The Hopf algebra structure of the cohomology of the 3-connective fibre space over the special unitary group

By

Osamu Nishimura

1. Introduction

Fix a prime p and let $\widetilde{S U}(n)$ be the 3-connective fibre space over $S U(n)$ for $n=2,3, \ldots, \infty$. Note that $\widetilde{S U}(n)$ is a Hopf space with a inverse since the product and the inverse of $S U(n)$ induce those of $\widetilde{S U}(n)$ respectively.

In this paper, we determine $H^{*}\left(\widetilde{S U}(n) ; \mathbf{F}_{p}\right)$ as a Hopf algebra over \mathscr{A}_{p} the $\bmod p$ Steenrod algebra. The results are stated in $\S 2$.

As a Hopf algebra over $\mathscr{A}_{p}, H^{*}\left(\widetilde{S U}(\infty) ; \mathbf{F}_{p}\right)$ can be easily determined by inspections of the cohomology Serre spectral sequences associated with the fiberings

$$
\begin{gathered}
\mathbf{C P}^{\infty} \longrightarrow \widetilde{S U}(\infty) \xrightarrow{q_{\infty}} S U(\infty), \\
\widetilde{S U}(\infty) \xrightarrow{q_{\infty}} S U(\infty) \longrightarrow K(\mathbf{Z}, 3)
\end{gathered}
$$

except one cohomology operation

$$
\wp^{1} \tilde{y}_{2 p+1}=\varepsilon_{p} \tilde{x}_{4 p-1} \quad\left(0 \neq \varepsilon_{p} \in \mathbf{F}_{p}\right)
$$

where $\tilde{x}_{4 p-1}$ is the generator of degree $4 p-1$ in the image of the homomorphism q_{∞}^{*} induced from the covering projection q_{∞}, while $\tilde{y}_{2 p+1}$ is the generator of degree $2 p+1$ not in the image of q_{∞}^{*}. This action will be shown in $\S 3$ by use of the $\bmod p$ decomposability of $S U(\infty)$ (Adams [1]) and the information of the homotopy groups.

For finite $n, H^{*}\left(\widetilde{S U}(n) ; \mathbf{F}_{p}\right)$ can be almost determined as a Hopf algebra over \mathscr{A}_{p} by the results of $H^{*}\left(S U(n) ; \mathbf{F}_{p}\right)$ and $H^{*}\left(\widetilde{S U}(\infty) ; \mathbf{F}_{p}\right)$. However, major difficulties will be encountered if one wants to know the coproduct and the \mathscr{A}_{p}-action of $\tilde{y}_{2 p^{r}}$ where r is an integer such that $p^{r-1}<n \leq p^{r}$. Here $\tilde{y}_{2 p^{r}}$ is the only one generator of degree $2 p^{r}$ which is neither in the image of q_{n}^{*} nor in that of $\tilde{i}_{n, \infty}^{*}$ where $q_{n}: \widetilde{S U}(n) \rightarrow S U(n)$ is the covering projection and $\tilde{i}_{n, \infty}: \widetilde{S U}(n) \rightarrow \widetilde{S U}(\infty)$ is the map induced from the usual inclusion $i_{n, \infty}: S U(n) \hookrightarrow S U(\infty)$. We shall determine the coproduct of $\tilde{y}_{2 p^{r}}$ in $\S 4$ by computing the homomorphism induced from the commutator map of $\widetilde{S U}(n)$ in two manners and comparing them. On
the one hand, we compute directly from the coproduct, on the other hand, we decompose the commutator map of $\widetilde{S U}(n)$ and apply the results of Bott [2] and Hamanaka [4]. Here, for a Hopf space with a inverse, the commutator map is defined as the one which maps (x, y) to $x y x^{-1} y^{-1}$. In $\S 5$, we shall deduce the cohomology operations to $\tilde{y}_{2 p^{r}}$ from those to the coproduct of $\tilde{y}_{2 p^{r}}$.

