On the associated graded module of an ideal generated by an unconditioned strong d-sequence

By
K. Khashyarmanesh, SH. Salarian and H. Zakeri

0. Introduction

Throughout this paper, A is a commutative ring with non-zero identity, x_{1}, \ldots, x_{s} is a sequence of elements of A of length $s>0, \mathfrak{a}$ is an ideal of A and M is an A-module. We use \mathbf{N} (respectively \mathbf{N}_{0}) to denote the set of positive (respectively non-negative) integers. For each $i(1 \leq i \leq s)$, let $\mathfrak{q}_{i}=\left(x_{1}, \ldots, x_{i}\right)$, $\mathfrak{q}=\left(x_{1}, \ldots, x_{s}\right)$ and $\mathfrak{q}_{0}=(0)$. If there is no confusion, the associated graded ring $\quad G_{\mathrm{q}}(A)=\oplus_{n \geq 0} \mathfrak{q}^{n} / \mathfrak{q}^{n+1}$ and the associated graded module $G_{\mathbf{q}}(M)=$ $\oplus_{n \geq 0} q^{n} M / q^{n+1} M$ are denoted by G and $G(M)$ respectively. We put $h_{i}=$ $x_{i} \operatorname{modq}{ }^{2}(1 \leq i \leq s)$, the initial forms of x_{i} 's in G.

The concept of a d-sequence is given by Huneke (see [5]) and it plays an important role in the theory of Buchsbaum modules and in the theory of Blow up algebra, e.g. Ress Algebra. The sequence x_{1}, \ldots, x_{s} of elements of A is called a d-sequence on M if, for each $i=0,1, \ldots, s-1$, the equality

$$
\left(\sum_{j=1}^{i} A x_{j}\right) M:_{M} x_{i+1} x_{k}=\left(\sum_{j=1}^{i} A x_{j}\right) M:_{M} x_{k}
$$

holds for all $k \geq i+1$ (this is actually a slight weakening of Huneke's definition); it is an unconditioned strong d-sequence (u.s. d-sequence) on M if $x_{1}^{\alpha_{1}}, \ldots, x_{s}^{\alpha_{s}}$ is a d-sequence in any order for all positive integers $\alpha_{1}, \ldots, \alpha_{s}$.

It is well known that if A is local, M is finitely generated and x_{1}, \ldots, x_{s} is a system of parameters for M, then x_{1}, \ldots, x_{s} is an u.s. d-sequence on M if and only if the natural homomorphism $H_{i}(\mathfrak{q}, M) \rightarrow H_{\mathfrak{q}}^{i}(M)$ is surjective for all $i<s$. Although these natural homomorphisms do provide a satisfactory characterization of u.s. d-sequence, they have the disadvantage that their underlying ring is local and the ideal \mathfrak{q} is a parameter ideal of M.

In [7], for a sequence $x=x_{1}, \ldots, x_{s}$ of elements of A, we established the canonical homomorphisms $\bar{\Psi}_{x, M}^{\bullet}$ between the homology modules of the Koszul complex $K_{\bullet}(x, M)$ and the homology modules of a complex $C(\mathscr{A}(x), M)$ of A-modules which involves modules of generalized fractions derived from M and the sequence x. Then we showed that these canonical homomorphisms do provide
useful criteria for u.s. d-sequences without any restriction on A and M. The purpose of this paper is to show that our criteria for u.s. d-sequences is good help when we treat the u.s. d-sequences in relation with associated graded modules. Indeed we shall prove, among other things, the following two theorems.

Theorem A. If x_{1}, \ldots, x_{s} is an u.s. d-sequence on M, then it is an unconditioned q -filter regular sequence on M and the sequence h_{1}, \ldots, h_{s} constitute an u.s.dsequence on $G_{\mathrm{q}}(M)$. Moreover if A is Noetherian and M is finitely generated, the converse is also true.

The proof of Theorem A is divided in two parts. The proof of the first part of the theorem is given in 2.3, while the second part of the theorem is a consequence of 2.4. It is shown, in 2.5, that the result [3, 2.12] of Goto and Yamagishi can be deduced from Theorem A.

Theorem B. For an ideal a of a Noetherian ring A, a finitely generated A module M and a positive integer s, the following statements are equivalent:
(i) $H_{a}^{j}(M)$ is finitely generated for all $j<s$,
(ii) There is an a-filter regular sequence x_{1}, \ldots, x_{s} on M such that h_{1}, \ldots, h_{s} is an unconditioned I-filter regular sequence on $G_{\mathrm{q}}(M)$ and $H_{I}^{j}\left(G_{\mathrm{q}}(M)\right)$ is finitely generated G-module for all $j<s$, where $I=\sum_{i=1}^{s} h_{i} G_{\mathbf{q}}(A)$.

1. Notations and preparatory results

We say that a sequence x_{1}, \ldots, x_{s} of elements of A is an \mathfrak{a}-filter regular sequence on M if $x_{1}, \ldots, x_{s} \in \mathfrak{a}$ and

$$
\operatorname{Supp}\left(\left(\left(\sum_{j=1}^{i-1} A x_{j}\right) M:_{M} x_{i}\right) /\left(\sum_{j=1}^{i-1} A x_{j}\right) M\right) \subseteq V(\mathfrak{a})
$$

