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Stabilization of weak solutions to compressible
Navier-Stokes equations*

By

Antonin NovoTNY and Ivan STRASKRABA

Abstract

In [17] the present authors investigated the stabilization of the weak solutions to space periodic problem
for barotropic compressible Navier-Stokes equations. The main goal of this paper is to show the power
of the method introduced in [17] by treating other boundary conditions. In fact, the only limitation of
the method is potential external force and the validity of the Poincaré inequality for the velocity.

1. Introduction

We consider the barotropic Navier-Stokes equations in a bounded domain
Q c RV

(pu), + div (pu @ u) + Vp(p) — sy du — 1,V (div u) = pf’, (L.1)
p, +div (pu) = 0. X€Q, t>0, (1.2)

The unknown quantities are the density p and velocity u. The given data are
the functional dependence p = p(p) between the density p and the pressure p.

L N-2 . .,
viscosity constants s > 0, 1, > N A and external forces density f = f(x).

Along with the equations (1.1), (1.2) we consider such a boundary condi-
tion that the Poincaré inequality for velocity holds true. As a typical boundary
condition of this type we consider the Dirichlet boundary condition

u(x, 1) =0, X €aon. (1.3)

Other boundary conditions can be considered as for example periodic
boundary conditions with certain symmetry (see our previous paper [17]) or no-
stick boundary conditions. We explain all the modifications required by the latter
case in Section 6. As usual we impose the initial conditions

u(x,0) = up(x), p(x,0) = po(x), xeQ (1.4)

with the given functions wuy, p,.
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By stabilization of solutions in this context we mean that given weak solution
of the problem (1.1)—(1.4) satisfying the energy inequality below, for any sequence
t, — oo and some r > 1 there is a subsequence s, and a function p_, such that

im [ 1p(r9) = ()] d =0, (1.5)
H—C Q

It appears that if f = Vg with a given smooth function g then (1.5) holds true with
an equilibrium density p_,, that is a solution of the rest state equations

Vp(py) =pef.  x€L. (1.6)
J P dx = M, ::] po dx, P = 0. (1.7)
Q Ja

If (1.5) is proved and the rest state defined by (1.6), (1.7) is uniquely determined
then, of course, (1.5) holds without restriction to subsequences.

There are many results in this direction in one space variable (see e.g. [1]. [3].
[20], [23]). In several space dimensions a related result has been proved in [13]
and [19], when the data is a small perturbation of a constant equilibrium.
Stability of stationary solutions is investigated in [21], and the convergence of
global strong solution to a stationary one for small data is obtained in [22].
Stability of stationary solutions for the case of large external forces has been
proved in [14], while a similar problem has been solved for heat-conducting
compressible fluid in [18]. The uniform stability under permanently acting dis-
turbances has been tackled in [15], while in [10] it is shown that all smooth, small-
amplitude solutions are asymptotically incompressible. In [17] we started to
investigate the unconditional stabilization of solutions to (1.1), {1.2) to test our
technique on the space periodic problem with a certain symmetry. This paper was
followed by [7], where the Dirichlet boundary conditions were considered and a
different method was used.

Finally, let us note that in comparison to [17] the procedure had to be
totally revisited since otherwise the Dirichlet boundary conditions produce ad-
ditional boundary terms hardly to control. So the function y, below was
redefined by (3.19) which on one hand eliminated the uncontrollable boundary
terms but produced another term in (3.38) below (the integral I£(¢)). This term
can be estimated thanks to careful considerations on the boundary of Q allowed by
Lemma 3.7. Also we had to go into detailed analysis of the problem (3.19) (see
the considerations after (3.46)).

