta_{2}\right)\left(u^{\prime}: v^{\prime}\right) \in \Sigma_{n} \mid \zeta_{0}=\zeta_{1}=0\right\}
$$

be $(-n)$-section of Σ_{n}. Let $\tilde{S}^{(n)}$ be the inverse image of $S^{(n)}$ under the covering v. Then $\mu\left(\tilde{S}^{(n)}\right) \cdot \mu\left(\tilde{S}^{(n)}\right)=4$ and $\mu\left(\tilde{S}^{(n)}\right)$ intersects a general fiber at two points. Let $f^{(r)}$ and $s^{(r)}$ be the linear equivalence classes of a fiber of Σ_{r} and $(-r)$-section respectively. Then

$$
\begin{equation*}
\mu\left(\tilde{S}^{(n)}\right) \cdot f^{(r)}=2, \mu\left(\tilde{S}^{(n)}\right) \cdot s^{(r)} \geq 0, \mu\left(\tilde{S}^{(n)}\right) \cdot \mu\left(\tilde{S}^{(n)}\right)=4 . \tag{5.3}
\end{equation*}
$$

This shows $r \leq 1$. If $r=0$, by exchanging $F_{1,1}$ and $F_{1,2}$, we have $\mu\left(\mathfrak{y}_{s}\right)=\Sigma_{1}$.
Now we blow down (-1)-section of Σ_{1}

$$
\mu^{\prime}: \mathfrak{Y}_{s} \rightarrow \mathbf{P}^{2}
$$

Since we have $\mu\left(\tilde{S}^{(n)}\right) \sim 2 f^{(1)}+2 s^{(1)}$ by (5.3), $\mu\left(\tilde{S}^{(n)}\right)$ doesn't intersect (-1)-section of Σ_{1}. Therefore $\mu^{\prime}\left(\tilde{S}^{(n)}\right) \cdot \mu^{\prime}\left(\tilde{S}^{(n)}\right)=4$.

Then since $\mu^{\prime}\left(\tilde{S}^{(n)}\right) \cong \mathbf{P}^{1}, \mu^{\prime}\left(\tilde{S}^{(n)}\right)$ is a conic C on \mathbf{P}^{2}. The image of $F_{\infty, 2}$ is a line L tangent to $\mu^{\prime}\left(\tilde{S}^{(n)}\right)$ and the image of (-1)-section of Σ_{1} is a point P on $L \backslash C$. Thus we have Lemma 5.2.

Remark 5.4. For $h=\left(h_{1}, \ldots, h_{m}\right) \in \mathfrak{G}$, we have

$$
F_{1}=z_{1}^{2}+x_{1} y_{1}^{2}+2 a y_{1}+\frac{\prod_{i=1}^{m}\left(x_{1}-h_{i}^{2}\right)+h_{1}^{2} \cdots h_{m}^{2}}{x_{1}}
$$

Thus the roots $\beta_{1}, \ldots, \beta_{m}$ of the equation $x_{1} f_{s}\left(x_{1}\right)-a^{2}=0$ are $h_{1}^{2}, \ldots, h_{m}^{2}$.
Proposition 5.5. The manifold \mathfrak{y}) is nonsingular and satisfies the following conditions.
(1) If $s \in S \backslash \Delta$, the fiber \mathfrak{Y}_{s} is nonsingular, and there exists a framing $(C, L, P) \in \mathbb{C}$ and $2 n+3$ points $P_{1}, \ldots, P_{2 n+3}$ on $C \backslash L$ in general position such that \mathfrak{Y}_{s} is isomorphic to the surface obtained from \mathbf{P}^{2} by blowing up $P, Q, P_{1}, \ldots, P_{2 n+3}$, where $C \cap L=\{Q\}$.
(2) If $s \in \Delta$ and $a \neq 0$, the fiber \mathfrak{Q}_{s} has singularity. Put

$$
x f_{s}(x)-a^{2}=\left(x-d_{1}\right)^{k_{1}} \cdots\left(x-d_{r}\right)^{k_{r}} \quad d_{i} \neq d_{j}, \quad(i \neq j) .
$$

Then \mathfrak{Y}_{s} has simple singularities of type $A_{k_{i}-1}(i=1, \ldots, r)$.
(3) If $s \in \Delta$ and $a=0$, the fiber \mathfrak{Y}_{s} has singularity. Put

$$
f_{s}(x)=x^{k_{0}}\left(x-d_{1}\right)^{k_{1}} \cdots\left(x-d_{r^{\prime}}\right)^{k_{r^{\prime}}}, \quad d_{i} \neq d_{j}(i \neq j), \quad d_{i} \neq 0 .
$$

Then \mathfrak{Y}_{s} has simple singularities of type $A_{k_{i}-1}\left(i=1, \ldots, r^{\prime}\right)$ and simple singularity of type $D_{k_{0}+1}$. (If $k_{0}=1,2$, then $D_{1}=A_{1}, D_{2}=A_{3}$).
Proof. Since $\partial F_{1} / \partial b_{0}=1$, \mathfrak{y} has no singularity on \mathscr{U}_{1}. By the proof of Lemma 5.2 , it is clear that \mathfrak{Y} has no singularity on $\mathfrak{Y} \backslash \mathscr{U}_{1}$. Thus \mathfrak{Y} is nonsingular. Lemma 5.2 shows (1). By (5.1), we have (2).

Put $s \in S \backslash \Delta, a=0$. Then \mathfrak{Y}_{s} has a simple singularity of type $A_{k_{i}-1}$ $\left(i=1, \ldots, r^{\prime}\right)$.

Put $f_{s}(x)=x^{k_{0}} h(x)$. Then $h(0) \neq 0$. Since

$$
F_{1} h\left(x_{1}\right)^{-1}=z_{1}^{2} h\left(x_{1}\right)^{-1}+x_{1} y_{1}^{2} h\left(x_{1}\right)^{-1}+x_{1}^{k_{0}}=0
$$

and take $\left(X_{1}^{\prime}, Y_{1}^{\prime}, Z_{1}^{\prime}\right)=\left(x_{1}, y_{1} / \sqrt{h\left(x_{1}\right)}, z_{1} / \sqrt{h\left(x_{1}\right)}\right)$ as a local coordinate for a neighbor-hood U of $x_{1}=0$, we have

$$
Z_{1}^{\prime 2}+X_{1}^{\prime} Y_{1}^{\prime 2}+X_{1}^{\prime k_{0}}=0
$$

(a) If $k_{0}=1, U$ has singularity only at the points $(0, \pm \sqrt{-1}, 0) \in U$. Since

$$
Z_{1}^{\prime 2}+X_{1}^{\prime} Y_{1}^{\prime 2}+X_{1}^{\prime k_{0}}=Z_{1}^{\prime 2}+X_{1}^{\prime}\left(Y_{1}^{\prime 2}+1\right)=0
$$

and $\left(X_{1}^{\prime}, Y_{1}^{\prime 2}+1, Z_{1}^{\prime}\right)$ is a local coordinate near the singularities, U has a simple singularity of type A_{1} at the points $(0, \pm \sqrt{-1}, 0) \in U$.
(b) If $k_{0}=2, U$ has singularity only at the point $(0,0,0) \in U$. Since

$$
Z_{1}^{\prime 2}+X_{1}^{\prime} Y_{1}^{\prime 2}+X_{1}^{\prime k_{0}}=Z_{1}^{\prime 2}+\left(X_{1}^{\prime}+\frac{1}{2} Y_{1}^{\prime}\right)^{2}-\frac{1}{4} Y_{1}^{\prime 4}=0
$$

and $\left(X_{1}^{\prime}+\frac{1}{2} Y_{1}^{\prime}, Y_{1}^{\prime}, Z_{1}^{\prime}\right)$ is a local coordinate near the point, U has a simple singularity of type A_{3} at $(0: 0: 0) \in U$.
(c) If $k_{0} \geq 3, U$ has singularity only at $(0: 0: 0) \in U$. It is clear that U has a simple singularity of type $D_{k_{0}+1}$ at $(0,0,0) \in U$.
The proposition is proved.
We have constructed a family of the surfaces obtained by blowing up at one point on $X_{2 n+3}$. We next construct a family of the surfaces $X_{2 n+3}$. Put

$$
\begin{aligned}
f_{s}(x) & =x^{2 n+2}+b_{1} x^{2 n+1}+\cdots+b_{2 n+2}, \\
A & =\{z \in \mathbf{C}| | z-1 \mid<1 / 2\}, \\
\mathscr{A} & =\left\{(x, s) \in \mathbf{C} \times S \mid-\left(x^{2 n+2} f_{s}\left(x^{-1}\right)-a^{2} x^{2 n+3}\right) \in A\right\} .
\end{aligned}
$$

Then there exists holomorphic function $g_{s}(x)$ on \mathscr{A} such that

$$
\left(g_{s}(x)\right)^{2}=-\left(x^{2 n+2} f_{s}\left(x^{-1}\right)-a^{2} x^{2 n+3}\right)
$$

We fix $g_{s}(x)$. We need the following lemma to construct the family.
Lemma 5.6. Fix $s \in S$. Let

$$
U_{i}^{\prime}=\left\{\left(x_{i}, y_{i}, z_{i}\right) \in U_{i} \mid\left(x_{i}, s\right) \in \mathscr{A}\right\} \quad(i=2,3),
$$

where $U_{j}=\mathfrak{Y}_{s} \cap \mathscr{U}_{j}(j=1, \ldots, 4)$. Let $\pi^{\prime}: U_{2}^{\prime} \cup U_{3}^{\prime} \rightarrow \mathbf{C} \times \mathbf{P}^{2}$ be a morphism defined as follows.

$$
\begin{aligned}
& \pi^{\prime}(w) \\
& = \begin{cases}\left(x_{2},\left(z_{2}-g_{s}\left(x_{2}\right): y_{2}+a x_{2}^{n+1}\right)\right) \in V, & w=\left(x_{2}, y_{2}, z_{2}\right) \in U_{2}^{\prime}, z_{2}-g_{s}\left(x_{2}\right) \neq 0, \\
\left(x_{2},\left(-x_{2}\left(y_{2}+a x_{2}^{n+1}\right): z_{2}+g_{s}\left(x_{2}\right)\right)\right) \in V, & w=\left(x_{2}, y_{2}, z_{2}\right) \in U_{2}^{\prime}, z_{2}+g_{s}\left(x_{2}\right) \neq 0, \\
\left(x_{2},\left(z_{2}-g_{s}\left(x_{2}\right): y_{2}+a x_{2}^{n+1}\right)\right) \in V, & w=\left(x_{2}, y_{2}, z_{2}\right) \in U_{2}^{\prime}, x_{2}=0, \\
\left(x_{3},\left(z_{3}-g_{s}\left(x_{3}\right) y_{3}: 1+a x_{3}^{n+1} y_{3}\right)\right) \in V, & w=\left(x_{3}, y_{3}, z_{3}\right) \in U_{3}^{\prime}, z_{3}-g_{s}\left(x_{3}\right) y_{3} \neq 0, \\
\left(x_{3},\left(-x_{3}\left(1+a x_{3}^{n+1} y_{3}\right): z_{3}+g_{s}\left(x_{3}\right) y_{3}\right)\right) \in V, & w=\left(x_{3}, y_{3}, z_{3}\right) \in U_{3}^{\prime}, z_{3}+g_{s}\left(x_{3}\right) y_{3} \neq 0, \\
\left(x_{3},\left(z_{3}-g_{s}\left(x_{3}\right) y_{3}: 1+a x_{3}^{n+1} y_{3}\right)\right) \in V, & w=\left(x_{3}, y_{3}, z_{3}\right) \in U_{3}^{\prime}, x_{3}=0 .\end{cases}
\end{aligned}
$$

where

$$
V=\left\{\left(x,(u: v) \in \mathbf{C} \times \mathbf{P}^{1} \mid(x, s) \in \mathscr{A}\right\} .\right.
$$

The open set $U_{2}^{\prime} \cup U_{3}^{\prime}$ has no singularity and π^{\prime} is blowing down an exceptional curve E_{∞}, where $E_{\infty}=\left\{\left(x_{2}, y_{2}, z_{2}\right) \in U_{2} \mid x_{2}=0, z_{2}-g_{s}\left(x_{2}\right)=0\right\} \cup\left\{\left(x_{3}, y_{3}, z_{3}\right) \in\right.$ $\left.U_{3} \mid x_{3}=0, z_{3}-g_{s}\left(x_{3}\right) y_{3}=0\right\}$.