for all $i=1, \ldots, s$, where $V(\mathfrak{a})$ denotes the set of prime ideals containing \mathfrak{a}. When such property holds in any order, we will say that the sequence x_{1}, \ldots, x_{s} form an unconditioned \mathfrak{a}-filter regular sequence on M. The concept of an \mathfrak{a}-filter regular sequence on M is a generalization of the one of a filter regular sequence which has been studied in [9], [12], [13] and has led to some interesting results. Note that both concepts coincide if A is local, M is finitely generated, and \mathfrak{a} is the maximal ideal of A. Also note that x_{1}, \ldots, x_{s} is a poor M-sequence $[15, \S 2]$ if and only if it is an A-filter regular sequence on M. D-sequences are closely related to filter regular sequences. It is easy to see that if x_{1}, \ldots, x_{s} is a d-sequence on M, then it is an $\sum_{i=1}^{s} A x_{i}$-filter regular sequence on M. For the converse, we have the following
1.1. Remarks. Consider the special case in which A is Noetherian and M is finitely generated.
(i) By slight modification in the arguments of [13, 2.1], one can show that if x_{1}, \ldots, x_{s} is an a-filter regular sequence on M, then, for each $k>0$, there exists
an ascending sequence of integers $k \leq r_{1} \leq \cdots \leq r_{s}$ such that $x_{1}^{r_{1}}, \ldots, x_{s}^{r_{s}}$ is a d-sequence on M.
(ii) $[3,6.12]$ Let A be local with maximal ideal m and let x_{1}, \ldots, x_{s} be an unconditioned m -filter regular sequence on M. Then the following conditions are equivalent:
(a) x_{1}, \ldots, x_{s} form an u.s. d-sequence on M;
(b) $x_{j+1} H_{\mathrm{m}}^{i}\left(M / \mathfrak{q}_{j} M\right)=0$ for every $0 \leq i+j<s$.

Now we recall some facts about d-sequences which are needed for the proof of the main results in this paper. The reader is referred to $[4,5.1 .1]$ and $[3,1.3,1.6$ and 1.9(2)] for their proofs.
1.2. Proposition. (i) x_{1}, \ldots, x_{s} form a d-sequence on M if and only if the equality

$$
\left[\mathfrak{q}_{i-1} M: M \quad x_{i}\right] \cap \mathfrak{q} M=\mathfrak{q}_{i-1} M
$$

holds for all $1 \leq i \leq s$.
(ii) if x_{1}, \ldots, x_{s} form a d-sequence on M, then the equalities

$$
\mathfrak{q}_{i-1} M \cap \mathfrak{q}^{n} M=\mathfrak{q}_{i} \mathfrak{q}^{n-1} M \quad \text { and } \quad x_{1}^{m} M \cap \mathfrak{q}^{n} M=x_{1}^{m} \mathfrak{q}^{n-m} M
$$

hold for every $1 \leq i \leq s, m>0$ and $n \in \mathbf{Z}$.
(iii) h_{1}, \ldots, h_{s} form a d-sequence on $G_{\mathfrak{9}}(M)$ if and only if the equality

$$
\left[\mathfrak{q}_{i-1} \mathfrak{q}^{n} M+\mathfrak{q}^{n+2} M:_{M} x_{i}\right] \cap \mathfrak{q}^{n} M=\mathfrak{q}_{i-1} \mathfrak{q}^{n-1} M+\mathfrak{q}^{n+1} M
$$

holds for all $1 \leq i \leq s$ and $n>0$.
(iv) If x_{1}, \ldots, x_{s} form a-sequence on M, then the equality

$$
\left[\mathfrak{q}_{i} M: M \quad x_{i+1}\right] \cap \mathfrak{q}^{n} M=\mathfrak{q}_{i} \mathfrak{q}^{n-1} M
$$

holds for every $0 \leq i \leq s$ and $n>0$, where $x_{s+1}=1$.
For a system of elements $x=x_{1}, \ldots, x_{s}$ of A, let $K_{\bullet}(x, M)$ and $H_{*}(x, M)$ denote the Koszul complex generated by x over M and the homology module of the Koszul complex, respectively. When discussing the Koszul complex, we shall use the notation of [8]. In particular, we shall abbreviate $K_{p}(x, M)$ to $K_{p}(M)$ when no confusion is possible. Also, in this paper, we shall use the concept of a modules of generalized fractions introduced in [11]. The notations and terminology concerning triangular subset of A^{n} (for $n \in \mathbf{N}$) and modules of generalized fractions will be the same as that used in [7, §2]. In particular, $C(\mathscr{A}(x), M)$ denotes the associated complex of modules of generalized fractions derived from x and M.

In [7, §2], we established the homomorphism $\bar{\Psi}_{x, M}^{p}$ between the Koszul homology module $H_{s-p}(x, M)$ and the p-th homology module of the complex $C(\mathscr{A}(x), M)$. Let us recall briefly the construction of these morphisms and review the main result of $[7, \S 2]$ which play a significant role in the proof of the main results of this paper.

Write the associated complex $C(\mathscr{A}(x), M)$ as

$$
0 \xrightarrow{e_{x, M}^{-1}} M \xrightarrow{e_{x, M}^{0}} U(x)_{1}^{-1} M \xrightarrow{e_{x, M}^{j}} \cdots \longrightarrow U(x)_{i}^{-i} M \xrightarrow{e_{x, M}^{i}} U(x)_{i+1}^{-i-1} M \longrightarrow \cdots .
$$

For each integer p with $0 \leq p \leq s$, we define

$$
\Psi_{x, M}^{p}: K_{s-p}(M) \longrightarrow U(x)_{p}^{-p} M
$$

as follows. $\quad \Psi_{x, M}^{0}$ is the identity map, $\Psi_{x, M}^{s}(b)=\frac{b}{\left(x_{1}, \ldots, x_{s}\right)}$ for all $b \in M$ and, for each $1 \leq p \leq s-1, \Psi_{x, M}^{p}$ is defined by the rule

$$
\Psi_{x, M}^{p}\left(b e_{i_{1} \cdots i_{s-p}}\right)= \begin{cases}\frac{b}{\left(x_{1}, \ldots, x_{p}\right)} & \text { if }\left(i_{1}, \ldots, i_{s-p}\right)=(p+1, \ldots, s) \\ 0 & \text { otherwise }\end{cases}
$$

for all $b \in M$. It is easily seen that, for all $0 \leq p \leq s, \Psi_{x, M}^{p}$ is an A-homomorphism and that the diagram

$$
\begin{aligned}
& 0 \xrightarrow{e_{x, M}^{-1}} M \quad \xrightarrow{e_{x, M}^{0}} U(x)_{1}^{-1} M \longrightarrow \cdots \longrightarrow U(x)_{s-1}^{-s+1} M \xrightarrow{e_{x, M}^{s-1}} U(x)_{s}^{-s} M
\end{aligned}
$$

