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The Penney-Fujiwara Plancherel formula
for nilpotent Lie groups

By

Ali BAKLOUTI and Jean LUDWIG

Abstract

We prove the Penney-Fujiwara Plancerel Formula associated to a monomial
representation of a  nilpotent Lie group. We give also a short proof of a theorem
due  to Corwin a n d  Greenleaf abou t the  algebra o f differential operators on
certain nilpotent homogeneous space.

O. Introduction

L e t  G  b e  a  nilpotent connected sim ply connected L ie  g ro u p  w ith  Lie
algebra g. L e t  99 (G) denote the Schwartz-space of G, i.e. the space of all complex
valued functions (p• o n  G, such that foexp is  a  ordinary Schwartz-function on the
vector space g. L e t  b be a subalgebra of g. Let feg*  be such that <f,[h,h] > =(0).
W e obtain a  unitary character z 1  o f  H=exp(h) by letting

xf (exp(Y))=e - '<f• Y ' ,  Yet).

Let .4= {X1 , •••, Xr } be a  Malcev-basis relative to  h, i.e. g = E r , i . RX,Oh and for
any j =  1, • • •, r, the  subspace gi =span{Xi , • • •, X r ,  h }  is  a  subalgebra. The mapping
Ea : R' - +G/H: Em (t,, • • •,tr ) = exp(t,X 1) • • • exp(tr X r)H  is  th e n  a  diffeomorphism. We
obtain a G-invariant measure dk=4„k on the quotient space GIH by setting

(g)d = (E6s(T))dT, eCr(GIH),
fG /H

where Cr (GIH) denotes the space of the continuous functions with compact support
on  GIH.

Let Y(GI H,f) be the space of all C-functions  c on G, such that (gh)=x 1 (h - 1 ) (g)
for all g e G ,h e li and such that the function T F - 3 ' ( E a (T )) is  a  Schwartz-function
on R .

 P i c k  a  Haar measure dh of H  and let for yo e .91G)
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PH , f (go)(g)=P((p)(g)= cp(gh)xf (h)dh,gEG.
H

It is easy to see that P((p) is in 9(G1H,f) and that the mapping P is linear surjective
and  continuous, if  we provide our spaces with the  standard  Fréchet topologies.
Let S H i. be the tempered distribution on G defined by

< S H ,f , > — PH , f ((p)(e)— (p(h)xf (h)dh,(pe e.1 7 (
H

We observe that the distribution SH , f  is Tf  -H  invariant, i.e. for any h E H , we have
that Ah(SH ,f )=x f (h)Sn ,f , where Ah denotes left translation by h. Indeed, for
yo e 9 9 (G)

< 4(4,4 ,(p> = < SH,f, An- i(p>

= f01111')Xf(11)dh' =X f (11) (1)(h')xf (k)dh' = X f (h)< S H  ()9f , > •
H H

L et now  H=exp(b) and  K=exp(t) be two closed connected subgroups o f  G
and f  b e  a n  element in  g *  sucht tha t I) a n d  f  a re  subordinated to f  We can
construct a  Tf  -invariant distribution SZ 1  o n  9 9 (G I H ,f ) in  the following way. Pick
a  K-invariant measure dk  on K IK n H  and let

< S , 1 , ( k)xf(k)dk.
KIHnIC

It follows as above that for all ke K

< S 1 , -  >  =  X i ( k )  <  S > ,  Y (G I , f), k e K.

L et Oeg* a n d  le t b  b e  a  polarization at 4). L et B=exp(b) a n d  le t  xo  b e  the
character of B associated to 0 .  It is wellknown that the representation no = Indg xo

is irreducible and tha t the space Y (G I B, 0) is  in  fact the space of the C'-vectors
of n

o  
(see [1]).

Let now H=exp(b) be a  closed connected subgroup of G and let -c= Indg xf  b e  the
monomial representation induced from xf . It has been show n in  [1 ]  that there
exists a certain affine subspace 1̂7 . o f  Ff  =f + L g ,  such that

ir
o
dck = T', (0.1)

where cht. denotes Lebesgue m easure o n  1̂7 . a n d  w here  no i s  th e  irreducible
representation associated to (/) (0e .V.).