Remark 1.1. Let $\widetilde{\operatorname{Spin}}(n)$ be the 3 -connective fibre space over $\operatorname{Spin}(n)$ for $n=$ $7,8,9,10, \ldots, \infty$ and $\widetilde{S p}(n)$ the 3 -connective fibre space over $S p(n)$ for $n=$ $2,3, \ldots, \infty$. As a Hopf algebra over \mathscr{A}_{p} where p is an odd prime, $H^{*}\left(\widetilde{\operatorname{Spin}}(n) ; \mathbf{F}_{p}\right)$ and $H^{*}\left(\widetilde{S p}(n) ; \mathbf{F}_{p}\right)$ can be determined by the results of this paper together with the natural inclusions and the p-equivalence

$$
\begin{aligned}
& \operatorname{Spin}(2 k-1) \hookrightarrow S U(2 k-1), \\
& \operatorname{Spin}(2 k) \simeq_{p} \operatorname{Spin}(2 k-1) \times S^{2 k-1} \quad(k=4,5,6, \ldots) ; \\
& S p(n) \hookrightarrow S U(2 n) .
\end{aligned}
$$

(Moreover, $H^{*}\left(\widetilde{S p}(n) ; \mathbf{F}_{2}\right)$ can be also determined as a Hopf algebra over \mathscr{A}_{2} quite easily.)

The author would like to thank Professor Akira Kono for his advices and encouragements. He also would like to thank the referee for some useful comments.

2. Results

In this paper, for any Hopf algebra, the reduced coproduct map is denoted by $\bar{\mu}^{*}$. Let $\wp^{k}=S q^{2 k}$ if $p=2$ and $\binom{a}{b}=0$ if $b<0$ or $a-b<0$.

We shall show the following theorem.
Theorem 2.1. Let p be a prime and n an integer such that $p^{r-1}<n \leq p^{r}$ for a positive integer r. As a Hopf algebra over $\mathscr{A}_{p}, H^{*}\left(\widetilde{S U}(n) ; \mathbf{F}_{p}\right)$ is given as follows. (i) As an algebra,

$$
H^{*}\left(\widetilde{S U}(n) ; \mathbf{F}_{p}\right)=\mathbf{F}_{p}\left[\tilde{y}_{2 p^{p}}\right] \otimes \Lambda\left(\tilde{x}_{k}\left(k \in A_{p, n}\right), \tilde{y}_{k}\left(k \in B_{p, n}\right)\right)
$$

where

$$
\begin{aligned}
A_{p, n} & =\left\{2 j+1 \mid 1<j<n, j \neq p, p^{2}, \ldots, p^{r-1}\right\} \\
B_{p, n} & =\left\{2 j+1 \mid j=p, p^{2}, \ldots, p^{r}\right\}
\end{aligned}
$$

and $\operatorname{deg} \tilde{x}_{k}=\operatorname{deg} \tilde{y}_{k}=k$. (In particular, $H^{*}\left(\widetilde{S U}(\infty) ; \mathbf{F}_{p}\right)$ is an exterior algebra.) (ii) The coproducts are given as
(a) if p is an odd prime, $\bar{\mu}^{*}\left(\tilde{y}_{2 p^{r}}\right)=\sum_{\substack{k, k^{\prime} \in A_{p, n} \\ k+k^{\prime}=2 p^{r}}} \tilde{x}_{k} \otimes \tilde{x}_{k^{\prime}}$ and other generators are primitive,
(b) if $p=2, \bar{\mu}^{*}\left(\tilde{y}_{2^{r+1}}\right)=\sum_{\substack{k, k^{\prime} \in \neq A 2^{\prime 2} \\ k+k^{\prime}=2^{\prime+1} \\ k<k^{\prime}}} \tilde{x}_{k} \otimes \tilde{x}_{k^{\prime}}$ and other generators are primitive. (In particular, $H^{*}\left(\widetilde{S U}(\infty) ; \mathbf{F}_{p}\right)$ is primitively generated.)
(iii) The cohomology operations are given as
(a) for any $k \in A_{p, n}, \beta \tilde{x}_{k}=0$ and

$$
\wp^{j} \tilde{x}_{k}= \begin{cases}\binom{\frac{k-1}{2}}{j} \tilde{x}_{k+2 j(p-1)} & \left(k+2 j(p-1) \in A_{p, n}\right), \\ 0 & (\text { otherwise }),\end{cases}
$$

