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A  Fleming—Viot process with unbounded selection

By

Stew art N . ETHIER and Tokuzo SHIGA

Abstract

T ach ida  (1991) p roposed  a  discrete-tim e m odel o f  n e a r ly  n e u tra l m u ta tio n  in w h ic h  the

selection coefficient o f  a  new m utant has a  fixed normal distribution w ith  m ean  0 . T he usual diffusion
approxim ation le a d s  to  a  probability-measure-valued diffusion process, known a s  a  Fleming—Viot
process, w ith  t h e  unusual feature  o f  a n  unbounded selection intensity function. A lthough the
existence o f  such a diffusion has been proved by Overbeck e t al. (1995) using D irichlet forms, we can
now characterize the  process via the  martingale problem. T his leads to a  limit theorem justifying the

diffusion approximation, using a  stronger than usual topology on  the  state space. Also established are

existence, uniqueness, a n d  reversibility o f  th e  stationary d istribu tion  o f the  Fleming—Viot process.

1. Introduction

Tachida's (1991) nearly neutral mutation model (or normal-selection model)
is most easily described in  terms o f  a  Fleming—Viot process with house-of-cards
(or parent-independent) mutation and haploid selection. In particular, the set of
possible alleles, known as the type space, is a  locally compact, separable metric
space E , so  th e  state space fo r  th e  process is (a subset of)  .P (E ) , the  se t o f
Borel probability measures on E ; the mutation operator A  on  B (E), the space of
bounded Borel functions o n  E , is given by

1
A f  = -

2  
O(<f, f ) ,

where 0 > 0, v o e  Y (E), and <f , > := SET du ;  and  the  selection intensity (or
scaled selection coefficient) for allele x e E  is h(x), where h  is a Borel function on
E .  M ore specifically, Tachida's model effectively assumes that

(1.2) E = R, vo = N(0, oi), h(x) x,

where a >  O. In  other w ords, th e  ty p e  o f  a n  individual is identified with its
selection intensity, and tha t o f a  new mutant is taken to be normal with mean 0
and variance ri(

2
) .

Ethier (1997) derived some properties of what was presumed to be the unique
stationary distribution for this process, but a characterization of the process. as
well a s  a  proof of the uniqueness of the stationary distribution, were left as open
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prob lem s. In  this paper we treat these and related problem s. The difficulty. of
course, is that the function h  is unbounded. Overbeck et oL  (1995) were able to
prove the existence of Fleming-Viot processes with unbounded selection intensity
functions using Dirichlet forms, but they did not address the issues of existence and
uniqueness of solutions of the martingale problem . These issues were addressed
by Albeverio and Riickner (1995) and Overbeck (1995), but only under conditions
tha t are to o  restrictive for (1.2).

In  a  second paper, Tachida (1996) pointed o u t tha t the re  is  n o  biological
reason fo r assuming normality of vo, and considered instead a  family o f distri-
butions o n  R  symmetric about O. I n  this paper w e w eaken (1.2) a s  follows.
Let E, vo, and h be arbitrary, subject to the condition that there exist a  continuous
function h o : E  [0, oo) and a constant po  c (1, oo] such that

(1.3) h  <  ho, <e P h °  '0 > < o o  whenever 0 < p < Po.

The second condition in (1.3) is simply that v0h 0
- 1  h a v e  a  m o m e n t generating

function that is finite on (0, po )  fo r  some po  >  1 .  T his assumption is in force
throughout the paper.

Consider Tachida's (1996) family of distributions (with E  = R , h(x) x ,  and
ho = 1h1). C o n d itio n  (1 .3 )  is satisfied w ith po  = o o  i n  a ll  b u t o n e  c a se . T h e
exception is  the symmetrized exponential distribution

1
(1.4) v o ( d x )  —  e x p  ( - - • 1 2 1 , x 7 o -

o )dx,
0 o -

0

which is parametrized here by its standard deviation o-o  >  O . I f  co <  0 ,  t h e n
condition (1.3) ho lds w ith  p o =  0 /a o .  W e  w il l  r e tu r n  to  th is  e x a m p le  in
Section 4.

The generator of the Fleming-Viot process in question will be denoted by .Th
to emphasize its dependence on the selection intensity function h. (Of course , it
also depends o n  E, v o, and  O.) It ac ts o n  functions ço o n  :0 (E ) of the  form

(1.5) 40(P) =  F( <fi •  •  •  <fh • P>) =  F( <f• 0 ) ,

where k  > 1 , f 1 f k  c C (E) (the space of bounded continuous functions on E).
and  F E C 2 (R k ), according to the formula

(1.6) (-99h(o)(p) = (< .f , ti> - P.>< p ,  i t> )
i=1

( <A fo i > + (0 ,  it> -  0<h, ti >)Ez, ( < 0 ).
i - 1

This suffices if h  is bounded (e.g. h 0), bu t if no t, because <f ili,p > and  <h,p>
appear in (1.6), we need to restrict the state space to a  suitable subset of .:3 (E).
We take as our state space the set of Borel probability measures p  on E that satisfy
the condition imposed on 1 ,

0 in (1.3).
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L et us therefore define

(1.7) (E) = {p c %,(E) : <eP h ') , p> < x  f o r  each p E (0, po )}

and, for ,u, v E -.??° (E),

(1.8) d° (p, = d(p, f 1 A  s u p  1<ePh ", p> — <ePh " , v>1 e ' d r.
. A p o )

where d  is  a  metric o n  .,%)(E) that induces th e  topology o f  weak convergence.
Then (Y ° (E), d°) is  a  complete separable metric space and  ci°(p„„u) —> 0 if and
only if =  and sup„<ePh (),,u„> < op for each p E (0, po ). (This is where we use
the continuity of ho .) Thus, the topology on ??°(E) is somewhat stronger than the
topology of weak convergence (if ho is unbounded).

S e c t io n  2  establishes existence a n d  uniqueness o f  s o lu t io n s  o f  th e
appropriate martingale problem for ..29 h. Surprisingly, existence is more difficult
than uniqueness. Section 3 gives a  precise description of Tachida's (1991) model
a s  a  measure-valued Wright—Fisher model and proves a  weak convergence result
th a t justifies the diffusion approxim ation of th a t m o d e l b y  the Fleming—Viot
process with generator .29h. The idea of the proof is to  show that the Girsanov
form ula for the Wright—Fisher model converges in som e sense to  that for the
Fleming— Viot process. Section 4 establishes existence, uniqueness, a n d  revers-
ibility o f the  stationary distribution of the Fleming—Viot process.

Two obvious problems remain unresolved, namely (a) justification of the
diffusion approximation of the stationary distribution of the Wright—Fisher model
by that of the Fleming—Viot process, and (b) proof of the strong ergodicity of the
Fleming—Viot process.

2. Characterization of the process

Let Q  : =  C ( (E ) ,d ) [0, c o )  h a v e  th e  topology o f  uniform  convergence on
compact sets, let ' be the Borel a-field, let fp,, t > 01 be the canonical coordinate
process, and let { ,';}  be  the corresponding filtration.