The general distribution-theoretic Plancherel formula is due to Penney (see [20]). It
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is associated to a  desintegration of an induced representation and it is  of the form

< t(co)cit , at > =  <  no (co)130 ,130 >d4),we.91G), (0.2)

where ot, is the canonical cyclic generalized vector for t  and 130  is  an (appropriately
H-covariant) generalized vector for no . In general the determination of appropriate
distributions is problematic. In the case when G is nilpotent, (0.2) was obtained by
F u jiw ara  in  a  different form (see [13]) w hen th e  multiplicities occuring in the
decomposition (0.1) are  finite. Groundbreaking work o n  extending results o f [13]
to other classes of homogeneous spaces has been done by Fujiwara and Yamagami
[12] and Lipsman [17, 18, 19]. However, beyond the nilpotent case the technical
difficulties involved in  (0.2) are  considerable. Recently, Currey studied a  class of
completely solvable h o m o g en eo u s sp aces  w h en  t is  in d u ced  fro m  a "Levi"
com ponent. In this situation, he overcomes these problems and he gives an explicit
and natural construction for a smooth decomposition.

The first aim of this note is a  desintegration of the distribution SH, f  into an integral

4 0 . 4 40  in pure distributions SB (0) ,0 of positive type associated with the irreducible

representations no, where '17 .  is  a certain affine subspace o f  g * . In  other words, we
are going to prove (0.2) without taking into account the multiplicities occuring in
the decomposition (0.1).

In the second part of the paper we give a short proof of the main result of [ 7 ] .  Let

C(G,T )= C NG): (gh)= x(h -  i )(g), geG, he H}

Let Diff(G) be the algebra of all C"° differential operators taking CNG, t )  into itself,
and  ',(G M )  th e  algebra of operators D I C (G , T) of De Diff(G) commuting with
the action of r  on tha t space . This algebra of differential operators is commutative
(see [6]). Com m utativity was proven by showing that D(G! H) is isomorphic to
a generating subalgebra of the field C(f +1) 1 )" of Ad*(H)-invariant rational functions
on  Fs . In  [6], Corwin and Greenleaf have formulated the following conjecture:

If m(n)‹ co for generic nespec(r), then D(GI H)'-'C[f+1) 1 ]" , where C[f+1) -1 11 is the
algebra of AcI*(H)-invariant polynomial functions on 1-

1 .

Later, Corwin and  Greenleaf proved in  [7] th is conjecture when there exists
a  subalgebra which polarizes all generic elements in  f f  a n d  normalized by b.

Very recently, we have proved in  [2] (and Fujiw ara in [14]) this conjecture
when there exists a  subalgebra which polarizes all generic elements in  f f  and  in
particular when H  is a norm al subgroup of G.

1. The Penney- Fujiwara Plancherel Formula

1.1. Let H=exp(4) be a closed connected subgroup of the connected nilpotent
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Lie group G= exp(g). Let fe g* such that <f,[4,1)] > = (0) and let xf = exp( — ifih). log
be its unitary character on H . It has been shown in ([1]) how the representation
2=itld5Xf can be smoothly disintegrated into irreducibles. There exists a Zariski-open
subset'17.

0 o f  r  w i t h  the following properties. F or every O e 'r, there exists a
polarization B(0) = exp(b(0)) at 0, a Malcev-basis

x(0) = xi(0), x/(0)}
of g relative to NO), a Malcev-basis

10)= { 371145), • • Y .(0)}

of NO) relative to t) n b(0) and a Malcev basis

V(4))= {U1(0), U(0)}

of t) relative to 1)(-) NO), such that the mappings

XJ(0 ; Yi(0); U;(4))

are rational and continuous on 'V , for all j. The projections

To :91G1H,f)—...99 (GIB(0),0)(0e1/(;)

given by

T (0(g)= J
( g b ) x 0 ( b ) 4 ( 0 )  b, eY (G1H,f),geG,
B(0)in B(0)

allow us to define an operator

â)
U:S(GIH,f)— Jr do =,Y4,,

(where ..rfo  = L 2 (G/B(0), 0) denotes the Hilbert space of the irreducible representation
n )  by setting

moo = Too Gieo, e

This mapping U is in fact an isometry for the L 2-norms and extends to a  unitary
operator from .14=1, 2 (GIH,f ) onto .Y4, (see [1]). This operator diagonalizes the
action of DAG/H) (see [2]), that is for all DENG111), there exist a  function 13 on
rf  such that for all eS(G1H,f), one has