is commutative. Therefore, for all $0 \leq p \leq s-1, \quad \Psi_{x, M}^{p}$ induces an A homomorphism $H_{s-p}(x, M) \rightarrow \frac{\operatorname{ker} e_{x, M}^{p}}{\operatorname{im} e_{x, M}^{p-1}}$ which is denoted by $\bar{\Psi}_{x, M}^{p}$.
1.3. Theorem. [7, 2.4]. The following conditions are equivalent:
(i) x_{1}, \ldots, x_{s} is an u.s. d-sequence on M;
(ii) For any permutation σ of the set $\{1, \ldots, s\}$, the canonical homomorphism

$$
\bar{\Psi}_{\sigma(x), M}^{p}: H_{s-p}(\sigma(x), M) \rightarrow \frac{\operatorname{ker} e_{\sigma(x), M}^{p}}{\operatorname{im} e_{\sigma(x), M}^{p-1}}
$$

is surjective for all p with $0 \leq p \leq s-1$, where $\sigma(x):=x_{\sigma(1)}, \ldots, x_{\sigma(s)}$.
For an ideal \mathbf{b} of A and $b \in A$, we shall denote the submodule

$$
\left\{m \in M: b^{r} m \in \mathrm{~b} M \text { for some } r \in \mathbf{N}_{0}\right\}
$$

of M by $\mathrm{b} M:_{M}\langle b\rangle$. Assume that x_{1}, \ldots, x_{s} form an unconditioned a-filter regular sequence on M and that x_{s} is a non-zero-divisor on M. Then, by using the fact that $\left(\sum_{j=1}^{i-1} A x_{j}^{\alpha_{j}}\right) M:_{M}\left\langle x_{i}\right\rangle=\left(\sum_{j=1}^{i-1} A x_{j}^{\alpha_{j}}\right) M:_{M}\left\langle x_{s}\right\rangle$ for all $1 \leq i \leq s$ and $\alpha_{1}, \ldots, \alpha_{i-1} \in \mathbf{N}$, we may apply the same arguments as in the proof [7, 2.3] to obtain, for each $0 \leq i \leq s$, the exact sequence

$$
0 \longrightarrow U(x)_{i}^{-i} M \xrightarrow{x_{s}} U(x)_{i}^{-i} M \longrightarrow U(x)_{i}^{-i}\left(M / x_{s} M\right) \longrightarrow 0,
$$

where $U(x)_{i}^{-i} M \longrightarrow U(x)_{i}^{-i}\left(M / x_{s} M\right)$ is the natural homomorphism. Put $\bar{M}=M / x_{s} M$. Then the above exact sequence induces the exact sequence of complexes

$$
0 \longrightarrow C(\mathscr{A}(x), M) \xrightarrow{x_{s}} C(\mathscr{A}(x), M) \longrightarrow C(\mathscr{A}(x), \bar{M}) \longrightarrow 0
$$

which, in turn, yields the exact complex

$$
\begin{align*}
\cdots & \longrightarrow H^{i}(C(\mathscr{A}(x), M)) \xrightarrow{x_{s}} H^{i}(C(\mathscr{A}(x), M)) \\
& \longrightarrow H^{i}(C(\mathscr{A}(x), \bar{M})) \xrightarrow{\Delta_{i}} H^{i+1}(C(\mathscr{A}(x), M)) \longrightarrow \cdots . \tag{*}
\end{align*}
$$

Throughout the paper, we shall appeal to such exact complexes without further comments.
1.4. Remark. In this note we shall employ the notion of graded modules. For an integer n and a graded module X, we define $X(n)$ as the module X whose grading is given by $[X(n)]_{m}=X_{n+m}$. Also it should be observed that, if X is a graded module over a graded commutative ring R (with identity) and U is a triangular subset of $R^{n}(n \in \mathbf{N})$ composed of homogeneous elements, then $U^{-n} X$ has graded structure as R-module which is such that, for a homogeneous element $x \in X$ and $\left(u_{1}, \ldots, u_{n}\right) \in U$, the degree of the fraction $\frac{x}{\left(u_{1}, \ldots, u_{n}\right)}$ is $\operatorname{deg} x-$ $\sum_{i=1}^{n} \operatorname{deg} u_{i}$. Hence, for a chain of graded triangular subsets \mathscr{U} on R, every homology module of the complex $C(\mathscr{U}, X)$ has graded structure as R-module (see [1]). When discussing such complexes, we shall use the above mentioned grading.

2. Proof of the main results

It was shown in [12, Appendix 2(i)] that whenever A is local (Noetherian) with maximal ideal \mathfrak{m}, M is finitely generated and s is a positive integer, then there exists an m-filter regular sequence on M of length s. The following proposition establishes a similar result for unconditioned filter regular sequences.
2.1. Proposition. Suppose that A is Noetherian and that M is finitely generated. If x_{1}, \ldots, x_{r} is an unconditioned \mathfrak{a}-filter regular sequence on M, then there exists an element $x_{r+1} \in \mathfrak{a}$ such that $x_{1}, \ldots, x_{r}, x_{r+1}$ is an unconditioned \mathfrak{a}-filter regular sequence on M.