W e will need a  lemma from Ethier (1997), which is essentially a  result of
Dawson (1978).

Lemma 2.1. L et h i h ,  E B ( E ) .  I f  P E 3 (S2) is  a  solution o f  th e  martingale
problem  f or Y h i ,  then

(2.1) R t := exp{ <h2, — <h2 , > 0 (<h22 , Ps> <h2, fis> 2 )2

„ , , , , „ ,
+ —

2  
ti v/2 , vo/ — 11,i I + n2, 11,2 — )V 12, sdds}
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is a mean-one {A } -martingale o n  (Q „97 , P ) .  Furthermore, the measure Q n
defined by

(2.2) dQ = R, dP on t > 0,

is a so lu tion  o f  the  martingale problem j r  Y h i +1,2 .

We now define

(2.3) Q° — C(go(E) , d0)[0, 00) Q — C( . ."(E) , ( 0 [0 , 00 ).

For each p c .#1(E) we denote by Pi , c  --9(5-2) the unique solution of the martingale
problem fo r Y o ( i.e ., the distribution of the neutral model) starting at p.

Lemma 2.2. F o r each p c _0°(E), T  > 0, p  c  (0, po ), a n d  ), > <e l"' p> +

—
1 

O T < eP h " >,2

(2.4) sup < e /Tho, > > < (1 + 1- OT) ( < e ° ,  p> y  <ePh", vo>)
P { pi .11

i ' l 0 < t < T /1, — <ePho , p> — OT<ePho , vo> .

In  particular, given p c .'-?° (E ), we have supo< t<  7- <ePh(), ,tt,> < oo Pi r a.s. for each
p c (0, po )  and T >  0 ,  an d  therefore P1,(Q°) = 1.

R em ark. Ethier (1997) assumed in  effect that po =  co and  used

_3(2.5) E PP [  s u p  <ePh", p, > 2(  12T  +  3)0 2Ph(), it> +  1 2 T  +  0 27,2 <e2pho  vo >

40 < t< T

in  p lace  o f (2.4). (Actually, the form ulation in  the previous paper contains a
small error, and  (2.5) is  the  corrected version.)

P r o o f  Fix p c ; (E ) and g c  B (E ) . N ote first that

(2.6)E ' p t >] = <U(t)g,p>

= e—"tl2 <g,p> + (1 — e— "1/2 )<g, vo> <g,ii> y  <g , vo>

for all t > 0 , where { U(t)}  is the semigroup on B (E) with generator A  as in (1.1).
Assume tha t g  is also continuous; then

(2.7) Z °(t) := <g ,p,> — <tt, Po> — 0(<g, vo> — Ps>)ds

is a  continuous { }-martingale o n  (Q, .97 , Pp ). Assume that g  is nonnegative as

w ell; th e n  <g , 1.0 Z 0 (t) + <g, po > + —
1

0 t<g vo >  f o r  a l l  t > 0. Consequently,
2

given T  > 0  a n d  >  <g,p> + —
2

0T<g, v o >, we have
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(2.8) Pi i {  s u p  <g,11,> > < Pp {  sup Z ° ( t )  > 2—  <g„ti> — 
1
—
2

OT<g,vo>}
0<t < T 0 < ,< T

E PP [Zg ( T) + ]
— <g yo>

E PP [<g, pT > +O $  <g us >ds]
— — <g, p> - <g 0>

+0T)(0,1 4> y <Y,P0>) 
— 2 — <g — OT <g v o >

where the  last inequality uses (2.6).
I f  w e  n o w  assum e th a t  it E ??°(E) a n d  le t  g = e h (' A  K  i n  (2.8), where

J) E (0,p0 ), w e obtain (2.4) by letting K oo.

Let ,52° have the topology o f uniform convergence on compact sets. let .37 c
b e  the Borel a-field, le t  fp,, t > O f be  the  canonical coordinate process o n  0'.
and let 

{ . ry }
 b e  the corresponding filtration. We do  not distinguish notationally

between the canonical coordinate process on Q  and tha t on Q°  (the la tter is just
the restriction to  Q° of the the former), between Pp . E .(! , ( Q )  and its restriction to
'37 °  (note tha t 37 ° OE ,97 ), o r  between R , o f (2.1) an d  its  restriction t o  Q .  W e
temporarily denote R, by R,h1 ' 1±h2 to indicate its dependence on hl and h2 , which
we now allow to be unbounded.

Lemma 2.3. For each It c {R ," ,t  >  0} is a m ean-one f .°} -m artingale
o n  (0°, 37 °, Pp ).

P ro o f  It is enough to  prove the existence of 60 > 0 such that

(2.9) EPP

whenever t > 0  a n d  0 < 6 < 60 . F o r  then, given t > s > 0, choose s = to < t1
< • • • < t„ = t with max, < i< „(t i — ti_i ) < 60, and argue that

n  R O, h 1
H  

R

'  <?),- ° =  1
i= i

h
 ,

by successively conditioning o n  ,37,:: i ,... , 37,°.

Define hK  =  (—K) y  ( h  A K), and note that, for fixed t > 0, (2.9) holds for all
6 > 0 if  h  is replaced by hK ,  and hence

 

13 T y  —  c ,<IIK.,u, >+( 1 /2)0,jo k , vo>.(2.11) EP, t + 6   e <IIK,p,)+ (112)060 A , vo>

R° ' " -

 

T he integrand in  (2.11) is bounded by

 

DO, h

R o," = 1

(2.10) EPÌ R

O,h

,_9 7: -=  E PP
R "0 ,  hA

t

_s
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(2.12) exp{ </ix, PH-6> +  0  1± ' )  <hK ,p,>ds}

1 f t-F6
exp{<ho ,,u,+6 > —  0 <ho,ps)ds},

2 ,

so it will suffice by dominated convergence to  show that the right side of (2.12) is
integrable for 6 sufficiently small.

Choose
w here w e use
inequalities and

p e (1, p0 ), letq  =  p l(p
th e  assumption that

(2.6),

\ 1

— 1), and
po  >  1.) Then,

define 60 = 2p/(0g). (This is
b y  th e  H older and Jensen

(2.13) EPP [exp{ <ho, ii/-E2 + — 02 .
1 ' 6

<ho >ds}],

1 t+6 1 1 q
< EPP [exP{P<ho, Pt+6>}i l / P E PP

1
E

f 1 + 6
:5_ PP [<ePh ° , f i t + 6 .>1 1IP _ E(

[exp{ Oq

P,, [0 00/012,,tis>1ds

f
i<ho,1-1,>ds} ]

I I q

6 t

< [<ePh °,p> y  <e" ° , l'0>] 11P [(e 4 5 1 7 ° 1 2 , p> y <e6 (16h°1 2 .v 0 >111q

< <e°, p> y  < e ",  vo>

if  0 < 6 < 60, and  the  proof is complete.
F or each p E Y °(E ), Lemma 2.3 allows us to define Qp  c (0 ° ) by

(2.14) dqt, = R d P i , on t > 0.