2. Preliminaries

We adopt the usual notation, namely, C*(-) for spaces of k-times continuously
differentiable functions, W*:4(-) for the Sobolev spaces of k-th order and power g,
L4(-) for Lebesgue spaces with power q. The norm in L¢ will be denoted by |- |,
and in Wk9 by |- lc.,» The outer normal to 02 is denoted by v. We also
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denote by £ (X.Y) the space of linear continuous operators from a Banach space
X into a Banach space Y. In what follows we will use the usual mollifier with
respect to the variable ¢ given by

x

(Ry2)(1) := j: 0t — 5)=(s)ds := 1J (,)0(’ - S):(s)ds.

e)_o &

where supp ¢, = (—1.1). [7 gy(s)ds = 1.
Note that for vector functions u satisfying (1.3) we have the Poincaré
inequality

J u]? dx < const. } [Vul? dx. (2.1)
Q Q

Finally, let us point out that given a smooth function 0, and if p satisfying (1.2) is
sufficiently regular then the so-called renormalized equation of continuity

0(p), + div (0(p)u) + (p0' (p) — 0(p))div u = 0. (2.2)

holds true in the weak sense. It can be proved via regularization of p and [12].
Vol. I, Lemma 2.3 that if ¢’ is bounded and pe L2 (€2 x [0.00)) then the result
holds (for p(p) ~ p? this corresponds to the requirement y > 2). In [4] it is shown
that there is a weak solution of (1.1)—(1.4) for which the density p satisfies better
global integral estimate making it possible to relax the growth condition for the
state equation function p(-), (p ~ p¥ requires y > 1 for N =2 and y > 3/2 for

N =3).

3. Global uniform estimates

In this section we derive some global uniform estimates of a weak solution to
the problem (1.1)-(1.4). We begin with the fundamental assumptions:
(i) f=Vy, ge W>*(Q), 0Q€e C*
(ii) p(-) e C'([0,0)), p(0) = 0. p'(r) > 0 for r > 0, lim inf,_ . p(r) = oo and
there exist constants y > | and C such that

y r SPI(T)
" < C(1+ P(r)). where P(r) ::J [ ——= dzds. (3.1
1 T

3> 1 for N=2, y>3/2 for N =3, in particular, in what follows, for
the sake of simplicity, we assume p(r) = Ar’ with a positive constant

A= p(l);

(il) po e L7(R), /Pouo € L*(2). py = 0.

In the forthcomming text we use the following definition of the weak solution:

Definition 3.1 (weak solution). By a weak solution of (1.1)—(1.4) we call
a couple (u.p) such that putting Qr = Q2 x (0.T), for any T >0 and any n €
CHO,T; CE(2:RN)), e CY0,T:C*(2:R)) such that n(x,T) =0. {(x,T)=0
and we have p. p(p).plul?, [Vul? e Ll .(Qx[0.0)) and



220 Antonin Novotny and Ivan Straskraba

J (pun, + p((u-Vin-u) —q\Vu -V — py div u div
Or
+ p(p)div iy + pf - n)dxdr + J Po(X)uo(x)n(x,0)dx =0, (3.2)
Q

J (p¢; + plu- V)Y dxdt + J Po(x¥)(x,0)dx = 0. (3.3)
or Q

Remark 3.2. Let us note that due to assumed regularity of (p,u) and the
assumption (3.1) the smoothness of the test functions #,{ in the definition 3.1 can
be relaxed to the following inclusions:

for N =2:
ne W20, T:L"(Q))NL* (0. T; W™ (Q)) N LY 0. T: W= (Q)).

Ce Wh20,T: L7 (Q)NLY0.T: W' (Q)). with 6 > 0 arbitrarily small.

)

for N =3:
ne W 20.T: LY@y nL* (0. T: W@ (@))n L (0, T: W' *(Q)),
e LY0. T L0-9(@Q)) N L20. T; wh&/5=6)(Q)). (3.5)

We shall make further basic assumptions:
(iv) We are given a globally defined weak solution (p,u) of (1.1)-(1.4) sat-
isfying the energy inequality

i[ (1/)|u|2 + P(p) — pg) dx + J |Vu|? dx +,u2J |div u|2 dx <0. (3.6)
dt Jo\2 Q Q

in the sense of distributions;
(V) for a function O constructed in the proof of Lemma 3.4 below the equation
(2.2) holds in the weak sense up to the boundary, i.c.