(b) $\beta \tilde{y}_{2 p+1}=0$,
(c) $\wp^{1} \tilde{y}_{2 p+1}=\left\{\begin{array}{ll}\varepsilon_{p} \tilde{x}_{4 p-1} & (n \geq 2 p), \\ 0 & (n<2 p)\end{array}\right.$ where $0 \neq \varepsilon_{p} \in \mathbf{F}_{p}$,
(d) $\tilde{y}_{2 p^{k}+1}=\wp^{p^{k-1}} \wp^{p^{k-2}} \cdots \wp^{p} \tilde{y}_{2 p+1}(k=2,3, \ldots, r)$,
(e) $\beta \tilde{y}_{2 p^{r}}=\tilde{y}_{2 p^{r}+1}$,
(f) $\wp^{p^{k}} \tilde{y}_{2 p^{r}}= \begin{cases}\tilde{y}_{2 p^{r}}^{p} & (k=r), \\ \sum_{j=1}^{e_{k}} \tilde{x}_{d_{(k, j)}} \tilde{x}_{\left.d_{(k, j)}^{\prime}\right)} & (p=2,2 \leq k \leq r-2), \\ 0 & \text { (otherwise) }\end{cases}$
where $e_{k}=\min \left\{2^{k-1}-1, n-2^{r-1}-2^{k-1}\right\}, \quad d_{(k, j)}=2^{r}+2^{k}+1-2 j$ and $d_{(k, j)}^{\prime}=$ $2^{r}+2^{k}-1+2 j$.
3. Proof for $n=\infty$

As stated in the introduction, $H^{*}\left(\widetilde{S U}(\infty) ; \mathbf{F}_{p}\right)$ is easily determined as a Hopf algebra over \mathscr{A}_{p} except $\wp^{1} \tilde{y}_{2 p+1}=\varepsilon_{p} \tilde{x}_{4 p-1}$ where $0 \neq \varepsilon_{p} \in \mathbf{F}_{p}$. In this section, we prove this cohomology operation. Let $K\langle n\rangle$ be the n-connective fibre space over K for any space K.

According to Adams [1],

$$
S U(\infty)_{(p)} \simeq X_{1} \times X_{2} \times \cdots \times X_{p-1}
$$

where for $j \geq 1, \pi_{2 j+1}\left(X_{k}\right)=\mathbf{Z}_{(p)}$ if $j \equiv k(\bmod p-1)$ and $\pi_{2 j+1}\left(X_{k}\right)=0$ otherwise. Put $Y=X_{2} \times \cdots \times X_{p-1}$. Then, we have

$$
\begin{aligned}
S U(\infty)\langle 3\rangle_{(p)} & \simeq S U(\infty)_{(p)}\langle 3\rangle \\
& \simeq X_{1}\langle 3\rangle \times Y
\end{aligned}
$$

and $H^{*}\left(X_{1}\langle 3\rangle ; \mathbf{F}_{p}\right)=\Lambda\left(\tilde{y}_{2 p+1}^{\prime}, \tilde{x}_{4 p-1}^{\prime}, \ldots\right)$ where $\tilde{y}_{2 p+1}^{\prime}$ and $\tilde{x}_{4 p-1}^{\prime}$ correspond to $\tilde{y}_{2 p+1}$ and $\tilde{x}_{4 p-1}$ respectively. Further, we have

$$
S U(\infty)_{(p)}\langle 2 p-1\rangle=X_{1}\langle 3\rangle \times Y\langle 2 p-1\rangle .
$$

Assume that $\wp^{1} \tilde{y}_{2 p+1}=0$. By inspecting the cohomology Serre spectral sequence associated with the fibering

$$
K\left(\mathbf{Z}_{(p)}, 2 p\right) \rightarrow X_{1}\langle 2 p+1\rangle \rightarrow X_{1}\langle 3\rangle
$$

we can easily show that $H^{4 p-2}\left(X_{1}\langle 2 p+1\rangle ; \mathbf{F}_{p}\right) \neq 0$. It contradicts that $\pi_{k}\left(X_{1}\langle 2 p+1\rangle\right)=0(k \leq 4 p-2)$ because of Hurewicz theorem.