W e now  show th a t Q , , so lves the  Q° martingale problem for h  starting at p.
(The domain of is the  space o f functions o n  ,3)°(E) of the  form  (1.5).)

Lemma 2.4. L et p. c Y ° (E ) .  Then

(2.15) := 60 (i1/) ço(flo) i (4 4 0 )(Ps)ds

is an {,°}-martingale o n  (Q° —97 ° , Qp ) f o r each ço c  9 ( 4 ) .

P ro o f  F ix  p L et hK b e  a s  in  th e  preceding proof, a n d  define
Q/

K, Y(52°) as  in  (2.14) but with h  replaced by hK . Then, by Lemma 2.1, Qsfi(

solves th e  Q  martingale problem  for s ta r tin g  a t p. L e t  yo e g( )  be
arbitrary, define

(2.16) M/hK = 40 (01) ço(duo) f  (YhK49 )(tis)ds ,

and fix t > 0  and 6  >  0 . Then

(2.17) E(2, [ 1t4,1'45 -  114,hKI,Ft ] 0,
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hence

(2.18) EPP R M — 1 ) R:E
1
, 5
1=  0

and

(2.19) EPP( ./v/4-5 -  M , ) K  p , > + (  / 2 ) 0 6 0 K ,  vo>

R U I K I=0.

N ote that the integrand in (2.19) is bounded by a constant multiple of

•/-1-6 I --Pr)
(2.20) (1 ± (1 + <ho , 11,>)ds) exp{<h o ,R,± 6 >  +  -  

j•

< h o , ps >ds} .
2

With p, g, and 6 0 a s  in  (2 .1 3 ) , choose 0 ( >  1 such that a p < po ,  and put fi =
al (a -  1). Then, by Holder's inequality and the argum ent used for (2.13), the
Pp -expectation of (2.20) is at most

fi 1 ///
(2.21) EFP (1 + 6 + <ho, p s >ds)

t-ki 
•EPP [exp{ a<ho, it t+ > t <ho , tt s >ds}1

< {2 1 3 - (1 + 60) 13 + 2 ,6-16{; (<14, 0 <h g , i 0 )} 7/3

• f<elP/"' , <elPh0 , y0>1 1

if  0  <  6  <  60 . F o r such (5, we conclude that

R O h

(2.22) E ll' [( M i51 ±' —  M )
e<h, P,>+( 1/2)060, 1.0 >

R h 1 =0.

We would now like to factor out the .-Y;;°-measurable factors to obtain

(2.23) E [( Mti+1 -  M th  R (I):(h6 I 3 7  1 =

and

(2.24) EQP [M,/±1 M t h l,*71° 1 = 0,

bu t first we must show that the integrands in (2.23) and (2.24) are integrable.
Observe that { M , / K ,  t > 0}  is a  continuous square-integrable {5 -' }-martinga1e

on  (0 , )  with increasing process «M»,  =  .gli/( s )cis, where

(2.25) 0 t/J(its )  = ( ( f jj , its> — <I; ,iis> <4 , ,u ,> )Fz i(‹f dus>)Fz) (<1. Ps>)

2

C
r=
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if  V  is  a s  in  (1.5) and  Ci := ( <f v>)1. It follows that

(2 .2 6 ) E  P , ' 
R m  thK )2 R t0,hKi E Qic [of ihK • 2,

)  j E Q
/
I
'( [<<M h i c >X] Ct, t >  0 .

Now apply Fatou's lemma, obtaining

(2.27) EPPRM,11)2R," ] <  Ct, r > 0,

hence

(2.28) EQ, '[( M,h ) 2 ] Ct, t 0.

This provides the needed justification for (2.23) a n d  (2.24).
As in the preceding proof, once we have (2.24) whenever t > 0 and 0 < <6o,

w e have i t  for a ll t > 0 and 6 > 0.

Theorem  2.5. For each p E 34 °(E ), the Q" martingale problem for _V'' , starting
at p  has one and only one solution.

P ro o f  It remains to prove uniqueness. Given p E Y °(E ), let Q, e)?(Q °) be
a solution of the Q° martingale problem for i, starting at p. Then {R ,". t >  0}
is  a n  { 0 } lo c a l martingale o n  (0°,.37 °, Qt ,). In  fac t, if  we define

(2.29)T N  =  inflt > 0 :  </q,,,rt,> N},

th e n  {R ie t„, t > O f is  a  mean-one {,F,°A,,, }-martingale o n  (Q°, Q/,). Using
essentially Theorem 1.3.5 o f Stroock and Varadhan (1979), there exists for each
N > 1 a  probability measure Ppl f  o n  (Q ° , 5 )  su c h  th a t

(2.30) ciPpN = R,h;,9  dQi, on I ATN ' t > 0.

Furthermore, by the argument that w as used to prove Lem m a 2.1,

(2.31) V(P,A,,) (o(P.o) — 
.10

(-29040)([1,)ds

is an { 5 }-martingale o n  (Q°,. „ Pp
N )  for every (1) c 9(.4 ) .  Again we apply

Theorem  1.3.5 o f  Stroock a n d  Varadhan (1979) to  deduce  the existence of a
probability measure P/7 o n  (0°,,F°) such that

(2.32) po pN
P P on

TN
N > 1.

We claim that
/

(2.33) So(///
i.

— V(Po) —

o
(Yoq))(ii,.)dr

is an  1 1-martinga 1e  on (0 ,.97 °, PO for every ço c .9(4 ) .  To see this, fix such
a  ço, let H  be a  bounded continuous function on ...Y- ° (E )" ,  where m > 1, and let
0 < < • • • < <  s < t. Then

TA I N

(2.34) E P;; [ ( q ) ( i i i n  rN ) V(Psn T N  ) (-40 9 )(11,)dr)HOIS I A  rA, . A =
•  S A T N
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for each N  > 1, hence

(2.35)E  [ ( 0 01 t) Ç9 (P. ) 1, (49 )(14 )dr) 1 1 (lis, , • • • , 1-1,„,)] = Oi

This proves the  claim, and  so Pi ', ,  extended to (Q . )  in  th e  obvious way. is  a
solution of the S2 martingale problem for ..r o  starting at p ,  and m ust therefore
equal Pp .

Finally, from

(2.36) dp„ = dQt, on t > 0,

we obtain

(2.37) dQp = dPt, on ,?7,-;;\ t  > 0,

and  in  particular that fo r each N  > I ,  
E Q P [ 4 9 ( 1 . 1 ( „ N ) 1

 is uniquely determined for
every 9 c C (.° (E ) )  a n d  t 0 , hence the  same is true of E Q, [K i t t )] . Thus. the
Q11 -distribution o f  p t is uniquely determined fo r every t >  0 , implying that the
.Q° martingale problem fo r ...T h  starting at p  has a unique solution.