Proof. We have only to prove $U_{1} \cap\left(U_{2}^{\prime} \cup U_{3}^{\prime}\right)$ has no singularity to show that $U_{2}^{\prime} \cup U_{3}^{\prime}$ has no singularity (see the proof of Lemma 5.2). Singularity on $U_{1} \cap$ $\left(U_{2} \cup U_{3}\right)$ is on the set defined by $x_{1} f_{s}\left(x_{1}\right)-a^{2}=0$ (see (5.1)). By the definition of $\mathscr{A}, x_{1} f_{s}\left(x_{1}\right)-a^{2} \neq 0$ on $U_{1} \cap\left(U_{2}^{\prime} \cup U_{3}^{\prime}\right)$. Therefore $U_{2}^{\prime} \cup U_{3}^{\prime}$ has no singularity.

We next show that π^{\prime} is blowing down of E_{\propto}. By putting $y_{2}=Y^{\prime} / X^{\prime}, z_{2}=$ Z^{\prime} / X^{\prime}, we have

$$
U_{2}^{\prime} \cup U_{3}^{\prime}
$$

$$
\cong\left\{\left(x,\left(X^{\prime}: Y^{\prime}: Z^{\prime}\right)\right) \in \mathbf{C} \times \mathbf{P}^{2} \mid Z^{\prime 2}+x Y^{\prime 2}+2 a x^{n+2} X^{\prime} Y^{\prime}+x^{2 n+2} f_{s}\left(x^{-1}\right) X^{\prime 2}=0\right\}
$$

Since

$$
\begin{aligned}
Z^{\prime 2}+ & x Y^{\prime 2}+2 a x^{n+2} X^{\prime} Y^{\prime}+x^{2 n+2} f_{s}\left(x^{-1}\right) X^{\prime 2} \\
& =\left(Z^{\prime}-g_{s}(x) X^{\prime}\right)\left(Z^{\prime}+g_{s}(x) X^{\prime}\right)+x\left(Y^{\prime}+a x^{n+1} X^{\prime}\right)^{2}
\end{aligned}
$$

we have

$$
U_{2}^{\prime} \cup U_{3}^{\prime} \cong\left\{(x,(X: Y: Z)) \in \mathbf{C} \times \mathbf{P}^{2} \mid X Z+x Y^{2}=0\right\}
$$

where $X=Z^{\prime}-g_{s}(x) X^{\prime}, \quad Y=Y^{\prime}+a x^{n+1} X^{\prime}, Z=Z^{\prime}+g_{s}(x) X^{\prime}$. The exceptional curve E_{∞} is given by $x=X=0$. Now we have

$$
\pi^{\prime}(x,(X: Y: Z))= \begin{cases}(x,(X: Y)) & \text { if } X \neq 0 \\ (x,(-x Y: Z)) & \text { if } Z \neq 0\end{cases}
$$

Put $U^{\prime}=\left\{(x,(X: Y: Z)) \in U_{2}^{\prime} \cup U_{3}^{\prime} \mid(X: Y: Z) \neq(1: 0: 0)\right\}$. Then U^{\prime} is a open neighborhood of E_{∞}. We have a coordinate transformation ξ of U^{\prime} as follows:

$$
\begin{gathered}
\xi: U^{\prime} \rightarrow\left\{(x, y) \in \mathbf{C}^{2} \mid(x, s) \in \mathscr{A}\right\} \times \mathbf{P}^{1} . \\
\xi(x,(X: Y: Z))= \begin{cases}\left(x, \frac{X}{Y}\right)(Z: Y) & \text { if } Y \neq 0, \\
\left(x,-\frac{Y}{Z} x\right)(Z: Y) & \text { if } Z \neq 0 .\end{cases}
\end{gathered}
$$

This shows π^{\prime} is nothing but a blowing down of the exceptional curve E_{∞}.
We construct a family of $X_{2 n+3}$ by Lemma 5.6. Put

$$
\begin{aligned}
\mathscr{U}_{1} & =\left\{\left(x_{1}, y_{1}, z_{1}, s\right) \in \mathbf{C}^{3} \times S \mid F_{1}\left(x_{1}, y_{1}, z_{1}, s\right)=0\right\}, \\
\mathscr{V} & =\left\{(x, s)(u: v) \in \mathbf{C} \times S \times \mathbf{P}^{1} \mid(x, s) \in \mathscr{A}\right\}, \\
\mathscr{U}_{4} & =\left\{\left(x_{4}, y_{4}, z_{4}, s\right) \in \mathbf{C}^{3} \times S \mid F_{4}\left(x_{4}, y_{4}, z_{4}, s\right)=0\right\} .
\end{aligned}
$$

We can glue $\mathscr{U}_{1}, \mathscr{V}, \mathscr{U}_{4}$ as follows (see Lemma 5.6) and denote it by \mathfrak{x} :
(1) $x_{1}=x_{4}, y_{1} y_{4}=1, y_{4} z_{1}=z_{4}$
(2) Put $\mathscr{U}_{1}^{\prime}=\left\{\left(x_{1}, y_{1}, z_{1}, s\right) \in \mathscr{U}_{1} \mid\left(x_{1}^{-1}, s\right) \in \mathscr{A}\right\}$. If $\left(x_{1}, y_{1}, z_{1}, s\right) \in \mathscr{U}_{1}^{\prime}$,

$$
\begin{aligned}
x & =x_{1}^{-1} \\
(u: v) & = \begin{cases}\left(z_{1}-x_{1}^{n+1} g_{s}\left(x_{1}^{-1}\right): x_{1} y_{1}+a\right) & \text { if } z_{1}-x_{1}^{n+1} g_{s}\left(x_{1}^{-1}\right) \neq 0 \\
\left(-\left(x_{1} y_{1}+a\right): x_{1}\left(z_{1}+x_{1}^{n+1} g_{s}\left(x_{1}^{-1}\right)\right)\right) & \text { if } z_{1}+x_{1}^{n+1} g_{s}\left(x_{1}^{-1}\right) \neq 0\end{cases}
\end{aligned}
$$

(3) Put $\mathscr{U}_{4}^{\prime}=\left\{\left(x_{4}, y_{4}, z_{4}, s\right) \in \mathscr{U}_{4} \mid\left(x_{4}^{-1}, s\right) \in \mathscr{A}\right\}$. If $\left(x_{4}, y_{4}, z_{4}, s\right) \in \mathscr{U}_{4}^{\prime}$,

$$
x=x_{4}^{-1}
$$

$(u: v)$

$$
= \begin{cases}\left(z_{4}-x_{4}^{n+1} y_{4} g_{s}\left(x_{4}^{-1}\right): x_{4}+a y_{4}\right) & \text { if } z_{4}-x_{4}^{n+1} y_{4} g_{s}\left(x_{4}^{-1}\right) \neq 0, \\ \left(-\left(x_{4}+a y_{4}\right): x_{4}\left(z_{4}+x_{4}^{n+1} y_{4} g_{s}\left(x_{4}^{-1}\right)\right)\right) & \text { if } z_{4}+x_{4}^{n+1} y_{4} g_{s}\left(x_{4}^{-1}\right) \neq 0 .\end{cases}
$$

Let

$$
\varphi: \mathfrak{X} \rightarrow S
$$

be the projection to S. For $s \in S \backslash \Delta$, let

$$
\pi: \mathfrak{Y}_{s} \rightarrow \mathfrak{x}_{s}
$$

be a morphism defined as follows:

$$
\begin{aligned}
& \pi(w) \\
& = \begin{cases}\left(x_{1}, y_{1}, z_{1}\right) \in U_{1}, & w=\left(x_{1}, y_{1}, z_{1}\right) \in U_{1}, \\
\left.\left(. x_{2},\left(z_{2}-y_{s}\left(x_{2}\right)\right): y_{2}+a x_{2}^{n+1}\right)\right) \in V, & w=\left(x_{2}, y_{2}, z_{2}\right) \in U_{2} z_{2}-y_{s}\left(x_{2}\right) \neq 0, \\
\left.\left(x_{2},\left(-x_{2}\left(y_{2}+a x_{2}^{n+1}\right)\right): z_{2}+y_{s}\left(x_{2}\right)\right)\right) \in V, & w=\left(x_{2}, y_{2}, z_{2}\right) \in U_{2}, z_{2}+y_{s}\left(x_{2}\right) \neq 0, \\
\left(x_{3},\left(z_{3}-y_{s}\left(x_{3}\right) y_{3}: 1+a x_{3}^{n+1} y_{3}\right)\right) \in V, & w=\left(x_{3}, y_{3}, z_{3}\right) \in U_{3}, z_{3}-g_{s}\left(x_{3}\right) y_{3} \neq 0, \\
\left(x_{3}\left(-x_{3}\left(1+a x_{3}^{n+1} y_{3}\right): z_{3}+y_{s}\left(x_{3}\right) y_{3}\right)\right) \in V, & w=\left(x_{3}, y_{3}, z_{3}\right) \in U_{3}, z_{3}+g_{s}\left(x_{3}\right) y_{3} \neq 0, \\
\left(x_{3},\left(z_{3}-y_{s}\left(x_{3}\right) y_{3}: 1+a x_{3}^{n+1} y_{3}\right)\right) \in V, & w=\left(x_{3}, y_{3}, z_{3}\right) \in U_{3}, x_{3}=0, \\
\left(x_{4}, y_{4}, z_{4}\right) \in U_{4} . & w=\left(x_{4}, y_{4}, z_{4}\right) \in U_{4} .\end{cases}
\end{aligned}
$$

Then this is blowing down of the exceptional curve E_{\propto}.
Proposition 5.7. \mathfrak{x} is nonsingular. Put

$$
\Delta=\left\{s \in S \mid x f_{s}(x)-a^{2}=0 \text { has multiple roots. }\right\}
$$

(1) If $s \in S \backslash \Delta$, the fiber $\mathfrak{x}_{s}=\varphi^{-1}(s)$ is nonsingular and there exists a framing $(C, L, P) \in \mathbb{C}$ and $2 n+3$ points $P_{1}, \ldots, P_{2 n+3}$ on $C \backslash L$ in general position such that $\mathfrak{X}_{\text {s }}$ is isomorphic to the surface obtained from \mathbf{P}^{2} by blowing up P, P_{1}, \ldots, $P_{2 n+3}$.
(2) If $s \in \Delta$ and $a \neq 0$, the fiber \mathfrak{X}_{s} has singularities. Put

$$
x f_{s}(x)-a^{2}=\left(x-d_{1}\right)^{k_{1}} \cdots\left(x-d_{r}\right)^{k_{r}}, \quad d_{i} \neq d_{j}(i \neq j)
$$

Then \mathfrak{X}_{s} has simple singularities of type $A_{k_{i}-1}(i=1, \ldots, r)$.
(3) If $s \in \Delta$ and $a=0$, the fiber \mathfrak{x}_{s} has singularities. Put

$$
f_{s}(. x)=x^{k_{1}}\left(x-d_{1}\right)^{k_{1}} \cdots\left(x-d_{r^{\prime}}\right)^{k_{r^{\prime}}}, \quad d_{i} \neq d_{j}(i \neq j), \quad d_{i} \neq 0
$$

Then \mathfrak{x}_{s} has simple singularities of type $A_{k_{i}-1}\left(i=1, \ldots, r^{\prime}\right)$ and simple singularity of type $D_{k_{0}+1}$. (If $k_{0}=1,2$, then $\left.D_{1}=A_{1}, D_{2}=A_{3}\right)$.

Proof. It is clear that y has no singularity by definition of \mathscr{y} and we have that \mathscr{U}_{1} and \mathscr{U}_{4} have no singularity (see Proposition 5.5). Therefore \mathfrak{X} is nonsingular.

By Proposition 5.5 and Lemma 5.6, we have (1). In the proof of Lemma 5.2, we showed that \bigoplus_{s} has no singularity outside $U_{1}=\mathfrak{q}_{s} \cap \|_{1}$. Therefore the statements (2) and (3) follow from Proposition 5.5.