Proof. If $r=0$, then choose $x_{1} \in \mathfrak{a} \backslash \bigcup_{\mathfrak{p} \in \operatorname{Ass}(M) \backslash V(\mathfrak{a})} \mathfrak{p}$ arbitrary. So suppose that $r \geq 1$. Set

$$
S:=\left\{\mathfrak{p}: \mathfrak{p} \in \operatorname{Ass}\left(M /\left(\sum_{i \in I} A x_{i}\right) M\right), I \subseteq\{1, \ldots, r\}\right\}
$$

and let $x_{r+1} \in \mathfrak{a} \backslash \bigcup_{\mathfrak{p} \in S \backslash V(\mathfrak{a})} \mathfrak{p}$. Let y_{1}, \ldots, y_{r+1} be any permutation of x_{1}, \ldots, x_{r+1} and suppose that $y_{l}=x_{r+1}$ for some $1 \leq l \leq r+1$. To complete the proof,
it is now sufficient to show that, for each $i=1, \ldots, r+1, y_{i} \notin \mathfrak{p}$ for all $\mathfrak{p} \in$ $\operatorname{Ass}\left(M /\left(\sum_{j=1}^{i-1} A y_{j}\right) M\right) \backslash V(\mathfrak{a})$. To do this assume contrary. Then there exist an integer i, with $l+1 \leq i \leq r+1$, and $\mathfrak{p} \in \operatorname{Ass}\left(M /\left(\sum_{j=1}^{i-1} A y_{j}\right) M\right) \backslash V(\mathfrak{a})$ such that $y_{i} \in \mathfrak{p}$. It is easy to see that $y_{1}, \ldots, \check{y}_{l}, \ldots, y_{i}, y_{l}$ is an \mathfrak{a}-filter regular sequence on M, where the character with " means that it is deleted. Now, by slight modification in the arguments of $[9,2.2]$, one can show that $\frac{y_{1}}{1}, \ldots, \frac{\check{y}_{l}}{1}, \ldots, \frac{y_{i}}{1}, \frac{y_{l}}{1} \in \mathfrak{p} A_{\mathfrak{p}}$ is an $M_{\mathfrak{p}}$-sequence. Hence, by $\left[8\right.$, p. 127] $, \frac{y_{1}}{1}, \ldots, \frac{y_{l}}{1}, \ldots, \frac{y_{i}}{1}$ forms an $M_{\mathfrak{p}}$ sequence too. Therefore $\mathfrak{p} A_{\mathfrak{p}} \notin \operatorname{Ass}\left(M_{\mathfrak{p}} / \sum_{j=1}^{i-1} y_{j} M_{\mathfrak{p}}\right)$, which is impossible by the choice of \mathfrak{p}.
2.2. Lemma. Let x_{1}, \ldots, x_{s} be an u.s.d-sequence on M. Then, for all $\alpha \in \mathbf{N}$,

$$
0:_{G_{q}(M)} h_{1}^{\alpha}=\left(0:_{M} x_{1}\right)(0) .
$$

Proof. Let $g \in 0:_{G(M)} h_{1}^{\alpha}$ be a homogeneous element of degree $n(\geq 0)$. Choose an element y of $\mathfrak{q}^{n} M$ such that $g=y \bmod \mathfrak{q}^{n+1} M$ in $[G(M)]_{n}$. Then $x_{1}^{\alpha} y \in x_{1}^{\alpha} M \cap \mathfrak{q}^{n+\alpha+1} M$. Hence, by $1.2\left(\right.$ ii), $x_{1}^{\alpha} y \in x_{1}^{\alpha} q^{n+1} M$. Therefore, it is the case that $y=u \bmod \mathfrak{q} M$ for some $u \in 0: M x_{1}^{\alpha}$ if $n=0$, but $y \in \mathfrak{q}^{n+1} M$ if $n>0$. Hence the inclusion \subseteq holds. As the opposite inclusion is trivially true, the result follows.

Next, we show that the result [3, 2.10] of Goto and Yamagishi is quickely derived from our criteria 1.3 for u.s. d-sequences.
2.3. Theorem. Let x_{1}, \ldots, x_{s} be an u.s. d-sequence on M. Then h_{1}, \ldots, h_{s} form an u.s.d-sequence on $G_{q}(M)$.

Proof. Let $I=\sum_{i=1}^{s} h_{i} G$. It follows from 1.2 (ii) (iii) (iv) that every permutation of h_{1}, \ldots, h_{s} is a d-sequence on $G(M)$. Hence, in particular,

$$
\begin{equation*}
0:_{G(M)} h_{i}=0:_{G(M)} I \tag{1}
\end{equation*}
$$

for all $1 \leq i \leq s$. Let $h=h_{1}, \ldots, h_{s}$. In order to prove the result, it suffices, in view of 1.3, to show that $\bar{\Psi}_{h, G(M)}^{p}$ is surjective for all integer p with $0 \leq p \leq s-1$. We prove this by induction on p. By (1) it is clear that the canonical homomorphism $\bar{\Psi}_{h, G(M)}^{0}: H_{s}(I, G(M)) \rightarrow \frac{\operatorname{ker} e_{h, G(M)}^{0}}{\operatorname{im} e_{h, G(M)}^{-1}}$ is surjective. Let p be an integer with $1 \leq p \leq s-1$ and suppose that the result has been proved for $p-1$. Set $\tilde{G}:=G(M) /\left(0:_{G(M)} h_{s}\right)$. In view of (1), it is easy to see that $U(h)_{p}^{-p}\left(0:_{G(M)} h_{s}\right)$ $=0$ for all $p \geq 1$. Therefore the exact sequence

$$
0 \longrightarrow\left(0:_{G(M)} h_{s}\right) \longrightarrow G(M) \longrightarrow \tilde{G} \longrightarrow 0
$$

yields an exact complex similar to (*) which in turn implies that $\frac{\operatorname{ker} e_{h, G(M)}^{p}}{\operatorname{im} e_{h, G(M)}^{p-1}} \cong$ $\frac{\operatorname{ker} e_{h, \tilde{G}}^{p}}{\operatorname{im} e_{h, \tilde{G}}^{p-1}}$ for all $p \geq 1$. On the other hand, it follows from (1) that, the Koszul homology module $H_{s-p}\left(h, 0:_{G(M)} h_{s}\right)$ is a direct sum of copies of $0:_{G(M)} h_{s}$ for all $p=1, \ldots, s$. Now, using the elementrary fact on the Koszul complex together with $1.2(\mathrm{i})$, we may deduce that the map $H_{s-p}\left(h, 0:_{G(M)} h_{s}\right) \longrightarrow H_{s-p}(h, G(M))$ is injective for all $p=1, \ldots, s$. Therefore, for all $p=1, \ldots, s-1$, we obtain the commutative diagram

