The Penney-Fujiwara Plancherel formula for nilpotent Lie groups

By

Ali Baklouti and Jean Ludwig

Abstract

We prove the Penney-Fujiwara Plancerel Formula associated to a monomial representation of a nilpotent Lie group. We give also a short proof of a theorem due to Corwin and Greenleaf about the algebra of differential operators on certain nilpotent homogeneous space.

0. Introduction

Let G be a nilpotent connected simply connected Lie group with Lie algebra g. Let $\mathscr{S}(G)$ denote the Schwartz-space of G, i.e. the space of all complex valued functions φ on G, such that $f \circ \exp$ is a ordinary Schwartz-function on the vector space \mathfrak{g}. Let \mathfrak{b} be a subalgebra of \mathfrak{g}. Let $f \in \mathfrak{g}^{*}$ be such that $\langle f,[\mathfrak{h}, \mathfrak{h}]\rangle=(0)$. We obtain a unitary character χ_{f} of $H=\exp (\mathfrak{h})$ by letting

$$
\chi_{f}(\exp (Y))=e^{-i<f, Y>}, Y \in \mathfrak{h} .
$$

Let $\mathscr{B}=\left\{X_{1}, \cdots, X_{r}\right\}$ be a Malcev-basis relative to \mathfrak{h}, i.e. $\mathfrak{g}=\sum_{1 \leq i \leq r}^{\oplus} \mathbf{R} X_{i} \oplus \mathfrak{h}$ and for any $j=1, \cdots, r$, the subspace $\mathfrak{g}_{j}=\operatorname{span}\left\{X_{j}, \cdots, X_{r}, \mathfrak{h}\right\}$ is a subalgebra. The mapping $E_{\mathscr{B}}: \mathbf{R}^{r} \rightarrow G / H: E_{\mathscr{g}}\left(t_{1}, \cdots, t_{r}\right)=\exp \left(t_{1} X_{1}\right) \cdots \exp \left(t_{r} X_{r}\right) H$ is then a diffeomorphism. We obtain a G-invariant measure $d \dot{g}=d_{\boldsymbol{g}} \dot{g}$ on the quotient space G / H by setting

$$
\int_{G / H} \xi(g) d_{\mathfrak{H}} \dot{g}=\int_{\mathbf{R}^{r}} \xi\left(E_{\mathscr{F}}(T)\right) d T, \xi \in C_{c}(G / H),
$$

where $C_{c}(G / H)$ denotes the space of the continuous functions with compact support on G / H.

Let $\mathscr{P}(G / H, f)$ be the space of all C^{∞}-functions ξ on G, such that $\xi(g h)=\chi_{f}\left(h^{-1}\right) \xi(g)$ for all $g \in G, h \in H$ and such that the function $T \mapsto \xi\left(E_{\mathscr{g}}(T)\right.$) is a Schwartz-function on \mathbf{R}^{r}. Pick a Haar measure $d h$ of H and let for $\varphi \in \mathscr{S}(G)$

$$
P_{H, f}(\varphi)(g)=P(\varphi)(g)=\int_{H} \varphi(g h) \chi_{f}(h) d h, g \in G .
$$

It is easy to see that $P(\varphi)$ is in $\mathscr{P}(G / H, f)$ and that the mapping P is linear surjective and continuous, if we provide our spaces with the standard Fréchet topologies. Let $S_{H, f}$ be the tempered distribution on G defined by

$$
\left.<S_{H, f}, \varphi\right\rangle=P_{H, f}(\varphi)(e)=\int_{H} \varphi(h) \chi_{f}(h) d h, \varphi \in \mathscr{S}(G)
$$

We observe that the distribution $S_{H, f}$ is $\overline{\chi_{f}}-H$ invariant, i.e. for any $h \in H$, we have that $\lambda_{h}\left(S_{H, f}\right)=\overline{\chi_{f}(h)} S_{H, f}$, where λ_{h} denotes left translation by h. Indeed, for $\varphi \in \mathscr{S}(G)$

$$
\begin{aligned}
\left.<\lambda_{h}\left(S_{H, f}\right), \varphi\right\rangle & =\left\langle S_{H, f}, \lambda_{h^{-1}} \varphi\right\rangle \\
& =\int_{H} \varphi\left(h h^{\prime}\right) \chi_{f}\left(h^{\prime}\right) d h^{\prime}=\overline{\chi_{f}(h)} \int_{H} \varphi\left(h^{\prime}\right) \chi_{f}\left(h^{\prime}\right) d h^{\prime}=\overline{\chi_{f}(h)}<S_{H, f}, \varphi>.
\end{aligned}
$$

Let now $H=\exp (\mathfrak{h})$ and $K=\exp (\mathfrak{f})$ be two closed connected subgroups of G and f be an element in \mathfrak{g}^{*} sucht that \mathfrak{h} and \mathfrak{f} are subordinated to f. We can construct a $\overline{\chi_{f}}$-invariant distribution $S_{K, f}^{H}$ on $\mathscr{S}(G / H, f)$ in the following way. Pick a K-invariant measure $d \dot{k}$ on $K / K \cap H$ and let

$$
<S_{K, f}^{H}, \xi>=\int_{K / H \cap K} \xi(k) \chi_{f}(k) d \dot{k} .
$$

It follows as above that for all $k \in K$

$$
<S_{K, f}^{H}, \lambda_{k-1} \xi>=\overline{\chi_{f}(k)}<S_{K, f}^{H}, \xi>, \xi \in \mathscr{S}(G / H, f), k \in K .
$$