4. The coproduct of $\tilde{y}_{2 p r}$

As an algebra, $H^{*}\left(\widetilde{S U}(n) ; \mathbf{F}_{p}\right)$ is easily determined also for finite n by the fibering

$$
\mathbf{C} \mathbf{P}^{\infty} \longrightarrow \widetilde{S U}(n) \xrightarrow{q_{n}} S U(n) .
$$

As stated in the introduction, $H^{*}\left(\widetilde{S U}(n) ; \mathbf{F}_{p}\right)$ can be almost determined as a Hopf algebra over \mathscr{A}_{p} by the results of $H^{*}\left(S U(n) ; \mathbf{F}_{p}\right)$ and $H^{*}\left(\widetilde{S U}(\infty) ; \mathbf{F}_{p}\right)$. Then, we shall argue the only two problems stated in the introduction. In this section, we shall determine the coproduct of $\tilde{y}_{2 p r}$. In §5, the last section, we shall determine the cohomology operations to $\tilde{y}_{2 p^{r}}$. Clearly, it suffices to consider the case $n=p^{r}$ for each positive integer r.

Here let $G=S U\left(p^{r}\right)$ and $q=q_{p^{r}}: \tilde{G} \rightarrow G$, the covering projection. We consider the commutator map

$$
c: G \times G \rightarrow G
$$

which maps (x, y) to $x y x^{-1} y^{-1}$. For the definition of c, we can define a map

$$
c^{\prime}: G \wedge G \rightarrow G
$$

as the one which makes the following diagram commute:

where π is the natural projection. On the other hand, using the inverse map of \tilde{G}, we define a map

$$
\tilde{c}: \tilde{G} \times \tilde{G} \rightarrow \tilde{G}
$$

by $\tilde{c}(x, y)=x y x^{-1} y^{-1}$. The map \tilde{c} satisfies the condition that it makes the following diagram commute up to homotopy:

Note that any continuous map from $\tilde{G} \times \tilde{G}$ to \tilde{G} which satisfies the above condition is homotopic to \tilde{c} since $\tilde{G} \times \tilde{G}$ is 3 -connected. Moreover, we define a map

$$
\check{c}: G \wedge G \rightarrow \tilde{G}
$$

as the one which makes the following diagram commute up to homotopy:

Note that \check{c} certainly exists and is unique up to homotopy since $G \wedge G$ is 3connected. Then, we have the following diagram:

where $\tilde{\pi}$ is the natural projection. We can show the following lemma which we need later.

Lemma 4.1. $\check{c} \circ(q \wedge q) \circ \tilde{\pi} \simeq \tilde{c}$.
In fact, it follows from

$$
\begin{aligned}
q \circ \check{c} \circ(q \wedge q) \circ \tilde{\pi} & \simeq c^{\prime} \circ(q \wedge q) \circ \tilde{\pi} \\
& \simeq c^{\prime} \circ \pi \circ(q \times q) \\
& \simeq c \circ(q \times q) .
\end{aligned}
$$

Moving $\tilde{y}_{2 p^{r}}$ modulo decomposable, we may put

$$
\bar{\mu}^{*}\left(\tilde{y}_{2 p^{r}}\right)=\sum(\text { primitive }) \otimes(\text { primitive }) .
$$

Then, by the definition of \tilde{c}, we can directly compute that

$$
\begin{equation*}
\tilde{c}^{*}\left(\tilde{y}_{2 p^{r}}\right)=\bar{\mu}^{*}\left(\tilde{y}_{2 p^{r}}\right)-\alpha^{*} \circ \bar{\mu}^{*}\left(\tilde{y}_{2 p^{r}}\right) \tag{4.1}
\end{equation*}
$$

where $\alpha: A \times B \rightarrow B \times A$ is the switching map for any spaces A, B.
On the other hand, we can compute $\tilde{c}^{*}\left(\tilde{y}_{2 p^{r}}\right)$ as follows.