$$
\begin{array}{cc}
H_{s-p}(h, G(M)) & \longrightarrow \\
\left.\right|_{h, G(M)} & H_{s-p}(h, \tilde{G}) \longrightarrow 0 \\
\frac{\bar{\psi}_{h,}^{p}}{\operatorname{ker} e_{h, G(M)}^{p}} & \\
\operatorname{im} e_{h, G(M)}^{p-1} & \\
& \\
\operatorname{im} e_{h, \tilde{G}}^{p-1}
\end{array}
$$

in which the upper row is exact and the lower row is the natural isomorphism. Hence we may assume, without loss of generality, that h_{s} is a non-zero-divisor on $G(M)$. Put $A^{\prime}=A / x_{s}^{2} A, M^{\prime}=M / x_{s}^{2} M, \mathfrak{q}^{\prime}=\mathfrak{q} A^{\prime}$ and $G\left(M^{\prime}\right)=G_{\mathfrak{q}^{\prime}}\left(M^{\prime}\right)$. Then, using the exact sequence

$$
0 \longrightarrow G(M)(-2) \xrightarrow{h_{s}^{2}} G(M) \longrightarrow G\left(M^{\prime}\right) \longrightarrow 0
$$

we obtain, for all integer p, the commutative diagram

$$
\begin{aligned}
& \begin{array}{c}
H_{s-(p-1)}\left(h, G\left(M^{\prime}\right)\right) \longrightarrow H_{s-p}(h, G(M)(-2)) \xrightarrow{h_{s}^{2}} H_{s-p}(h, G(M)) \\
\|_{h, G\left(M^{\prime}\right)}^{p-1} \\
\|_{h, G(M)(-2)}
\end{array} \\
& \frac{\operatorname{ker} e_{h, G\left(M^{\prime}\right)}^{p-1}}{\operatorname{im} e_{h, G\left(M^{\prime}\right)}^{p-2}} \quad \longrightarrow \quad \frac{\operatorname{ker} e_{h, G(M)(-2)}^{p}}{\operatorname{im} e_{h, G(M)(-2)}^{p-1}} \quad \xrightarrow{h_{s}^{2}} \quad \frac{\operatorname{ker} e_{h, G(M)}^{p}}{\operatorname{im} e_{h, G(M)}^{p-1}}
\end{aligned}
$$

in which the rows are exact and, by inductive hypothesis, the map $\bar{\Psi}_{h, G\left(M^{\prime}\right)}^{p-1}$ is surjective. Therefore in order to complete the inductive step it is enough to show that $h_{s}^{2}\left(\frac{\operatorname{ker} e_{h, G(M)(-2)}^{p}}{\operatorname{im} e_{h, G(M)(-2)}^{p-1}}\right)=0$. Now, let $Y \in \frac{\operatorname{ker} e_{h, G(M)(-2)}^{p}}{\operatorname{im} e_{h, G(M)(-2)}^{p-1}}=0$. Then, by employing a method of proof which is similar to that used in [14, 2.3(ii)], there exists $t \in \mathbf{N}$ such that $h_{s}^{t} Y=0$. If $t \geq 2$, then, using the above diagram, there exists $Z \in H_{s-p}(h, G(M)(-2))$ such that $\bar{\Psi}_{h, G(M)(-2)}^{p}(Z)=h_{s}^{t-2} Y$; which implies that $h_{s}^{t-1} Y=0$, since $h_{s} Z=0$. Now, one can repeat the same arguments to achieve that $h_{s}^{2} Y=0$ as required.

By the example (1) of [3, 1.12] we know that x_{i} 's do not necessarily form an u.s. d-sequence on M even though the h_{i} 's form an u.s. d-sequence on $G(M)$. In the following theorem we discuss about this fact.
2.4. Theorem. Suppose that A is Noetherian and that M is finitely generated. Let x_{1}, \ldots, x_{s} be an unconditioned \mathfrak{q}-filter regular sequence on M such that $h_{1}^{t}, \ldots, h_{s}^{t}$ forms an u.s.d-sequence on $G_{q}(M)$ for some $t \in \mathbf{N}$. Then $x_{1}^{\prime}, \ldots, x_{s}^{l}$ forms an u.s.dsequence on M for $l=s t-s+1$.

Proof. Let $l=s t-s+1$ and let $x^{l}=x_{1}^{l}, \ldots, x_{s}^{l}$. In view of 1.3 , we have to show that $\bar{\Psi}_{x^{\prime}, M}^{p}$ is surjective for all integer p with $0 \leq p \leq s-1$. To do this, first we claim that

$$
\begin{equation*}
\left(0:_{M} x_{i}^{\prime}\right) \cap\left(\sum_{j=1}^{s} A x_{j}^{\prime}\right) M=0 \quad \text { for every } 1 \leq i \leq s \tag{2}
\end{equation*}
$$

Let $r \in\left(0:_{M} x_{i}^{l}\right) \cap\left(\sum_{j=1}^{s} A x_{j}^{l}\right) M$ for some i with $1 \leq i \leq s$. Let g be a homogenous element of degree l of $G_{\mathbf{q}}(M)$ such that $g=r \bmod \mathfrak{q}^{l+1} M$ in $\left[G_{q}(M)\right]_{l}$. So $g \in$ $0: G_{q}(M) h_{i}^{l}$. As h_{i}^{t} is a d-sequence on $G_{q}(M)$ and $l \geq t$ we have that $g \in 0: G_{q}(M) h_{i}^{t}$. Also it is easy to see that $g \in\left(\sum_{j=1}^{s} G_{\mathrm{q}}(A) h_{j}^{l}\right) G_{q}(M)$. Hence, by 1.2 (i), $g=0$; i.e. $r \in \mathfrak{q}^{l+1} M$. Now, one can repeat the same arguments to achieve that $r \in \mathfrak{q}^{\beta} M$ for all $\beta \geq l$. On the other hand, by 1.1 (i), there exist $n_{1}, \ldots, n_{s} \in \mathbf{N}$ such that $x_{1}^{n_{1}}, \ldots, x_{s}^{n_{s}}$ is a d-sequence on M. Therefore $r \in\left(\sum_{j=1}^{s} A x_{j}^{n_{j}}\right) M$; hence, by 1.2 (i), we have $r=0$ and the claim follows.