Remark 5.8. The fiber of \bigoplus_{s} defined by $v^{\prime} / u^{\prime}=0$ is union of two exceptional curves. There are two choices of sign for fixing the function $g_{s}(x)$ at the beginning of construction of \mathfrak{x}. This corresponds to the choice of the exceptional curve that is blown down in Lemma 5.6.

We next consider a meromorphic 2 -form ω on \mathfrak{X} defined as follows:

$$
\omega= \begin{cases}\frac{d x_{1} d y_{1}}{2 \pi \sqrt{-1} z_{1}} & \text { on } \mathscr{U}_{1}, \tag{5.4}\\ \frac{d x d v_{1}}{\pi \sqrt{-1} x\left(v_{1}^{2}+x\right)} & \text { on } \mathscr{V}_{1}=\left\{(x, s)\left(v_{1}: 1\right) \in \mathscr{V}\right\}, \\ -\frac{d x d v_{2}}{\pi \sqrt{-1} x\left(1+x v_{2}^{2}\right)} & \text { on } \mathscr{V}_{2}=\left\{(x, s)\left(1: v_{2}\right) \in \mathscr{V}\right\}, \\ -\frac{d x_{4} d y_{4}}{2 \pi \sqrt{-1} y_{4} z_{4}} & \text { on } \mathscr{U}_{4} .\end{cases}
$$

Let \mathfrak{D} be the pole divisor of ω. Put $\mathfrak{D}_{s}=\mathfrak{D} \cap \mathfrak{X}_{s}$.
Proposition 5.9. If $s \in S \backslash \Delta$, there exists a framing $(C, L, P) \in \mathbb{C}$ satisfying the following conditions.
(i) \mathfrak{X}_{s} is the surface obtained from \mathbf{P}^{2} by blowing up P and $2 n+3$ points in general position on $C \backslash L$.
(ii) $\mathfrak{D}_{s}=\bar{C}+\bar{L}$, where $\bar{C}+\bar{L}$ are the proper transforms of C, L.

Proof. By the proof of Lemma 5.2 and 5.3, that we have only to show $\mathfrak{D}_{s}=$ $\pi\left(\tilde{S}^{(n)}\right)+\pi\left(F_{\infty, 2}\right)$. On U_{1} we have

$$
2 \pi \sqrt{-1} \omega_{s}=\frac{d x_{1} d y_{1}}{z_{1}}=-2 \frac{d x_{1} d z_{1}}{\frac{\partial F_{1}}{\partial y_{1}}}=2 \frac{d y_{1} d z_{1}}{\frac{\partial F_{1}}{\partial x_{1}}} .
$$

Since \mathfrak{X}_{s} is nonsingular, ω doesn't have pole on U_{1}. On U_{4}

$$
\begin{aligned}
\mathfrak{D}_{s} \cap U_{4} & =\left\{\left(x_{4}, y_{4}, z_{4}, s\right) \in U_{4} \mid y_{4}=0\right\} \\
& =\pi\left(\tilde{S}^{(n)}\right) \cap U_{4} .
\end{aligned}
$$

On $V_{1}=\mathscr{V}_{1} \cap \mathfrak{X}_{s}$, ω_{s} has pole along $x=0$ or $v_{1}^{2}+x=0$. Since

$$
y_{4}=-\frac{x\left(x+v_{1}^{2}\right)}{a v_{1}^{2}+2 v_{1} x^{n+2} g_{s}\left(x^{-1}\right)+a x},
$$

then

$$
\left\{\left(x,\left(1: v_{1}\right)\right) \in V_{1} \mid x\left(v_{1}^{2}+x\right)=0\right\}=\left(\pi\left(\tilde{S}^{(n)}\right) \cup \pi\left(F_{\infty, 2}\right)\right) \cap V_{1} .
$$

Therefore

$$
\mathfrak{D}_{s} \cap V_{1}=\left(\pi\left(\tilde{S}^{(n)}\right) \cup \pi\left(F_{\infty, 2}\right)\right) \cap V_{1} .
$$

Similarly on $V_{2}=\mathscr{V}_{2} \cap \mathfrak{X}_{s}$,

$$
\mathfrak{D}_{s} \cap V_{2}=\left(\pi\left(\tilde{S}^{(n)}\right) \cup \pi\left(F_{\infty, 2}\right)\right) \cap V_{2} .
$$

Remark 5.10. Let $3 \rightarrow S$ be the semi-universal deformation of simple surface singularity of type $E_{m}(m=6,7,8)$. Then there exists a family $\overline{3} \rightarrow S$
whose general fibers are Del Pezzo surfaces and compactifications of general fibers of $3 \rightarrow S$ ([14]).

The family $\left.\varphi\right|_{\mathscr{U}_{1}}: \mathscr{U}_{1} \rightarrow S$ is the semi-universal deformation of simple surface singularity of type $D_{2 n+3}$ and general fiber \mathfrak{X}_{s} is compactification of general fiber of semi-universal deformation of simple singularity of type $D_{2 n+3}$.

It is well known that $\overline{3}_{s}$ is a surface obtained by blowing up m points in general position on \mathbf{P}^{2}. Furthermore $D^{\prime}=\overline{3}_{s} \backslash \boldsymbol{3}_{s}$ is an anticanonical divisor of $\overline{\mathcal{Z}}_{s}$ and

$$
R^{\prime}=\left\{\alpha \in H_{2}\left(\overline{\mathbf{3}}_{s} ; \mathbf{Z}\right) \mid \alpha \cdot\left[D^{\prime}\right]=0, \alpha \cdot \alpha=-2\right\}
$$

is the root system of type E_{m} ([6], [10]).
The surfaces $X_{2 n+3}$ and the family \mathfrak{X} have same properties.

6. A family of \mathbf{P}^{2} with $2 n+2$ points blown up

In the previous section, we constructed a family of surfaces related to a simple singularity of type $D_{2 n+3}$. In this section, we construct a family of surfaces related to a simple singularity of type $D_{2 n+2}$. Let $m=2 n+2$ in this section.

Let $(C, L, P) \in \mathbb{C}$ be a framing defined in section 2 and $\left\{Q_{0}\right\}=L \cap C$. Blow up P, Q_{0} and m points $P_{1} \ldots, P_{m}$ on $C \backslash L$ in general position. Let $E_{P}, E_{Q_{0}}$ and E_{i} be the exceptional curves cooresponding to these points. Let Q_{1} be the intersection point of \bar{C} and $E_{Q_{0}}$, where \bar{C} is the proper transform of C. Blow up Q_{1} further. Then we have the surface Z_{m}

$$
p: Z_{m} \rightarrow \mathbf{P}^{2} .
$$

Let $\bar{E}_{Q_{0}}$ be the proper transform of $E_{Q_{0}}$ and E_{Q} the exceptional curve.
Propositon 6.1. The divisor

$$
D=\bar{L}+\bar{C}+\bar{E}_{Q_{0}}+2 E_{Q_{1}}
$$

is an anticanonical divisor of Z_{m}.
We next define isomorphism of the pair $\left(Z_{m}, D\right)$.
Definition 6.2. Let $(C, L, P)\left(\right.$ resp. $\left.\left(C^{\prime}, L^{\prime}, P^{\prime}\right)\right) \in \mathbb{C}$. Let Z_{m} (resp. Z_{m}^{\prime}) be the surface obtained as above. Put $D=\bar{L}+\bar{C}+\bar{E}_{Q_{0}}+2 E_{Q_{1}}$ (resp. $D^{\prime}=\bar{L}^{\prime}+$ $\left.\bar{C}^{\prime}+\bar{E}_{Q_{0}}^{\prime}+2 E_{Q_{1}}^{\prime}\right)$. Then we say that $\left(Z_{m}, D\right)$ and $\left(Z_{m}^{\prime}, D^{\prime}\right)$ are isomorphic if there exists an isomorphism $\phi: Z_{m} \rightarrow Z_{m}^{\prime}$ such that

$$
\phi(\bar{C})=\bar{C}^{\prime}, \quad \phi(\bar{L})=\bar{L}^{\prime}, \quad \phi\left(\bar{E}_{Q_{0}}\right)=\bar{E}_{Q_{0}}^{\prime}, \quad \phi\left(E_{Q_{1}}\right)=E_{Q_{1}}^{\prime}
$$

From now on, we assume that $C: z^{2}=x y, L: x=0, P=(0: 0: 1)$ (see Lemma 2.3).

Proposition 6.3. Let m points $P_{1}, \ldots, P_{m}\left(\right.$ resp. $\left.P_{1}^{\prime}, \ldots, P_{m}^{\prime}\right) \in C \backslash L$ be in general position and Z_{m} (resp. Z_{m}^{\prime}) the surface obtained by blowing up P, Q_{0}, Q_{1},
$P_{1}, \ldots, P_{m} \quad$ (resp. $P^{\prime}, Q_{0}^{\prime}, Q_{1}^{\prime}, P_{1}^{\prime}, \ldots, P_{m}^{\prime}$). Put $D=\bar{L}+\bar{C}+\bar{E}_{Q_{0}}+2 E_{Q_{1}} \quad$ (resp. $\left.D^{\prime}=\bar{L}^{\prime}+\bar{C}^{\prime}+\bar{E}_{Q_{0}}^{\prime}+2 E_{Q_{1}}^{\prime}\right)$. Then there exists an isomorphism $\Phi:\left(Z_{m}, D\right) \rightarrow$ $\left(Z_{m}^{\prime}, D^{\prime}\right)$ such that $\Phi\left(E_{i}\right)=E_{i}^{\prime}(i=1, \ldots, m)$ if and only if there exists $\alpha \in \mathbf{C}^{*}$ such that $s_{i}=\alpha s_{i}^{\prime}(i=1, \ldots, m)$, where $P_{i}=\left(1: s_{i}^{2}: s_{i}\right)(i=1, \ldots, m)\left(\right.$ resp. $P_{i}^{\prime}=$ $\left(1: s_{i}^{\prime 2}: s_{i}^{\prime}\right)(i=1, \ldots, m)$.

Proof. The proof is same as the proof of Proposition 2.4.
We consider homology exact sequence.

$$
\begin{array}{ccccc}
\ldots & \longrightarrow & H_{3}\left(Z_{m} ; \mathbf{Z}\right) & \longrightarrow & H_{3}\left(Z_{m}, Z_{m} \backslash D ; \mathbf{Z}\right) \\
\| & & & \\
& \\
& \\
& \\
\hat{o}_{*} \\
H_{2}\left(Z_{m} \backslash D ; \mathbf{Z}\right) & \xrightarrow{i_{+}} & H_{2}\left(Z_{m} ; \mathbf{Z}\right) & \xrightarrow{j_{+}} & H_{2}\left(Z_{m}, Z_{m} \backslash D ; \mathbf{Z}\right)
\end{array}
$$

We can extend the intersection pairing in $H_{2}\left(Z_{m} ; \mathbf{Z}\right)$ to a bilinear form on $H_{2}\left(Z_{m} ; \mathbf{Z}\right) \otimes_{\mathbf{Z}} \mathbf{R}$. Put

$$
\begin{aligned}
& Q=\operatorname{ker} j_{*} \subset H_{2}\left(Z_{m} ; \mathbf{Z}\right), \\
& R=\{\alpha \in Q \mid \alpha \cdot \alpha=-2\} .
\end{aligned}
$$

Lemma 6.4. Let Q and R as above. Then we have

$$
H_{2}\left(Z_{m} \backslash D ; \mathbf{Z}\right) \cong Q
$$

Proof. Put $D=\bar{C}+\bar{L}+\bar{E}_{Q_{0}}+2 E_{Q_{1}}$. The curves $\bar{C}, \bar{L}, \bar{E}_{Q_{0}}, E_{Q_{1}}$ are homeomorphic to 2-sphere. Therefore $H_{1}(D ; \mathbf{Z})=0$. Then $H_{3}\left(Z_{m}, Z_{m} \backslash D ; \mathbf{Z}\right)=$ 0 and the result follows.

Let l be the homology class of total transform of line and $e_{P}, \bar{e}_{Q_{0}}, e_{Q_{1}}$, e_{1}, \ldots, e_{m} the classes of $E_{P}, \bar{E}_{Q_{0}}, E_{Q_{1}}, E_{1}, \ldots, E_{m}$ respectively. Let \bar{c} and \bar{l} be the classes of \bar{C} and \bar{L}.