I (C,0(p) + 0(p)(u -V, + (0(p) = p0 (p))div ul)dxdt =0
JQr

SJor all (e Cy((0,T);C*(22:R)).
The definition 3.1 and energy inequality (3.6) imply the following

Proposition 3.3. Let fe W'2(Q), f=Vg and let the assumptions (iii) and
(iv) be satisfied.  Then for this globally defined weak solution of (1.1)-(1.4) we have

p.P(p)e L*(0.00: LY (Q)). ueL*0.00; W'2(Q)). (3.7)
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In particular,

t+a
lim J |Vu(s)|§ ds=0  for any a > 0.

[=x I—a

For the existence of the global weak solution of the problem (1.1)—(1.4) we refer to
[11], [12] and [6]. For our given solution we want to prove convergence of p(z) as
t tends to infinity in L"() for some r > | either on subsequences or completely
(see Theorem 4.4). This requires a series of global estimates which will form the
main body of this section.

For the technical reasons let us prolong the state equation function p(-) to the
negative part of real axis by

p(r) = —p(=r). (3.8)

Denote
M() = [ p() d.V. (3.9)
Q

By the use of appropriate test functions in the equation of continuity and a certain
limiting argument it can be shown that (1.2) implies

M, = Lp(f)a’x, 1> 0. (3.10)

A similar argument is used below and so we do not present the proof here.
Regularize the density in ¢ by means of the usual mollifier (see Section 2)

p(x, 1) == Re(p(x.-))(1), xe.t>0,¢e>0. (3.11)

For each s> 0 define w.(s) as a (unique) generalized solution of the Neumann
problem

J Vwe(s) -Vydx = [ p.($)f -V dx, ne whii=h(@Qy,
Q Jo

J we(x, 8)dx = 0. (3.12)
Q

Classical results on the generalized elliptic boundary-value problems together with
Proposition 3.3 and assumption (3.1) give us existence of w,(s) for which there is a
constant independent of ¢ and s such that the following estimate is satisfied:

HMMNVSCMQVbSCwythVh
>

< Csup|p(1)], < C < o0, s>0,e>0 (3.13)
>0

(C is always a generic constant). Note that by (ii) it follows from (3.13)

sup{|w.(s)],.:5 > 0} < C < oo, £>0, (3.14)
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Ny . - . .
where y* = N _yy if y <N,y :=gq>1 sufficiently large if y=N and y* = w0 if

y > N.
In the following lemma an auxiliary function ¢ is introduced which will be
helpful later.

Lemma 3.4. There exists a positive constant ¢y and a bounded increasing
continuously differentiable function 0 on R with lim,_.. r0'(r) =0, such that

(p(r1) — p(r))(B(r1) — 6(r2)) = co(O(ry) — ()(rz))2 for all ri,r; € R.

Proof. Letry >0, 0(r) = p(r) for 0 < r < ry and 0 be concave, bounded with
0'(r) < p'(r) in (rg, 00), lim,_, . r0'(r) = 0. Extend 0 to (—00.0) by 0(r) = —0(—r)
for r < 0. Clearly 0 has the desired property.

Now, let us introduce
G.(s,m) := J (00 p~")(we(s) + m)dx, s>0,me R e>0. (3.15)
Q

Clearly. for each s > 0. & >0, we have lim,,_, 1, G.(s.m) = +|Q|sup,., O(r) and

%(s. m) > 0 for me R. Since for almost all (x,s). p(x,s) is finite we have

J R.O(p(x,))(s)dx = [ JI @.(s — 1)0(p(x, 7))drdx
Q JQQJ -

< 0(0) J‘Q [1 0.(s — T)drdx = 0(00)|Q|.

— L

So [, R.O(p(x,-))(s)dx lies in the range of G,(s.-) and for any fixed s > 0 and ¢ > 0
the equation

G.(s.my(s)) = ‘ R.O(p(x.-))(s)dx, (s >0,e>0), (3.16)
Jo

has a unique solution m = m,(s). Now, let us define

Po(5) := p~ (we(s) 4 my(s)). (3.17)

Then by (3.15), (3.16) we have
. 0(p,(s))dx = [ R.O(p(-))(s)dx, s> 0,e>0. (3.18)
Ja Jo