3 .  Diffusion approximation of the Wright-Fisher model

The motivation for the Fleming-Viot process characterized in Section 2 is that
for large populations it approximates Tachida's (1991) model, which was originally
formulated a s  a  Wright-Fisher m o d e l. In  this section we provide a justification
for this diffusion approxim ation. It does not follow from existing results (such as
Ethier and Kurtz (1987)) because of the  unboundedness o f h.

We begin by formulating a  Wright-Fisher model that is general enough to
include Tachida's m o d e l. It depends on  several parameters, some of which have
already been introduced:
• E  (a locally compact, separable metric space) is the set of possible alleles, and is

known as the type space.
• M  (a positive integer) is the  haploid population size.
• u  (in  [0, 1]) is  the m utation rate (i.e., probability) per gene per generation.
• vo (in ,i '(E ) )  is the distribution of the type of a new mutant; this is the house-

of-cards assumption.
• it(x) (a positive Borel function defined for each x  c E ) is the fitness of allele

The Wright-Fisher model is a M arkov chain describing the evolution of the
composition of the population of types (Xi, ...... )(Ai.) E E m o r ,  since the  order of
the types is unimportant, M - I E i

m
/E  9 ( E ) .  (Here E -3 (E )  denotes the unit

m ass at X E E . )  Thus, the  state space for the  process is

(3.1) " I ( E )  :=  { m E  . ( E ) : ... ,x m ) e E m

w ith th e  topology o f  w eak convergence. Tim e is d iscrete a n d  measured in
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generations. The transition mechanism is specified by

m 1 m
(3.2) /1 := i— — ,M

where

(3.3) , Ym a re  i.i.d . p " [random sampling],

(3.4) p** = (1 — u),u* tiro [house-of-cards mutation],

(3.5) ,u*(T) = f w(x)p(dx)I<w, p> [haploid selection].
L

(Integrability in (3.5) is not an issue, because p has finite support.) This suffices to
describe the  Wright—Fisher model in  terms o f the  parameters listed above.

However, since we a re  interested in  a  diffusion approximation, we further
assume that

(3.6) u 
=  2M '

w(x) = expf h
m .( x )  ,

where O is  a positive constant and h  is  a s  in  (1 .3 ) . (N o te  th e  u se  o f  th e  ex-
ponential in (3.6). T h i s  ensures that w(x) is always positive, in contrast to the
more conventional and  asymptotically equivalent w(x) = 1 + h(x)I M.)

The aim  here is to prove, assuming the continuity of h , tha t convergence in
-Y° (E) of the initial distributions implies convergence in distribution in Q° of the
sequence of rescaled and linearly interpolated Wright—Fisher models to a  Fleming-
Viot process with generator ..rh. We postpone a careful statement of the result to
the end of the section.

The proof requires a moment estimate on the neutral (h 0) Wright—Fisher
model that is analogous to Lemma 2.2 for the neutral diffusion model, as well as a
Girsanov-type formula for the Wright—Fisher model that is a  b it  different from
Lemmas 2.3 and  2 .4  for the  d iffusion  m odel. F irst w e need  a  sim ple  lemma
concerning Markov chains, whose proof can be left to the  interested reader.

L e t S  b e  a  separable metric space, a n d  le t  {X,,n = 0 ,1 , ...}  denote the
canonical coordinate process on Z-Z := S z +, which has the  product topology.

Lemma 3.1. L e t  (P„), E s  a n d  (Q,)„ E s  be (tim e-hom ogeneous) Markovian
fam ilies o f  probability  m easures o n  (E,.(4(E)), and  suppose there ex ists a B orel
function V : S x S  [0, co) satisfying

(3.7) ( X i ) ]  = (Xi)V (Xo, X1)]

f o r all f  E B (S ) and x c S .  I f  we define Ro 1  and

(3.8) R„ = v(x i _,, X i), /7 >  1,
7=1
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E '[f (X0 , . . • , X n )1 — E P ‘ (x o , •  •  •  •  x,i)Rn]

f o r a l l  f  E  B (S" + 1 ) an d  x E S . In  p artic u lar, {R„, n = 0 , 1 , ...}  i s  a  mean-one
{.97„x  }-martingale on , 6.4(E), PO  f o r each x E S, and QVLFX «  pxl-Fux  w ith
Radon—Nikodym derivative R„ f or each n > 0  and x e S.

Let E. m  := ?? m (E) z •  have the product topology, let ,?7; be the Borel a-field, let
{p„, n = 0, 1 , ...}  be  the  canonical coordinate process, and let {._F „ }  be  the cor-
responding filtration. F o r  p c  Y m (E) we denote by P (

i,m ) e  ,"_0(--17,m ) the distribution
of the  neutral Wright—Fisher model starting at p.

Lemma 3.2. Fo r each  p E ,Ym(E), T > 0, p  E  ( 0 , p ) ,  and A >  <ePh° p> +
1
—
2  

OT <e h° vo>,

<ePho vo>)(3.10) P(m) max <ePh° p„> > <  
(1 +  OT)(<ePh", p>

A — <eP h o, p> — <ePho , vo>

R em ark . The analogue of (2.5), namely

[ ]E l ' 7 1 ) m a x <ePh" , pn> 2
ICI ri tMT]

(12T + 3)<e2Ph°, 0  ±  (1 2 T  ±  4
3

 0 2 T 2) <e 2p1'„ ,y 0 > ,

also holds.

P ro o f  Fix p e '-//A4 (E ) and  g E B (E ). N ote first that

(3.12) m
EP ,An[0 „ t i l > ] - 0 , 0 =  E

i=1

<g,

where ,
to unspecified

= <g, (1 — u)p + uvo> — <g, p>

o
=  2 m  (<g, vo> <Y, 11>) ,

Y m  a r e  i.i.d. (1 — u),u + uvo; expectations without superscripts refer
probability spaces. Also,

(3.13) EP;mI , /1k>] =  E [EP '41:21 p

= (1 — 1,1)E P 'Ai) [<g, —1>] + 11 <g VO>

k= ( 1P >  +  [ 1 •  —  (l — u) 1<g VO>

(g, p> y  <g, vo >

then

(3.9)

(3.11)

for a ll k > 1.
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By the  M arkov property and  (3.12),

2 M  k=0

0
(<g. vo> — < g,/ ik> )

is  a n  {,F„}-martingale o n  (Em, 1) (
0

1 4 ) ). Assume that
then <g, p„> <_ Zì ,1 <g , p o > + (2M) - I  On<g,vo > for all n 0

1 „T > 0 and  A >  <g, p> + -

2
07 X,(/

(3.15)
',O P {

max< g , , '>  >0

(3.14) — <g, po>

is  a lso  nonnegative;
•
 Consequently, given

< P (A4) {  m a x  4'1 >  -  <g p> - -OT<g. vo>}
o<n[A,iTi 2

E P (P" ) [(Z I
A,m ) + ]

Â-  <g , I1> OT <0 vo>
"(M )

E r P [<g, p r[m > + (2M) -  I 0 E [
k

111_0" <g , p k >]
;t - <g , p> - OT <g, vo>

(1 +  OT)(0,,tt> v (g,v0>)
-  A  - <g, p> - OT <g , vo >

where the last inequality uses (3.13).
A s in  th e  proof o f  Lemma 2 .2 , w e apply (3.15) w ith  g = e h') A  K. where

p E (0,p 0 ) ,  and  (3.10) follows by letting K oc.

