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A Fleming—Viot process with unbounded selection
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Stewart N. ETHIER and Tokuzo SHIGA

Abstract

Tachida (1991) proposed a discrete-time model of nearly neutral mutation in which the
selection coefficient of a new mutant has a fixed normal distribution with mean 0. The usual diffusion
approximation leads to a probability-measure-valued diffusion process, known as a Fleming-Viot
process, with the unusual feature of an unbounded selection intensity function. Although the
existence of such a diffusion has been proved by Overbeck er «/. (1995) using Dirichlet forms, we can
now characterize the process via the martingale problem. This leads to a limit theorem justifying the
diffusion approximation, using a stronger than usual topology on the state space. Also established are
existence, uniqueness, and reversibility of the stationary distribution of the Fleming-Viot process.

1. Introduction

Tachida’s (1991) nearly neutral mutation model (or normal-selection model)
is most easily described in terms of a Fleming—Viot process with house-of-cards
(or parent-independent) mutation and haploid selection. In particular, the set of
possible alleles. known as the type space, is a locally compact, separable metric
space E. so the state space for the process is (a subset of) Z(E), the set of
Borel probability measures on E; the mutation operator 4 on B(E), the space of
bounded Borel functions on E, is given by

(L) Af = 30(F ) = 1),

where 0 >0, voe 2(E), and (f.u):= [ fdu ; and the selection intensity (or
scaled selection coefficient) for allele x € E is h(x), where /i is a Borel function on
E. More specifically, Tachida’s model effectively assumes that

(1.2) E =R, vy = N(0,a2), h(x) = x.

where 03 > 0. In other words, the type of an individual is identified with its

selection intensity, and that of a new mutant is taken to be normal with mean 0

and variance 2.

Ethier (1997) derived some properties of what was presumed to be the unique
stationary distribution for this process. but a characterization of the process, as
well as a proof of the uniqueness of the stationary distribution, were left as open
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problems. In this paper we treat these and related problems. The difficulty. of
course, is that the function / is unbounded. Overbeck er al. (1995) were able to
prove the existence of Fleming-Viot processes with unbounded selection intensity
functions using Dirichlet forms, but they did not address the issues of existence and
uniqueness of solutions of the martingale problem. These issues were addressed
by Albeverio and Réckner (1995) and Overbeck (1995), but only under conditions
that are too restrictive for (1.2).

In a second paper, Tachida (1996) pointed out that there is no biological
reason for assuming normality of vy, and considered instead a family of distri-
butions on R symmetric about 0. In this paper we weaken (1.2) as follows.
Let E, vy, and /i be arbitrary, subject to the condition that there exist a continuous
function /i : E — [0,00) and a constant p, € (1, 0] such that

(1.3) |h| < ho. e vgd < o0 whenever 0 < p < py.

The second condition in (1.3) is simply that voh;' have a moment generating
function that is finite on (0,p,) for some p, > 1. This assumption is in force
throughout the paper.

Consider Tachida’s (1996) family of distributions (with £ = R, A(x) = x, and
ho = |h|). Condition (1.3) is satisfied with p, = 0o in all but one case. The
exception is the symmetrized exponential distribution

(1.4) vo(dx) = exp (—V2|x|/a0)dx.

\/_ )
which is parametrized here by its standard deviation g9 > 0. If gy < V2, then
condition (1.3) holds with p, = v2/g9. We will return to this example in
Section 4.

The generator of the Fleming—Viot process in question will be denoted by %},
to emphasize its dependence on the selection intensity function h. (Of course, it
also depends on E. vy, and 0.) It acts on functions ¢ on #(E) of the form

(1.5) o) = F(f1 a0 S td) = F(KE, 1),

where k > 1, fi,.... . fr € C(E) (the space of bounded continuous functions on E),
and F e C%(R¥), according to the formula

(16) gh

N |

k
Z ittt = LIt 1) Pz (< 1))

k

Z (AL 1> + Sty = <Jio > <) Foy(<E. 1))
This suffices if /1 is bounded (e.g. # = 0), but if not, because {f;h, x> and <h,u)
appear in (1.6), we need to restrict the state space to a suitable subset of 2(E).
We take as our state space the set of Borel probability measures i on E that satisfy
the condition imposed on vy in (1.3).
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Let us therefore define
(1.7) P°(E) = {ue 2(E) : (" uy < oo for each pe (0.py)}

and, for u.ve #°(FE),

(18)  d(uv) = d(v) + [

J(0,py) 0<p<r

(1 A sup |<e””",/1> — (e””", v>|>e"' dr,
where d is a metric on #(E) that induces the topology of weak convergence.
Then (#°(E),d°) is a complete separable metric space and d°(u,,u) — 0 if and
only if i, = u and sup,{e”™ u,> < oo for each p € (0.p,). (This is where we use
the continuity of hy.) Thus, the topology on #°(E) is somewhat stronger than the
topology of weak convergence (if /iy is unbounded).

Section 2 establishes existence and uniqueness of solutions of the
appropriate martingale problem for .%,. Surprisingly. existence is more difficult
than uniqueness. Section 3 gives a precise description of Tachida’s (1991) model
as a measure-valued Wright-Fisher model and proves a weak convergence result
that justifies the diffusion approximation of that model by the Fleming-Viot
process with generator ;. The idea of the proof is to show that the Girsanov
formula for the Wright-Fisher model converges in some sense to that for the
Fleming—Viot process. Section 4 establishes existence, uniqueness, and revers-
ibility of the stationary distribution of the Fleming-Viot process.

Two obvious problems remain unresolved, namely (a) justification of the
diffusion approximation of the stationary distribution of the Wright—Fisher model
by that of the Fleming—Viot process, and (b) proof of the strong ergodicity of the
Fleming—Viot process.

2. Characterization of the process

Let Q:= Ciy£).4)[0,0) have the topology of uniform convergence on
compact sets, let # be the Borel o-field, let {z,,1 > 0} be the canonical coordinate
process, and let {#} be the corresponding filtration.