Let $\phi \in \mathfrak{g}^{*}$ and let \mathfrak{b} be a polarization at ϕ. Let $B=\exp (\mathfrak{b})$ and let χ_{ϕ} be the character of B associated to ϕ. It is wellknown that the representation $\pi_{\phi}=\operatorname{Ind}_{B}^{G} \chi_{\phi}$ is irreducible and that the space $\mathscr{S}(G / B, \phi)$ is in fact the space of the C^{∞}-vectors of π_{ϕ} (see [1]).
Let now $H=\exp (\mathfrak{h})$ be a closed connected subgroup of G and let $\tau=\operatorname{Ind}_{H}^{G} \chi_{f}$ be the monomial representation induced from χ_{f}. It has been shown in [1] that there exists a certain affine subspace \mathscr{V} of $\Gamma_{f}=f+\mathfrak{b}^{\perp} \subset \mathfrak{g}^{*}$, such that

$$
\begin{equation*}
\tau \simeq \int_{\downarrow}^{\oplus} \pi_{\phi} d \phi=\tau^{\prime} \tag{0.1}
\end{equation*}
$$

where $d \phi$ denotes Lebesgue measure on \mathscr{V} and where π_{ϕ} is the irreducible representation associated to $\phi(\phi \in \mathscr{V})$.
The general distribution-theoretic Plancherel formula is due to Penney (see [20]). It
is associated to a desintegration of an induced representation and it is of the form

$$
\begin{equation*}
<\tau(\omega) \alpha_{\tau}, \alpha_{\tau}>=\int_{\downarrow}<\pi_{\phi}(\omega) \beta_{\phi}, \beta_{\phi}>d \phi, \omega \in \mathscr{S}(G), \tag{0.2}
\end{equation*}
$$

where α_{τ} is the canonical cyclic generalized vector for τ and β_{ϕ} is an (appropriately H-covariant) generalized vector for π_{ϕ}. In general the determination of appropriate distributions is problematic. In the case when G is nilpotent, (0.2) was obtained by Fujiwara in a different form (see [13]) when the multiplicities occuring in the decomposition (0.1) are finite. Groundbreaking work on extending results of [13] to other classes of homogeneous spaces has been done by Fujiwara and Yamagami [12] and Lipsman [17, 18, 19]. However, beyond the nilpotent case the technical difficulties involved in (0.2) are considerable. Recently, Currey studied a class of completely solvable homogeneous spaces when τ is induced from a "Levi" component. In this situation, he overcomes these problems and he gives an explicit and natural construction for a smooth decomposition.
The first aim of this note is a desintegration of the distribution $S_{H, f}$ into an integral $\int_{V} S_{B(\phi), \phi} d \phi$ in pure distributions $S_{B(\phi), \phi}$ of positive type associated with the irreducible representations π_{ϕ}, where \mathscr{V} is a certain affine subspace of \mathfrak{g}^{*}. In other words, we are going to prove (0.2) without taking into account the multiplicities occuring in the decomposition (0.1).
In the second part of the paper we give a short proof of the main result of [7]. Let

$$
C^{\infty}(G, \tau)=\left\{\xi \in C^{\infty}(G): \xi(g h)=\chi\left(h^{-1}\right) \xi(g), g \in G, h \in H\right\} .
$$

Let $\operatorname{Diff}(G)$ be the algebra of all C^{∞} differential operators taking $C^{\infty}(G, \tau)$ into itself, and $D_{\tau}(G / H)$ the algebra of operators $D \mid C^{\infty}(G, \tau)$ of $D \in \operatorname{Diff}(G)$ commuting with the action of τ on that space. This algebra of differential operators is commutative (see [6]). Commutativity was proven by showing that $D_{\tau}(G / H)$ is isomorphic to a generating subalgebra of the field $\mathbf{C}\left(f+\mathfrak{h}^{\perp}\right)^{H}$ of $A d^{*}(H)$-invariant rational functions on Γ_{f}. In [6], Corwin and Greenleaf have formulated the following conjecture:
If $m(\pi)<\infty$ for generic $\pi \in \operatorname{spec}(\tau)$, then $D_{\tau}(G / H) \simeq \mathbf{C}\left[f+\mathfrak{h}^{\perp}\right]^{H}$, where $\mathbf{C}\left[f+\mathfrak{h}^{\perp}\right]^{H}$ is the algebra of $A^{*}(H)$-invariant polynomial functions on Γ_{f}.

Later, Corwin and Greenleaf proved in [7] this conjecture when there exists a subalgebra which polarizes all generic elements in Γ_{f} and normalized by \mathfrak{b}.