We define the  map O m  : E A/ Q °  by

(3.16) ("Jo, p i , ...), = (1  - (M t -[M tp ),tip p l +  (M t -  [Mtpp [14,]+1 .

This transformation maps a  discrete-time process to a  continuous-time one with
continuous piecewise-linear sample paths, resealing time by a  factor o f M .  For
each p e  '- M(E), let P (

1
7' ) E ??(,L- Ai) denote the distribution of the neutral Wright-

Fisher model starting at //, and, for each p e -Y°(E), le t  F'0  e ,'Y)(5-2°) denote the
distribution of the neutral Fleming-Viot process starting at /1.

T h e  next lem m a shows th a t  th e  neutral W right-Fisher m odel, with time
resealed appropriately, converges in distribution in 0 '  (not just Q) to  the neutral
Fleming-Viot process.

Lemma 3.3. L et {11(111) } '-).}1,4(E) (E ) and p c  ?;°(E) satisfy  d'(p ( m ) .p)
-> 0. For sim plicity  of  notation, denote 1)(3 4„) b y  ju s t  k m ) . T h e n  13 ( M ) 074,111 3„
o n  52'.

P r o o f  First, we verify the compact containment condition (Ethier and Kurtz
(1986)) in Q ° .  Let e  > 0 and  T > 0  be given. It is w ell know n that P(m)0:111
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Pf,  on Q .  In particular, {P ( m ) 07,41 }  satisfies the compact containment condition
in  Q , so  there  exists a com pact set K  Y ( E )  su ch  th a t P ( m ) 0i){,u, E  K  for

8
0 <  t  < T }  >  1  --

2  

fo r a ll  M .  F ix  a  sequence 0 < r1 < r2 < • • w ith rkP o •

For each positive integer k ,  define the constant

1
(3.17) C k  = s u p  <e'd10 ,11( A 1 ) > -

2
0 T < rhh",v

e -1 2 k+i (1 + -
1

OT)(<erk h",p( m ) > v <erkh ° , vo > ) .
2

Then

(3.18) K  :=  K n  n { , t E :9(E) : <erÂ h ' ',11> <
k=1

is  compact in ,- ° (E ) ,  and

(3.19) P(m)O-ml k  for 0 <  t  < T}

>  1  - P ( M O ) t u  K  for some t E [O, 7 ]}

( k=1 ,?<[MT1— P ( M )  U  {  
m a x  < e r  ,p n > >  Ckk ho

(1 + OT)(<e"", ti (m ) > <erk ", vo>) > 1 — —
e

2 Ck -  <erkho, A P> -  OT<erki"), vo>k-1

> l — e

for a ll M.
For completeness, we prove here convergence of the generators, though the

argument is essentially as in Ethier and Kurtz (1986), Section 10.4. For functions
ço on , ° (E )  of the form

(3.20) 49(1.1) = •  •  •  < fn ,P > ,

where n  > 1 and E C (E ), define _r,;")q, on "„)4 m (E )  by

(3.21) ( - r
(
m)(0)(P) =  M {E P 'm) [ço(//i)] - 49 (//)}•

Letting n(n ,k ) denote the set of partitions #  of {1, ...,n}  into k  unordered subsets
,fik ( w i th  min /31 <  •  •  <  min #A ), and letting Y 1, , Ym  b e  i.i.d .  i

(1 - uvo, w e have
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(3.22) E [49(//i)] = E  [ ( f i , —m -
1 —  i-i Y ,)1

1 A l,  1  Al

= m „ E [ ( f l ( Y i ) )  •  •  •  ( = ,  f ;, ( K ) ) 1
i—i

I M

M ! k  I

k =  (M — k)! 1- 1 11.fi,t/*)
e n(n,k) j=1 t e 13j

fo r all it c ,Y,w ( E ) .  Consequently,

(3.23) (Y ,
(

m) (0)( p )

m!=  m    p**M n (m — n)! > 
j = 1

m! 
f  If *  >+  

mn (M  - n+ 1 )!
1 < i < j < I ,

+ 0(m-2)- H <4, 0 }
i=1

= M{( o i )

1  - ) <1), >

(T iff, > 11 <f i > < 0 }  +  0(m -1)
1<i<j<r7 i=1

(<A4, 11** > — <f ;, it**><.4, p**>) f i  <i;. >
< i< j<n

o f;,0  H <4,0 H  1.1** > + 0 (M - 1 )
i=1 .14<i

(<fift,li> <.!•,11><.1), 11>) H <fi,ko
I < i<j <n 11#

<Ai, H (4, P> + 0 (M - 1 )
i=

= ( 4 ) ( 1 1) +

mn

uniformly in i t  c Y m (E ) . Thus, the lemma follows from several results in  Ethier
and  K urtz (1986) (Theorems 3.9.1 and  3.9.4, Proposition 3.10.4, and Corollary
4.8.13).

F o r th e  next two lemmas we require th e  infinitely-many-alleles assumption
that every mutant is of a type that has not previously appeared. Mathematically,
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this amounts to

(3.24) v o({ x } ) = O.X E  E.

This of course includes (1.2).
For each p  c ??M (E ) , we denote by P (

p
m )  a n d  d p

m )  in .) i( -2 ,14 ) the distributions
of the  neutral and  selective Wright—Fisher models, respectively, starting at p.

L em m a 3 .4 . Assume (3.24). T hen , for ea ch  p

(3.25) dQ(pm) =  k m )  d k p
Al)o n n  > 0,

where

(3 .2 6 )  k m )  =  exp{
k=1

<hisuppp k _i , Pk
k=1

<1supp Ilk> Al log<ehbu P `k-1 )  •

P r o o f  L et yo E B ( A I (E ) )  and p  c  M ( E ) .  Then

f (  1  M

(3.27) E Q (PM ) [49 01 1)] = j • • • jE E j=1

(dY i) • • • I t * (dY  m)

1 2  ( 1  -  /e U A I H I

)

11p*(dy i)  f i  vo(dyi)
i e l  i c i c

E (1 _ u)vium-1/1
/c{1,2,..., M)

JE m  p(dy•) vo(dY i)
i=1 ie/,

= . . .
E E )  

1-11<i<A/PyiEsuppplv(Yi) 

J ( w , p )1{ 1 - i._ /t/:.vi e suPP Al

x 1-1((1 — u)11-Euvo)(dYi)
i=1

= E P (171) ko(fi ) (P), )]

where, if p i = Eim=i
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f li < i< m : y , E  supp po W ( Y i )  (3.28) V(m)(//o, := <w, p o w <k<m: y i  e supp po E

exp{ <M(log w)lsupp /to , Oi >1 
<w,,u0 >m <1-pppo, /,, >

exp{ <h lsupp >Pi > <1supp log<eh I m  1-10>}.