We will need a lemma from Ethier (1997), which is essentially a result of
Dawson (1978).

Lemma 2.1. Let hy.hh € B(E). If Pe 2P(Q) is a solution of the martingale
problem for %, then

t

(2.1)  R;:= exp{(hz.,u,> = ha 1) — J

0

.
[5 (Rott> — Choopt>?)

|
+ 5()((/12. voy — hoy g ) + Kinha. gy — iy ,/4‘.}(/13,/15‘)] ds}
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is a mean-one {F}-martingale on (Q..7.P). Furthermore, the measure Q € 2(Q2)
defined by

(2.2) dQ = R, dP on F, t=>0,
is a solution of the martingale problem for L iy,
We now define
(2.3) Q= Cp(g).a)[0. 0) = 2 = Cip).a)[0. 0).

For each ue #(E) we denote by P, € #(R2) the unique solution of the martingale
problem for %, (i.e., the distribution of the neutral model) starting at .

Lemma 2.2. For cach pe #°(E). T >0, pe(0,py). and i> (e’ p>+
1
3 0T (e vp).

} _ (0D 1y v e v0))

2.4 P, Pho iy > 2
( ) It { sup <€ /l/> 1 — <(,ph(,”u> _ %0T(el’”°, VO>

0<r<T

In particular, given pe #°(E), we have sup()s,sr@/”"’,/t,) < o Pras. for each
p€(0,py) and T >0, and therefore P,(2°) = 1.

Remark. Ethier (1997) assumed in effect that p, = co and used

3
(2.5) E% [0 sup <(’/)h",/l,>2:| < (12T + 3)¢e™ 1y + (IZT + 4—‘02 Tz) (e vyd

<t<T

in place of (2.4). (Actually, the formulation in the previous paper contains a
small error, and (2.5) is the corrected version.)

Proof. Fix pue #(E) and g € B(E). Note first that
(2.6)  Eflg.pD) = <U(0)g. 1>
=" gy + (1= ") v < {gyu) v {g. o)

for all t > 0, where {U(¢)} is the semigroup on B(E) with generator 4 as in (1.1).
Assume that ¢ is also continuous; then

r

(2.7) Z9(t) := g, 1,> — <Ys 1o — %0 0(<.c/~ voy — g, 1y )ds

is a continuous {%}-martingale on (Q..7.P,). Assume that g is nonnegative as

1
well; then <{g.u,> < Z9(t) + <{g.1y) + E()t(g, vy for all r>0. Consequently,

1
given T >0 and 1> {g,pu) + §0T<g. vyy, we have
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|
8 nf s ud>af<nd s 200> 0= G- 5070
T

0<r< 0<i<T
EZ9(T)"]
T A =Lg.y —50T<g, vod
_ ERgurd +305) <g.p >
T A=Lg > = 50Ty vd
- UH30T)Kg 1> v <g-w))
T A=y —50Tg. v)
where the last inequality uses (2.6).

If we now assume that pe #°(E) and let g =e¢” A K in (2.8), where
pe(0,py). we obtain (2.4) by letting K — oo.

Let ©2° have the topology of uniform convergence on compact sets, let F#°
be the Borel o-field, let {z,.r >0} be the canonical coordinate process on Q°.
and let {#°} be the corresponding filtration. We do not distinguish notationally
between the canonical coordinate process on ©Q and that on Q° (the latter is just
the restriction to ©° of the the former), between P, € () and its restriction to
F° (note that #° < %), or between R, of (2.1) and its restriction to Q°. We
temporarily denote R, by R/ {0 indicate its dependence on /1, and h,, which
we now allow to be unbounded.

Lemma 2.3. For each e #°(E), {R?"’,t > 0} is a mean-one { % }-martingale
on (°.7°,P,).

Proof. It is enough to prove the existence of dy > 0 such that

RO.I{
(2.9) E% [ 140
R;).h

whenever >0 and 0 <d <J). For then, given r>s>0, choose s=1ty < t;
<o <ty =1t with max|<;<,(t; — ti)) < o, and argue that

, n RO,h
Z° | — " li FZo| —
’/3' =E HR().II /\ =1

i=1 tioy
Define hg = (=K) v (I A K), and note that, for fixed r > 0, (2.9) holds for all
0 >0 if h is replaced by /g, and hence

R()./l
B2t
(2.10) E [R(.”'

by successively conditioning on 7’ ..., %’

A

(2.11) Ef [11::;2’\ oShas 1 +(1/2)06<hk v )
!

zo | hk>+(1/2)05<hg v
jetjl_cmxl)(/ ik vo)

The integrand in (2.11) is bounded by
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o140

1
(2.12) exp{</11<.;t,+(,»> +§0J </11<-,tts>ds}

1

1 1+0
< CXP{</10,/¢;+($> 30 J

!

<hy, /ls>ds} 1

so it will suffice by dominated convergence to show that the right side of (2.12) is
integrable for ¢ sufficiently small.

Choose pe(l,py), let ¢q=p/(p—1), and define dy =2p/(0q). (This is
where we use the assumption that p, > 1.) Then, by the Holder and Jensen
inequalities and (2.6),

1+0

(2.13) EE'[CXP{</10,/I,+5>+%0[ <ho.,us>a'sH

!

1 140 Va
< EX[exp{ plho, tt159}] P ES [exp{§ 061[ <h07/‘s>ds}]

t

IA

+o ) 1/q

1

|
Ee’[(e”"",,tt,+5)] 1/p (SJ

< [<€pho,/l> v <€ph(,’ V()>]l/p[<€”q6h°/2,/l> v <66q§ho/2! "0>]]/q
< <€ph”,/t> v <el’/lu‘ o)

if 0 <Jd < dy, and the proof is complete.
For each pe #°(E), Lemma 2.3 allows us to define Q, € #(£2°) by
(2.14) dQ, =R dP, on #°, 1>0.