Very recently, we have proved in [2] (and Fujiwara in [14]) this conjecture when there exists a subalgebra which polarizes all generic elements in Γ_{f} and in particular when H is a normal subgroup of G.

1. The Penney-Fujiwara Plancherel Formula

1.1. Let $H=\exp (\mathfrak{h})$ be a closed connected subgroup of the connected nilpotent

Lie group $G=\exp (\mathfrak{g})$. Let $f \in \mathfrak{g}^{*}$ such that $\langle f,[\mathfrak{h}, \mathfrak{h}]\rangle=(0)$ and let $\chi_{f}=\exp \left(-i f_{\mid \mathfrak{h}}\right) \circ \log$ be its unitary character on H. It has been shown in ([1]) how the representation $\tau=\operatorname{ind}_{H}^{G} \chi_{f}$ can be smoothly disintegrated into irreducibles. There exists a Zariski-open subset \mathscr{V}_{0} of \mathscr{V} with the following properties. For every $\phi \in \mathscr{V}_{0}$ there exists a polarization $B(\phi)=\exp (\mathrm{b}(\phi))$ at ϕ, a Malcev-basis

$$
\mathscr{X}(\phi)=\left\{X_{1}(\phi), \cdots, X_{l}(\phi)\right\}
$$

of \mathfrak{g} relative to $\mathrm{b}(\phi)$, a Malcev-basis

$$
\mathscr{Y}(\phi)=\left\{Y_{1}(\phi), \cdots, Y_{m}(\phi)\right\}
$$

of $\mathfrak{b}(\phi)$ relative to $\mathfrak{b} \cap \mathfrak{b}(\phi)$ and a Malcev basis

$$
\mathscr{U}(\phi)=\left\{U_{1}(\phi), \cdots, U_{p}(\phi)\right\}
$$

of \mathfrak{b} relative to $\mathfrak{b} \cap \mathfrak{b}(\phi)$, such that the mappings

$$
\phi \mapsto X_{j}(\phi) ; \phi \mapsto Y_{j}(\phi) ; \phi \mapsto U_{j}(\phi)
$$

are rational and continuous on \mathscr{V}_{0} for all j. The projections

$$
T_{\phi}: \mathscr{S}(G / H, f) \rightarrow \mathscr{S}(G / B(\phi), \phi)\left(\phi \in \mathscr{V}_{0}\right)
$$

given by

$$
T_{\phi}(\xi)(g)=\int_{B(\phi) / \boldsymbol{H} \cap B(\phi)} \xi(g b) \chi_{\phi}(b) d_{\mathscr{Y}(\phi)} \dot{b}, \xi \in \mathscr{Y}(G / H, f), g \in G,
$$

allow us to define an operator

$$
U: S(G / H, f) \rightarrow \int_{\boldsymbol{\gamma}_{0}}^{\oplus} \mathscr{H}_{\phi} d \phi=\mathscr{H}_{\tau^{\prime}}
$$

(where $\mathscr{H}_{\phi}=L^{2}(G / B(\phi), \phi)$ denotes the Hilbert space of the irreducible representation π_{ϕ}) by setting

$$
U(\xi)(\phi)=T_{\phi}(\xi) \in \mathscr{H}_{\phi}, \phi \in \mathscr{V}_{0}, \xi \in \mathscr{S}(G / H, f) .
$$

This mapping U is in fact an isometry for the L^{2}-norms and extends to a unitary operator from $\mathscr{H}_{\tau}=L^{2}(G / H, f)$ onto $\mathscr{H}_{\tau^{\prime}}$ (see [1]). This operator diagonalizes the action of $D_{\tau}(G / H)$ (see [2]), that is for all $D \in D_{\tau}(G / H)$, there exist a function \hat{D} on Γ_{f} such that for all $\xi \in S(G / H, f)$, one has

$$
U(D \xi)(\phi)=\hat{D}(\phi) U(\xi)(\phi), \phi \in \mathscr{V}_{0} .
$$

Let $d h$ be a Haar measure of H. We choose now for any $\phi \in \mathscr{V}_{0}$ a Malcev basis

$$
\mathscr{Z}(\phi)=\left\{Z_{1}(\phi), \cdots, Z_{r}(\phi)\right\}
$$

of $\mathfrak{b}(\phi) \cap \mathfrak{b}$, such that for the Malcev basis $\mathscr{B}(\phi)=\mathscr{U}(\phi) \cup \mathscr{Z}(\phi)$ of \mathfrak{h} the measure $d_{\mathscr{B}(\phi)}$ is just the given measure $d h$. Let also $\mathscr{Y}^{\prime}(\phi)=\mathscr{Z}(\phi) \cup \mathscr{Y}(\phi)$ be the Malcev basis of $\mathrm{b}(\phi)$.

