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The Hopf algebra structure of the cohomology of the
3-connective fibre space over the special unitary group

By

Osamu NISHIMURA

1. Introduction

Fix a prime p  and let SU(n) be the 3-connective fibre space over SU(n) for
n =  2, 3, ... , oo. N o t e  that SU(n) is a Hopf space with a inverse since the product
and the inverse of SU(n) induce those o f SU(n) respectively.

In  this paper, we determine H*(SU(n); Fp )  a s  a  H opf algebra over S i p  the
mod p  Steenrod a lgeb ra . T he results are  stated in §2.

A s  a  H o p f algebra over sip ,  1-1- (SU(oo);F p )  can be easily determined by
inspections of the cohom ology Serre spectral sequences associated with the
fiberings

CP' STi-J(co) L'4 SU(oo),

gi/(oo) SU(cc) —+ K(Z,3)

except one cohomology operation

,,1
Y2p+1 Ep5C4p-1 (0 ep  c Fp )

where 5c- 4p - 1 is the generator of degree 4p — 1 in the image of the homomorphism
go,* induced from the covering projection goo., while h p + i  is  the generator of degree
2p + 1 not in  the  im age of  q .  T h is  a c t io n  will be shown in  § 3  b y use of
the  mod p  decomposability of SU(cc) (A dam s [1]) and the inform ation of the
homotopy groups.

For finite n, H*(SU(n);F p ) can be almost determined as a Hopf algebra over
s i p  b y  the  results of H*(SU(n);F p )  and  H*(SU(co);F p ). However, major dif-
ficulties will be encountered if one wants to know the coproduct and the dp -action
of hp , where r is an  integer such that p r-i < n .<  H e re  hp , is the only one
generator of degree 2pr which is neither in the im age of q,*, nor in  that o f in*, c,
where qn  :  SU(n) S U ( n )  is  the covering projection and in,,, :  SU(n) S U ( c )
is the  map induced from the  usual inclusion i :  S U ( n )  S U ( o o ) .  We shall
determine the coproduct of j)- 2p , in  § 4  by computing the homomorphism induced
from the commutator map of SU(n) in  two manners and comparing them. On
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the one hand, we compute directly from the coproduct, on the other hand, we
decompose the commutator map of S U(n) and apply the results of Bott [2] and
Hamanaka [4]. Here, for a Hopf space with a inverse, the commutator map is
defined as the one which maps (x, y )  to xyx -  1 y- 1 . In §5, we shall deduce the
cohomology operations to j;'2p , from those to the coproduct of

Remark 1.1. Let S— pin(n) be the 3-connective fibre space over Spin(n) for n =
7, 8, 9, 10, ... , oo and S p ( n )  th e  3-connective fibre space over S p(n) fo r n =
2, 3, ... , co. As a Hopf algebra over d p  where p  is an odd prime, H* (S— pin(n);F p )
and H* (Sp(n); Fp ) can be determined by the results of this paper together with the
natural inclusions and the p-equivalence

Spin(2k - 1) S U (2k  -1),

Spin(2k) Spin(2k  - 1) x S 2 k - 1 ( k  =  4, 5, 6, ...);

Sp(n) SU(2n).

(Moreover, H*(S— p(n);F2) can be also determined as a Hopf algebra over .4 2  quite
easily.)

The author would like to thank Professor Akira Kono fo r his advices
and encouragements. He also would like to thank the referee for some useful
comments.

2. Results

In this paper, for any Hopf algebra, the reduced coproduct map is denoted by

. L e t  k  =  s e k  if p  = 2  a n d  a
b  = 0  i f  b < 0 or a -  b < 0.

We shall show the following theorem.

Theorem 2.1. L et p be a prim e and n an integer such that pr - 1  <n  < p r for a
positive integer r. A s a Hopf  algebra over sip , H*(S—U(n);Fp ) is given as follows.
(i) A s an algebra,

H*(§ -1I(n);Fp ) = Fp [h p .] C)A(X-k(k E Ap ,n ),j)- k(k E Bp ,n ))

where
= {2j + 111 < j  < n, j P ,  P 2 , • P r

-
1 } ,

Bp ,n  = { 2j + 11 j = p, p 2 , , pr}

and deg 'Xi, = deg j3k  =  k. (  I n  particular, 1-1*(S-70(00); Fp )  is an  exterior algebra.)
(ii) The coproducts are given as

(a) i f  p  is an odd prime, ti * (5
3

2p r) =  E x k  0 and other generators are
k,k' eA r ,„

k - i 0 = 2 p '

primitive,



{  

k  - 1

P i  --'1c = (  j
)2 5C- k+2j(p-1) (k  +2 j(p  -  1 ) E
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(b) if  p  = 2, p*( .P2 ,, ) =  E 54 0 54 and other generators are primitive.
k, k' E A2 n
k+k'=2'+'

k <k '

( In particular, H *(S— U(oo);F p )  is primitively generated)
(iii) The cohomology operations are  given as

(a ) f o r any k E A p ,,, f lik  = 0  and

0 (otherwise),

13.332p+1 —  0 ,

..v2p+1 —
1 — 1 (n 2p),

( n  < 2 p )  where 0 0 ep  e F p ,
5 ;2 p k + 1 p p k-I p p k-2 goPY2 p ± i ( k  = 2, 3, ... , r),
13.12-2pr - h p r +I

ek

(f)
 , k

Y 2pr E
1=1
O (otherwise)

where ek  = m i n { 2 "  1 , n _  2 k i ,- d(k,i) =  2r + 2 "  + 1 — 2 j  and  d
(
'
k , j )

-

2' + 2 k  - 1  +  2j.