4

We now show that Q, solves the ©° martingale problem for &), starting at pu.
(The domain of %, is the space of functions ¢ on #°(E) of the form (1.5).)

Lemma 24. Let e #°(E). Then

4

(2.15) M = plu) — plui) — Jo(fh(ﬂ)(/ts)ds

is an {Z°}-martingale on (Q°.7°.Qy) for each ¢ € D(%£)).

Proof. Fix ue ?°(E). Let hx be as in the preceding proof, and define
X € #(Q2°) as in (2.14) but with /i replaced by hg. Then, by Lemma 2.1, ~
solves the £ martingale problem for %, starting at u. Let ¢pe 2(%,) be
arbitrary, define

!

(2.16) M = ol40) = 0(00) = | (Lrup) ).

and fix t>0 and 6 > 0. Then
(2.17) EQ (M — M]*|7) =0,
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hence
(2.18) EX (M!S — MI*)RYN| 7] =0
and
i RV /% i
(219) EB, (M’I_l:() M’h,\-)R%ZKe(h,(.;l,)+(l/2)0()(hg,w,) %:l =0.

Note that the integrand in (2.19) is bounded by a constant multiple of

149

(140 1
(2.20) <1 + (14 <h(.‘/t‘\,>)ds> exp{(lzo,,tt,Jr(;) + 5() [

Jit Jit

Cho, g >ds} .

With p.q. and J§y as in (2.13), choose o> 1 such that ap < p,, and put =
a/(x—1). Then, by Holder’s inequality and the argument used for (2.13). the
P,-expectation of (2.20) is at most

1+ p l/[)’
(2.21) Ef (|+5+J </zo,;4x>ds>

t

l 140 ]/1
Ef [exp{a(ho. M) + 3 Oa [ hy, ;g.}ds}]

1

< (2511 400) + 2L 1> v Bl vgd) )P

. {<()1p/10wu> v <eaplu,‘ vo>}l/a

if 0 <J <3dy. For such 4. we conclude that

140 t

0.h
(222) EF,’, [(Mh _ Mh) ﬁlo_l—;: e(h,,u,>+(l/2)06<h.\'n>

7} =0.

°-measurable factors to obtain

!

We would now like to factor out the 7,

(2.23) Ef (M), — MRS =0
and
(2.24) E%(M} - M!N7°] =0,

but first we must show that the integrands in (2.23) and (2.24) are integrable.
Observe that {M/"* 1> 0} is a continuous square- integrable {#;}-martingale
on (2, F Q") with increasing process ({M"*»> = Jo .)ds, where

k
(2.25) 0<lu) = Z ity = it S i 9) Fe (KE 0 ) F (KE- p13)

ij=1

(z:: 1/l € )2 =:C

IA
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if ¢ is as in (1.5) and C; := sup,. »g|F-(<f.v))]. It follows that
(226)  EB[(M/*)2R0M] = B [(M/*)) = B [((MM >y < ¢r 120,

Now apply Fatou’s lemma, obtaining

(2.27) Ef((MIVRM <. 1>0.
hence
(2.28) E&(MIN)<cCr,  1>0.

This provides the needed justification for (2.23) and (2.24).
As in the preceding proof, once we have (2.24) whenever ¢ > 0 and 0 < J < g,
we have it for all 1> 0 and 6 > 0.

Theorem 2.5. For each p e #°(E), the Q° martingale problem for &) starting
at w has one and only one solution.

Proof. It remains to prove uniqueness. Given ue Z°(E), let O, € 2(Q°) be
a solution of the Q° martingale problem for %, starting at x. Then {R,’"O,t >0}
is an {#°} local martingale on (2°.#°.Q,). In fact, if we define

(2.29) ty =inf{t>0: {hi. > = N},

then {Rf'A‘(zN.IZO} is a mean-one {%, }-martingale on (°,#° Q,). Using
essentially Theorem 1.3.5 of Stroock and Varadhan (1979), there exists for each
N > 1 a probability measure PNN on (Q°,.#°) such that

T.

(2.30) dPY} = R!) dQ, on F,..  1>0.

Furthermore, by the argument that was used to prove Lemma 2.1,
IATN

(2.31) P(tyney) — @) — . (Zow)(,)ds

is an {#  }-martingale on (Q°97,°NP/,N) for every g € 2(.%)). Again we apply
Theorem 1.3.5 of Stroock and Varadhan (1979) to deduce the existence of a

probability measure P, on (£°, %°) such that

(2.32) Pe=PY on#FS . N>1

N

We claim that

(233) o) — o) - IO(YO(P)(/l,~)¢1r

is an {#°}-martingale on (Q°, 7" F;) for every 9 € (). To see this, fix such
a ¢, let H be a bounded continuous function on #°(E)"™, where m > 1, and let
0<si <~ <5, <s<t Then

INTN

(2.34) EU [((p(/t,w) = 9(Hsney) — J

SATN

(«-({)()(ﬂ) (:Ur)dr) H(:“S. ATN S0 ﬂ.v,,,/\m) =0
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for each N > 1, hence

!

239 B (otu) - ot) - |

S

(L)) Hp )| =0

This proves the claim, and so P, extended to (£2..%) in the obvious way. is a
solution of the £ martingale problem for %, starting at g, and must therefore
equal B,.

Finally, from

(2.36) dP, =R} dQ, on Z, . 1>0,
we obtain
(2.37) dQ,=RC! dP, on Z, . 1>0,

and in particular that for each N > 1, EQ“[(p(,u,MN)] is uniquely determined for
every p e C(#°(E)) and >0, hence the same is true of E9[p(y,)]. Thus, the
Q,distribution of g, is uniquely determined for every f> 0. implying that the
©° martingale problem for %, starting at x4 has a unique solution.