The next-to-last equality in  (3.27) uses (3.24). T h e  result now follows from
Lemma 3.1.

W e next show that the Girsanov-type formula for the Wright-Fisher model
converges is some sense to the one for the Fleming-Viot p ro cess . First, we need a
b it o f  n o ta tio n . Define k;m ) o n  0  for a ll t > 0 so  a s  to satisfy

(3.29) (m)R,( m ) o Om  = R
[Mr]

on M t  > 0,

where k i,m )  i s  a s  in  Lemma 3.4. Specifically, we take

(3.30) iZ
( 14) = exp{ <hlsupp m>

k=i

k=1

[M t] 

< 1 supp , pk i m  >M 10g<eh/m, p
( k - 1 ) 1 0 }  •

W e also define R, o n  QC for a ll t > 0 to  be w hat w e called Rt"  in Section 2,
namely,

(3.31)

R, = exp{<h t > - <h, ,tto> - 0 [ -
2  

(0 2 , its > -  <h,/is >2 ) + -

1 

(<h, vo > - <h, ius d d s }
2

Lemma 3.5. A ssum e that h  is continuous an d  (3.24) holds, le t  T > 0 be
arbitrary , and  le t P ( m )  b e  as  in  L em m a 3.3. T hen there ex ist Borel functions
FM, GM : Q° 1-* (0, c o ) , a continuous f unction F : Q°1-* (0, c o ) , and a positiv e
constant G such that

(3.32) R(TA4) = FA IGA , R T  =  FG,

Fm F  uniformly on compact subsets of S2', and GM -> G in P (A1 ) 074 ! -probability.

P ro o f  Let

[M T]

(3.33) log Fm  = M log<e h /A 4

k=1 k=1

[MT[
+ Z 0 log<ch01„1(k_ )/

m  >.
2 k-i
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[mTi
(3.34) log G  = (m <1 ( s u p p m > - log<eh/ 3'1 ii1

[MT]

E <hi (son) P(A-onvi) m
k=1

T T 1
(3.35) log F <h, fiT > - <h,

o  

-

2
(<1 1 - , - <h , 11 1>2 )dt +

o  
+
2

0<h, ni >dt,

and

1
(3.36) log G = - OT <h, vo>,

and note tha t (3.32) h o ld s . Then, pathwise on S2°,

(3.37) log<e hi m . (k-1)IM>

<h, <h2 , 11 (k-iv m>=  log (1  +
2M2

+ o(m- 1
) )

<h, I4 (k- iv m>
+

- (<h2 11 (k-i )/ -  <h, m>2) + 0(M - 3 ).A4-2

SO

[M T1
(3 .3 8 )  log FM < h ,  p [ m T i l  m > - <h. no > - (<h2 - iv - 14 (k-1)/ m>2 )

k=1

[MT]
1

+ 1171 2_, 0 < h , 1 1 ( k _ i v m >  + o(m- i)
k=1

=  log F o(1 ).

T o  show that these results hold uniformly on compact subsets of Q °  requires a
more careful analysis, which we illustrate with an example.

Consider the problem of showing that, for fixed T  >  0 ,

1  [MT] •T
(3.39) <h, ti(k-1)1 IVI> 0,111>dtm  

k=1 0

uniformly on compact subsets of Q .  This requires several observations. First.
note tha t, for each co E Q ,  t <h, cm> is continuous since h  is continuous and

< h o . (Recall the topology on (9 '(E ).) Second, we claim that, if {co(") }Q .
co E S2°, and co(n) ->  co, then <h,w;") > <h, cm> uniformly on compact t-intervals.
Of course, co(")c o  m e a n s  th a t  d"(cor,co,) ->  0 uniformly on compact t-intervals,
hence d'(w": ) ,a),) 0 whenever t,, -4 t, hence <h,o4"") > <h,cm> whenever t„ t,

k=1



 E  E f h g k r )  <h, vo>1) +
[MT] [ ( X k

k=1 1=1

2

[MT]

E [X 1d (0 2 , vo> <h, vo>2 ) +M 2
 k=1

1 M T  
Var(Xk)<h. vo> 2

k=1

M T

M 2  k - 1  
Var(Xk)<h, vo >2

354 S. N . Ethier and Toktizo Shiga

and this is equivalent to our assertion . Third, it follows that co L T  <h. co i >dt is
continuous on 0 ° .  This argument, incidentally, leads to the conclusion that F is
continuous o n  Q ° .  Finally, it therefore suffices to show  th a t, if {co (K ) } z  Q °

e  f r ,  and d i ( )  —> co, then

(3.40) <h, co(
(1
1,c )

 m ) I <h, w i >dt.
Jo

B u t b y  the second observation, <h,o4K ) > <h,cor >  uniformly on  com pac t t-
intervals, and therefore, using the first observation, (3.40) fo llow s. The rest of the
proof that F F  uniformly on compact subsets o f  0 °  is handled in  the  same
way.

Next, because of (3.24), the P ( m ) 0,14
- 1 -distribution of the second sum in log G v i

is  the distribution of

(3.41)

where X ], X2, ... a re  independent binomial(M, 01 (2M )) random  variables and
(k, I =  1, 2, ...) are i.i.d. vo and independent of X1, X2, • • • •

1
L 2 t o  -

2  

OT <h,vo>, since

1 [MT] X i, 1 [MT])  2 ]
(3.42) E  [ ( 117

k=1 1=1 1111(11 M  <h] vO>2 

This converges in

[
MT( Xi, T

=  E  —
M k]=1 1=1{11g0

 <h, vo>} + (X k - -
2

0) <h. vo>) ]

k=1

1

2

( 1  

<  
[M T ]  1  

0<h
2  

VO>.
—  m2 2 ,

Finally, using (3.24) once again, the  P (m ) 07k)-d istribu tion  of the  first sum  in
log Gm  h a s  second moment

[MT]
(3.43)

k=1

pon
[ ( 1"  \  I (supp 1k  Y ' Pk > — 0 ) 2 ]  EP1 m ) Klog<e"  4 4 -1 > )1

by virtue of the fact that M<1 (s „pp , u> is independent of pk _ i a n d  distributed
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binomial(M, 01(2M )) under P ( M ) • But (3.43) is bounded by
[MT] 1 1

(3.44) -
2  

OEP(m) Rlog<e" , >)
2
] < 1  0 E E

p (m ) 

[(log<e h0 0 1

2 ,,ak_1>)2]
k=1 k=1
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[MT]

< _
1 

E Ekm) 
[<eN/

m  
-  ilk -i> 2 ]2

[mT]
<  

2  

0  

M 2  
E E P(m) K h o e l l °  I1

k=1

=

using (3.11). To see the first inequality in  (3.44), note that

(3.45) log<e-h0014, < log<eh/m , ft> < log(eNi m ,

and therefore

(3.46) llog<eh i m , p>1 < max{log<eh°/m  , it>, -log<e - N/ m  , = log<eh"/"1 , p>,

where the last identity uses Jensen's inequality. This proves the lemma.