Now, let $1 \leq i \leq s$ and let $r \in 0:_{M} x_{i}^{\alpha l}$ for some integer α with $\alpha \geq 2$. Then, by (2), $r \in 0:_{M} x_{i}^{l}$. Therefore $0:_{M} x_{i}^{\alpha l}=0:_{M} x_{i}^{l}$. Hence, using the assumption that x_{1}, \ldots, x_{s} form an unconditioned \mathfrak{q}-filter regular sequence on M, we have

$$
\begin{equation*}
0:_{M}\left(\sum_{j=1}^{s} A x_{j}^{l}\right)=0:_{M} x_{i}^{\alpha l} \quad \text { for all } i=1, \ldots, s \quad \text { and } \alpha \in \mathbf{N} . \tag{3}
\end{equation*}
$$

Thus the canonical homomorphism

$$
\bar{\Psi}_{x^{\prime}, M}^{0}: H_{s}\left(x^{l}, M\right) \longrightarrow \frac{\operatorname{ker} e_{x^{\prime}, M}^{0}}{\operatorname{im} e_{x^{\prime}, M}^{-1}}
$$

is surjective. Next, consider the exact sequence

$$
0 \longrightarrow\left(0:_{M} x_{s}^{l}\right) \longrightarrow M \longrightarrow\left(M /\left(0:_{M} x_{s}^{l}\right)\right) \longrightarrow 0
$$

to deduce the long exact sequence

$$
\begin{aligned}
\cdots & \longrightarrow H_{p}\left(x^{l}, 0:_{M} x_{s}^{l}\right) \longrightarrow H_{p}\left(x^{l}, M\right) \\
& \longrightarrow H_{p}\left(x^{l}, M /\left(0:_{M} x_{s}^{l}\right)\right) \longrightarrow H_{p-1}\left(x^{l}, 0:_{M} x_{s}^{l}\right) \longrightarrow \cdots
\end{aligned}
$$

It follows, in view of (3), that $H_{p}\left(x^{l}, 0:_{M} x_{s}^{l}\right)$ is a direct sum of some copies of $0:_{M} x_{s}^{l}$ for all $p=0,1, \ldots, s$. Therefore, using (2), it is easy to see that the map

$$
H_{p}\left(x^{l}, 0:_{M} x_{s}^{l}\right) \longrightarrow H_{p}\left(x^{l}, M\right)
$$

is injective. So, for all $1 \leq p \leq s-1$, we have the commutative diagram

in which the upper row is exact and the lower row is the natural isomorphism. Therefore we may assume, without loss of generality, that x_{s} is non-zero-divisor on M. Now, by the same arguments as in the proof of 2.3 we can complete the proof.

As we mentioned in the introduction, Theorem A is an immediate consequence of 2.3 and 2.4. Let us now indicate how the result [3, 2.12] of Goto and Yamagishi can be deduced from Theorems 2.3 and 2.4.
2.5. Consequence. Consider the special case in which A is Noetherian, M is finitely generated and x_{1}, \ldots, x_{s} is contained in the Jacobson radical of A. Then, using 1.2 (iii), it is straightforward to see that x_{1}, \ldots, x_{s} forms an unconditioned \mathfrak{q} filter regular sequence on M if h_{1}, \ldots, h_{s} is an u.s. d-sequence on $G_{q}(M)$. Hence, in view of 2.3 and 2.4 , the following conditions are equivalent:
(i) x_{1}, \ldots, x_{s} is an u.s. d-sequence on M;
(ii) h_{1}, \ldots, h_{s} is an u.s. d-sequence on $G_{q}(M)$.
2.6. Remark. Suppose that A is Noetherian and M is finitely generated. Then the existance of u.s. d-sequence on M in a are closely related to the finiteness properties of $H_{\mathrm{a}}^{i}(M)$. In fact if x_{1}, \ldots, x_{n} is an u.s. d-sequence on M, then, in view of $[14,2.4],[7,2.4]$ and [2, Lemma 3], it is easy to see that $H_{\left(x_{1}, \ldots, x_{n}\right)}^{i}(M)$ is finite for all $0 \leq i \leq n-1$. If, in addition, x_{1}, \ldots, x_{n} is an \mathfrak{a}-filter regular sequence on M then, by [7, 1.3(ii)], $H_{\mathfrak{a}}^{i}(M)$ is finite for all $0 \leq i \leq n-1$.

Proof of Theorem B. (i) \Rightarrow (ii) By [6, Theorem], there exists $k \in \mathbf{N}$ such that every \mathfrak{a}-filter regular sequence on M of length s is an \mathfrak{a}^{k}-weak M-sequence. Now suppose that x_{1}, \ldots, x_{s} is an unconditioned \mathfrak{a}-filter regular sequence on M in \mathfrak{a}^{k}. (Note that the existence of such a sequence is guaranteed by 2.1.) Then x_{1}, \ldots, x_{s} is an u.s. d-sequence on M. Hence, by $2.3, h_{1}, \ldots, h_{s}$ is an u.s. d-sequence on $G(M)$. Thus, for $0 \leq i \leq s-1, H_{I}^{i}(G(M))$ is finitely generated, as required.
(ii) \Rightarrow (i) First of all, using [6, Theorem], we may deduce that $h_{1}^{\alpha}, \ldots, h_{s}^{\alpha}$ is an u.s. d-sequence on $G(M)$ for some $\alpha \in \mathbf{N}$. Hence, by $2.4, x_{1}^{\beta}, \ldots, x_{s}^{\beta}$ is an u.s. d sequence on M for some $\beta \in \mathbf{N}$. Moreover, by our assumption, x_{1}, \ldots, x_{s} is an \mathfrak{a}-filter regular sequence on M. Therefore, by $2.6, H_{\mathfrak{a}}^{j}(M)$ is finitely generated for all $0 \leq j \leq s-1$.
2.7. Corollary. [10, 4.2]. Suppose that A is local with maximal ideal m and that M is finitely generated of dimension $s(>0)$. Then the following conditions are equivalent:
(i) $H_{\mathrm{m}}^{i}(M)$ is finitely generated for all $0 \leq i \leq s-1$;
(ii) There is a system of parameters x_{1}, \ldots, x_{s} for M such that $H_{m^{*}}^{i}\left(G_{q}(M)\right)$ is finitely generated for $0 \leq i \leq s-1$, where $\mathfrak{q}=\sum_{i=1}^{n} A x_{i}$ and \mathfrak{m}^{*} is the unique graded maximal ideal of $G_{\mathrm{q}}(A)$.