Proposition 6.5. Let Q, R be as above. Then

$$
Q=\left\{\begin{array}{l|l}
\alpha \in H_{2}\left(Z_{m} ; \mathbf{Z}\right) & \begin{array}{l}
\alpha \cdot\left(2 l-e_{1}-\cdots-e_{m}-\bar{e}_{Q_{0}}-2 e_{Q_{1}}\right)=0 \\
\alpha \cdot\left(l-e_{P}-\bar{e}_{Q_{0}}-2 e_{Q_{1}}\right)=0 \\
\alpha \cdot \bar{e}_{Q_{0}}=\alpha \cdot e_{Q_{1}}=0
\end{array} \tag{6.1}
\end{array}\right\}
$$

and R is the root system of type D_{m} in $Q \otimes_{\mathbf{Z}} \mathbf{R}$. Furthermore R generates Q. Put

$$
\Pi=\left\{e_{1}-e_{2}, \ldots, e_{m-1}-e_{m},-\left(l-e_{P}-e_{m-1}-e_{m}\right)\right\}
$$

then Π is a basis of R.
Proof. Since $D=\bar{L}+\bar{C}+\bar{E}_{Q_{0}}+2 E_{Q_{1}}, \bar{l}=l-e_{P}-\bar{e}_{Q_{0}}-2 e_{Q_{1}}$ and $\bar{c}=2 l-$ $e_{1}-\cdots-e_{m}-\bar{e}_{Q_{0}}-2 e_{Q_{1}}$, we have (6.1).

Put $\alpha=a l+b_{P} e_{P}+b_{1} e_{1}+\cdots+b_{m} e_{m}+c_{0} \bar{e}_{Q_{0}}+c_{1} e_{Q_{1}} \in Q$, then

$$
\left\{\begin{aligned}
2 a+b_{1}+\cdots+b_{m}+c_{1} & =0 \\
a+b_{P}+c_{1} & =0 \\
-2 c_{0}+c_{1} & =0 \\
c_{0}-c_{1} & =0
\end{aligned}\right.
$$

Therefore since

$$
\begin{cases}2 a+b_{1}+\cdots+b_{m} & =0 \\ a+b_{P} & =0 \\ c_{0} & =0 \\ c_{1} & =0\end{cases}
$$

then the result follows from Proposition 3.3.
We take 2-cycles $\Gamma_{i, j}, \Gamma_{i, j}^{\prime}$ as (3.3) and (3.3) ${ }^{\prime}$. Let $\alpha_{1}, \ldots, \alpha_{m} \in H_{2}\left(Z_{m} \backslash D ; \mathbf{Z}\right)$ be the classes of $\Gamma_{1.2}, \ldots, \Gamma_{m-1, m}, \Gamma_{m-1, m}^{\prime}$.

Corollary 6.6. $H_{2}\left(Z_{m} \backslash D: \mathbf{Z}\right)$ is generated by $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ and the intersection paring is given by

$$
\alpha_{i} \cdot \alpha_{j}= \begin{cases}-2 & i=j \\ 1 & |i-j|=1, i, j \neq m \\ 1 & \{i, j\}=\{m-2, m\} \\ 0 & \text { otherwise }\end{cases}
$$

The next proposition follows from Proposition 3.6 and Proposition 6.5.
Proposition 6.7. Put

$$
W=\left\{\begin{array}{l|l}
g \in \operatorname{Aut}\left(H_{2}\left(Z_{m} ; \mathbf{Z}\right)\right) & \begin{array}{l}
g(\bar{c})=\bar{c}, g(\bar{l})=\bar{l} \\
g\left(\bar{e}_{Q_{0}}\right)=\bar{e}_{Q_{0}}, g\left(e_{Q_{1}}\right)=e_{Q_{1}} \\
g(\alpha) \cdot g\left(\alpha^{\prime}\right)=\alpha \cdot \alpha^{\prime} \text { for } \alpha, \alpha^{\prime} \in H_{2}\left(Z_{m} ; \mathbf{Z}\right)
\end{array}
\end{array}\right\} .
$$

Then W is isomorphic to the Weyl group of type D_{m}.
We have the theorem of Torelli type from these results and the same discussion in section 4.

Theorem 6.8. Let $(C, L, P)\left(\right.$ resp. $\left.\left(C^{\prime}, L^{\prime}, P^{\prime}\right)\right) \in \mathbb{C}$ and $\left\{Q_{0}\right\}=L \cap C,($ resp. $\left\{Q_{0}^{\prime}\right\}=L^{\prime} \cap C^{\prime}$). Let P_{1}, \ldots, P_{m} (resp. $P_{1}^{\prime} \ldots ., P_{m}^{\prime}$) be m points on $C \backslash L$ (resp. $\left.C^{\prime} \backslash L^{\prime}\right)$ in general position.

Let $p: Z_{m} \rightarrow \mathbf{P}^{2}$ (resp. $p^{\prime}: Z_{m}^{\prime} \rightarrow \mathbf{P}^{2}$) be the morphism obtained by blowing up $P, Q_{0}, P_{1}, \ldots, P_{m}\left(\right.$ resp. $\left.P^{\prime}, Q_{0}^{\prime}, P_{1}^{\prime}, \ldots, P_{m}^{\prime}\right)$ and infinitely near point Q_{1} of Q_{0} (resp.
Q_{0}^{\prime}), where Q_{1} (resp. Q_{1}^{\prime}) is the intersection point of the exceptional curve of blowing up of Q_{0} (resp. Q_{0}^{\prime}) and the proper transform of C.

Put $D=\bar{C}+\bar{L}+\bar{E}_{Q_{0}}+2 E_{Q_{1}} \quad\left(\right.$ resp. $\left.\quad D^{\prime}=\bar{C}^{\prime}+\bar{L}^{\prime}+\bar{E}_{Q_{0}^{\prime}}+2 E_{Q_{1}^{\prime}}\right) . \quad$ Let $\quad \omega$ (resp. ω^{\prime}) be a meromorphic 2 -form on Z_{m} (resp. Z_{m}^{\prime}) such that ω (resp. ω^{\prime}) has poles only along D (resp. D^{\prime}). Then as (4.2), we can define the mapping $\chi_{\omega}: Q \rightarrow \mathbf{C}\left(\right.$ resp. $\left.\chi_{\omega^{\prime}}^{\prime}: Q^{\prime} \rightarrow \mathbf{C}\right)$, where $Q=\operatorname{ker} j_{*}\left(\right.$ resp. $\left.Q^{\prime}=\operatorname{ker} j_{*}^{\prime}\right)$ is the root lattice.

If $\phi: H_{2}\left(Z_{m} ; \mathbf{Z}\right) \rightarrow H_{2}\left(Z_{m}^{\prime} ; \mathbf{Z}\right)$ is an isometry satisfying the following conditions (1) and (2),
(1) $\phi(\bar{c})=\bar{c}^{\prime}, \phi(\bar{l})=\bar{l}^{\prime}, \phi\left(\bar{e}_{Q_{0}}\right)=\bar{e}_{Q_{0}}^{\prime}, \phi\left(e_{Q_{1}}\right)=e_{Q_{1}}^{\prime}$,
(2) there exists $\varrho \in \mathbf{C}^{*}$ such that $\phi^{*}\left(\chi_{\omega^{\prime}}\right)=\varrho \chi_{\omega}$.

Then there exists an isomorphism $\Phi:\left(Z_{m}, D\right) \rightarrow\left(Z_{m}^{\prime}, D^{\prime}\right)$ such that Φ induces ϕ.
In the remaining of this section, we construct a family of these surfaces. Let \mathfrak{H} be a Cartan subalgebra of simple Lie algebra $\mathfrak{s o}(2(2 n+2), \mathbf{C})$ of type $D_{2 n+2}$ and W its Weyl group. The quotient

$$
\mathfrak{H} \rightarrow S=\mathfrak{G} / W \cong \mathbf{C}^{2 n+2}
$$

is given as in section 5. For $s=\left(a, b_{1}, \ldots, b_{2 n+1}\right) \in S$, put

$$
\begin{aligned}
& f_{s}(x)=x^{2 n+1}+b_{1} x^{2 n}+\cdots+b_{2 n+1}, \\
& h_{s}(x)=x^{2 n} f_{s}\left(x^{-1}\right)-x^{-1} .
\end{aligned}
$$

Let H^{\prime} be a curve on Σ_{n} defined by as follows:

$$
\begin{array}{lll}
x_{1} y_{1}^{2}+2 a y_{1}+f_{s}\left(x_{1}\right) & =0 & \text { on } W_{1}, \\
x_{2}\left(y_{2}^{2}+2 a x_{2}^{n+1} y_{2}+x_{2}^{2 n+1} f_{s}\left(x_{2}^{-1}\right)\right) & =0 & \text { on } W_{2}, \\
x_{3}\left(1+2 a x_{3}^{n+1} y_{3}+y_{3}^{2} x_{3}^{2 n+1} f_{s}\left(x_{3}^{-1}\right)\right)=0 & \text { on } W_{3} \\
x_{4}+2 a y_{4}+y_{4}^{2} f_{s}\left(x_{4}\right) & =0 & \text { on } W_{4},
\end{array}
$$

where $W_{i}, i=1,2,3,4$ is open sets of Σ_{n} defined by (5.2).
In Lemma 5.2, we consider the double covering of Σ_{n} branched along a nonsingular curve H. But H^{\prime} has singularities at $(0, \pm \sqrt{-1}) \in W_{3}$. Therefore we blow up these singularities and take double covering branched along the proper transform $H^{\prime \prime}$ of H^{\prime}.

Put

$$
\begin{aligned}
& F_{1}\left(x_{1}, y_{1}, z_{1}, s\right)=z_{1}^{2}+x_{1} y_{1}^{2}+2 a y_{1}+f_{s}\left(x_{1}\right) \\
& F_{2}\left(x_{2}, y_{2}, z_{2}, s\right)=z_{2}^{2}+x_{2} y_{2}^{2}+2 a x_{2}^{n+2} y_{2}+x_{2} \cdot x_{2}^{2 n+1} f_{s}\left(1 / x_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
G_{1}\left(x_{3}, u, z_{3}, s\right)= & z_{3}^{2}+u\left(u x_{3}+2 \sqrt{-1}\right)+2 a x_{3}^{n}\left(u x_{3}+\sqrt{-1}\right) \\
& +\left(u x_{3}+\sqrt{-1}\right)^{2} h_{s}\left(x_{3}\right) \\
G_{2}\left(v, w, z_{3}^{\prime}, s\right)= & z_{3}^{\prime 2}+\left\{w+2 a v^{\prime \prime}(v w-2 \sqrt{-1})^{n}(v w-\sqrt{-1})\right. \\
& \left.+(v w-\sqrt{-1})^{2} h_{s}(v(v w-2 \sqrt{-1}))\right\} \\
G_{3}\left(t, y_{3}, z_{3}^{\prime \prime}, s\right)= & z_{3}^{\prime \prime 2}+t\left\{1+2 a y_{3} t^{n+1}\left(y_{3}^{2}+1\right)^{n}+t y_{3}^{2} h_{s}\left(t\left(y_{3}^{2}+1\right)\right)\right\}, \\
F_{4}\left(x_{4}, y_{4}, z_{4}, s\right)= & z_{4}^{2}+x_{4}+2 a y_{4}+y_{4}^{2} f_{s}\left(x_{4}\right) .
\end{aligned}
$$