3. Diffusion approximation of the Wright—Fisher model

The motivation for the Fleming—Viot process characterized in Section 2 is that
for large populations it approximates Tachida’s (1991) model, which was originally
formulated as a Wright—Fisher model. In this section we provide a justification
for this diffusion approximation. It does not follow from existing results (such as
Ethier and Kurtz (1987)) because of the unboundedness of /.

We begin by formulating a Wright-Fisher model that is general enough to
include Tachida’s model. It depends on several parameters, some of which have
already been introduced:

e [E (alocally compact, separable metric space) is the set of possible alleles, and is
known as the type space.

e M (a positive integer) is the haploid population size.

e u (in [0,1]) is the mutation rate (i.e., probability) per gene per generation.

e 1y (in Z(F)) is the distribution of the type of a new mutant; this is the house-
of-cards assumption.

e w(x) (a positive Borel function defined for each x € E) is the fitness of allele x.

The Wright—Fisher model is a Markov chain describing the evolution of the
composition of the population of types (xi,....: vy ) € EM or, since the order of
the types is unimportant, M~' 5" 0, € #(E). (Here 8, € 2(E) denotes the unit
mass at x € E.) Thus, the state space for the process is

M
(3.1) Py(E) = {%Z&\., e P(E): (x1.....xp) € EM}
i=1

with the topology of weak convergence. Time is discrete and measured in
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generations. The transition mechanism is specified by

et 1 H
(3.2) W= M’Z:l:d\-, — H;éyi,
where
(3.3) Yi,..., Yy are iid. g [random sampling],
(3.4) =1 =w)p’ + vy [house-of -cards mutation)],
(3.5) wi(r)= [r w(x)u(dx)/w, ) [haploid selection].

(Integrability in (3.5) is not an issue, because u has finite support.) This suffices to
describe the Wright—Fisher model in terms of the parameters listed above.

However, since we are interested in a diffusion approximation, we further
assume that

(36) =gy e =exn{ L

where 6 is a positive constant and /s is as in (1.3). (Note the use of the ex-
ponential in (3.6). This ensures that w(x) is always positive, in contrast to the
more conventional and asymptotically equivalent w(x) =1+ i(x)/M.)

The aim here is to prove, assuming the continuity of A, that convergence in
#°(E) of the initial distributions implies convergence in distribution in Q° of the
sequence of rescaled and linearly interpolated Wright—Fisher models to a Fleming—
Viot process with generator ¥,. We postpone a careful statement of the result to
the end of the section.

The proof requires a moment estimate on the neutral (4 = 0) Wright-Fisher
model that is analogous to Lemma 2.2 for the neutral diffusion model, as well as a
Girsanov-type formula for the Wright—Fisher model that is a bit different from
Lemmas 2.3 and 2.4 for the diffusion model. First we need a simple lemma
concerning Markov chains, whose proof can be left to the interested reader.

Let S be a separable metric space, and let {X,,n=0.1,...} denote the
canonical coordinate process on = := §%+ which has the product topology.

Lemma 3.1. Let (P.\)..s and (Q.).cs be (time-homogeneous) Markovian

families of probability measures on (Z,%8(Z)), and suppose there exists a Borel
Sunction V : S x S+ [0, 00) satisfying

(3.7) E2(f(X))] = EP[f(X)V (X0, X1)]

for all fe B(S) and xe S. If we define Ry =1 and

n
(3.8) R,=[[vxx). n=1,

i=1
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then
(3.9) E2[f(Xo, X, ... X)) = EP[f( X0, X1,.... X,)R,)]

for all feB(S"™") and xeS. In particular, {R,,n=0.1....} is a mean-one
{#XY-martingale on (Z.#(Z).Py) for each x€S, and O FY « PFY with
Radon—Nikodym derivative R, for each n >0 and x € S.

Let =y = ?M(E)Z' have the product topology, let # be the Borel o-field, let
{g,,n=0,1,...} be the canonical coordinate process, and let {#,} be the cor-
responding filtration. For u e 2y (E) we denote by P,(,M) € #(Z ) the distribution
of the neutral Wright-Fisher model starting at .

Lemma 3.2. For each ue Py(E), T >0, pe(0,py), and %> (e’ 1>+
1
5 ()T<e/)/loa VO>~

(1+30T)(Ce”o 1y v e?™ vp))
7= Celo iy — LOT (el vy

) pM) . oPho i\ <
(3.10) i {OST;[’LT] GANTR I RIES

Remark. The analogue of (2.5). namely

(3.11) ERT ] max (et p?
0<n<[MT] "

3
< (127 + 3)¢e®™ 1) + <12T + Z()ZTZ) e vy,

also holds.

Proof. Fix pe Py (E) and g e B(E). Note first that
3.12 ES _el( g LS s
(3.12) [<g.1>] = <g.4> = E g.M;On — g

=<g. (1 —w)u+wvo) = <{g, 11y

0
=537 (£9: 70> = {g.10),

where Y),..., Yy are i.id. (1 —u)u + uvy; expectations without superscripts refer
to unspecified probability spaces. Also,

M)

(3.13) EN (g1 d) = EP[EPRD (g )
= (1 = wE™" gy D) + udg. o)
= (1 —w)*<g. > +[1 - (1 =) Kg.v>

< {g. 1) v {g.vo?
for all k> 1.
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By the Markov property and (3.12),

-1

0
(3.14) Zy =g 1> = <9, /10>—2MZ 90> = <g. 1)

is an {%,}-martingale on (EM,,%',P,, ). Assume that ¢ is also nonnegative;
then <{g.u,> < Z9+<g.p14y> + (2M)~'0ndg.vo) for all n > 0. Consequently, given

T>0and 4> <g.1> +%0T<g. Vo D,

(M) . ]
(3.15) P, {()sTs‘l[)li(dT] g. 1, > ,1}

1
< plM) . gs g _ L oT¢a v
<P {OSTSA[);IT] Zi > = Lgpy =5 0T¢9. ‘0>}

an
E" [(Z[jur] )+]

<
A —=<g. 1> —50T<g. vo)

gy + @M g )
A—=<g.1) —30T<g. o)
- L30Ty 10> v <g. )
T A=Lg) —30Tg. )
where the last inequality uses (3.13).