3. Proof for n  = co

A s sta ted  in the introduction, H*(SU(oo);Fp ) is easily determ ined as a
Hopf algebra over sip  except 60 1 5/2p+1 = epap-i where 0 0 e p e  F .  In this section,
we prove this cohomology operation. Let K <n> be the n-connective fibre space
over K  for any space K.

According to Adams [11,

SU(C0)( p ) =  X1 X X2 X • • • X Xp-1

where for j  1, 7E2,+ i(Xk) = Z( p )  if j  k  (mod p  -  1 )  and rc2J + I(X k) =  0  other-
w ise . Put Y =  X2 X • • • X Xp_ 1 . Then, we have

SU(oo)<3> ( p ) S U ( c c ) p <3>

X i <3> x Y

and H*(X,<3>; Fp ) =  A(y-w h e r e  j ,-;p +  i and correspond to h p + 1
and .i4p _1 respectively. Further, we have

SU(oo) (p ) <2p - 1> = <3> x Y<2p - 1>.

(b)

(c)

(d)
(e)

(k  = r),

(p = 2, 2 < k  < r -  2),
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Assume that p 1
2 p + 1  =  0. By inspecting the  cohomology Serre spectral se-

quence associated with the  fibering

K (Z ( p ),2p) X i<2p +1> <3>,

w e  c a n  e a s i ly  s h o w  t h a t  H 4P- 2  (Xi <2p + 1>; Fp ) 0 0 . It contrad icts that
7rk(Xi <2p + 1>) = 0 (k  < 4p - 2 ) because o f Hurewicz theorem.

4 . The coproduct of 5, 2p r

A s a n  algebra, H*(S-4 -1(n);Fp )  is easily determined also fo r finite n  by the
fibering

CP' I-1(n) SU (n).

As stated in the introduction, H *(S U(n);Fp )  can be almost determined as a  Hopf
algebra over d p  b y  the results of H *(S U(n);Fp )  and H *(SU (co); Fp ). Then, we
shall argue the only two problems stated in  the introduction. In  this section, we
shall determine the coproduct of 5)- 2p ,. In §5, the last section, we shall determine
the cohomology operations to hp - Clearly, it suffices to consider the case n  = /Jr
for each positive integer r.

Here l e t  G = S U ( p r)  a n d  q = qp r : G  - 4 G , th e  covering projection . We
consider the commutator map

which maps (x , y )  to x y x - 1 y - 1 . For the  definition o f c , we can define a  map

as the one which makes the  following diagram commute:

G x G G

i t t

G A G

where n  is the natural projection. O n the other hand, using the inverse map o f  ,
we define a  map

: x

b y  ^e(x, y) = x y x -  1 y - 1 . T h e  map C. satisfies the  condition that it m akes the
following diagram commute up to homotopy:

Ox C 6
x qt

G x  G  - >  G.
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Note that any continuous map from Ô x 6 to  6 which satisfies the above
condition is homotopic to e since 6 x 6 is 3-connected. Moreover, we define a
map

e:G A  G

as the one which makes the following diagram commute up to homotopy:

z
G A G  - >  G.

c,

Note that e  certainly exists and is  unique up to homotopy since G A  G  is  3-
connected. Then, we have the following diagram:

Ox 6 

q

q  q

G  x  G   G

.7\

G A G

where i f  is the natural projection. We can show the following lemma which we
need later.

Lemma 4.1. e  (q A  q) o

In fact, it follows from

q o e 0 (q A  q) o fc c ' 0  (q  A  q) o

c' o ir o (q x q)

c o (q x q).

Moving hp ,  modulo decomposable, we may put

CY 2pr) = (primitive) 0  (primitive).

Then, by the definition of e , we can directly compute that

(4.1) è-*(.12pr) =
 fl* ( )

r ) o ri * (hp

where oc: A x B — >B x A  is the switching map for any spaces A, B.
On the other hand, we can compute e.*(h p , )  as follows.

qx q
-6 A  6
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For k  = 2, 3, . . . , pr —1, we define maps

c'yo :  SU(k) A SU(pr + 1 — k) —> SU(pr)

as the ones each of which is the composition of c ' and the smash m ap of the
natural inclusions. Similarly, we define maps

C(k) : SU(k) A SU(pr +1 —  k) (pr)

as the ones each of which is the composition of e  and the smash m ap of the
natural inclusions. For k  = 2, 3, ... , pr — 1, the m ap e ( k )  satisfies the condition
that it m akes the following diagram commute up to homotopy:

SU(pr)
C(k) iq

SU(k) A S U(pr ± 1 — k) SU(pr).
C (k)

Note that any continuous map from SU(k) A S U(pr + 1 — k )  to  S U(pr) which
satisfies the above condition is homotopic to e ( k )  since SU(k) A S U (p r  1 — k ) is
3-connected.