Finally, we define another auxiliary function ¥ (s) as a solution of

div i, (s) = R0(p)(s) — 0(p,(s))  in L.
. (x,5) =0, X€EAR,s>0.e>0. (3.19)
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This problem is not uniquely solvable but it is known (see e.g. [9]. (3.8)) that one
possible solution operator is given by

Vo(x.5) = S(RO(p)(5) — 0(p, () (x) = [Q K(x. »)(R0(p)(s) — 0(p,(s))dy. (3.20)

where K is an explicitly defined weakly singular kernel (see (9], (3.8)). By [9].
Theorem 3.1, Se Z(L9(Q), W"4(Q)) for any ge (1,00). With our particular
choice of 6, for any ¢ €[l,00) we get

.l , < C <0 with C independent of ¢ and s. (3.21)

Further, by (3.18) we have

[ (00 5 )0(s) 4 mlsdx = | RO (5.
JQ Q

Show that
|m,(s)] < C < o0, e>0,5>0. (3.22)
If we had

1Q10(—00) + 6 < J RO(p(-))(s)dx < |Q|0(c0) =6 for e (0,1).s >0 (3.23)

with some positive J then (3.22) would clearly follow. Denoting £(s):=
{xeQ:p(x.5) < M} we have

J R.O(p)dx = J R.O(p)dx + [ R.O(p)dx
Q Q(s) Jovag)
< O(M)|Q(s)] + 0(0)(|£2] — |2(s)]).
Show that there exists M > 0 such that infycg |Q2(s)| > 0. If this is not the case

then there are s, such that |Q(s,)| — 0 and p(x,s,) > n for any x e Q\Q(s,).
Hence

n|Q\Q(s,)| < J p(x.sp)dx < Q|77 (. sn)l, < Csup Ip(-s)], < oo,
Q

Sn

which is a contradiction when n — 00. So we have proved the right-hand part of
the inequality (3.23). Since the left part is trivial due to positivity of p, (3.22)
readily follows.

Lemma 3.5. Under the assumptions (1)—(iv) there exist the limits

lim w, = W in Li ([0.00): WI(Q))  for any r> 1

=0+

(3.24)
lim m,, = m. in L;5.(0, c0)
n—o0

for some €, — 0+. In particular,
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p(p,) — W+ m=: p(p) (3.25)
in the above sense.
Proof. By (3.12), (3.13) we can write
wy(s) = Ap,(s).  where 4 e L(L"(Q), W' (Q)). (3.26)
Since p e L*(0,00; L7(£2)). by the continuity of mollifiers we have

lim p, =p in any L; ([0, 00); L7(2)), rel, o). (3.27)

e—0+
Then using (3.26) we get (3.24), with
iw(s) = Ap(s). s> 0. (3.28)

Show that {m.},. ) are bounded in W'4(0.T) for any T >0 and some ¢ > 1.
Indeed, by (3.52), (3.54) below we have

)] < C( RIS+ o)+ o) ) = €, + 7t

in L490,7) for some ¢ >1 and r> 1. Since by (3.22) m(s) are uniformly
bounded, (3.24), follows by embedding theorem.

Put now
0= | | (r(olo)) = pAO(s) = 0. 121 (3.29

By monotonicity of p(-) and 0 we have Q(r) > 0. Our intention now is to prove
the following global property of Q.

Lemma 3.6. Let p be a function defined in (3.25) of Lemma 3.4. Then the
Sfunction Q(1) defined by (3.29) satisfies

lim Q(r) = 0. (3.30)

Proof. Let a> 1, pe Cf(—u,a), 9 =0, ¢p(g) =1 for 0 e (—1,0). Put
0= | ots = 0| (019D = pRENNRO(9) — Op s, (331

Then clearly
(0= | Cpls— 1) ]'Q(pw(s)) (A OP(s)) — 05, (s)))dxds

+[ “ols— 1) [Q(mp(s))—p(@(s)))(Rﬁ(p(s))—0<p<s>>)d.w1s. (332)

1—a

where the last term on the right-hand side of (3.32) tends to zero as ¢ — 0+. By
Lemma 3.5
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fim || (pp(5) = P, (DO = 07, (D)ixds = Q). 11 (3.3