For $k=2,3, \ldots, p^{r}-1$, we define maps

$$
c_{(k)}^{\prime}: S U(k) \wedge S U\left(p^{r}+1-k\right) \rightarrow S U\left(p^{r}\right)
$$

as the ones each of which is the composition of c^{\prime} and the smash map of the natural inclusions. Similarly, we define maps

$$
\check{c}_{(k)}: S U(k) \wedge S U\left(p^{r}+1-k\right) \rightarrow \widetilde{S U}\left(p^{r}\right)
$$

as the ones each of which is the composition of \check{c} and the smash map of the natural inclusions. For $k=2,3, \ldots, p^{r}-1$, the map $\check{c}_{(k)}$ satisfies the condition that it makes the following diagram commute up to homotopy:

Note that any continuous map from $S U(k) \wedge S U\left(p^{r}+1-k\right)$ to $\widetilde{S U}\left(p^{r}\right)$ which satisfies the above condition is homotopic to $\check{c}_{(k)}$ since $S U(k) \wedge S U\left(p^{r}+1-k\right)$ is 3-connected.

Recall the following homotopy fibre sequence:

$$
\Omega S^{2 p^{r}+1} \xrightarrow{\delta} S U\left(p^{r}\right) \rightarrow S U\left(p^{r}+1\right) \rightarrow S^{2 p^{r}+1} .
$$

Since $S U(k)$ and $S U\left(p^{r}+1-k\right)$ commute in $S U\left(p^{r}+1\right)$ up to homotopy, there exists a map

$$
\lambda_{(k)}: S U(k) \wedge S U\left(p^{r}+1-k\right) \rightarrow \Omega S^{2 p^{r}+1}
$$

such that $\delta \circ \lambda_{(k)} \simeq c_{(k)}^{\prime}$. Then, we have the following diagram:

where $\tilde{\delta}$ is induced from δ.
Lemma 4.2. $\quad \check{c}_{(k)} \simeq \tilde{\delta} \circ \lambda_{(k)}$.
In fact, it follows from

$$
\begin{aligned}
q \circ \tilde{\delta} \circ \lambda_{(k)} & \simeq \delta \circ \lambda_{(k)} \\
& \simeq c_{(k)}^{\prime} .
\end{aligned}
$$

Lemma 4.3. $\tilde{\delta}^{*}\left(\tilde{y}_{2 p^{r}}\right)=a \sigma\left(s_{2 p^{r}+1}\right)\left(0 \neq a \in \mathbf{F}_{p}\right)$ where $s_{2 p^{r}+1}$ is the $\bmod p$ reduction of the generator of $H^{*}\left(S^{2 p^{\prime}+1} ; \mathbf{Z}\right)$ and σ is the cohomology suspension.

Proof. Note that

$$
\Omega S^{2 p^{r}+1} \xrightarrow{\tilde{\delta}} \widetilde{S U}\left(p^{r}\right) \rightarrow \widetilde{S U}\left(p^{r}+1\right)
$$

is a fibre space up to homotopy. By $\tilde{\delta}^{*}$ the Serre exact sequence, we have $H^{2 p^{r}}\left(\widetilde{S U}\left(p^{r}+1\right) ; \mathbf{F}_{p}\right) \rightarrow H^{2 p^{r}}\left(\widetilde{S U}\left(p^{r}\right) ; \mathbf{F}_{p}\right) \xrightarrow{\delta^{*}} H^{2 p^{r}}\left(\Omega S^{2 p^{r}+1} ; \mathbf{F}_{p}\right)$ (exact). Since no indecomposable element is in $H^{2 p^{r}}\left(\widetilde{S U}\left(p^{r}+1\right) ; \mathbf{F}_{p}\right), \tilde{y}_{2 p^{\prime}}$ is not in $\operatorname{Ker} \tilde{\delta}^{*}$ and hence the lemma follows.