U110010) = 130) WX46), e r .o.

Let dh be a Haar measure of H . We choose now for any 4)e'' a Malcev basis

-T(0)= {Z1(0), • • Z,(0)}
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of 6(0) ni), such that for the Malcev basis .R(0)= v (4)u ff(4)) of b the measure dm o )

is just the given measure d h .  Let also (N'(0)-= .2°(0)u &(¢)) be the Malcev basis of
b(0).

We shall use this isometry to prove the Penney-Fujiwara Plancherel theorem.

1.2. Theorem. Let G be a connected, simply connected nilpotent Lie group, H
a connected Lie subgroup, and z =z 1  a  unitary character on H associated with some
feg* such that f i b is  a Lie homomorphism. Let 1/ . (resp. '17 . 0 ) the affine subspace of
rf  (resp. the open dense subset of  -r) as in (1.1). Let T(çb), (), all(4)), f f (0), M O),

'((/)) also as in (1.1) f o r oe-ro . W ith the normalizations of  the measures given by
these bases one has f o r any  4,e99 (G)

<S H ,f ,(p> = f <S e cp>
-vo

where So denotes the tempered distribution on S (G) defined by

<S
0 '

, > = f To (p„, f ((,),(h), f (h)d ,
11113(OnH

= <4 0 , T o(P„, f (cp))> , (pe Y(G), 4 e 0 .

P ro o f  Let 0 0 e 9 ° (G ) . W e shall show that

f
<S H ,p (p**tli> = <S 0 ,(p**0>d4).

"Vo

(1.2.1)

Since th e  factorization theorem o f  Dixmier-Malliavin says that every Schwartz-
function p is of the form p=yo**0 for some elements cp, 0 in Y (G) (see [9]), the theorem
follows from (1.2.1). A standard computation tells us that

(p* = (f  4 9 (gh)Xf(h")dh')(f Ill(gh)xf(h)dh)dk
G / H  H H

= <PH ,j( tP) , PH ,f ( ( P)> L 2 (G/H,f) ,

where dg is the G-invariant measure on GIH which is choosen such that dg=dgdh.
L et n o w  = P„, f (T ), =P H ,f (111)e.r(G1H,f). T he fac t tha t the  m a p  U  is  an

isometry tells us that

< To 01), TP >  Jr, c14) = < U(1), U()> =  <  17, > L 2 (G 1H, f ) .L
Hence in  order to prove the theorem, it suffices to show tha t for e v e r y  e-ro we
have that
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< T o(n), T 0 ( 0 >  o = < S cp . (1.2.2)

W e w rite P= PH J , B  = . Y 11 =011(0), = M (0), (N ' =g'(0),
=  ( 0 ) .  We see that

< T  ( n )  T 0 >  =( [(1. n(gb)x (b)d b)( (gb)xo(b)dvh)]dxg.o o .1(0 GIB BIBnli

= f [O . (1 . 1 1 1 (g b h )X  f (h )d  ah )X  (b )C 4 b )
GIB BIBnH H

(f ( f  yo(gbOx f (h')d gsh')xo(b)dg,b ) ]d  .  ( 1 . 2 . 3 )/ B n H  

On the other hand

To(P((p* *(0)( h) = ( ( (P * *tfr)(hbOxf(lf)d,h'x o(b)dwb
H

(1. f cp*(g)0(g -  hbli)dg x f (10411' xo (b)d,b
B /B rH 1-1 G

= ( f (p(gh -  )0(gblOdgx f (h)dgeh'xo(b)4h
B/Bnll H G

= cp(gh- )n(gb)dgx o(b)d,b
BIBnH G

=  To (n)(g)(p(gh - l )dg
G

J
J'  f  9 (g b h -  l )T (n)(gb)4,bdd

G i B B

.f cp(gbh-I)To(n)(g)xo(b-
G /B  .