=% g1 Je
for some ¢, | 0. Now we wish to estimate Q:(7). Denote
Vo) :={(x.8):xeQt—a<s<t+a} (3.34)

By Definition 3.1 and Remark 3.2, and, with regard to the definition and
smoothness of Y, (we shall return to the differentiability of ¢, with respect to ¢
later in more detail), we can write

jV 5= DPNR)() — 07,

= J o(s — ) p(p(s))div (s)dxds
Va(1)

- J,, " o(s = ) (=puls)ipy,(s) = pu- (- V), (s) + 1, Vu(s)V(s)
Tty div () (ROP)(S) — 0(5,(5)) — pls)] -, (s))dlxdls
— [ o' (s — Opu(s)y,(s)dxds. (3.35)
Val(r)

Now. take the Helmholtz decomposition of ,(s). that is
U (s) = Vz(s) + v:(s). div o, (s) =0 in Q. v.(s) - v=0 in 0Q.

By the usual construction of the decomposition and by (3.21) we have [, z, dx = 0.

. € WH1(Q), %,:‘—‘ =0, v, e W"4(Q), (g€ [l.00) arbitrary). Take into account
g
the generalized formulation (3.12), namely
{ (Vwy(s) — p,(s)f)Vydx =0  for e w'/0=D(Q). (3.36)
Q
Then we find

J o o(s = ) p(p.(5))(R.0(p)(s) — 0(p,(s)))dxdls
= [ o(s — t)we(s)div Y (s)dxds = —[ (s — HVw ()¢ (s)dxds
Va(n) Jr.
= - J o(s — OVw(Vz.(s) + v.(s))dxds
Va(r)

=— J o(s — OVw,Vz (8)dxds = — J o(s — Op(8)f - Vz.(s)dxds (3.37)
Va(1) Va(1)

Subtracting (3.35) and (3.37) we obtain
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JV " o(s = 1)(p(p(5)) = p(Po(5))(RO(p(s5)) — O(pc(5)))dxds
=1 J o(s — OV u(s)Vip,(s)dxds
V(1)

+ 1 [ 905 = 0V ) (RO(p(s)) = O(p(3)dxds

IVl

— o(s — Hpu(s) - (u(s) - V), (s)dxds
V(1)

- @' (s — Opu(s)p,(s)dxds — [

(s — Dpu(s)y, (s)dxds
IVa(n) )

Va(t

+ » o(s — 1)(p,(s) = p($))f - Vz(s)dxds

. 7
- (s = Dp(s)f - vels)dxds = IF(2). (3.38)
j=1

Va(1)

Estimate the integrals /7() in (3.38) one by one. Starting with /() and taking
into account (3.21), (3.13) we find

1+a
0] < Clol,. | Wulsl ol ds
t—a
l+a
< CJ [Vu(s)|, ds < Ca,(t). (3.39)
—ua
where we denote
t+a |/2
oalt) 1= (J Vu(s))? ds> . (3.40)
1—a
Quite analogously we get
[15(1)] < Cay(t). (3.41)
To estimate /{(r). notice that having
y>1 for N =2, y>% for N = 3. (3.42)
we have
I1+a
|5 (1) = [ o(s — I)J puuxOx,;(s)dxds
Jr—a Q
t+a 5
< Clol, | 6o 0l
JiI—a
I+a
< CJ \Vu(s)|? ds < Ca(t)? (3.43)
1—ua
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with r arbitrarily large and ¢ = ry(ry — r — y)~' which requires y > 1 for N = 2 and
y > 3/2 for N =3. Continuing with I/(r) we notice that if y > 6/5 in the case
N =3, then

1+a

115 (1)] < |¢’le ()l (8) sy V()1 dis

I—a

1t+a

< cJ Vu(s) ylp(s)], ds < Coulr). (3.44)