Our last lem m a is a simple result about weak convergence.

Lemma 3.6. Let S  be a separable metric space, let f g , : S  1 -> [0, cc )  (n > 1)
be Borel functions, let f  : S [0, oo) be continuous (but not necessarily bounded),
let g be a positive constant, and let H : S R be bounded and continuous. Assume
that fn

,  f  uniform ly  on compact sets. L e t  P„ (n 1 )  and P be Borel probability
m easures on  S  such that P„ P, g„ g  in  P„-probability , and fs  f n gn dP, =

fg  d P =1  fo r  all n > 1. T h e n  f s , f n g„H  dP„ -> f gH  dP.

P ro o f  By Theorem 5.5 of Billingsley (1968), P„fn- 1 P f - 1  an d  P„(f„H) - 1

P(f  H) - 1  . S in c e  Po ,7 16 g ,  it f o l lo w s  t h a t  P n ( fn gn ) -
 1P ( f g ) 1 a n d

Pn(fonH) - 1  P ( f g H ) - 1 . By Theorem 5.4 of Billingsley, this together with the
assumptions that f n g „> 0 , f g  0 , and J f , , g , ,  dP„ = fs  f g  dP = 1  for all n >  1
imply that { f o ,,}  is {PO-uniformly integrable. Since H  is bounded, { ,f ,g„H}  is
a lso  {P„}-uniformly in tegrable . This, together w ith  P„(fn g„H) - 1  P ( f g H ) - 1

proved just above, gives the desired conclusion.

For each p E. M (E ), let
 Q ( M )

-  m ) denote the distribution of the selective
Wright-Fisher model starting at p , and for each p c Y °(E), let Qt , c Y (0°) denote
the distribution of the selective Fleming-Viot process starting at p.

W e have now done almost all the work required to prove the main result of
this section.

Theorem 3 .7 .  Assume that h  is continuous. L e t {p ( " ) } ( ,):,m (E)
and p E (E) satisfy  d'(o ( m) ,p) -> O. For sim plicity  of  notation, denote d ), by
just Q (111). T h e n  Q 0 1 ) 07,4 11 2 1,  on Q°.

k=1
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P ro o f  First, we prove the theorem under the additional assumption (3.24).
Let T >  1  b e  a rb itra ry . W e  a p p ly  L e m m a  3 .6  w ith  S = Q ° , ( f ,  . g„. f  a) =
(FM , Gm , F ,G )  from  L em m a 3 .5 , H  a n  arbitrary bounded continuous  , i -
m easurable function o n  Q ° ,  a n d  (P„, P) = (P ( m ) .15,) Pi i ) from  L em m a 3.3.
Lemma 3.5 gives the required convergence of {f„} and {g„}  and the continuity of
f  Lem m a 3.3 gives P„ P .  T h e  requirement that f i g„ dP„ = 1 fo r  a ll  n
follows from

(3.47) t o  TR ( M ) dP ( M ) O -m i =  j  R (T M ) 0 0 Al dP ( M )  = ] R i t iM)7.] dP( M )  = 1 .
EM Z M

w hich uses (3 .29), and of course fs fg  d P = 1  because  to  RT dP,„ = I. Thus,
Lemma 3.6 implies that

(3.48) H de ) O-mlH i '  dP (A '1 ) 0  - >  f  HR T  dPi , = f o s H dQp•
 .

(We assumed H  to  be  g7
7-_ ] -measurable so that it would be ]m r ]/m -measurab1e

fo r every M .)  Since the collection of a ll such  H  (a s  T  varies) is  convergence
determining, Q ( m ) O -

A4
1 Q p .

Finally, we need to remove assumption (3.24). Given arbitrary E. vo ,  and h
(satisfying (1.3) of course) with h  continuous, define

(3.49)E  = E  x  [0, 1], = v o  x  2, (x. o)h ( x ) ,

where 2 is Lebesgue measure, and apply the theorem under (3.24), which we have
ju s t  p ro v e d . T he  initial distributions 11( M )  a n d  p  can be replaced by p(m ) x 60
and p x  60, and the distributions Q( m )  and  Q i , as well as the mapping O m will be
distinguished from the original ones with tildes. Letting n : E 1-* E denote pro-
jec tion  onto  th e  first coordinate, th e  m apping A  : C ( k ) [0, oo) 1-* Q° given by
/1(6) = t > 0} is continuous, and  hence

(3.50) Q( m ) O-
A i

l -  6 0( m ) -,14
16 '/ D o 0 A - 1  =  Q „ ,

a s  required.

4. Characterization of the stationary distribution

If h  is  b o u n d e d , th e n  it  is  k n o w n  th a t th e  Fleming-Viot process in  ,),(E)
w ith  genera tor 4  has a unique stationary distribution 17h e,,)2(?A(E)), is strongly
ergodic, and  is reversible. In  fact,

(4.1) H0(.) =
{  i= I

where , .  are i.i.d. v o a n d  (1)1 ,1)2 , ...)  is Poisson-Dirichlet with parameter H
and  independent o f  i   Furtherm ore,
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(4.2) Hh(d,a) =  e 2 <h , P>H0 ( d p ) / e 2 <" I l o (d v).
(E)

These results can be found in  E thier and Kurtz (1994, 1998).
The finiteness of the  normalizing constant in (4.2) is precisely the condition

needed in  the  work of Overbeck e t al. (1995). Notice that

(4.3) e2<h'"> Ilo (dv) =  E  e x p  2 p 1h( 1) = E  H <e 2 P lh , vo>
(E) i=1 i =1

A  sufficient condition for this to be finite is <e2' ° , 0 >  <  Cx. A t  least when E  = R,
h(x) x ,  h o  =  h ,  and vo is symmetric on R (as in Tachida (1996)), a necessary
condition for the finiteness of (4.3) is < e ph , vo>  <  oc fo r a ll p <  2.

I n  th is  section w e  im p o se  a  slightly stronger condition: E  v o ,  a n d  h  are
arbitrary, subject to the condition that there exist a  continuous function ho : E
[0, oo) and a constant p o  E (2, oo] such that (1 .3) holds. In  other words, we now
require p o > 2.

Recalling the  example in (1.4), w e have seen that we can characterize the
process in  that case if 00 <  0 ,  and, as we will show below, we can characterize
the  stationary distribution as well if o - 0 <  0 1 2 .  The construction of Overbeck
et al. (1995) requires co < \,/ -P 2  or b o th  c o  =  0 /2  and 0 >  1. (T o  se e  th is . use
(4.3) and W atterson and Guess (1977), Eq. (3.2.10).)