As in the proof of Lemma 2.2, we apply (3.15) with g = ¢” A K. where
p € (0.py), and (3.10) follows by letting K — oo.

We define the map @y : 2y — Q° by

(3.16)  Dumlug.y..--), = (1= (Mt = M) syagg + (Mt = [M) ag41-

This transformation maps a discrete-time process to a continuous-time one with
continuous piecewise-linear sample paths, rescaling time by a factor of M. For
each ue Zy(E), let P,(,M) € ?(Z ) denote the distribution of the neutral Wright—
Fisher model starting at g and, for each pe #°(E), let B, e #(Q°) denote the
distribution of the neutral Fleming-Viot process starting at /.

The next lemma shows that the neutral Wright-Fisher model, with time
rescaled appropriately, converges in distribution in Q° (not just ) to the neutral
Fleming—Viot process.

Lemma 3.3. Let {™} < 2y (E) < #°(E) and pe #°(E) satisfy d°(u™ )
— 0. For simplicity of notation, denote Pl(lx’,), by just PM)_ Then PM )45,_‘,,' = B,
on °.

Proof. First, we verify the compact containment condition (Ethier and Kurtz
(1986)) in Q°. Let ¢ >0 and T > 0 be given. It is well known that PM ! =
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P, on Q. In particular, {PM !} satisfies the compact containment condition
in Q, so there exists a compact set K = Z(E) such that PM @y {u, € K for

Ogth}zl—g for all M. Fix a sequence 0 <ry <ry <--- with rx — p,.

For each positive integer k, define the constant

. 1 .
(3.17) Cr = Sl;{p {<e'kh('~/t(M)> + 50T<€”‘lm, o)

+ g2k <1 +%0T)(<e"“’“~u“”“> v <€"“”°J’o>)}-

Then
A~ x
(3.18) K:=KN {ue2(E): <" uy < C}
k=1
is compact in #°(E), and
(3.19) PMe !, e K for 0 <1< T}

>1—-PMe {1, ¢ K for some 1€ [0,T]}

o~
M) c rehy
(kgl{OSBlSd[);’IT] ™™ py) > Ck})

- (0TIt ) v i)
_——— Z <L)/I./70 /l (M) > 20T<el}.,10’ V()>

>1—¢

for all M.

For completeness, we prove here convergence of the generators, though the
argument is essentially as in Ethier and Kurtz (1986), Section 10.4. For functions
@ on #°(E) of the form

(3.20) o) = frowy -+ L fe 1D

where n> 1 and fj....,f, € C(E), define Z\"¢p on 24 (E) b

(M)
(321) (25" 0) (1) = ME" [p())] = o(10)}.
Letting 7(n. k) denote the set of partitions f of {1,...,n} into k unordered subsets
Bioe, p (with min f; < --- < min f3;), and letting Y,...., Yy be iid. u*:=

(1 —u)u + uvy, we have
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(3.22)
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P( ){(ﬂ(ﬂl)] E[<f %2(5Y>---<fm%25n>]

1 n M! k .
e H<Hff*“ >

for all ue #y(FE). Consequently,

(323) (£

'0)(10)

_M{M” (M H<f #n

1 o ey
+ o (M—n+l > ifpwt> IT Hiow>

1<i<j<n Ll#i,j

+oM ) -] <f,./z>}
Jj=1

IR/ | ROV H<f /l>}+0( )

l<l</<n Ll#ij

o ik = L) T o™

I<i<j<n Ll#i,j

+ Z<Af, W T < [T+ o™

Ju<i Ju>i

= Y KSif> = ) T <o

I<igj<n IHEIN]

+Z<Af, w [T <f-m>+0(m™)

JU#ID

= (Zop)(1) + O(M ™),

uniformly in g€ #y(E). Thus, the lemma follows from several results in Ethier
and Kurtz (1986) (Theorems 3.9.1 and 3.9.4, Proposition 3.10.4, and Corollary

4.8.13).

For the next two lemmas we require the infinitely-many-alleles assumption
that every mutant is of a type that has not previously appeared. Mathematically,
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this amounts to
(3.24) vo({x}) =0. xeE.
This of course includes (1.2).

For each p e 2y (E), we denote by P,(,M) and Q,(,M) in 2(Z)y) the distributions
of the neutral and selective Wright-Fisher models, respectively, starting at .

Lemma 3.4. Assume (3.24). Then, for each ue Py (E),
(3.25) do\M = RM aPM  on F,. n>0,

where

(326) RS;M) = exp{z <h]supp My s/lk> - Z <lsupp My /‘k>M l0g<eh/M~:uk—l >}

k=1 k=1

Proof. Let p € B(?Py(E)) and ue 2y (E). Then

|

M) M
6 B ) = | | ( >0, ) (dyr) - u ()

NI VN
£ 0]

Ic{l.2.. M}
(1
| o(5r2 0 ) e @ I votar)
E j=1 iel iel*
. (1—u)"'uM""J
Ic{1,2..., M)} E
J. “’(l f(s) = T ) TT vt
Y2 ¥ /‘ Vi 0 1
E Mj:l ‘ <y ﬂ>|’| iel¢

_ Lié HlsisM:y,ssupp/z w(yi)
= . E(P M < Y <w’ﬂ>|{1gisM:y,esupp;z}l

Jj=1

M
x TT((1 = w)p+ uvo)(dys)

= E" [p(u) V™M (g )]

where. if g = M"Y M 65,
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Hl <i<M:y; €supp y, w(yi)
I<i<M:y; €supp u
<W,ﬂ0>|{ Vi PP Ko}

_ xp{CM (108 1) Lupp s, 1)}
R

(3.28) V(M)(/‘Ow/‘l) =

= exp{<hlsupp ;t(.,/‘1> - <lsupp 1y M >M 10g<eh/Mqu>}-

The next-to-last equality in (3.27) uses (3.24). The result now follows from
Lemma 3.1.