Let \mathfrak{X} be a manifold obtained by gluing the following open sets $\mathscr{U}_{1}, \mathscr{U}_{2}, \mathscr{Y}_{1}, \mathscr{Y}_{2}, \mathscr{Y}_{3}$, \mathscr{U}_{4} as follows:

$$
\begin{aligned}
& \mathscr{U}_{1}=\left\{\left(x_{1}, y_{1}, z_{1}, s\right) \in \mathbf{C}^{3} \times S \mid F_{1}\left(x_{1}, y_{1}, z_{1}, s\right)=0\right\}, \\
& \mathscr{U}_{2}=\left\{\left(x_{2}, y_{2}, z_{2}, s\right) \in \mathbf{C}^{3} \times S \mid F_{2}\left(x_{2}, y_{2}, z_{2}, s\right)=0,\left(x_{2}, y_{2}, z_{2}\right) \neq(0, \pm \sqrt{-1}, 0)\right\}, \\
& \mathscr{Y}_{1}=\left\{\left(x_{3}, u, z_{3}, s\right) \in \mathbf{C}^{3} \times S \mid G_{1}\left(x_{3}, u, z_{3}, s\right)=0\right\}, \\
& \mathscr{y}_{2}=\left\{\left(v, w, z_{3}^{\prime}, s\right) \in \mathbf{C}^{3} \times S \mid G_{2}\left(v, w, z_{3}^{\prime}, s\right)=0\right\}, \\
& \mathscr{y}_{3}=\left\{\left(t, y_{3}, z_{3}^{\prime \prime}, s\right) \in \mathbf{C}^{3} \times S \mid G_{3}\left(t, y_{3}, z_{3}^{\prime \prime}, s\right)=0\right\}, \\
& \mathscr{U}_{4}=\left\{\left(x_{4}, y_{4}, z_{4}, s\right) \in \mathbf{C}^{3} \times S \mid F_{4}\left(x_{4}, y_{4}, z_{4}, s\right)=0\right\}, \\
& x_{1}=x_{4}, \quad x_{2}=x_{3}, \quad x_{1} x_{2}=1, \\
& y_{1} y_{4}=1, \quad y_{2} y_{3}=1, \quad y_{1}=x_{1}^{n} y_{2}, \\
& z_{1} x_{2}^{n+1}=z_{2}, \quad z_{4}=z_{1} y_{4}, \\
& y_{3}-\sqrt{-1}=u x_{3}, \quad x_{3}=v\left(y_{3}-\sqrt{-1}\right), \\
& y_{3}+\sqrt{-1}=w v, \quad v=t\left(y_{3}+\sqrt{-1}\right), \\
& z_{2} / y_{2}=x_{3} z_{3}=v(v w-2 \sqrt{-1}) z_{3}^{\prime}=\left(y_{3}^{2}+1\right) z_{3}^{\prime \prime} .
\end{aligned}
$$

The glueing formulas for $\left(x_{i}, y_{i}\right)$ are same as (5.2) and that for u, v, w, t, x_{3} and y_{3} are nothing but blowing up of $\left(x_{3}, y_{3}\right)=(0, \pm \sqrt{-1})$. Rewriting F_{1} by these formulas, we have $F_{2}, G_{1}, G_{2}, G_{3}$ and F_{4}.

Proposition 6.9. \mathfrak{X} is nonsingular. Put

$$
\Delta=\left\{s \in S \mid x f_{s}(x)-a^{2}=0 \text { has multiple roots }\right\} .
$$

Then
(1) If $s \in S \backslash \Delta$, the fiber \mathfrak{X}_{s} is nonsingular and there exists a framing $(C, L, P) \in \mathbb{C}$ such that \mathfrak{X}_{s} is isomorphic to the surface obtained from \mathbf{P}^{2} by blowing up P, $2 n+2$ points $P_{1}, \ldots, P_{2 n+2}$ on $C \backslash L$ in general position, Q_{0} and infinitely near point Q_{1} of Q_{0} as in Theorem 6.8.
(2) If $s \in \Delta, a \neq 0$, the fiber \mathfrak{X}_{s} has singularity. Put

$$
x f_{s}(x)-a^{2}=\left(x-d_{1}\right)^{k_{1}} \cdots\left(x-d_{r}\right)^{k_{r}}, \quad d_{i} \neq d_{j}(i \neq j)
$$

Then \mathfrak{X}_{s} has simple singularities of type $A_{k_{i}-1}(i=1, \ldots, r)$.
(3) If $s \in \Delta, a=0$, the fiber $\mathfrak{X}_{\text {s }}$ has singularity. Put

$$
f_{s}(x)=x^{k_{0}}\left(x-d_{1}\right)^{k_{1}} \cdots\left(x-d_{r^{\prime}}\right)^{k_{r^{\prime}}}, \quad d_{i} \neq d_{j}(i \neq j), \quad d_{i} \neq 0
$$

Then \mathfrak{X}_{s} has simple singularities of type $D_{k_{0}+1}$ and of type $A_{k_{i}-1}\left(i=1, \ldots, r^{\prime}\right)$ (if $k_{0}=1,2$, then $D_{1}=A_{1}, D_{2}=A_{3}$).
Proof. There is no singularity on $\|_{1}$ and \mathscr{U}_{4} (see the proof of Proposition 5.5). The complement $\mathscr{U}_{2} \backslash \mathscr{U}_{1}$ is defined by $x_{2}=0$. We have

$$
\begin{gathered}
\frac{\partial F_{2}}{\partial x_{2}}=y_{2}^{2}+2 a(n+2) x_{2}^{n+1} y_{2}+x_{2}^{2 n+1} f_{s}\left(x_{2}^{-1}\right)+x_{2} \frac{\partial}{\partial x_{2}}\left(x_{2}^{2 n+1} f_{s}\left(x_{2}^{-1}\right)\right) \\
\frac{\partial F_{2}}{\partial z_{2}}=2 z_{2}
\end{gathered}
$$

Therefore on the set defined by $x_{2}=0$, we have

$$
\frac{\partial F_{2}}{\partial x_{2}}=\frac{\partial F_{2}}{\partial z_{2}}=0 \quad \Leftrightarrow \quad\left\{\begin{array}{l}
y_{2}= \pm \sqrt{-1} \\
z_{2}=0
\end{array}\right.
$$

Thus \mathfrak{X} has no singularity on \mathscr{U}_{2}.
On \mathfrak{V}_{1}, if $x_{3} \neq 0$, then there is no singularity. Since

$$
\left.\frac{\partial G_{1}}{\partial u}\right|_{x_{3}=0}=2 \sqrt{-1}
$$

\mathfrak{Y}_{1} has no singularity.
On \mathscr{y}_{2}, if $v \neq 0$, then there is no singularity. Since

$$
\left.\frac{\partial G_{2}}{\partial w}\right|_{v=0}=1
$$

there is no singularity on g_{2}.
Then we have only to prove \mathfrak{X} has no singularity on the subset of \mathscr{Y}_{3} defined by $y_{3}=0$. Since

$$
\frac{\partial G_{3}}{\partial z_{3}^{\prime \prime}}=2 z_{3}^{\prime \prime}, \quad G_{3}(t, 0,0, s)=t,\left.\quad \frac{\partial G_{3}}{\partial t}\right|_{t=y_{3}=z_{3}^{\prime \prime}=0}=1
$$

then \mathfrak{X}_{s} has no singularity on \mathscr{Y}_{3}. Therefore \mathfrak{X} is nonsingular. The proof of (2) and (3) is same as Proposition 5.5. If $s \in S \backslash \Delta$, then $\mathfrak{æ}_{s}$ is nonsingular (see Proposition 5.5). We next prove (1). Put $s \in S \backslash \Delta$ and

$$
U_{i}=\mathfrak{X}_{s} \cap \mathscr{U}_{i}, \quad i=1,2,4, \quad Y_{i}=\mathfrak{X}_{s} \cap \mathscr{Y}_{i}, \quad i=1,2,3 .
$$

The fiber \mathfrak{X}_{s} is a double covering of blowing up of Σ_{n} at two points with branching along $H^{\prime \prime}$,

$$
v^{\prime}: \mathfrak{X}_{s} \rightarrow \Sigma_{n} .
$$

The irreducible components of $H^{\prime \prime}$ are heperelliptic cuve $H_{1}^{\prime \prime}$ and \mathbf{P}^{1}. The hyperelliptic curve $H_{1}^{\prime \prime}$ is ramified at $\left(\beta_{1},-a / \beta_{1}\right), \ldots,\left(\beta_{2 n+2},-a / \beta_{2 n+2}\right) \in W_{1}$, where $\beta_{1}, \ldots, \beta_{2 n+2}$ be the roots of the equation $x f_{s}(x)-a^{2}=0$ (if $a=\beta_{i}=0$, then $\left.(0,0) \in W_{4}\right)$.

Let $F_{i}(i=1, \ldots, 2 n+2)$ be the fiber of Σ_{n} defined by $u^{\prime} / v^{\prime}=\beta_{i}$. Then put

$$
v^{\prime-1}\left(F_{i}\right)=F_{i, 1} \cup F_{i, 2}, \quad F_{i, 1}, F_{i, 2} \simeq \mathbf{P}^{1}
$$

For points $(0, \pm \sqrt{-1}) \in W_{3}$, put $E_{+}=v^{\prime-1}((0, \sqrt{-1})), E_{-}=v^{\prime-1}((0,-\sqrt{-1}))$ and let \tilde{F} be the inverse image of proper transform of the fiber F defined by $x_{2}=0$ in W_{2} (see (5.2)). The self-intersection number of $F_{i, j}(i=1, \ldots, 2 n+2, j=1,2)$ is -1 (see the proof of Lemma 5.2). Furthermore the self-intersection number of E_{+}and E_{-}is -2 and that of \tilde{F} is -1 .

Since $F_{i, j}(i=1, \ldots, 2 n+2, j=1,2), E_{-}, E_{+}$, and \tilde{F} are isomorphic to \mathbf{P}^{1}, $F_{i, j}(i=1, \ldots, 2 n+2, j=1,2)$ and \tilde{F} are exceptional curves of the first kind. Then we blow down $F_{i, j(i)}(i=1, \ldots, 2 n+2, j(i)=1$ or 2$), \tilde{F}$ and the image of E_{+}. Then we have \mathbf{P}^{1}-bundle Σ_{r} over \mathbf{P}^{1}

$$
\eta: \mathfrak{x}_{s} \rightarrow \Sigma_{r}
$$

We may assume $r=1$ (see Lemma 5.3).
We next blow down (-1)-section of Σ_{1}. We have a morphism

$$
\eta^{\prime}: \mathfrak{x}_{s} \rightarrow \mathbf{P}^{2}
$$

Put $\tilde{S}^{(n)}=v^{\prime-1}\left(S^{(n)}\right)$, where $S^{(n)}$ is $(-n)$-section of Σ_{n}. Since the selfintersection number of $\tilde{S}^{(n)}$ is $-2 n$, self-intersection number of $\eta^{\prime}\left(\tilde{S}^{(n)}\right)$ is 4. Then $\eta^{\prime}\left(\tilde{S}^{(n)}\right)$ is a conic because it is isomorphic to \mathbf{P}^{1} and its self-intersection number is 4 . Then $\eta^{\prime}\left(E_{-}\right)$is a line tangent to $\eta^{\prime}\left(\tilde{S}^{(n)}\right)$. Thus we have the statement (1).

Remark 6.10. (i) We can choose $j(i)$ such that a surface obtained by blowing down $F_{i, j(i)}(i=1, \ldots, 2 n+2, j(i) \in\{1,2\}), \tilde{F}$ and E_{-}is Σ_{1}.
(ii) For $h=\left(h_{1}, \ldots, h_{m}\right) \in \mathfrak{G}$, we have

$$
F_{1}=z_{1}^{2}+x_{1} y_{1}^{2}+2 a y_{1}+\frac{\prod_{i=1}^{m}\left(x_{1}-h_{i}^{2}\right)+h_{1}^{2} \cdots h_{m}^{2}}{x_{1}}
$$

Thus the roots $\beta_{1}, \ldots, \beta_{m}$ of the equation $x_{1} f_{s}\left(x_{1}\right)-a^{2}=0$ are $h_{1}^{2}, \ldots, h_{m}^{2}$.
We next define a meromorphic 2 -form ω on \mathfrak{X}.

$$
\omega= \begin{cases}\frac{d x_{1} d y_{1}}{2 \pi \sqrt{-1} z_{1}} & \text { on } \mathscr{U}_{1}, \tag{6.2}\\ -\frac{d x_{2} d y_{2}}{2 \pi \sqrt{-1} x_{2} z_{2}} & \text { on } \mathscr{U}_{2}, \\ \frac{d x_{3} d u}{2 \pi \sqrt{-1} x_{3} z_{3}\left(x_{3} u+\sqrt{-1}\right)} \\ -\frac{d v d w}{2 \pi \sqrt{-1} v z_{3}^{\prime}(v w-2 \sqrt{-1})(v w-\sqrt{-1})} & \text { on } \mathscr{Y}_{1}, \\ \frac{d t d y_{3}}{2 \pi \sqrt{-1} t z_{3}^{\prime \prime} y_{3}\left(y_{3}^{2}+1\right)} & \text { on } \mathscr{Y}_{2}, \\ -\frac{d x_{4} d y_{4}}{2 \pi \sqrt{-1} y_{4} z_{4}} & \text { on } \mathscr{U}_{4} .\end{cases}
$$

Put \mathfrak{D} be a pole divisor of ω.
Proposition 6.11. If $s \in S \backslash \Delta$, there exists a framinf $(C, L, P) \in \mathbb{C}$ which has the following properties:
(i) $\mathfrak{X}_{\text {s }}$ is isomorphic to the surface obtained by blowing up $P, 2 n+2$ points on $C \backslash L$ in general position, Q_{0} and infinitely near point Q_{1} of Q_{0} as in Theorem 6.8. (ii) $\mathcal{D}_{s}=\bar{C}+\bar{L}+\bar{E}_{Q_{0}}+2 E_{Q_{1}}$.