Recall the following homotopy fibre sequence:

D s2 P r+ 1  4  su(pr) su(pr + 1 ) s2Pr+1.

Since S U(k ) and SU(pr + 1 — k ) commute in SU(pr + 1) up to homotopy, there
exists a  map

A(k): SU(k) A SU(pr +1 — k) —> f2S 2Pr+1

such that 6 o il(k) C(
1
k ) . Then, we have the following diagram:

Ds2p'+I ( p r)

19
Q S 2Pr + 1 S U ( p r )

C(k)

C(k)

2
(k)

SU(k) A S U(pr + 1 — k)
where c is induced from 6.

Lemma 4.2. e(k) -= -6 0

In fact, it follows from

o (-5 o yl,( k )  :1-2 ô0.1(k)

C .
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Lemma 4.3. ' (-5.*(jj2 p ,)  =  ao- (s2p r.+ 1 ) (0 a E Fp) w here s2p ,± 1 i s  th e  mod p
reduction of  the generator o f  H *(S 2P'+ 1 ; Z ) and a  is  the cohomology suspension.

P ro o f  Note that

52S2Pr +IS U ( p r )  —> S- 0(pr +1)

i s  a  fib re  sp ace  u p  to  homotopy. B y  th e Serre exact sequence, we have
H 2P'(SU(pr + 1); Fp ) —> H 2P' (SU(pr);F p ) H 2P' (S2S2Pr +1 ; Fp )  (exact). Since no
indecomposable element is in H 2Pr (RA P P. 1 ) ; F p ) ,  h p r  is not in K e r *  and hence
the lemma follows.

Moreover, we can show the following lemma by the results of Bott [2] in a similar
manner to Hamanaka [4] lemma 2.4.

Lemma 4.4. /1(*k )( 0
- (s2pr+i)) —  x2k- 1 X 2(p '+1-k)-1•

By lemmas 4.2, 4.3 and 4.4, we have the following lemma.

Lemma 4.5. e (*k ) (h p .) =  ax2k- i X 2 (p r+1 -0 -1 •

Accordingly, we have

e* (hp") =  a x2k_i 0 X 2k' -1
k ,k '>2

k-Ple= p' +I

by the definition of e ( k ) .  Therefore, we have by lemma 4.1  and (4.1)

fc* (q q )  c  ( y 2 p ,) =  a  E  x-k i k '
k-Fk'=-2pr

k ,k ' e Ap

Ti * U2p , ) — f ft * (h p , ).

Consequently, moving hp ,  modulo decomposable again and multiplying hp ,  and
jik (k e byby non-zero scalar if we need, we can obtain the coproduct of j",-2p ,  as
stated in theorem 2.1.

5 .  The cohomology operations to h p ,

In  th is section, we shall determine the cohomology operations to hp , E
H *(S U (p r);F p ). We consider the non-trivial cases oPk h p , for k  r — 1. Let M
be a  vector space over Fp  a n d  al  E M  for / E L .  Then the vector subspace
generated by fail is denoted by <cg(1 e L)>.

Firstly assume that p  is an odd prim e. By the Cartan formula, re(oP k h p ,)
must be of the form

(V k  h p r)  = C) z' + z),

while since
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KaPk.)32pr E  <5C'i5C1, (i, 11 E /1 = 2 p r +2 p k (p — 1)>

and

Ti*(5-c15-c1, ) = 0 — 0

rt*(0P k j)-.2 p r )  also must be of the form

/4* =  E ( w ®  -  0  w ) .

Hence i f  (pPk
.P2 p r)  is  zero and so  is  pP i h p r.

The case p  = 2  is  more com plicated. By the Cartan formula,

2, k + i  0  
x i ,

0  _  
T

,k+i
Ti*(Sq

k + 1

 y2 , i )  =  E  ( S q `  xi xi S '  5ci,)
1,1'EA2,2r
/-FP=Z+ 1

/GP

since we can easily show the following lemma.

Lemma 5.1.

S q f  0  S q 2 k + 1 , =  0

w h er e  1,1' e A2 , 2r , -I- /1 =  2 r + 1 ,  1 <1' an d  0 < f  < 2k+ 1 .

Moreover, we can get

/4* (Sq 2 k + I hr+]

2 "  -1

E +  E z  z ,

j=1
(2 k < r —  2),

Z®  z , (k  = 0, 1, r —1)

where deg z  <  deg z '. Since

Sq 2 k + 1
 . P2r+1 E < i i '  ( / , l '  E A 2 ,2 , ± =  2r+1 2k+1)> ,

we can obtain Sq 2 k + I h r+ , a s  stated in  theorem 2.1.
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