We shall use this isometry to prove the Penney-Fujiwara Plancherel theorem.
1.2. Theorem. Let G be a connected, simply connected nilpotent Lie group, H a connected Lie subgroup, and $\chi=\chi_{f}$ a unitary character on H associated with some $f \in \mathrm{~g}^{*}$ such that f_{lb} is a Lie homomorphism. Let $\mathscr{V}\left(\right.$ resp. $\left.\mathscr{V}_{0}\right)$ the affine subspace of Γ_{f} (resp. the open dense subset of \mathscr{V}) as in (1.1). Let $\mathscr{X}(\phi), \mathscr{Y}(\phi), \mathscr{U}(\phi), \mathscr{Z}(\phi), \mathscr{B}(\phi)$, $\mathscr{Y}^{\prime}(\phi)$ also as in (1.1) for $\phi \in \mathscr{V}_{0}$. With the normalizations of the measures given by these bases one has for any $\varphi \in \mathscr{S}(G)$

$$
\left.<S_{H, f}, \varphi\right\rangle=\int_{\boldsymbol{r}_{0}}<S_{\phi}, \varphi>d \phi
$$

where S_{ϕ} denotes the tempered distribution on $S(G)$ defined by

$$
\begin{aligned}
<S_{\phi}, \varphi> & =\int_{H / B(\phi) \cap H} T_{\phi}\left(P_{H, f}(\varphi)\right)(h) \chi_{f}(h) d_{\mathscr{Q}(\phi)} \dot{h} \\
& =<S_{H, f}^{B(\phi)}, T_{\phi}\left(P_{H, f}(\varphi)\right)>, \varphi \in \mathscr{P}(G), \phi \in \mathscr{V}_{0} .
\end{aligned}
$$

Proof. Let $\phi, \psi \in \mathscr{S}(G)$. We shall show that

$$
\begin{equation*}
<S_{H, f}, \varphi^{*} * \psi>=\int_{\boldsymbol{v}_{0}}<S_{\phi}, \varphi^{*} * \psi>d \phi . \tag{1.2.1}
\end{equation*}
$$

Since the factorization theorem of Dixmier-Malliavin says that every Schwartzfunction ρ is of the form $\rho=\varphi^{*} * \psi$ for some elements φ, ψ in $\mathscr{S}(G)$ (see [9]), the theorem follows from (1.2.1). A standard computation tells us that

$$
\begin{aligned}
<S_{H, f}, \varphi^{*} * \psi> & =\int_{G / H}\left(\int_{H} \overline{\varphi\left(g h^{\prime}\right) \chi_{f}\left(h^{\prime}\right)} d h^{\prime}\right)\left(\int_{H} \psi(g h) \chi_{f}(h) d h\right) d \dot{g} \\
& =<P_{H, f}(\psi), P_{H, f}(\varphi)>_{L^{2}(G / H, f)},
\end{aligned}
$$

where $d \dot{g} \dot{g}$ the G-invariant measure on G / H which is choosen such that $d g=d \dot{g} d h$.
Let now $\xi=P_{H, f}(\varphi), \eta=P_{H, f}(\psi) \in \mathscr{S}(G / H, f)$. The fact that the map U is an isometry tells us that

$$
\int_{\mathscr{V}_{0}}<T_{\phi}(\eta), T_{\phi}(\xi)>_{\varkappa_{\phi}} d \phi=<U(\eta), U(\xi)>_{\varkappa_{\tau^{\prime}}}=\left\langle\eta, \xi>_{L^{2}(G / H, f)} .\right.
$$

Hence in order to prove the theorem, it suffices to show that for every $\phi \in \mathscr{V}_{0}$ we have that

$$
\begin{equation*}
<T_{\phi}(\eta), T_{\phi}(\xi)>_{\mathscr{H}_{\phi}}=<S_{\phi}, \varphi^{*} * \psi> \tag{1.2.2}
\end{equation*}
$$

We write $P=P_{H, f}, \quad B=B(\phi), \mathscr{X}=\mathscr{X}(\phi), \mathscr{Y}=\mathscr{Y}(\phi), \mathscr{U}=\mathscr{U}(\phi), \mathscr{B}=\mathscr{B}(\phi), \mathscr{Y}^{\prime}=\mathscr{Y}^{\prime}(\phi)$, $\mathscr{Z}=\mathscr{Z}(\phi)$. We see that

$$
\begin{align*}
<T_{\phi}(\eta), T_{\phi}(\xi)>_{\mathscr{H}_{\phi}}= & \left.\int_{G / B}\left[\left(\int_{B / B \cap H} \eta(g b) \chi_{\phi}(b) d_{y y} \dot{b}\right) \overline{\int_{B / B \cap H}} \xi(g b) \chi_{\phi}(b) d_{y y} \dot{b}\right)\right]
\end{align*} d_{x y} \dot{g}
$$