Proof. By Proposition 6.9, we have only to show $\mathfrak{D}_{s}=\tilde{S}^{(n)}+E_{-}+E_{+}+2 \tilde{F}$. It is clear that ω_{s} has no pole on U_{1}. It is also clear that $\frac{d x_{2} d y_{2}}{z_{2}}$ has no pole on U_{2}. Therefore ω_{s} has poles only on the set defined by $x_{2}=0$ in U_{2}. Put $F_{2}\left(x_{2}, y_{2}, z_{2}, s\right)=z_{2}^{2}+x_{2} \kappa_{2}\left(x_{2}, y_{2}, s\right)$. Then since in the neighborhood of any point of $x_{2}=0, \kappa_{2} \neq 0$ and $\left(x_{2}, y_{2}, z_{2}^{\prime}\right)$ is a local coordinate, where $z_{2}^{\prime}=\frac{z_{2}}{\sqrt{\kappa_{2}}}$.

Since U_{2} is defined by $z_{2}^{\prime 2}+x_{2}=0,\left(y_{2}, z_{2}^{\prime}\right)$ is a coordinate of U_{2}. It follows from

$$
\frac{d x_{2} d y_{2}}{x_{2} z_{2}}=2 \frac{d y_{2} d z_{2}^{\prime}}{\sqrt{\kappa_{2}} z_{2}^{\prime 2}},
$$

that ω_{s} has poles along $x_{2}=0$ with multiplicity 2 . We have

$$
\begin{aligned}
\tilde{S}^{(n)} \cap U_{2} & =\varnothing \\
\tilde{F} \cap U_{2} & =\left\{\left(x_{2}, y_{2}, z_{2}\right) \in U_{2} \mid x_{2}=0\right\} \\
E_{+} \cap U_{2} & =\varnothing \\
E_{-} \cap U_{2} & =\varnothing
\end{aligned}
$$

Therefore $\mathfrak{D}_{s} \cap U_{2}=\left(\tilde{S}^{(n)}+E_{-}+E_{+}+2 \tilde{F}\right) \cap U_{2}$. Similarly we have the followings. Let $Y_{i}=\mathscr{Y}_{i} \cap \mathfrak{X}_{s}$.
(a) On Y_{1}, ω_{s} has poles only along $x_{3}=0$ and $u x_{3}+\sqrt{-1}=0$.

$$
\begin{aligned}
\tilde{S}^{(n)} \cap Y_{1} & =\left\{\left(x_{3}, u, z_{3}\right) \in Y_{1} \mid u x_{3}+\sqrt{-1}=0\right\} \\
\tilde{F} \cap Y_{1} & =\varnothing \\
E_{+} \cap Y_{1} & =\left\{\left(x_{3}, u, z_{3}\right) \in Y_{1} \mid x_{3}=0\right\}, \\
E_{-} \cap Y_{1} & =\varnothing
\end{aligned}
$$

(b) On Y_{2}, ω_{s} has poles only along $v=0, v w-2 \sqrt{-1}=0$ and $v w-\sqrt{-1}=0$.

$$
\begin{aligned}
\tilde{S}^{(n)} \cap Y_{1} & =\left\{\left(v, w, z_{3}^{\prime}\right) \in Y_{2} \mid v w-\sqrt{-1}=0\right\} \\
\tilde{F} \cap Y_{1} & =\varnothing \\
E_{+} \cap Y_{1} & =\left\{\left(v, w, z_{3}^{\prime}\right) \in Y_{1} \mid v w-2 \sqrt{-1}=0\right\}, \\
E_{-} \cap Y_{1} & =\left\{\left(v, w, z_{3}^{\prime}\right) \in Y_{2} \mid v=0\right\} .
\end{aligned}
$$

(c) On Y_{3}, ω_{s} has poles only along $y_{3}=0, y_{3}-\sqrt{-1}=0, y_{3}+\sqrt{-1}=0$ with multiplicity 1 and $t=0$ with multiplicity 2 .

$$
\begin{aligned}
\tilde{S}^{(n)} \cap Y_{1} & =\left\{\left(v, w, z_{3}^{\prime \prime}\right) \in Y_{2} \mid y_{3}=0\right\} \\
\tilde{F} \cap Y_{1} & =\left\{\left(v, w, z_{3}^{\prime \prime}\right) \in Y_{2} \mid t=0\right\} \\
E_{+} \cap Y_{1} & =\left\{\left(v, w, z_{3}^{\prime \prime}\right) \in Y_{1} \mid y_{3}-\sqrt{-1}=0\right\} \\
E_{-} \cap Y_{1} & =\left\{\left(v, w, z_{3}^{\prime \prime}\right) \in Y_{2} \mid y_{3}+\sqrt{-1}=0\right\} .
\end{aligned}
$$

(d) On U_{4}, ω_{s} has poles only along $y_{4}=0$.

$$
\begin{aligned}
\tilde{S}^{(n)} \cap Y_{1} & =\left\{\left(x_{4}, y_{4}, z_{4}\right) \in Y_{1} \mid y_{4}=0\right\} \\
\tilde{F} \cap Y_{1} & =\varnothing \\
E_{+} \cap Y_{1} & =\varnothing \\
E_{-} \cap Y_{1} & =\varnothing
\end{aligned}
$$

Thus we have $\mathfrak{D}_{s}=\tilde{S}^{(n)}+E_{-}+E_{+}+2 \tilde{F}$.
Remark 6.12. It is clear that the general fiber of $\mathfrak{X} \rightarrow S$ is a compactification of the general fiber of semi-universal deformation of a simple singularity of type $D_{2 n+2}$ (see Remark 5.10).

7. Monodromy representation of $\pi_{1}(S \backslash \Delta)$ on $H_{2}\left(\mathfrak{F}_{s} \backslash \mathfrak{D}_{s} ; \mathbf{Z}\right)$

Let $\varphi: \mathfrak{X} \rightarrow S$ be the family and \mathfrak{D} the divisor defined in section 5 if $m=2 n+3$ or in section 6 if $m=2 n+2$. Put

$$
\begin{aligned}
& S^{\prime}=S \backslash \Delta \\
& \mathfrak{X}^{\prime}=\mathfrak{X} \backslash\left(\mathfrak{D} \cup \varphi^{-1}(\Delta)\right) .
\end{aligned}
$$

Then $\varphi^{\prime}=\left.\varphi\right|_{\mathfrak{x}^{\prime}}: \mathfrak{X}^{\prime} \rightarrow S^{\prime}$ is a locally trivial fiber bundle with the fiber $\mathfrak{X}_{t} \backslash \mathfrak{D}_{t}$ $\left(t \in S^{\prime}\right)$. Therefore $\pi_{1}(S \backslash \Delta)$ acts on $H_{2}\left(\mathfrak{F}_{s} \backslash \mathfrak{F}_{s} ; \mathbf{Z}\right)$ as a monodromy. Put

$$
\begin{aligned}
\mathfrak{H} & =\left\{\left(s_{1}, \ldots, s_{m},-s_{1}, \ldots,-s_{m}\right) \in \mathbf{C}^{2 m}\right\} \\
& =\left\{\left(s_{1}, \ldots, s_{m}\right) \in \mathbf{C}^{m}\right\}, \\
\mathfrak{G}_{\text {reg }} & =\left\{\left(s_{1}, \ldots, s_{m}\right) \in \mathfrak{H} \mid \prod_{i \neq j}\left(s_{i}-s_{j}\right)\left(s_{i}+s_{j}\right) \neq 0\right\} .
\end{aligned}
$$

Then

$$
S^{\prime} \cong \mathfrak{G}_{\text {reg }} / W
$$

where W is the Weyl group of type D_{m}.
Theorem 7.1 ([4], [5]). The fundamental group $\pi_{1}\left(S^{\prime}\right)$ has a presentation with generators $\sigma_{0}, \ldots, \sigma_{m-1}$ and relations:

$$
\underbrace{\sigma_{i} \sigma_{j} \sigma_{i} \cdots}_{m_{i, j} \text { times }}=\underbrace{\sigma_{j} \sigma_{i} \sigma_{j} \cdots}_{m_{i, j} \text { times }},
$$

where

$$
m_{i, j}= \begin{cases}1 & i=j \\ 3 & |i-j|=1, i . j \neq m \\ 3 & (i, j)=(m-2 . m),(m, m-2) \\ 2 & \text { otherwise }\end{cases}
$$

The loop corresponding to the generators $\sigma_{0}, \ldots, \sigma_{m-1}$ can be given as follows (see [5]).

Put

$$
H_{i, j}=\left\{\left(s_{1}, \ldots, s_{m}\right) \in \mathbf{R}^{m} \mid s_{i}-s_{j}=0\right\}
$$

and

$$
H_{i, j}^{\prime}=\left\{\left(s_{1}, \ldots, s_{m}\right) \in \mathbf{R}^{m} \mid s_{i}+s_{j}=0\right\} .
$$

Then

$$
\mathfrak{G}_{r e g}=\mathfrak{H}-\bigcup_{i \neq j}\left(H_{i, j}+\sqrt{-1} H_{i, j} \cup H_{i, j}^{\prime}+\sqrt{-1} H_{i, j}^{\prime}\right)
$$

The set

$$
C_{0}+\sqrt{-1} \mathbf{R}^{m} \subset \mathfrak{5}_{r e g}
$$

is a fundamental region of W in $\mathfrak{G}_{\text {reg }}$, where

$$
C_{0}=\left\{\left(s_{1}, \ldots, s_{m}\right) \in \mathbf{R}^{m} \mid s_{1}-s_{2}<0, \ldots, s_{m-1}-s_{m}<0, s_{m-1}+s_{m}>0\right\} .
$$

Put

$$
u_{s_{0}}=(1,2, \ldots, m) \in C_{0}+\sqrt{-1} \mathbf{R}^{m}
$$

and let s_{0} be a class of $u_{s_{0}}$ in S^{\prime}. We define paths in $\mathfrak{G}_{\text {reg }}$ which induces loops in S^{\prime} as follows:

$$
\begin{gathered}
\gamma_{1}^{(i)}:[0,1] \rightarrow \mathfrak{G}_{\text {reg }} \quad(i=1,2), \\
\gamma_{1}^{(1)}(t)=(1-t) u_{s_{0}}+t(2,2+\sqrt{-1}, 3,4, \ldots, m), \\
\gamma_{1}^{(2)}(t)=(1-t)(2,2+\sqrt{-1}, 3,4, \ldots, m)+t(2,1,3, \ldots, m) .
\end{gathered}
$$

Put $\gamma_{1}=\gamma_{1}^{(2)} \cdot \gamma_{1}^{(1)}$, then γ_{1} is a path from $u_{s_{0}}$ to the image of $u_{s_{0}}$ by the reflection in $H_{1,2}$. Similarly, we define $\gamma_{i}(i=2, \ldots, m-1)$ with respect to $H_{i, i+1}$ $(i=2, \ldots, m-1)$. We also define the path γ_{m} in $\mathfrak{G}_{\text {reg }}$ from $u_{s_{0}}$ to the image of $u_{s_{0}}$ by the reflection in $H_{m-1, m}^{\prime}$ as follows.

$$
\begin{aligned}
\gamma_{m}^{(1)}(t)= & (1-t) u_{s_{0}}+t(1,2, \ldots, m-2, m-1+\sqrt{-1}, m+\sqrt{-1}), \\
\gamma_{m}^{(2)}(t)= & (1-t)(1,2, \ldots, m-2, m-1+\sqrt{-1}, m+\sqrt{-1}) \\
& +t(1,2, \ldots,-m,-m+1),
\end{aligned}
$$

and put $\gamma=\gamma_{m}^{(2)} \gamma_{m}^{(1)}$.
Let $\bar{\gamma}_{i}(i=1, \ldots, m)$ be the loops in S^{\prime} given by these paths $\gamma_{i}(i=1, \ldots, m)$ and $\sigma_{1}, \ldots, \sigma_{m}$ the classes of $\pi_{1}\left(S^{\prime}, s_{0}\right)$ induced by $\bar{\gamma}_{i}(i=1, \ldots, m)$. Then $\pi_{1}\left(S^{\prime}, s_{0}\right)$ is generated by $\sigma_{1}, \ldots, \sigma_{m}$.