We next show that the Girsanov-type formula for the Wright-Fisher model
converges is some sense to the one for the Fleming—Viot process. First, we need a
bit of notation. Define REM) on Q° for all 1 >0 so as to satisfy

(329) REM) oDy = RfAA;I’; on Zyy, t=>0,

where R,(,M) is as in Lemma 3.4. Specifically, we take

M1

030) R = exp{ 3 il sty
k=1

(M1]

- <lsupp Hiky/m ﬂk/M>M 10g<€h/M» /‘(k—l)/M>} .
k=1

We also define R, on ©° for all 1 >0 to be what we called R?"' in Section 2,
namely,

(3.31)

! 1
R, = exp{(h,ﬂ,} —hpyy — Jo B (% > — Cho g d?) + 50((/1, voy — <h,/1x>)} a's}.

Lemma 3.5. Assume that h is continuous and (3.24) holds, let T >0 be
arbitrary, and let PM) be as in Lemma 3.3. Then there exist Borel functions
Fp,Gp : 2 — (0,00), a continuous function F:Q"— (0,00), and a positive
constant G such that

(3.32) RM = FyGy. Ry =FG,
Fy — F uniformly on compact subsets of Q°, and Gy — G in PM@} /! -probability.
Proof. Let
(MT] (MT)

(3.33) log Fy = AX: $hotyeym? — ;‘Z M log<e"™ iy _vyypd
=1 =1

(MT]
+5 0> " logle"™ 1y m>-
py



A Fleming—Viot process 353

(MT] 1
(3.34) log Gy = M supp s smn) Mipar > — 5 0') Togle™™ gy g
— -1y 2
(MT)
- Z <hl(supp;z(,‘,,,w,)‘\/‘k/M>a
k=1
LS 5 !
(3.35) log F = <Choury —<hopyy — J 3 (Kh? > — <hope >o)de + L §0<h,,u,>dt,
0
and
1
(3.36) log G = —§0T</1, Vo,

and note that (3.32) holds. Then, pathwise on Q°,

(3.37) 10g<€/'/M-,/l(k-1)/M>

I g h2, g
=10g<1+< Mk l)/M>+< Kk l)/M>+0(M_3)>

M 2M?

_ Shypge-nym? +%(<h2,ﬂ(k-|)/M> - <h»/‘(k—l)/M>2)

i E +O(M™3),

SO

[MT]
1 1
(3.38) log Fy = <hopyprriym> — <hittg) — i Z §(<h2sll(k—1)/M> — Sty d?)
oy
(MT]
+t ; §0<h~/‘(k—l)/M> +Oo(M™)

=log F + o(1).

To show that these results hold uniformly on compact subsets of Q° requires a
more careful analysis, which we illustrate with an example.
Consider the problem of showing that. for fixed 7 > 0,

(MT] T
(3.39) 7 3 sty — J Chy e
k=1 0

uniformly on compact subsets of ©°. This requires several observations. First,
note that, for each we Q°, t— {h, w,) is continuous since / is continuous and
|| < hy. (Recall the topology on #°(E).) Second, we claim that, if {o™} c Q°.
weQ° and 0" — w, then <h,w!"> — (h.w,> uniformly on compact r-intervals.
Of course, w™ — w means that d°(w!",w,) — 0 uniformly on compact t-intervals,
hence do(wx'),w,) — 0 whenever 1, — ¢, hence </z.w5:')> — <(h,w,> whenever 1, — 1,
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and this is equivalent to our assertion. Third, it follows that w — jOT ChowyHdt 1s
continuous on £°. This argument, incidentally, leads to the conclusion that F is
continuous on °. Finally, it therefore suffices to show that, if {w®)} c Q°.
we Q°, and w®) - @, then

(MT]

T
(3.40) 7 2 hapl > — J Chy Y.
k=1 0

But by the second observation, <h.a)§K)>—> <h,w,) uniformly on compact ¢-
intervals, and therefore, using the first observation, (3.40) follows. The rest of the
proof that Fy; — F uniformly on compact subsets of Q° is handled in the same
way.

Next, because of (3.24), the P(M) @7 -distribution of the second sum in log Gy
is the distribution of

[MT] X

(3.41) Z Zh (&w).

where Xj, X,,... are independent binomial(M,0/(2M)) random variables and
g (k01 =1,2,...) are i.i.d. v and independent of X, X5, .... This converges in

L? to %BT(h,vo), since

MT] X
(3.42) E[( ZZ/ &) ——()[MT]<h y >>]

(MT] X, 1 MT | 2
( Z Z{/l (&) = <hovod} + MZ(X" - 59) <h, v0>>

k=1

(MT] X, 2 | MT
MZZE (Z{h &) — <h.vo>}> +W;Var(xk)</z,vo>2

(MT]
1 Z E[X:](<h2 o) — <hovod?) ZVar(Xk <hovpd?

Finally, using (3.24) once again, the P™)@;/-distribution of the first sum in
log Gy has second moment

(MT)

M l 2 M
(343 Y EM [(M Csupp )75 > = 59) }E”‘ "[(log¢e™ . gy, »))

k=1

by virtue of the fact that Ml gpp,, )<~ 24 is independent of g _, and distributed
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binomial(M,0/(2M)) under P‘M). But (3.43) is bounded by

(MT]4 [MT)

M l
(3.44) S OE" [(log<e"™. sy 19)) < 50 3 B [(log¢e™™ 1y _15)?]
k=1 k=1
1 [MT] (M) 2
= 50 E”7 (MM — 1y
k=1
L, 1A pUn ho/ M 2
< E()m E [<l’l()e 0 ,[lk_1> ]
k=1
=0oM™),

using (3.11). To see the first inequality in (3.44), note that

(3.45) log<e ™™ iy < log¢e™ .y < log¢e™, 1y

and therefore

(3.46)  |log<e"™  1y| < max{log{e"'™ uy, —logle ™M 1>} = logle"™M i,

where the last identity uses Jensen’s inequality. This proves the lemma.
Our last lemma is a simple result about weak convergence.