11—

Next we estimate [£(r). First, by (3.20) and the properties of the kernel K it is
clear that the function ,, exists and is sufficiently regular so that the integral I{(r)
is well defined. In addition, ¥, € W' (Q) for any r > 1. Denote (D;z)(t):=
;1(:(1 + h) — z(t)) for any Banach space valued function = = =(z). The linearity of
(3.12), the estimate (3.13) and regularity of p, provide that (D;,,p,)(s) is a Cauchy
sequence in L?(£2) for each fixed s, and consequently D, ,w; is a Cauchy sequence
in W7(Q). Thus (dw,/dt)(t) exists and belongs to W7 (Q) for each ¢ > 0, 1 > 0.
Further, the regularity of w,(s) implies continuous differentiability of the function
G.(s,m) given by (3.15) with respect to s and since, as we have already proved,
0G,/dm is positive, the function m,(s) given as unique solution of (3.16) is
continuously differentiable. It follows that the function 6(p,) with p, given by
(3.17) has derivative with respect to s in L;%.([0, 00); W!7(Q)). Then, by the same
way as we proved the existence and regularity of JOw,/dt we can show that
Oy, /0t(s) exists in the sense of W'’(Q) with r > | arbitrary and for each s and
£>0 it is an element of the same space.

Now we turn to the estimate for y,,. Let (e W!4/4=D(Q). Then by the
weak version of renormalized continuity equation we have (¢, is a regularization
kernel)

|, RO ar =5 | j: o (S = ’) 0(p(0))C drdx

= (S5 ototence) - ve dar + L ntsfo | ot d

& J)o &

_ lr JQ % (s . ’) (p0'(p) — 0(p))div u(1)¢ dxdt

€ Jo &

- j'g Ru(0(p)u(-))(s) - VE dx — jg Ri((p0'(p) — 0(p))div u)() (5)¢ d

1
+ ;(/’O(S/S)J ol dx, s> 0, & small.
. Q

So, in the sense of distributions we have
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(R0(p)), = —div R(0(p)u) — R((p0'(p) = 0(p))div u) + éfﬁo(é‘/ﬁ)ﬂoi (3.45)

(notice that div R,(0(p)u) € C%.(0. 00: L"(L2)) for some r>1). So by (3.20) we
have
v, (s) = Sdivz+ Sg - S0(p,), (3.46)

= RO 9= RAOG) 0 (D)) + (/e (34T)

Firstly, it can be easily checked that - belongs to {we C*(0.00:L"(Q)),
divwe C*(0,00: L*(R)), w-v|,o =0}, where re[l,2), se[l,6) are such that
é+ 2= ,l %+f =1. Secondly. if y =div 5. where e L"(Q) with ¢ <r < o0 and

;7~v’[(«_9 =0 then iSl,l,. < const |n|,, (cf. [9], Lemma 3.5). Thus we have
IS le :lq + |S‘l|(l < C‘(l‘:'q + |g|Nq/(N+q))

whenever the norms on the right have sense. By (3.47) we have for N =2,
Iz, < CIVuly, 1glagjgr2) < Clgly < C(IVuly + e po(s/€)|poly). with g > 1 arbitrary,
and, for N =3, |z|, < C|Vul,, |g|, as above. So we have proved

1 . .
IS div |, + |Sg|, < C<|Vll|z + E(p()(s/s)) with ¢ > 1 arbitrary if N =2

and ¢ <6 if N = 3. (3.48)

We need here p, € L*(22) which is not assumed if y < 2 but this can be overcome
by regularization of p,, since later the &-dependent term disappears in the limit
¢ — 0+. Further, we have

6—'(.&', m) = ] (00 p~"Y (w,(s) + m)dx. (3.49)
Jo
We claim that
cp = inf[ (00 p™"Y (w,(s) + mg(s))dx > 0. (3.50)
£, Q

Indeed. if this was not true then there were w,, — i weak in W'"(Q), m, — ime R
such that, by Fatou lemma

0< J (0o p~"Y' (it + m)dy < lim ian (00 p~" (w, + my)dy =0,
Q Q

n—

which is a contradiction. Consequently, by Implicit Function Theorem there
exists the derivative m/(s) and we have

-
m(s) = (L(() op™") (mls) + mz;(S))dx>

«(

. (RO(p)), — J‘Q(() o p Y (walx.s) 4 mg(8))wy(x. s)a’x) , (3.51)

Q
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)