We next define generators of $H_{2}\left(\mathfrak{F}_{s_{0}} \backslash \mathcal{D}_{S_{0}} ; \mathbf{Z}\right)$ corresponding to $\sigma_{1}, \ldots, \sigma_{m}$. If $s=s_{0}$, it follows from Remark 5.4 and 6.10 that the roots of the equation $x f_{s}(x)-a^{2}=0$ are $1^{2}, 2^{2}, \ldots, m^{2}$. We may assume $\beta_{1}, \ldots, \beta_{m}$ is $1^{2}, 2^{2}, \ldots, m^{2}$ respectively and

$$
E_{i, j} \cap \bar{S}^{(n)}=\left\{\left(i^{2}, 0,(-1)^{j-1} \sqrt{-1} i\right) \in U_{4}\right\} \quad(i=1, \ldots, m, j=1,2),
$$

where

$$
E_{i, j}=\left\{\begin{array}{ll}
\pi\left(F_{i, j}\right) & m=2 n+3 \\
F_{i, j} & m=2 n+2
\end{array}, \quad \bar{S}^{(n)}= \begin{cases}\pi\left(\tilde{S}^{(n)}\right) & m=2 n+3 \\
\tilde{S}^{(n)} & m=2 n+2\end{cases}\right.
$$

When we blow down $\mathfrak{x}_{s_{0}}$ to Σ_{1}, we may assume all indices j of curves $E_{i, j}$ which should be contracted are 1 (see Remark 5.8, 6.10). Put

$$
U_{i}=\mathscr{U}_{i} \cap \mathfrak{X}_{s_{0}}, \quad(i=1,4),
$$

$\mathscr{T}:$ a closed tubular neighborhood of $\bar{S}^{(n)}$ in $\mathfrak{X}_{s_{0}}$.

Define paths $\tau_{i}(i=1, \ldots, m-1)$ from $\left(i^{2}, 0, \sqrt{-1} i\right)$ to $\left(i^{2}, 0, \sqrt{-1}(i+1)\right)$ as follows

$$
\tau_{i}(t)=\left(((1-t) i+t(i+1))^{2}, 0,(1-t) \delta_{i, 1}+t \delta_{i+1,1}\right) \in U_{4} .
$$

Also

$$
\tau_{m}(t)=\left(((1-t)(m-1)+t m)^{2}, 0,(1-t) \delta_{m-1,1}+t \delta_{m, 2} \in U_{4},\right.
$$

where $\delta_{i, j}=(-1)^{j-1} \sqrt{-1} i$. Then we can construct $\Gamma_{i, i+1}(i=1, \ldots, m)$ and $\Gamma_{m-1, m}^{\prime}$ as (3.3) and (3.3)'.

$$
\begin{aligned}
\Gamma_{i, i+1} & =\left(E_{i, 1} \backslash\left(E_{i, 1} \cap \mathscr{T}\right)\right) \cup \partial \mathscr{T} \mid \tau_{i} \cup\left(E_{i+1,1} \backslash\left(E_{i+1,1} \cap \mathscr{T}\right)\right), \\
\Gamma_{m-1, m}^{\prime} & =\left.\left(E_{m-1,1} \backslash\left(E_{m-1,1} \cap \mathscr{T}\right)\right) \cup \partial \mathscr{T}\right|_{\tau_{m}} \cup\left(E_{m, 2} \backslash\left(E_{m, 2} \cap \mathscr{T}\right)\right) .
\end{aligned}
$$

Let $\alpha_{1}, \ldots, \alpha_{m}$ be classes of $\Gamma_{1,2}, \ldots, \Gamma_{m-1, m}, \Gamma_{m-1, m}^{\prime}$ in $H_{2}\left(\mathfrak{X}_{s_{0}} \backslash \mathfrak{D}_{s_{0}} ; \mathbf{Z}\right)$ respectively. It follows from Corollary 3.4 that $H_{2}\left(\mathfrak{X}_{s_{0}} \backslash \mathfrak{D}_{s_{0}} ; \mathbf{Z}\right)$ is generated by $\alpha_{1}, \ldots, \alpha_{m}$ and we have following theorem.

Theorem 7.2. Let $s_{0}, \sigma_{1}, \ldots, \sigma_{m}, \alpha_{1}, \ldots, \alpha_{m}$ be as above. Let

$$
\rho: \pi_{1}\left(S^{\prime}, s_{0}\right) \rightarrow \operatorname{Aut}\left(H_{2}\left(\mathfrak{X}_{s_{0}} \backslash \mathfrak{D}_{s_{0}} ; \mathbf{Z}\right)\right)
$$

be the monodromy of the fibration $\phi: \mathfrak{X}^{\prime} \rightarrow S^{\prime}$. Then

$$
\begin{align*}
\rho\left(\sigma_{i}\right)(x) & =x-\frac{2 x \cdot \alpha_{i}}{\alpha_{i} \cdot \alpha_{i}} \alpha_{i} \tag{1}\\
\rho\left(\sigma_{i} \sigma_{j}\right)(x) & =\rho\left(\sigma_{i}\right) \rho\left(\sigma_{j}\right)(x) \tag{2}
\end{align*}
$$

This shows the monodromy group $\rho\left(\pi_{1}\left(S^{\prime}, s_{0}\right)\right)$ is isomorphic to the Weyl group of type D_{m}.

Proof. The condition (2) is clear. At first we prove (1) for $\sigma_{i}=\sigma_{1}$. We consider diffeomorphic mapping induced by $\bar{\gamma}_{1}$:

$$
\eta(t): \mathfrak{X}_{s_{0}} \backslash \mathfrak{D}_{s_{0}} \rightarrow \mathfrak{X}_{\bar{\gamma}_{1}(t)} \backslash \mathfrak{D}_{\bar{\gamma}_{1}(t)}, \quad t \in[0,1]
$$

Then

$$
\eta(t)\left(\left(i^{2}, 0, \sqrt{-1} i\right)\right)=\left(s_{i}(t)^{2}, 0, \pm \sqrt{-1} s_{i}(t)\right) \in \mathfrak{X}_{\bar{\gamma}_{1}(t)} \backslash \mathfrak{D}_{\bar{\gamma}_{1}(t)} \cap \mathscr{U}_{4},
$$

where $\quad \gamma_{1}(t)=\left(s_{1}(t), \ldots, s_{m}(t)\right)$. Since $s_{i}(t) \neq 0$ and $\eta(t)$ is continuous, $\eta(t)\left(\left(i^{2}, 0, \sqrt{-1} i\right)\right)=\left(s_{i}(t)^{2}, 0, \sqrt{-1} s_{i}(t)\right)$. Therefore we have

$$
\eta(1)\left(i^{2}, 0, \sqrt{-1} i\right)= \begin{cases}\left(2^{2}, 0,2 \sqrt{-1}\right) & i=1 \\ \left(1^{2}, 0, \sqrt{-1}\right) & i=2 \\ \left(i^{2}, 0, \sqrt{-1} i\right) & i \neq 1,2\end{cases}
$$

Similarly we have

$$
\eta(1)\left(i^{2}, 0,-\sqrt{-1} i\right)= \begin{cases}\left(2^{2}, 0,-2 \sqrt{-1}\right) & i=1 \\ \left(1^{2}, 0,-\sqrt{-1}\right) & i=2 \\ \left(i^{2}, 0,-\sqrt{-1} i\right) & i \neq 1,2\end{cases}
$$

Thus we have

$$
\rho\left(\sigma_{1}\right)\left(\alpha_{i}\right)= \begin{cases}-\alpha_{1} & i=1 \\ \alpha_{1}+\alpha_{2} & i=2 \\ \alpha_{i} & i \neq 1,2\end{cases}
$$

and

$$
\rho\left(\sigma_{1}\right)(x)=x-\frac{2 x \cdot \alpha_{1}}{\alpha_{1} \cdot \alpha_{1}} \alpha_{1} .
$$

We can prove (1) for $\sigma_{2}, \ldots, \sigma_{m}$ in the same way.
Remark 7.3. We showed the monodromy group $\rho\left(\pi_{1}\left(S^{\prime}, s_{0}\right)\right)$ is isomorphic to the Weyl group of the root system of type D_{m}. But it is well known that the monodromy group of the locally trivial fiber bundle induced by semi-universal deformation of simple singularity is isomorphic to the Weyl group of the root system corresponding to its singularity. ([1, Volume Il, Theorem 3.14])

8. Period mapping for the fibration $\varphi^{\prime}: \mathfrak{X}^{\prime} \rightarrow S^{\prime}$

The notation is as in section 7. For $u_{s_{0}}=(1, \ldots, m)$, put

$$
\Omega=\operatorname{Hom}_{\mathbf{Z}}\left(H_{2}\left(\mathfrak{F}_{s_{0}} \backslash \mathfrak{D}_{s_{0}} ; \mathbf{Z}\right), \mathbf{C}\right) .
$$

Then $\pi_{1}\left(S^{\prime}, s_{0}\right)$ acts on Ω.

$$
\rho^{*}: \pi_{1}\left(S^{\prime}, s_{0}\right) \rightarrow \operatorname{Aut}(\Omega) .
$$

For $\alpha_{1}, \ldots, \alpha_{m}$, we define $\alpha_{1}^{*}, \ldots, \alpha_{m}^{*}$ as follows:

$$
\alpha_{i}^{*}(x)=\alpha_{i} \cdot x, \quad x \in H_{2}\left(\mathfrak{X}_{s_{0}} \backslash \mathfrak{D}_{s_{0}} ; \mathbf{Z}\right), \quad i=1, \ldots, m .
$$

Put

$$
V^{*}=\sum_{i=1}^{m} \mathbf{R} \alpha_{i}^{*}
$$

Then we have

$$
\Omega=V^{*}+\sqrt{-1} V^{*}
$$

We shall define a non-degenerate bilinear form on V^{*} by

$$
\left\langle x^{*}, y^{*}\right\rangle=\left(\sum_{i=1}^{m} x_{i} \alpha_{i}\right) \cdot\left(\sum_{i=1}^{m} y_{i} \alpha_{i}\right), \quad x^{*}=\sum_{i=1}^{m} x_{i} \alpha_{i}^{*}, \quad y^{*}=\sum_{i=1}^{m} y_{i} \alpha_{i}^{*} .
$$

Let $w_{x_{i}} \in \Omega^{*}$ be the reflection in the hyperplane orthogonal to α_{i}^{*} and W^{*} the group generated by $w_{a_{i}^{*}}, \ldots, w_{a_{m}}$. Let

$$
R^{*}=\left\{w^{*}\left(\alpha_{i}^{*}\right) \in V^{*} \mid w^{*} \in W^{*}, i=1, \ldots, m\right\} .
$$

We shall define a period mapping for the family $\varphi^{\prime}: \mathfrak{X}^{\prime} \rightarrow S^{\prime}$. There is one-to-one correspondence between the equivalence class of covering spaces of S^{\prime} and the conjugacy class of $\pi_{1}\left(S^{\prime}, s_{0}\right)$. Let

$$
\imath: \hat{S}^{\prime} \rightarrow S^{\prime}
$$

be the covering space of S^{\prime} corresponding to ker ρ. Then \hat{S}^{\prime} is a regular covering of S^{\prime} and its covering transformation group is $G=\rho\left(\pi_{1}\left(S^{\prime}, s_{0}\right)\right)$.