Moreover, we can show the following lemma by the results of Bott [2] in a similar manner to Hamanaka [4] lemma 2.4.

Lemma 4.4. $\quad \lambda_{(k)}^{*}\left(\sigma\left(s_{2 p^{r}+1}\right)\right)=x_{2 k-1} \otimes x_{2\left(p^{r}+1-k\right)-1}$.
By lemmas 4.2, 4.3 and 4.4, we have the following lemma.
Lemma 4.5. $\quad \check{c}_{(k)}^{*}\left(\tilde{y}_{2 p^{r}}\right)=a x_{2 k-1} \otimes x_{2\left(p^{r}+1-k\right)-1}$.
Accordingly, we have

$$
\check{c}^{*}\left(\tilde{y}_{2 p^{\prime}}\right)=a \sum_{\substack{k, k^{\prime} \geq 2 \\ k+k^{\prime}=p^{\prime}+1}} x_{2 k-1} \otimes x_{2 k^{\prime}-1}
$$

by the definition of $\check{c}_{(k)}$. Therefore, we have by lemma 4.1 and (4.1)

$$
\begin{aligned}
\tilde{\pi}^{*} \circ(q \wedge q)^{*} \circ \check{c}^{*}\left(\tilde{y}_{2 p^{r}}\right) & =a \sum_{\substack{k+k^{\prime}=2 p^{r} \\
k, k^{\prime} \in A_{p, p^{r}}}} \tilde{x}_{k} \otimes \tilde{x}_{k^{\prime}} \\
& =\bar{\mu}^{*}\left(\tilde{y}_{2 p^{r}}\right)-\alpha^{*} \circ \bar{\mu}^{*}\left(\tilde{y}_{2 p^{r}}\right) .
\end{aligned}
$$

Consequently, moving $\tilde{y}_{2 p^{r}}$ modulo decomposable again and multiplying $\tilde{y}_{2 p^{r}}$ and $\tilde{y}_{k}\left(k \in B_{p, p^{r}}\right)$ by non-zero scalar if we need, we can obtain the coproduct of $\tilde{y}_{2 p^{r}}$ as stated in theorem 2.1.

5. The cohomology operations to $\tilde{y}_{2 p^{r}}$

$\underset{\sim}{\text { In }}$ this section, we shall determine the cohomology operations to $\tilde{y}_{2 p^{r}} \in$ $H^{*}\left(\widetilde{S U}\left(p^{r}\right) ; \mathbf{F}_{p}\right)$. We consider the non-trivial cases $\wp^{p^{k}} \tilde{y}_{2 p^{r}}$ for $k \leq r-1$. Let M be a vector space over \mathbf{F}_{p} and $a_{l} \in M$ for $l \in L$. Then the vector subspace generated by $\left\{a_{l}\right\}$ is denoted by $\left\langle a_{l}(l \in L)\right\rangle$.

Firstly assume that p is an odd prime. By the Cartan formula, $\bar{\mu}^{*}\left(\wp^{p^{k}} \tilde{y}_{2 p^{r}}\right)$ must be of the form

$$
\bar{\mu}^{*}\left(\wp^{p^{k}} \tilde{y}_{2 p^{r}}\right)=\sum\left(z \otimes z^{\prime}+z^{\prime} \otimes z\right)
$$

while since

$$
\wp^{p^{k}} \tilde{y}_{2 p^{r}} \in\left\langle\tilde{x}_{l} \tilde{x}_{l^{\prime}}\left(l, l^{\prime} \in A_{p, p^{r}}, l+l^{\prime}=2 p^{r}+2 p^{k}(p-1)\right\rangle\right.
$$

and

$$
\bar{\mu}^{*}\left(\tilde{x}_{l} \tilde{x}_{l^{\prime}}\right)=\tilde{x}_{l} \otimes \tilde{x}_{l^{\prime}}-\tilde{x}_{l^{\prime}} \otimes \tilde{x}_{l}
$$