Lemma 3.6. Let S be a separable metric space, let f,.g,:S+— [0,00) (n=1)
be Borel functions, let f : S — [0, 00) be continuous (but not necessarily bounded),
let g be a positive constant, and let H : S — R be bounded and continuous. Assume
that f,, — f uniformly on compact sets. Let P, (n>1) and P be Borel probability
measures on S such that P, = P, g, — g in P,-probability, and fS Sodn dPy =
JsfgdP =1 for all n>1. Then [gf,g.H dP, — [ fgH dP.

Proof. By Theorem 5.5 of Billingsley (1968). P,f;' = Pf~' and P,(f,H)"
= P(fH)™'. Since P,g;' =0d,. it follows that P,(f,g.,) " = P(fg)"" and
P,,(f,,g,,H)_l = P(fgH)~'. By Theorem 5.4 of Billingsley, this together with the
assumptions that f,g, >0, fg >0, and [ f,9n dP, = |5 fgdP =1 for all n>1
imply that {f,g,} is {P,}-uniformly integrable. Since H is bounded, {f,g,H} is
also {P,}-uniformly integrable. This, together with P,(f,g.H) ' = P(fgH)™"
proved just above, gives the desired conclusion.

For each p e 2y (E), let Q,(,M) € P(Z ) denote the distribution of the selective
Wright-Fisher model starting at 4, and for each u e 2°(E), let O, € #(Q°) denote
the distribution of the selective Fleming-Viot process starting at .

We have now done almost all the work required to prove the main result of
this section.

Theorem 3.7. Assume that h is continuous. Let {iM)} < 2y (E) < #°(E)
and e Z°(E) satisfy d°(u'™), 1) — 0. For simplicity of notation, denote QL%), by
just QM Then QML = Q, on Q°.
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Proof. First, we prove the theorem under the additional assumption (3.24).
Let T >1 be arbitrary. We apply Lemma 3.6 with S=0Q° (f,.9..f.9) =
(Fap,Gp, F,G) from Lemma 3.5, H an arbitrary bounded continuous Fr_;-
measurable function on Q°, and (P,,P)=(PMa3! P,) from Lemma 3.3.
Lemma 3.5 gives the required convergence of {f,} and {g,} and the continuity of
f. Lemma 3.3 gives P, = P. The requirement that Isfngn dP, =1 for all n
follows from

(3.47) o

A(M _ 5
RMapMe,) = J

—-M

=)

RM o @y, dPW):J R Pt — 1,
Y]

JQ°
which uses (3.29). and of course [;fgdP =1 because [, Ry dP,=1. Thus,
Lemma 3.6 implies that

(3.48) J HdoM o, = l HRM apMa7! — | HRy dP, :J H dQ,.
Q° JQ° Q°

(We assumed H to be Fr_j-measurable so that it would be # [sr),»-measurable
for every M.) Since the collection of all such H (as 7 varies) is convergence
determining, QM @3 = Q,.

Finally, we need to remove assumption (3.24). Given arbitrary E.vy. and /
(satisfying (1.3) of course) with h continuous, define

(3.49) E=Ex[0.1], To=vox4i  h(x.0)=h(x),

where 4 is Lebesgue measure, and apply the theorem under (3.24), which we have
just proved. The initial distributions #*) and u can be replaced by u*) x &
and u x &y, and the distributions Q™) and Q, as well as the mapping @y will be
distinguished from the original ones with tildes. Letting n: E — E denote pro-
jection onto the first coordinate, the mapping A : C,,D(E)[O.,oo) — Q° given by
A(@) = {@n~"' t > 0} is continuous, and hence

(3.50) OMey) = 0Me A = 0,547 = Oy

as required.

4. Characterization of the stationary distribution

If /1 is bounded, then it is known that the Fleming—Viot process in #(F)
with generator %, has a unique stationary distribution 17, € 2(#(E)), is strongly
ergodic, and is reversible. In fact,

(41) ”0(')=P{i/),(5:i€~},
i=1

where &,,¢&,, ... are i.i.d. vo and (p,,p,,...) is Poisson—Dirichlet with parameter 0
and independent of &.&..... Furthermore,
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(4.2) I (dp) = e o (dp) / J XM [To(dv).
P(E)
These results can be found in Ethier and Kurtz (1994, 1998).
The finiteness of the normalizing constant in (4.2) is precisely the condition
needed in the work of Overbeck et al (1995). Notice that

(4.3) J 2 ITo(dv) = E [exp{2§: /),h(fi)}] =E f[ e, m}.
#(E) i=1 i=1

A sufficient condition for this to be finite is (¢?",vy> < co. At least when E = R,
h(x) = x. hy = |h|, and v, is symmetric on R (as in Tachida (1996)), a necessary
condition for the finiteness of (4.3) is (e’ vy> < oo for all p < 2.

In this section we impose a slightly stronger condition: E.vy, and & are
arbitrary, subject to the condition that there exist a continuous function /g : E —
[0,00) and a constant p, € (2, 00 such that (1.3) holds. In other words, we now
require py > 2.

Recalling the example in (1.4), we have seen that we can characterize the
process in that case if gy < V2. and, as we will show below. we can characterize
the stationary distribution as well if gy < v2/2. The construction of Overbeck
et al. (1995) requires oy < v/2/2 or both gy = +/2/2 and 0> 1. (To see this, use
(4.3) and Watterson and Guess (1977), Eq. (3.2.10).)