The following lemma was proved by Ethier (1997) under (1.2) and  extends
(with essentially the  same proof) to (1.3).

L em m a 4 .1 . A ssume (1.3) with p o  >  2. Then I l o (rY)°(E))= 1 and e 2 <h °•>
L 1 (H 0 ). I n  addition, H1, def ined by  (4.2), is such that _Th is a  symmetric linear
operator on L 2 (H 17 ).

However, it does not immediately follow that 111, is  a  reversible stationary
distribution for the Fleming-Viot process with generator 4  .  The theorems of
Fukushima and Stroock (1986) and Echeverria (1982) do not apply, again because
of the  unboundedness o f h.

W e can now  state the m ain result o f th is section.

T heorem  4 .2 . A ssum e (1.3) w ith p o > 2. T hen H h , def ined by  (4.2), is  a
reversible stationary distribution f o r the Flem ing-  Viot process with generator
and it  is  the unique stationary distribution for this process.

P ro o f  Reversibility is equivalent to

(4.4) V(P),Th(t)0(11)//h(dP) = 0(P )g-h (tM ,u )//h(d il)
E) (E)

for all T,i1J c B(-Y ° (E)) and t > 0, where {: (t)}  is the semigroup corresponding to
Y h. Using Lem m a 2.3 and the notation of Section 2, as well as (4.2). we see that
(4.4) is equivalent to

00
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(4.5) yo(p)EPP[t/i(p7)R,(11e2< › I70(dp)
°(E)

= ( k9(1.1i)R ' h 1e2<h ' " ›  I  7 0 (d
'(E)

for all ço4i E  B(,-Y°(E)) a n d  t > 0. B u t  w e can rewrite (4.5) as

(4.6) EPP [49(fio)(P(11,) exP{ (h, /Li > + <h. Po>
.
1
O 

Y (Ii.,)d slillo (dP )
(E)

= EP , [0(ito)g9(m) exp{<h, p r > + <h, Po> -  1 1 Aus )ds}1 1 1  0(d 1-1) ,

(E) 0

1 1
where y(u) := - (<h 2 , p> - <h,,a> 2 ) + -

2
0 (< h , vo>  - (h , ,0 ). Now the neutral model

2
is known to be reversible (Ethier (1990), Shiga (1990)), so {/1, 1.0s t}  and
{ p , , , s t}  are  equal in distribution under Lo (E ) Pia (-)//0 (0 ) ,  implying that
(4.6) holds, and therefore we have the reversibility (hence stationarity) of H ,,.h.

F o r th e  uniqueness of H1 7 , w e can apply essentially the argum ent used by
Ethier and  Kurtz (1998) in the case of bounded h. There is one additional step
needed, so we provide the  details.

Suppose the conclusion fails. Then by Lem m a 5.3 of Ethier and Kurtz (1998)
there exist mutually singular stationary distributions HI, H2 e , ( 9,)3 ° (E ) ) .  We will
show that this leads to  a contradiction.

Let Y(E x E) have the topology of weak convergence, let 6 := G (Ex E )[° °C ) )
have the topology o f  uniform convergence on compact sets, let be  the Borel
a-field, le t  { ft , t>  0 }  b e  the  canonical coordinate process, and let {A }  b e  the
corresponding filtration.

Define the  operator A  o n  B(E x E) by

(4.7) (4 f)  (x i , -v2) -21 0  t(f  (Y , Y )  -  (x i , x2 ))1, (d y )

and the  functions hl and h 2 o n  E x E by

(4.8) h/(xi.x2) = h(x,),

L et P e2 )  b e  (the distribution o f)  a  neutral Fleming-Viot process with type
space E x E, mutation operator A ,  and initial distribution F E x E )) given
by

(4.9) F(B) = x 112) 1 1 1(dP1) 1 7 2(0 2 ) .J J!P° (E) -0° (E)

W ith the projections 7r 1,7r2 : E x E l-* E  defined by n7(x 1, x2) = .vi ,  observe that.
o n  ( 6 , i ,  P), i i tzT I , t 0}  and Lii,g2

-1 , t 0} are Flem ing-Viot processes with
generator „To a n d  initial distributions H I a n d  112, and that they couple, that is,
there is a  stopping time r < oo P-a.s. such that fi 1m ' =  fidr:,-1  f o r  all t >  r P-as.
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Let us define

(4.10) Yh° (E  x E ) = fp E 3» (E x E) : ,wrï E Y ° (E ) for i = 1,2}

and, for p, v E ,Y° (E x E),

(4.11) a° (p. v)

= y) ± 1 A  s u p  <ePh(),prcT1 > - (eP h '',In-c71 >1 e ' d r .
i=i ( 0 , Po) 0<p<r

where a is a  metric on x E ) that induces the topology of weak convergence.
Then (Y°(E x E),(2°) is  a  complete separable metric space and d°(,tt„,p) -> 0 if
and only if p„ p  and sup n <ePh° , pr i nT 1> < oo for i =  1, 2 and each p E (0. Po ).
We now define

(4.12) = c)--
co.o(ExE), do) [1:) ," c(,-(ExE), [0 ,)  •

Let S2° have the topology of uniform convergence on compact sets, let 3r; be the
Borel a-field, le t ffi„ t > Of be the canonical coordinate process o n  °, and let

be the corresponding filtration.
Then, exactly as in  Lemma 2.3,

(4.13) i?(/) = exP fit> - fto> — J. '  [ -1( <k, —  <hi , f:0 2 )
o 2

+  -
1

0(<h,vo > - <h„fi s d d s }
2

is a  mean-one {A}-martingale on (6° , P ) for i =  1 ,  .  Thus, we can define
Qi and Q2 in  Y (f j° )  by

(4.14) dQ, = 1?Y) dP on A., t > o, 1, 2,

and exactly as in Lemma 2.4 we conclude that, for i =-- 1, 2, Qi is  a solution of the
Q° martingale problem for Yh i w ith  initial distribution F .  It follows that the
Qi -distribution of Ift,n7' , t > 01 is  a solution of the 52° martingale problem for

with initial distribution H i ,  hence it is a  stationary solution. Letting

(4.15) T N inf f t > 0 :t r q  1 > <hg, fl i 7ri l > N }

there is a constant cN ( T ) > 0 such that

(4.16) > cN ( T), O < t< T  A T N , i =1,2.

Consequently, for i =  1, 2,

(4.17) H 1 (G) = Q,{ri T 7ç' c G }  c N  ( T)P {fi T rcT' E G, -t-N > T}

> c N ( T)P{P T 7ç' E  G, T N > T, T T }
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for all Borel sets G .  But the right side o f (4.17) does not depend on  i  and is a
nonzero measure in  G if first T is chosen large enough and then N  (depending on
T ) is chosen large e n o u g h . This contradicts the assumed mutual singularity of HI
and  H 2 and completes the  proof.
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