Proof. In view of Theorem $B((\mathrm{i}) \Rightarrow(\mathrm{ii}))$ it is enough to prove the implication (ii) \Rightarrow (i). To do this, note that, by the assumption, h_{1}, \ldots, h_{s} is a system of parameters for $G_{\mathrm{q}}(M)$ and that, since $H_{\mathrm{m}}^{i} .\left(G_{\mathrm{q}}(M)\right)$ is finitely generated for all $i=0,1, \ldots, s-1$, there exists $t \in \mathbf{N}$ such that $h_{1}^{t}, \ldots, h_{s}^{t}$ is an u.s. d-sequence on $G_{\mathrm{q}}(M)$. Let y_{1}, \ldots, y_{s} be any permutation of x_{1}, \ldots, x_{s}. Then, by applying 1.2 , it is easy to check that the equality

$$
\begin{equation*}
\left[\sum_{j=1}^{i-1} y_{j}^{t} \mathfrak{q}^{n} M+\mathfrak{q}^{n+t+1} M:_{M} y_{i}^{t}\right] \cap \mathfrak{q}^{n} M=\sum_{j=1}^{i-1} y_{j}^{t} \mathfrak{q}^{n-t} M+\mathfrak{q}^{n+1} M \tag{4}
\end{equation*}
$$

holds for all $1 \leq i \leq s$ and $n \geq s t-s-1$. Since the sequence x_{1}, \ldots, x_{s} is contained in the Jacobson radical of A, we can deduce from (4) that x_{1}, \ldots, x_{s} is an unconditioned \mathfrak{q}-filter regular sequence on M. Now the assertion follows from the implication (ii) \Rightarrow (i) of Theorem B.

The following theorem clarify the structure of the homology modules of the complex $C(\mathscr{A}(h), G(M))$ of $G(A)$-modules which involves modules of generalized fractions derived from $G(M)$ and the u.s. d-sequence $h:=h_{1}, \ldots, h_{s}$ on $G(M)$. It follows from this theorem in conjunction with $[14,2.4]$ that if A is Noetherian, then i-th local cohomology module $H_{\mathrm{q}}^{i}(M)(i)$ and $H_{Q}^{i}(G(M))$, where $Q=$ $\sum_{i=1}^{d} h_{i} G$, are isomorphic. Thus, under Noetherian hypothesis on A, the next theorem provide an alternative proof of [3, 4.2].
2.8. Theorem. Let x_{1}, \ldots, x_{s} be an u.s.d-sequence on M. Then

$$
\frac{\operatorname{ker} e_{h, G(M)}^{i}}{\operatorname{im} e_{h, G(M)}^{i-1}} \cong \frac{\operatorname{ker} e_{x, M}^{i}}{\operatorname{im} e_{x, M}^{i-1}}(i)
$$

for all $i=0,1, \ldots, s-1$.
Proof. We prove this by induction on s. If $s=1$, by 2.2 , we have noting to do any more. So, suppose, inductively, that $s>1$ and that the result has been proved for smaller values of s. In order to prove the assertion for s we use induction on i. By 2.2, it is trivial in case $i=0$, i.e. $\frac{\operatorname{ker} e_{h, G(M)}^{0}}{\operatorname{im} e_{h, G(M)}^{-1}} \cong \frac{\operatorname{ker} e_{x, M}^{0}}{\operatorname{im} e_{x, M}^{-1}}(0)$. Now, suppose that $1 \leq i \leq s-1$ and that the result holds for smaller values of i. Put $\bar{M}=M /\left(0:_{M} x_{s}\right)$ and $\bar{G}=G_{\mathrm{q}}(\bar{M})$. Consider the exact sequences

$$
0 \longrightarrow\left(0:_{M} x_{s}\right) \longrightarrow M \longrightarrow \bar{M} \longrightarrow 0
$$

and

$$
0 \longrightarrow\left(0:_{G(M)} h_{s}\right) \longrightarrow G(M) \longrightarrow \bar{G} \longrightarrow 0
$$

and apply 2.3 to obtain

$$
\frac{\operatorname{ker} e_{x, M}^{i}}{\operatorname{im} e_{x, M}^{i-1}} \cong \frac{\operatorname{ker} e_{x, \bar{M}}^{i}}{\operatorname{im} e_{x, \bar{M}}^{i-1}} \quad \text { and } \quad \frac{\operatorname{ker} e_{h, G(M)}^{i}}{\operatorname{im} e_{h, G(M)}^{i-1}} \cong \frac{\operatorname{ker} e_{h, \bar{G}}^{i}}{\operatorname{im} e_{h, \bar{G}}^{i-1}}
$$

for all $i=0,1, \ldots, s-1$. Thus, without loss of generality, we may assume that x_{s} (respectively h_{s}) is a non-zero-divisor on M (respectively $G(M)$). Let $A^{\prime}=A / x_{s} A$, $\mathfrak{q}^{\prime}=\mathfrak{q} A^{\prime}, M^{\prime}=M / x_{s} M$ and $G\left(M^{\prime}\right)=G_{q^{\prime}}\left(M^{\prime}\right)$. Consider the exact sequences

$$
\begin{equation*}
0 \longrightarrow G(M)(-1) \xrightarrow{h_{s}} G(M) \longrightarrow G\left(M^{\prime}\right) \longrightarrow 0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \longrightarrow M \xrightarrow{x_{s}} M \longrightarrow M^{\prime} \longrightarrow 0 \tag{6}
\end{equation*}
$$