1)4bdx g .

It follows that

<S (f)
95'

= T (P(9* *11f)Xh)xf (h)dh
.HIBnH

=f (p(gbh -  )7' 0 (11)(8)4(b')db)dIghl f (h)d,h
1-11Bnif GIB B
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= [ f (p(gbh- 1)x 0 (b)T o (n)(g)cl,y ,b)d a rgh f (h)doi,h
111BrIH G I B  B

The operator ir 0(y 9*) is Hilbert-Schmidt, its kernel is the function

1(g, g') = (p(gbg' 1 )x o (b)clw

and the function (g, h)i
we can deduce that

..9°(H1 B r H,f). Hence, using Fubini,g(g, h) is in .99(G I B, 4))

< S *0 > =4,4 *
f

cp(gbh- )7' f(h)dvhda-k.o (n)(g)x o (b)cly ,bx
G1131H I B nlIfB

(1.2.4)

Now for any qe Cc (G) we have that

q(b' h 1)x f (h)z o (b)clg ihd&b' = f q(b'h- 1)x o (h)
B H IIInB

X (0c1 (1.2.5)

Indeed,

q(b' h -  1 )x (H )d  h d  = q(Ev(T)(Ea(S))-
f 13/13nH fH

95
(h)x 

45g g
1 1 ” , R r  P

X (4(7))x  0(E g ,(S))dSdT

= q(4(7)(Eq,(S)E 5,(R)) -  1 )4(E v (1))4(E v (S)E.T(R)dRdSdT
R" ,  R P  IV-

= f q(E3,(7)(Eir (R) -  1 (E (S )) 1) 4 ( 4 ( 7 ) ) 4 ( E I A S ) E  x (R)dSdRdT
RP

= Rpq(
4,(7)(E v(S)) -  X 0(Ev'MX,p(Eu(S)dSdT

q(b' h 1)xo (h)xo7b)6hd ,,b '

Hence by (1.2.4) and (1.2.5), we have that
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1)To (q)(g)x o (b)dq,,bx f (h)4 h ) d r go'
< S  9 * * I i i >  =

fG1B(fHIBnil fB(19(g1311 -

fT=

= f T 0(0(4  f f cp(gbh -  )x f (h)dm hX0 (b)4b)d a t
GIB BIBnIf H

 001)(g)T  0(0(6 4 (4*
GIB

= G 7' 0 00, T 0 (0 > ,,,,o .

1.3. Corollary. W e keep th e  same hypotheses and  n ota tion s a s abov e. Let
OE'Vo  a n d  ille5"(GIB (0),0). Let

fHIB(0)nH

then we have that f o r  all w eg(G) that

<S f f ,f ,w> = <T(co)oc t ,a,> = f  <n o ((o)fl 0 ,130 > do,

where oc, is th e canonical cyclic genaralized vector f o r  t  i.e oc 0=(e), 6 ,91G 1H ,f ).

Indeed, it's not difficult to see that < S I/  p CO > = GT(COCC„ OCT >  (see [12, 13]). On
the other hand the following computation in ([12], page 177) tells us that for 0 1 7 .

0

we have

flo(0)= < s ) ,  Ifr > = 1/i(h)x1(h)d,wh, (1.3.1)

-v

for all w e ( G )  and theorem (1.2) permits us to conclude.

2. Invariant differential operators

Let G, H f  e.c.t. be as in the introduction. Let

C NG, -c)= R e C' (G) : (gh)= x(h -  l )(g),g e G, he I-1}.