On the other hand

$$
\begin{aligned}
& T_{\phi}\left(P\left(\varphi^{*} * \psi\right)\right)(h)=\int_{B / B \cap H}\left(\int_{H}\left(\varphi^{*} * \psi\right)\left(h b h^{\prime}\right) \chi_{f}\left(h^{\prime}\right) d_{\mathscr{B}} h^{\prime} \chi_{\phi}(b) d_{\oiint y} \dot{b}\right. \\
& =\int_{B / B \cap H}\left(\int_{H} \int_{G} \varphi^{*}(g) \psi\left(g^{-1} h b h^{\prime}\right) d g \chi_{f}\left(h^{\prime}\right) d_{\mathscr{R}} h^{\prime} \chi_{\phi}(b) d_{g y} \dot{b}\right. \\
& =\int_{B / B \cap H}\left(\int_{H} \int_{G} \overline{\varphi\left(g h^{-1}\right)} \psi\left(g b h^{\prime}\right) d g \chi_{f}\left(h^{\prime}\right) d_{\oiint} h^{\prime} \chi_{\phi}(b) d_{\oiint g} \dot{b}\right. \\
& =\int_{B / B \cap H}\left(\int_{G} \overline{\varphi\left(g h^{-1}\right)} \eta(g b) d g \chi_{\phi}(b) d_{\phi y} \dot{b}\right. \\
& =\int_{G} T_{\phi}(\eta)(g) \overline{\varphi\left(g h^{-1}\right)} d g \\
& =\int_{G / B} \int_{B} \overline{\varphi\left(g b h^{-1}\right)} T_{\phi}(\eta)(g b) d_{y,} b d_{x} \dot{g} \\
& =\int_{G / B} \int_{B} \overline{\varphi\left(g b h^{-1}\right)} T_{\phi}(\eta)(g) \chi_{\phi}\left(b^{-1}\right) d_{y y} \cdot b d_{x} \dot{g} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
<S_{\phi}, \varphi^{*} * \psi> & =\int_{H / B \cap H} T_{\phi}\left(P\left(\varphi^{*} * \psi\right)(h) \chi_{S}(h) d_{Q_{h}} \dot{h}\right. \\
& =\int_{H / B \cap H}\left[\int_{G / B}\left(\int_{B} \overline{\varphi\left(g b h^{-1}\right)} T_{\phi}(\eta)(g) \chi_{\phi}\left(b^{-1}\right) d_{刃 y} b\right) d_{x} \dot{g}\right] \chi_{S}(h) d_{q_{\psi}} \dot{h}
\end{aligned}
$$

$$
=\int_{H / B \cap H}\left[\int_{G / B}\left(\int_{B} \overline{\varphi\left(g b h^{-1}\right) \chi_{\phi}(b)} T_{\phi}(\eta)(g) d_{y_{j}} \cdot b\right) d_{x} \dot{g}\right] \chi_{f}(h) d_{\vartheta u} \dot{h}
$$

The operator $\pi_{\phi}\left(\varphi^{*}\right)$ is Hilbert-Schmidt, its kernel is the function

$$
I\left(g, g^{\prime}\right)=\int_{B} \overline{\varphi\left(g b g^{\prime-1}\right) \chi_{\phi}(b)} d_{\mathbb{y}}, b
$$

and the function $(g, h) \mapsto I(g, h)$ is in $\overline{\mathscr{S}(G / B, \phi)} \otimes \mathscr{S}(H / B \cap H, f)$. Hence, using Fubini, we can deduce that

$$
\begin{equation*}
<S_{\phi}, \varphi^{*} * \psi>=\int_{G / B} \int_{H / B \cap H} \int_{B} \overline{\varphi\left(g b h^{-1}\right)} T_{\phi}(\eta)(g) \overline{\chi_{\phi}(b)} d_{q g}, b \chi_{f}(h) d_{q k} \dot{d} d_{x} \dot{g} . \tag{1.2.4}
\end{equation*}
$$

Now for any $q \in C_{c}(G)$ we have that

$$
\begin{gather*}
\int_{B / B \cap H} \int_{H} q\left(b^{\prime} h^{-1}\right) \chi_{f}(h) \overline{\chi_{\phi}\left(b^{\prime}\right)} d_{\mathscr{F}} h d_{\mathscr{y}} \dot{b}^{\prime}=\int_{B} \int_{H / H \cap B} q\left(b^{\prime} h^{-1}\right) \chi_{\phi}(h) \\
\overline{\chi_{\phi}\left(b^{\prime}\right)} d_{Q_{i} \dot{h} d_{\mathscr{y}} \cdot b^{\prime} .} \tag{1.2.5}
\end{gather*}
$$

Indeed,

$$
\begin{aligned}
& \int_{B / B \cap H} \int_{H} q\left(b^{\prime} h^{-1}\right) \chi_{\phi}(h) \overline{\chi_{\phi}\left(b^{\prime}\right)} d_{\mathscr{B}} h d_{q y} \dot{b}^{\prime}=\int_{\mathbf{R}^{m}} \int_{\mathbf{R}^{r}+p} q\left(E_{\mathscr{q}}(T)\left(E_{\mathscr{F}}(S)\right)^{-1}\right) \\
& \overline{\chi_{\phi}\left(E_{\mathscr{q}}(T)\right)} \chi_{\phi}\left(E_{\mathscr{Z}}(S)\right) d S d T
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\mathbf{R}^{m}} \int_{\mathbf{R}^{r}} \int_{\mathbf{R}^{p}} q\left(E _ { q _ { y } } (T) (E _ { \mathscr { Y } } (R) ^ { - 1 } (E _ { q _ { l } } (S)) ^ { - 1 }) \overline { \chi _ { \phi } (E _ { q y } (T)) } \chi _ { \phi } \left(E_{q(}(S) E_{\mathscr{Y}}(R) d S d R d T\right.\right. \\
& =\int_{\mathbf{R}^{m+r}} \int_{\mathbf{R}^{p}} q\left(E _ { \not y } \cdot (T) (E _ { \chi _ { \ell } } (S)) ^ { - 1 } \overline { \chi _ { \phi } (E _ { \vartheta y } \cdot (T)) } \chi _ { \phi } \left(E_{\chi_{u}}(S) d S d T\right.\right. \\
& =\int_{H / H \cap B} \int_{B} q\left(b^{\prime} h^{-1}\right) \chi_{\phi}\left(\overline{\chi_{\phi}} \overline{\chi_{\phi}\left(b^{\prime}\right)} d_{q u} \dot{h} d_{y y}, b^{\prime} .\right.
\end{aligned}
$$