$\bar{\mu}^{*}\left(\wp^{p^{k}} \tilde{y}_{2 p^{r}}\right)$ also must be of the form

$$
\bar{\mu}^{*}\left(\wp^{p^{k}} \tilde{y}_{2 p^{r}}\right)=\sum\left(w \otimes w^{\prime}-w^{\prime} \otimes w\right)
$$

Hence $\bar{\mu}^{*}\left(\wp^{p^{k}} \tilde{y}_{2 p^{r}}\right)$ is zero and so is $\wp^{p^{k}} \tilde{y}_{2 p^{r}}$.
The case $p=2$ is more complicated. By the Cartan formula,

$$
\bar{\mu}^{*}\left(S q^{2^{k+1}} \tilde{y}_{2^{r+1}}\right)=\sum_{\substack{l, l^{\prime} \in A_{2,2} \\ l+l^{\prime}=2^{r+1} \\ l<l^{\prime}}}\left(S q^{2^{k+1}} \tilde{x}_{l} \otimes \tilde{x}_{l^{\prime}}+\tilde{x}_{l} \otimes S q^{2^{k+1}} \tilde{x}_{l^{\prime}}\right)
$$

since we can easily show the following lemma.

Lemma 5.1.

$$
S q^{f} \tilde{x}_{l} \otimes S q^{2^{k+1}-f} \tilde{x}_{l^{\prime}}=0
$$

where $l, l^{\prime} \in A_{2,2^{r}}, l+l^{\prime}=2^{r+1}, l<l^{\prime}$ and $0<f<2^{k+1}$.
Moreover, we can get

$$
\begin{aligned}
& \bar{\mu}^{*}\left(S q^{2^{k+1}} \tilde{y}_{2^{r+1}}\right) \\
& \quad= \begin{cases}\sum_{j=1}^{2^{k-1}-1} \tilde{x}_{d_{(k, j)}^{\prime}} \otimes \tilde{x}_{d_{(k, j)}}+\sum z \otimes z^{\prime} & (2 \leq k \leq r-2), \\
\sum z \otimes z^{\prime} & (k=0,1, r-1)\end{cases}
\end{aligned}
$$

where $\operatorname{deg} z<\operatorname{deg} z^{\prime}$. Since

$$
S q^{2^{k+1}} \tilde{y}_{2^{r+1}} \in\left\langle\tilde{x}_{l} \tilde{x}_{l^{\prime}}\left(l, l^{\prime} \in A_{2,2^{r}}, l+l^{\prime}=2^{r+1}+2^{k+1}\right)\right\rangle
$$

we can obtain $S q^{2^{k+1}} \tilde{y}_{2^{r+1}}$ as stated in theorem 2.1.

Department of Mathematics Kyoto University

References

[1] J. F. Adams, Lectures on generalised cohomology, Lecture Notes in Mathematics 99, SpringerVerlag, Berlin-Heidelberg-New York, (1969).
[2] R. Bott, A note on the Samelson product in the classical groups, Comment. Math. Helv., 34 (1960), 249-256.
[3] R. Bott, The space of loops on a Lie group, Michigan Math. J., 5 (1958), 35-61.
[4] H. Hamanaka, Homotopy-commutativity in rotation groups, J. Math. Kyoto Univ., 36-3 (1996), 519-537.
[5] A. Kono and K. Kozima, The adjoint action of Lie group on the space of loops, Journal of The Mathematical Society of Japan, 45-3 (1993), 495-510.
[6] T. Kudo, A transgression theorem, Mem. Fac. Sci. Kyusyu Univ., Ser. A 9 (1956), 79-81.