Let Diff(G) be the algebra of all C  differential operators taking Cœ(G,T) into itself,
and  ',(G IN ) the  algebra o f operators DI C (G ,T ) o f DeDiff(G) commuting with
the  ac tion  o f t  o n  th a t  sp a c e . Let F 1  =f+131 . I t  i s  wellknown th a t th e  finite
multiplicity condition for t  is equivalent to the condition tha t for one and hence
for almost all OeFf , we have that

2 dim(Ad*(H)4)=dim(Ad*(G)0).
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(see [5]).
The aim of this section is to give a short proof of the following theorem proved

by Corwin and Greenleaf in  [7].

2 .1 .  Theorem. L et g  be  a  nilpotent L ie algebra. L et fe g *, and b, b two
subalgebras of  g. Suppose that b is subordinate to f, i.e  < f ,  [I),  = (0) and that b
is a polarization in 4) for all 4e r1  = f +  I)±  in general position and that b is normalized
by b. Let G= expg, H=expb, B = exp b . Suppose in addition that the representation

=Ind?, x f  o f  G  is decomposed on Ô with finite multiplicities. Then the conjecture
(0.3) hold.

Proo f . F irst o f  a ll, le t u s  rem ark  that c=b +b is  a  subalgebra o f  g , a s  b
norm alizes b . L e t C=exp(c). T h e n  = Indg t o where T o = I n a  x f  a n d  so  b y  [6,
(35)] the  algebra D,(G I H) is isom orphic to the  algebra D,o (C /H ) . O n the  other
hand, by the finite multiplicity condition, we know that ad*(b)( f ) c1  a n d  so f +
is contained in the H-orbit of f  H e n c e  the restriction map defines an H-covariant
isomorphism between the  algebra of H-invariant polynomial functions defined on
r f  a n d  th e  algebra of H-invariant polynomial functions defined on f ic +b -Lcc c*.
Hence, we can suppose tha t G = C. In  particular b is now  a norm al subgroup of
g and g=b+b.

The Fourier transform denoted here by U maps the space LA G' H,f) onto the
Hilbert s p a c e  O ff). The transformation U is defined f o r  e9"(G1H,f) by

U()(4)) = f (b)x,o(b)c/i3, (/) rf .
BIBrIH

Let us take a  Malcev-basis = {XI, • •., X,.} of g relative to  b . S in c e  g=b +b, we
can assume that c b. But then for any cker f , the set X  is also a  Malcev-basis
of b relative to  b nb =1)(--)9(4)). W e can write then U in  the  following form:

U()(44=
 f i r

 &xP(I1X1). •exP(t,X* -  i ( E rk. = l̀ k4'( x k ) ) d t  •

Hence inin  these coordinates U is ju s t the ordinary Fourier transform on W . W e
can transfer the  representation t of G  on  LA G I H,f) to  LAFf )  w ith  th is m ap U
and we get a  representation of G on LAr f ). In particular,

PV0r1(4))= X f(h)rgAdVi -  1 0), P(13)11(0)= X 0 0) 11(0

for beB ,heH,rieLA Ff ).
L et now D  be  a n  element of Dt (G IH ). Then D  commutes w ith t(b) for all

b e B . Furthermore, D  is represented by an  element of the envelopping universal
algebra u(g) of ge , hence, it can be written on S(GIH,f) as a differential operator with
polynomial coefficients. Let D' = U. D o  U - 1  b e  the  corresponding operator acting
on S(r1 ) the Schwartz space of Ff . Then, since U is the ordinary Fourier transform,
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D' is also a differential operator with polynomial coefficients and D' commutes with
the multiplication with the functions e " (x ) , X eb, and hence D' is itself a multiplication
operator with a polynomial function P D .  A s D  commutes w ith the action of H,
the  function P» m ust be  H -invariant. Then PD  i s  a H-invariant polynomial on
Ff . On the other hand, if P is a H-invariant polynomial on rf , then the multiplication
with P defines an operator D' on S (F1) which commutes with the action of G .  Hence
D = U - 1 o D' o  U is an element of D t (G I H ). Hence we see that N G ' H ) is isomorphic
to  the algebra of H-invariant polynomial functions defined o n  Ff .
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