Hence by (1.2.4) and (1.2.5), we have that

$$
\begin{aligned}
& <S_{\phi}, \varphi^{*} * \psi>=\int_{G / B}\left(\int_{H / B \cap H} \int_{B} \overline{\varphi\left(g b h^{-1}\right)} T_{\phi}(\eta)(g) \overline{\chi_{\phi}(b)} d_{y,}, b \chi_{f}(h) d_{Q i} \dot{h}\right) d_{x} \dot{g} \\
& =\int_{G / B} T_{\phi}(\eta)(g)\left(\int_{B / B \cap H} \int_{H} \overline{\varphi\left(g b h^{-1}\right)} \chi_{f}(h) d_{s f} h \overline{\chi_{\phi}(b)} d_{q y} \dot{b}\right) d_{x} \dot{g} \\
& =\int_{G / B} T_{\phi}(\eta)(g) \overline{T_{\phi}(\xi)(g)} d_{X(\phi)} \dot{g} \\
& =<T_{\phi}(\eta), T_{\phi}(\xi)>_{\mathscr{H}_{\phi}} .
\end{aligned}
$$

1.3. Corollary. We keep the same hypotheses and notations as above. Let $\phi \in \mathscr{V}_{0}$ and $\psi \in \mathscr{S}(G / B(\phi), \phi)$. Let

$$
\begin{equation*}
\beta_{\phi}(\psi)=\overline{\left\langle S_{H, f}^{B(\phi)}, \psi\right\rangle}=\int_{H / B(\phi) \cap H} \overline{\psi(h) \chi_{f}(h)} d_{q_{i}} \dot{h}, \tag{1.3.1}
\end{equation*}
$$

then we have that for all $\omega \in \mathscr{D}(G)$ that

$$
<S_{H, f}, \omega>=<\tau(\omega) \alpha_{\tau}, \alpha_{\tau}>=\int_{\downarrow}<\pi_{\phi}(\omega) \beta_{\phi}, \beta_{\phi}>d \phi
$$

where α_{τ} is the canonical cyclic genaralized vector for τ i.e $\alpha_{\tau}(\xi)=\overline{\xi(e)}, \xi \in \mathscr{S}(G / H, f)$.
Indeed, it's not difficult to see that $\left\langle S_{H, f}, \omega\right\rangle=\left\langle\tau(\omega) \alpha_{\tau}, \alpha_{\tau}\right\rangle$ (see [12, 13]). On the other hand the following computation in ([12], page 177) tells us that for $\phi \in \mathscr{V}_{0}$ we have

$$
<\pi_{\phi}(\omega) \beta_{\phi}, \beta_{\phi}>=\int_{H / B(\phi) \cap H} T_{\phi}\left(P_{H, f}(\omega)\right)(h) \chi_{f}(h) d_{U((\phi)} \dot{h}=<S_{H, f}^{B(\phi)}, T_{\phi}\left(P_{H, f}(\omega)\right)>
$$

for all $\omega \in \mathscr{D}(G)$ and theorem (1.2) permits us to conclude.

2. Invariant differential operators

Let G, H, f e.c.t. be as in the introduction. Let

$$
C^{\infty}(G, \tau)=\left\{\xi \in C^{\infty}(G): \xi(g h)=\chi\left(h^{-1}\right) \xi(g), g \in G, h \in H\right\} .
$$

Let $\operatorname{Diff}(G)$ be the algebra of all C^{∞} differential operators taking $C^{\infty}(G, \tau)$ into itself, and $D_{\tau}(G / H)$ the algebra of operators $D \mid C^{\infty}(G, \tau)$ of $D \in \operatorname{Diff}(G)$ commuting with the action of τ on that space. Let $\Gamma_{f}=\mathfrak{f}+\mathfrak{h}^{\perp}$. It is wellknown that the finite multiplicity condition for τ is equivalent to the condition that for one and hence for almost all $\phi \in \Gamma_{f}$, we have that

$$
2 \operatorname{dim}\left(A d^{*}(H) \phi\right)=\operatorname{dim}\left(A d^{*}(G) \phi\right) .
$$