Since, by $2.3, h_{1}, \ldots, h_{s}$ is an u.s. d-sequence on $G(M)$, we have that $h_{s} \frac{\operatorname{ker} e_{h, G(M)(-1)}^{i}}{\operatorname{im} e_{h, G(M)(-1)}^{i-1}}=0$ for all $i=0,1, \ldots, s-1$. Now, from (5), we obtain the induced exact sequence

$$
0 \longrightarrow \frac{\operatorname{ker} e_{h, G(M)}^{i-1}}{\operatorname{im} e_{h, \boldsymbol{G}(M)}^{i-2}} \longrightarrow \frac{\operatorname{ker} e_{h, \boldsymbol{G}\left(M^{\prime}\right)}^{i-1}}{\operatorname{im} e_{h, \boldsymbol{G}\left(M^{\prime}\right)}^{i-2}} \longrightarrow \frac{\operatorname{ker} e_{h, G(M)(-1)}^{i}}{\operatorname{im} e_{h, G(M)(-1)}^{i-1}} \longrightarrow 0
$$

which in turn yields, by applying inductive hypothesis on the module $G\left(M^{\prime}\right)$, $\left[\frac{\operatorname{ker} e_{h, G(M)(-1)}^{i}}{\operatorname{im} e_{h, G(M)(-1)}^{i-1}}\right]_{n}=0$ for all $n \neq-i+1$. Similarly, from (6), we obtain the exact sequence

$$
0 \longrightarrow \frac{\operatorname{ker} e_{x, M}^{i-1}}{\operatorname{im} e_{x, M}^{i-2}} \longrightarrow \frac{\operatorname{ker} e_{x, M^{\prime}}^{i-1}}{\operatorname{im} e_{x, M^{\prime}}^{i-2}} \longrightarrow \frac{\operatorname{ker} e_{x, M}^{i}}{\operatorname{im} e_{x, M}^{i-1}} \longrightarrow 0
$$

Now, using inductive hypothesis, we may obtain a diagram

$$
\begin{array}{rlrl}
0 \longrightarrow\left[\frac{\operatorname{ker} e_{h, G(M)}^{i-1}}{\operatorname{im} e_{h, G(M)}^{i-2}}\right]_{-i+1} & \longrightarrow\left[\frac{\operatorname{ker} e_{h, G\left(M^{\prime}\right)}^{i-1}}{\operatorname{im} e_{h, G\left(M^{\prime}\right)}^{i-2}}\right]_{-i+1} & \longrightarrow\left[\frac{\operatorname{ker} e_{h, G(M)(-1)}^{i}}{\operatorname{im} e_{h, G(M)(-1)}^{i-1}}\right]_{-i+1} & \longrightarrow 0 \\
0 \longrightarrow \frac{\prod_{\varphi^{\prime}}}{\operatorname{im} e_{x, M}^{i-2}} & \longrightarrow \frac{\operatorname{ker} e_{x, M^{\prime}}^{i-1}}{\operatorname{im} e_{x, M^{\prime}}^{i-2}} & \longrightarrow \frac{\operatorname{ker} e_{x, M}^{i}}{\operatorname{im} e_{x, M}^{i-1}} \longrightarrow 0
\end{array}
$$

with exact rows in which φ and φ^{\prime} are isomorphisms. Moreover the diagram is commutative because the injections are naturally induced by $M \rightarrow M^{\prime}$. We are therefore able to complete the inductive step; and the result follows by induction.

Note that, although the proof of the above theorem relies on the ideas of Schenzel's proof of $[10,4.1]$, but his theorem is a particular case of ours.

Acknowledgment. The authors would like to thank the Institute for Studies in Theoretical Physics and Mathematics (IPM) for the Financial Support.

Institute for Studies in Theoretical Physics and Mathematics P.O. Box 19395-1795, Tehran-Iran

References

[1] R. Enshaei, Modules of generalized fractions and graded rings and modules, Ph.D. Thesis, University of Sheffield (1987).
[2] G. Faltings, Über die Annullatoren lokaler kohomologiegruppen, Arch. Math. (Basel), 30 (1978), 473-476.
[3] S. Goto and K. Yamagishi, The theory of unconditioned strong d-sequences and modules of finite local cohomology, preprint.
[4] J. Herzog, A. Simis and W. V. Vasconcelos, Approximation complexes of blowing-up rings. J. Algebra, 74 (1982), 466-493.
[5] C. Huneke, The theory of d-sequences and power of ideals, Advan. in Math., 46 (1982), 249279.
[6] K. Khashyarmanesh and Sh. Salarian, Filter regular sequences and the finiteness of local cohomology modules, Comm. Algebra, to appear.
[7] K. Khashyarmanesh, Sh. Salarian and H. Zakeri, Characterizations of filter regular sequences and unconditioned strong d-sequences, Nagoya Math. J. to appear.
[8] H. Matsumura, Commutative ring theory, Cambridge University Press, Cambridge, 1986.
[9] U. Nagel and P. Schenzel, Cohomological annihilators and Castelnuovo-Mumford regularity, Commutative algebra: Syzygies, multiplicaties, and birational algebra (South Hadley, MA, 1992), 307-328, Contemp. Math. Providence, RI, (1994).
[10] P. Schenzel, Standard systems of parameters and their blowing-up rings, J. Reine und Angew. Math., 344 (1983), 201-220.
[11] R. Y. Sharp and H. Zakeri, Modules of generalized fractions, Mathematika, 29 (1982), 32-41.
[12] J. Stückrad and W. Vogel, Buchsbaum rings and Applications, VEB Deutscher Verlag der Wissenschaften, Berlin (1986).
[13] N. V. Trung, Absolutely superficial sequenes, Math. Proc. Camb. Phil. Soc., 93 (1983), 35-47.
[14] H. Zakeri, d-sequences, local cohomology modules and generalized analytic independence, Mathematika, 33 (1986), 279-284.
[15] H. Zakeri, An application of modules of generalized fractions to grades of ideals and Gorenstein rings, Colloquium Mathematicum, 67-2 (1994), 281-288.