Put $\hat{s}_{0}=\left(s_{0},[e]\right)$, where $[e]$ is the unit of $\rho\left(\pi_{1}\left(S^{\prime}, s_{0}\right)\right)$. For any $\hat{s} \in \hat{S}^{\prime}$, we can define a diffeomorphism of $\mathfrak{x}_{s_{0}} \backslash \mathfrak{D}_{s_{0}}$ to $\mathfrak{X}_{s} \backslash \mathfrak{D}_{s}$ induced by one of the paths from s_{0} to s in S^{\prime} which corresponds to \hat{s}, where $s=\imath(\hat{s})$.

This diffeomorphism induces the isomorphism of homology groups

$$
(\hat{s})_{*}: H_{2}\left(\mathfrak{F}_{s_{0}} \backslash \mathfrak{D}_{s_{0}} ; \mathbf{Z}\right) \rightarrow H_{2}\left(\mathfrak{F}_{s} \backslash \mathfrak{D}_{s} ; \mathbf{Z}\right) .
$$

This isomorphism does not depend on the choice of representative of homotopy. Therefore for any $\hat{s} \in \hat{S}^{\prime}$, we define $\lambda_{\hat{s}} \in \operatorname{Hom}_{\mathbf{Z}}\left(H_{2}\left(\mathfrak{X}_{s_{0}} \backslash \mathfrak{D}_{s_{0}} ; \mathbf{Z}\right), \mathbf{C}\right)$ uniquely by

$$
\lambda_{\dot{s}}([c])=\int_{\hat{S}_{\dot{s}}(c)} \omega_{s}
$$

where $[c]$ is the homology class of 2-cycle c.
Then we define a period mapping \mathscr{P} for $\varphi^{\prime}: \mathfrak{X}^{\prime} \rightarrow S^{\prime}$

$$
\mathscr{P}: \hat{S}^{\prime} \rightarrow \operatorname{Hom}_{\mathbf{Z}}\left(H_{2}\left(\mathfrak{X}_{s_{0}} \backslash \mathfrak{D}_{s_{0}} ; \mathbf{Z}\right), \mathbf{C}\right)
$$

by $\mathscr{P}(\hat{s})=\lambda_{\hat{s}}$.
Put

$$
\begin{aligned}
H_{\alpha^{*}} & =\left\{v^{*} \in V^{*} \mid\left\langle\alpha^{*}, v^{*}\right\rangle=0\right\}, \quad \alpha^{*} \in R^{*}, \\
\Omega^{\prime} & =\Omega-\bigcup_{\alpha^{*} \in R^{*}}\left(V^{*}+\sqrt{-1} H_{\alpha^{*}}\right) .
\end{aligned}
$$

Then $G \subset \operatorname{Aut}\left(H_{2}\left(\mathfrak{X}_{s_{0}} \backslash \mathfrak{D}_{s_{0}} ; \mathbf{Z}\right)\right)$ acts on Ω^{\prime} by

$$
\theta \cdot \alpha(x)=\alpha\left(\theta^{-1}(x)\right), \quad \theta \in G, \quad \alpha \in \Omega^{\prime}, \quad x \in H_{2}\left(\mathfrak{X}_{s_{0}} \backslash \mathfrak{D}_{s_{0}} ; \mathbf{Z}\right),
$$

(see Theorem 7.2). We have the following theorem.
Theorem 8.1. The mapping

$$
\mathscr{P}: \hat{S}^{\prime} \rightarrow \Omega^{\prime}
$$

is surjective and biholomorphic. The monodromy group G acts on \hat{S}^{\prime} as covering transformation group and Ω^{\prime} as a reflection group. The period mapping \mathscr{P} is equivariant with these actions. Thus we have isomorphism

$$
S^{\prime} \cong \hat{S}^{\prime} / G \cong \Omega^{\prime} / G
$$

Proof. We have $G \cong W$ by Theorem 7.2. Since $C_{0}+\sqrt{-1} \mathbf{R}^{m}$ is a fundamental region of W in $\mathfrak{G}_{\text {reg }}$. Any element $\hat{s} \in \hat{S}^{\prime}$ can be represented by an element $u_{\hat{s}} \in C_{0}+\sqrt{-1} \mathbf{R}^{m}$ and an element $w_{\hat{s}} \in W$ uniquely. Then $\hat{s}=\left(u_{\hat{s}}, w_{\hat{s}}\right)$.

Let $u_{\hat{s}}=\left(s_{1}, \ldots, s_{m}\right)$ and $s=l(\hat{s})$. Let $\tau_{i, \hat{s}}(i=1, \ldots, m)$ be the paths in $U_{4}=$ $\mathscr{U}_{4} \cap \mathfrak{X}_{s}$ given by

$$
\begin{aligned}
\tau_{i, s}(t) & =\left(\left((1-t) s_{i}+t s_{i+1}\right)^{2}, 0, \sqrt{-1}\left((1-t) s_{i}+t s_{i+1}\right)\right), \quad i=1, \ldots, m-1, \\
\tau_{m, s}(t) & =\left(\left((1-t) s_{m-1}+t s_{m}\right)^{2}, 0, \sqrt{-1}\left((1-t) s_{m-1}-t s_{m}\right)\right) .
\end{aligned}
$$

This path $\tau_{i, s}$ gives 2-cycle $\Gamma_{i}(\hat{s})$ as in section 7. Let $\alpha_{i}(s)$ be the class of $\Gamma_{i}(\hat{s})$ in $H_{2}\left(\mathfrak{X}_{s} \backslash \mathfrak{D}_{s} ; \mathbf{Z}\right)$. Then

$$
\hat{s}_{*}\left(\alpha_{i}\left(s_{0}\right)\right)=w_{s}^{-1}\left(\alpha_{i}(s)\right) .
$$

Since $\alpha_{i}\left(\hat{s}_{0}\right)=\alpha_{i}$, we have

$$
\begin{aligned}
\mathscr{P}(\hat{s})\left(\alpha_{i}\right) & =\int_{\hat{\hat{s}_{\cdot}}\left(\chi_{i}\right)} \omega_{s} \\
& =\int_{W_{s}^{-1}\left(x_{i}(s)\right)} \omega_{s},
\end{aligned}
$$

where α_{i} is as in section 7 .
Thus we have that \mathscr{P} is equivariant with action of G. Put

$$
\begin{aligned}
\hat{S}_{0} & =\left\{\hat{s} \in \hat{S} \mid \hat{s}=\left(u_{s},[e]\right), \quad u_{\hat{s}} \in C_{0}+\sqrt{-1} \mathbf{R}^{m}\right\} \\
C_{0}^{*} & =\left\{v^{*} \in V^{*} \mid\left\langle v^{*}, \alpha_{i}^{*}\right\rangle\left\langle 0\left(i=1, \ldots, m-1,\left\langle v^{*}, \alpha_{m}^{*}\right\rangle\right\rangle 0\right\}\right.
\end{aligned}
$$

Then $\hat{S}_{0}, \sqrt{-1} C_{0}^{*}+V^{*}$ is a fundamental region of $\hat{S}^{\prime}, \Omega^{\prime}$ for the action of G respectively. Therefore we have only to prove that

$$
\left.\mathscr{P}\right|_{\hat{S}_{0}}: \hat{S}_{0} \rightarrow \sqrt{-1} C_{0}^{*}=V^{*}
$$

is bijection to prove that \mathscr{P} is a bijective mapping.
Put $\hat{s}=\left(u_{\hat{s}},[e]\right)$. Since

$$
\begin{aligned}
\omega_{s} & =-\frac{d x_{4} d y_{4}}{2 \pi \sqrt{-1} y_{4} z_{4}} \\
& =-\frac{1}{2 \pi \sqrt{-1} y_{4} z_{4}} \frac{\partial F_{4} / \partial z_{4}}{\partial F_{4} / \partial x_{4}} d y_{4} d z_{4} \\
& =\frac{d y_{4} d z_{4}}{\pi \sqrt{-1} y_{4}\left(1+y_{4}^{2} \partial f_{s} / \partial x_{4}\right)},
\end{aligned}
$$

we have

$$
\begin{aligned}
\mathscr{P}(\hat{s})\left(\alpha_{i}\right) & =\int_{\alpha_{i}(s)} \omega_{s} \\
& =2 \pi \sqrt{-1} \int_{\tau_{i, s}} \operatorname{Res}_{\bar{s}^{(n)}} \omega_{s} \\
& =2 \int_{\sqrt{-1} s_{i}}^{\sqrt{-1} s_{i+1}} d z_{4} \\
& =2\left(\sqrt{-1} s_{i+1}-\sqrt{-1} s_{i}\right)
\end{aligned}
$$

for $i=1, \ldots, m-1$. If $i=m$, we have

$$
\begin{aligned}
\mathscr{P}(\hat{s})\left(\alpha_{m}\right) & =\int_{\alpha_{i}(s)} \omega_{s} \\
& =2 \int_{-\sqrt{-1} s_{m}}^{\sqrt{-1} s_{m-1}} d z_{4} \\
& =2\left(\sqrt{-1} s_{m-1}+\sqrt{-1} s_{m}\right) .
\end{aligned}
$$

Thus $\left.\mathscr{P}\right|_{\hat{S}_{0}}$ is bijective. It is clear that \mathscr{P} is biholomorphic. Thus the theorem is proved.

Acknowledgement. The authors express their heartiest thanks to Professor Akira Kono for many helpful advices and constant encouragement.

Division of Mathematics
Graduate School of Science Кyoto University
Division of Mathematics
Graduate School of Science Kyoto University

References

[1] V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differential Maps Volume I, II, Boston Basel Berlin, Birkhäuser, 1998.
[2] W. Barth, C. Peters and A. Van de Ven, Compact Complex Surfaces, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1984.
[3] N. Bourbaki, Groupes et algébres de Lie, Chap. 4, 5, 6, Hermann, Paris, 1968.
[4] E. Brieskorn, Singular Elements of Semi-simple Algebraic Groups. Actes, Congres intern. Math., (Nice, 1970) Tome 2, 279-284.
[5] E. Brieskorn, Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Inventiones Math., 13 (1971), 57-61.
[6] M. Demazure, Surfaces de Del Pezzo II, III, IV, V, Séminaire sur Les Singularités des Surfaces, Lecture Notes in Math. 777, Springer-Verlag, 1980.
[7] R. Hartshorne, Algebraic Geometry, 3rd edition, Springer-Verlag, 1983.
[8] E. Looijenga, A period mapping for certain semi-universal deformations, Com. Math., 30 (1975), 299-316.
[9] E. Looijenga, Rational surfaces with an anti-canonical cycle, Ann. of Math., 114 (1981), 267322.
[10] Yu. I. Manin, Cubic Forms, 2nd edition, North-Holland, Amsterdam, 1986.
[11] J. Matsuzawa, Monoidal transformations of Hirzebruch surfaces and Weyl groups of type C, J. Fac. Sci. Univ. Tokyo, 35 (1988) 425-429. Correction J. Fac. Sci. Univ. Tokyo, 36 (1989), 827.
[12] J. Matsuzawa, Root Systems and Periods on Hirzebruch Surfaces, Publ.RIMS,Kyoto Univ., 29 (1993), 411-438.
[13] I. Naruki, Cross ratio variety as a moduli space of cubic surfaces, with Appendix by E. Looijenga, Proc. London Math. Soc, (3), 45 (1982), 1-30.
[14] H. Pinkham, Résolution simultanée de points doubles rationnels, Séminaire sur Les Singularités des Surfaces, Lecture Notes in Math. 777, Springer-Verlag, 1980.
[15] K. Saito, Period Mapping Associated to a Primitive Form, Publ.RIMS,Kyoto Univ., 19 (1983), 1231-1264.
[16] P. Slodowy, Simple Singularities and Simple Algebraic Groups, Lecture Notes in Math. 815, Springer-Verlag, 1980.
[17] G. N. Tyurina, Locally semi-universal plane deformations of isolated singularities of complex spaces, Izv.Akad.Nauk SSSR, Seriya Matem., 33 (1969).