(see [5]).
The aim of this section is to give a short proof of the following theorem proved by Corwin and Greenleaf in [7].
2.1. Theorem. Let \mathfrak{g} be a nilpotent Lie algebra. Let $f \in \mathfrak{g}^{*}$, and $\mathfrak{h}, \mathfrak{b}$ two subalgebras of \mathfrak{g}. Suppose that \mathfrak{h} is subordinate to f, i.e $\langle f,[\mathfrak{h}, \mathfrak{h}]>=(0)$ and that \mathfrak{b} is a polarization in ϕ for all $\phi \in \Gamma_{f}=f+\mathfrak{h}$ 都 general position and that b is normalized by \mathfrak{b}. Let $G=\operatorname{expg}, H=\operatorname{exph}, B=\operatorname{expb}$. Suppose in addition that the representation $\tau=\operatorname{Ind}_{H}^{G} \chi_{f}$ of G is decomposed on \hat{G} with finite multiplicities. Then the conjecture (0.3) hold.

Proof. First of all, let us remark that $\mathfrak{c}=\mathfrak{h}+\boldsymbol{b}$ is a subalgebra of \mathfrak{g}, as \mathfrak{h} normalizes b . Let $C=\exp (\mathrm{c})$. Then $\tau=\operatorname{Ind}_{C}^{G} \tau_{0}$ where $\tau_{0}=\operatorname{Ind}_{H}^{G} \chi_{f}$ and so by [6, (35)] the algebra $D_{\tau}(G / H)$ is isomorphic to the algebra $D_{\tau_{0}}(C / H)$. On the other hand, by the finite multiplicity condition, we know that $a d^{*}(\mathfrak{h})(f) \supset c^{\perp}$ and so $f+c^{\perp}$ is contained in the H-orbit of f. Hence the restriction map defines an H-covariant isomorphism between the algebra of H-invariant polynomial functions defined on Γ_{f} and the algebra of H-invariant polynomial functions defined on $f_{\mathrm{lc}}+\mathfrak{h}^{\perp, c} \subset \mathrm{c}^{*}$. Hence, we can suppose that $G=C$. In particular b is now a normal subgroup of \mathfrak{g} and $\mathfrak{g}=\mathfrak{b}+\mathfrak{b}$.

The Fourier transform denoted here by U maps the space $L^{2}(G / H, f)$ onto the Hilbert space $L^{2}\left(\Gamma_{f}\right)$. The transformation U is defined for $\xi \in \mathscr{P}(G / H, f)$ by

$$
U(\xi)(\phi)=\int_{B / B \cap H} \xi(b) \chi_{\phi}(b) d \dot{b}, \phi \in \Gamma_{f} .
$$

Let us take a Malcev-basis $\mathscr{X}=\left\{X_{1}, \cdots, X_{r}\right\}$ of \mathfrak{g} relative to \mathfrak{b}. Since $\mathfrak{g}=\mathfrak{b}+\mathfrak{b}$, we can assume that $\mathscr{X} \subset \mathfrak{b}$. But then for any $\phi \in \Gamma_{f}$, the set \mathscr{X} is also a Malcev-basis of \mathfrak{b} relative to $\mathfrak{b} \cap \mathfrak{b}=\mathfrak{h} \cap \mathfrak{g}(\phi)$. We can write then U in the following form:

$$
U(\xi)(\phi)=\int_{\boldsymbol{R}^{r}} \xi\left(\exp \left(t_{1} X_{1}\right) \cdots \exp \left(t_{r} X_{r}\right)\right) e^{-i\left(I_{k=1}^{r} t_{k} \phi\left(X_{k}\right)\right)} d t_{1} \cdots d t_{r} .
$$

Hence in these coordinates U is just the ordinary Fourier transform on \mathbf{R}^{r}. We can transfer the representation τ of G on $L^{2}(G / H, f)$ to $L^{2}\left(\Gamma_{f}\right)$ with this map U and we get a representation of G on $L^{2}\left(\Gamma_{f}\right)$. In particular,

$$
\rho(h) \eta(\phi)=\chi_{f}(h) \eta\left(A d^{*}\left(h^{-1}\right) \phi\right), \rho(b) \eta(\phi)=\chi_{\phi}(b) \eta(\phi)
$$

for $b \in B, h \in H, \eta \in L^{2}\left(\Gamma_{f}\right)$.
Let now D be an element of $D_{\tau}(G / H)$. Then D commutes with $\tau(b)$ for all $b \in B$. Furthermore, D is represented by an element of the envelopping universal algebra $\mathfrak{u}\left(\mathrm{g}_{\mathbf{c}}\right)$ of $\mathrm{g}_{\mathbf{c}}$, hence, it can be written on $S(G / H, f)$ as a differential operator with polynomial coefficients. Let $D^{\prime}=U \circ D \circ U^{-1}$ be the corresponding operator acting on $S\left(\Gamma_{f}\right)$ the Schwartz space of Γ_{f}. Then, since U is the ordinary Fourier transform,
D^{\prime} is also a differential operator with polynomial coefficients and D^{\prime} commutes with the multiplication with the functions $e^{i(\cdot)(X)}, X \in \mathbf{b}$, and hence D^{\prime} is itself a multiplication operator with a polynomial function P_{D}. As D commutes with the action of H, the function P_{D} must be H-invariant. Then P_{D} is a H-invariant polynomial on Γ_{f}. On the other hand, if P is a H-invariant polynomial on Γ_{f}, then the multiplication with P defines an operator D^{\prime} on $S\left(\Gamma_{f}\right)$ which commutes with the action of G. Hence $D=U^{-1} \circ D^{\prime} \circ U$ is an element of $D_{\imath}(G / H)$. Hence we see that $D_{\tau}(G / H)$ is isomorphic to the algebra of H-invariant polynomial functions defined on Γ_{f}.