The following lemma was proved by Ethier (1997) under (1.2) and extends
(with essentially the same proof) to (1.3).

Lemma 4.1.  Assume (1.3) with py >2. Then Io(#°(E)) =1 and > ¢
LY(ITy). In addition, I1,, defined by (4.2). is such that &, is a symmetric linear
operator on L*(I1},).

However, it does not immediately follow that I7;, is a reversible stationary
distribution for the Fleming—Viot process with generator %). The theorems of
Fukushima and Stroock (1986) and Echeverria (1982) do not apply, again because
of the unboundedness of A.

We can now state the main result of this section.

Theorem 4.2. Assume (1.3) with p, > 2. Then I, defined by (4.2), is a
reversible stationary distribution for the Fleming—Viot process with generator ¥y,
and it is the unique stationary distribution for this process.

Proof. Reversibility is equivalent to

@a | esonmidn = | w7iwet0 midn)

#°(E) #°(E)
for all ¢, € B(#°(E)) and t > 0, where {.7,,(7)} is the semigroup corresponding to
%y. Using Lemma 2.3 and the notation of Section 2, as well as (4.2), we see that
(4.4) is equivalent to
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43 [, PO 0) RN T

=] WOOEH ) R To(d)
#°(E)

for all ¢, € B(#°(E)) and r>0. But we can rewrite (4.5) as

we) | et [so(uo)w(ﬂ,) exp{<w,> + o) - | y(nx.)ds}] Mo(dy)
#°(E) Jo
= [ ot exp{ chmd + Ghopw) [ v)as | maca
#°(E) 0

1 1
where p(u) := 5((/12,;1) —Chod?) + 59((/1, voy — <h,1)). Now the neutral model

is known to be reversible (Ethier (1990), Shiga (1990)), so {u,.0 <s <1t} and
{#,_,0 < s <1} are equal in distribution under ny,o(E)I’,,(-)HO(d/z), implying that
(4.6) holds, and therefore we have the reversibility (hence stationarity) of I7,.

For the uniqueness of I1,, we can apply essentially the argument used by
Ethier and Kurtz (1998) in the case of bounded h. There is one additional step
needed, so we provide the details.

Suppose the conclusion fails. Then by Lemma 5.3 of Ethier and Kurtz (1998)
there exist mutually singular stationary distributions 1y, [T, € 2(#°(E)). We will
show that this leads to a contradiction.

Let 2(E x E) have the topology of weak convergence, let Q := Crexp)[0, )
have the topology of uniform convergence on compact sets, let .# be the Borel
o-field, let {fi,,t >0} be the canonical coordinate process, and let {#} be the
corresponding filtration.

Define the operator 4 on B(E x E) by

@7 (Ax1x2) = 50| (703) = Flsrx)w(dy)

and the functions l~11 and 712 on E x E by

(4.8) ih'(-\‘l-XZ) = h(x;).

Let Pe 2(Q) be (the distribution of) a neutral Fleming—Viot process with type
space E x E, mutation operator A, and initial distribution I" € Z(Z(E x E)) given
by

(4.9) () = j J Lty % ) 1T, (dpey) T (dpsy ).
2°(E) J#°(E)

With the projections ny,7; : E X E — E defined by m;(x,x2) = x;, observe that,
on (Q.%.P). {imi', 1 >0} and {ji,n;'.1 >0} are Fleming-Viot processes with
generator %, and initial distributions /7, and IT,, and that they couple, that is,
there is a stopping time t < oo P-a.s. such that g,n;' = ji,n;"' for all >t P-as.
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Let us define
(4.10) P(EXE)={ueP(ExE):ur;' e #?°(E) for i =12}
and, for u,ve #°(E x E),
(4.11)  d°(n.v)
3 2
=d(u,v) + ZJ I A sup |<e” um 'y — I vn,">|)e‘r dr,
i=1 J(0.p0) O<p=r

where d is a metric on P (E x E) that induces the topology of weak convergence.
Then (#°(E x E),d°) is a complete separable metric space and d°(u,, 1) — 0 if
and only if u, = u and sup,{e”™ u,n;7'> < oo for i=1,2 and each p e (0.p).
We now define

(4.12) Q° = Clpopxry.dn[0.0) © 2 = Clppp) iy[0. ).

Let ©° have the topology of uniform convergence on compact sets, let #° be the
Borel o-field, let {z,, 7> 0} be the canonical coordinate process on Q°, and let
{#°} be the corresponding filtration.

Then, exactly as in Lemma 2.3,

i _ . Ty -
(4.13) R = exp{<h,~,ﬂ,> — i fig) — L [§(<h,?,ﬂs> — Chi i)

+ %0(<h, oy — <iz,-,ﬂx>)] dS}

1S a mean-one {ﬁ,ﬁ}—martingale on (f)o,t/”;",P) for i =1,2. Thus, we can define
Q) and @, in Z(Q°) by

(4.14) dQi=R"dP  on F°.  1>0, =12

and exactly as in Lemma 2.4 we conclude that, for i = 1,2, Q; is a solution of the
Q° martingale problem for ;. with initial distribution I". It follows that the
Q;-distribution of {j,n;',1>0} is a solution of the Q° martingale problem for
&, with initial distribution I7;, hence it is a stationary solution. Letting

(4.15) ty = inf{t > 0: < gny'> + <hd any'y = N}
there is a constant ¢y(7) > 0 such that

(4.16) RV >en(T)., 0<t1<T A1y, i=12
Consequently, for i =1,2,

(4.17)  [(G) = Q{jirn; ' € G} = en(T)Pljiyn;' € G,1y > T}

> cen(T)Pljirn; ' € Gty > Tt < T}
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for all Borel sets G. But the right side of (4.17) does not depend on i and is a
nonzero measure in G if first T is chosen large enough and then N (depending on
T) is chosen large enough. This contradicts the assumed mutual singularity of IT,
and I1, and completes the proof.
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