Faculté des Sciences de Sfax, Département de Mathématiques, Route de Soukra, 3038 Sfax, Tunisia
e-mail: Ali.Baklouti @ fss.rnu.tn
Université de Metz, Département de Mathématiques, Ile du Saulcy, 57045 METZ Cedex 01, France
e-mail: ludwig @ poncelet.sciences.univ-metz.fr

References

[1] A. Baklouti et J. Ludwig, Opérateurs d'entrelacement des représentations monomiales des groupes de Lie nilpotents, Journal of Lie Theory, 9(1999), 157-191.
[2] A. Baklouti and J. Ludwig, Invariant Differential Operators on Certain Nilpotent Homogeneous Spaces, Monatshefte für Math., to appear.
[3] P. Bernat, Sur les représentations unitaires des groupes de Lie résolubles, Ann. Scient. Ec. Norm. Sup., 82(1965), 37-99.
[4] P. Bernat et coll. Représentations des groupes de Lie résolubles, Dunod, Paris, 1972.
[5] L. Corwin, F. P. Greenleaf and G. Grélaud, Direct integral decompositions and multiplicities for induced representations of nilpotent Lie groups, Trans. Amer. Math. Soc., 304(1987), 549-583.
[6] L. Corwin and F. P. Greenleaf, Commutativity of Invariant Differential Operators On nilpotent Homogeneous Spaces with finite Multiplicity, Communications on Pure and Applied Mathematics, XLV(1992), 681-748.
[7] L. Corwin and F. P. Greenleaf, Spectral decomposition of invariant differential operators on certain nilpotent homogeneous spaces, J. Func. Anal., 108(1992), 374-426.
[8] B. N. Currey, Smooth decomposition of finite multiplicity monomial representation for a class of completely solvable homogeneous spaces, Pacific. J. Math., 170(1995), 429-460.
[9] J. Dixmier et P. Malliavin, Factorisation de fonctions et de vecteurs indéfiniment différentiables, Bull. Sc. Math., seconde série 102(1978), 305-330.
[10] H. Fujiwara, Représentations monomiales des groupes de Lie résolubles exponentiels, 61-81 dans: Duflo, M., Pedersen, N. V., Vergne, M. (eds) The orbit method in representation theory. Proceeding, Copenhagen 1988: Birkhauser, 1990.
[11] H. Fujiwara, Unitary representation theory for solvable Lie groups, Sugaku Expositions, Amer. Math. Soc., 2(1989), 125-140.
[12] H. Fujiwara et S. Yamagami, Certaines représentations monomiales d'un groupe de Lie résoluble exponentiel, Adv. St. Pure Math., 14(1988), 153-190.
[13] H. Fujiwara, Représentations monomiales des groupes de Lie nilpotents, Pacific Journal of Mathematics, 2(1987), 153-190.
[14] H. Fujiwara, Sur la conjecture de Corwin-Greenleaf, A paraitre dans Journal of Lie Theory.
[15] G. Grélaud, Sur les représentations des groupes de Lie résolubles, thèse. Université de Poitiers, 1984.
[16] A. A. Kirillov, Représentations unitaires des groupes de Lie nilpotents, Uspekhi Math. Nauk., 17(1962), 57-110.
[17] R. Lipsman, The Penney-Fujiwara Plancherel formula for abelian symmetric spaces and completely solvable homogeneous spaces, Pacific. J. Math., 151(1991), 265-295.
[18] R. Lipsman, The Penney-Fujiwara Plancherel formula for homogeneous spaces, Representation Theory of Lie groups and Lie Algebras, (Fuji-Kawaguchiko, 1990). World Sci. Pub., River Edge, NJ. (1992), 120-139.
[19] R. Lipsman, The Penney-Fujiwara Plancherel formula for symmetric spaces, 135-145 dans: Duflo, M., Padersen, N. V., Vergne, M. (eds) The orbit method in representation theory. Proceeding, Copenhagen 1988: Birkhauser, 1990.
[20] R. Penney, Abstract Plancherel theorems and a Frobenius reciprocity theorem, J. Func. Anal., 18(1975), 177-190.
[21] L. Pukanszky, On the theory of exponential groups, Trans. Amer. Math. Soc., 126(1967),487-507.
[22] S. R. Quint, Decomposition of induced representations of solvable exponential Lie groups. Dissertation, Univ. of California, Berkeley, 1973.
[23] M. Vergne, Etudes de certaines représentations induites d'un groupe de Lie résoluble exponentiel, Ann. Scient. Ec. Norm. Sup., 3(1970), 353-384.