< C<|w5,(s)|l + |Vu(s)|, + %(/)O(S/s)) s>0.e>0. (3.52)

which, with the help of (3.45), (3.48) yields

o) < ' (sup @Y Ol + | | R,
reR Q

Now, putting together (3.46), (3.47) and (3.52) we obtain

1 ~
|WH )Iq = (IVM )'2 + IHEI )ll + Z("o(‘/g) + |0(pf:(s))1|Nq/(N+q)>‘ (353)
By differentiation we get |0(p,(5)),|ny/n1q) < ClI0e () ng/(vag) T IM2(s)]).  Show
that
|
oo, < C( RS + on(s/e) ) (3.54)

for any r for which the right-hand side has sense. To this purpose. let { € C;*(£2).
n = 4. Note that functions of this type are dense in any L'(Q). 1 <r < 0.
Then by the differentiability of w, and (3.12) we have

J (pelf - VWJ:I)VC d\ =0
Q

Consequently by (3.45) with 0(p) =

JQ ot e = — J paf Vs < Il NSV
¢

< CUS M Mpell =yl < < c(lpu(s)l,) +~ ¢0(s/e>|;7|,,,.

which yields (3.54). So we have

a9y = € (RAPO o) + V00 + 205/ ). 5650 (359

with ¢ as in (3.48). With (3.55) in hands we estimate I&(1):

t+a

01 = bl sup 9, | o), s

I—a

S

< CJ Vuu(s) o], ()], ds. (3.56)

1—a

1 1 r—1
where —+—<}
r q !

and, for N =2 we can take re <_y—l oo) arbitrarily large

vV

so that g > ; y [ can be chosen arbitrarily close to T and for N = 3, assuming
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y>3/2 we fix r=6, ¢q= Putting together (3.38), (3.39), (3.41), (3.43),

o
Sy—6
(3.44), (3.56) and (3.55) we find

JV o (s = 0(p(p(s) = p(P(5)))(RO(p(s)) — 0(p,(s)))dx

< () + [ (RO Nnvaa) + W0+ /) ) Pl s

+ (O] + |17 (1) (3.57)

with a,(t) given by (3.40). Since we assume 7> a and ¢, has finite support we
have

1
im — =0 f >1—a.
Egmgwo(s/e) or s>t—a

1 . .
Moreover, E(po(s/e) <C< o for >0, s>t—a. By continuity of mollifier R,
we have
Ra(|P“(')|N(,/(N+(,)) — |/’“(')|N‘,/(N+q) as e— 0+ in L'(t—a.t+ a: RY)

. . Ng
Since, by our choice of g, N +1q < 2, we have |pu|, < IpI,]\,/‘IZ/(ZN+(2_N)II)|\/ﬁu|2. where

_ 1 . :
Eﬂgq——zv)q is less than 571 if N =2 and less than gl’ — Lif N =3, so that

Lemma 5.1 below applies. As
i t+a
0] < Clol, 11 sup b (s), | 1) = plol,

1—a

we have lim,_o4 IZ(f) = 0. In addition, there exist &, | O such that (3.33) holds
true. So putting in (3.57) e:=¢, and n — oo we finally obtain

0< J (p(p(s)) = p(p(s)))(O(p(s)) = O(p(s)))dx < C(Ua(t)
Val)

rS+a
+0ul0)50p VU050 [ 10(0) agan ooy 40 '/2)
5>

s2d Js—a

+ lim sup |17"(1)|. (3.58)

n—x

It remains to estimate

I7(1) = J.V " (s — 0)p(s)f - ve(s)dxds. (3.59)
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where we know that

sup [[z.(s)l, , < 0. div v.(s) =0 and v.(s)-v=0 on 0Q.

E.5

Let # >0 and xe C; () be such that |supp(l —«)| <#. Then Ij(s) can be
decomposed as

50 = | o) || ptsifotom avas
. Hjjﬂ Q
+ I p(s—1) Jgp(s)fvn(s)(l — K)dxds =: J, + Ja. (3.60)
and clearly
/2| < 2alol. | /.. sup u(s)llsupp(l = x)} < Cr. (3.61)

Since (p,u) is a weak solution of (1.1)-(1.4) we can write J; in the form

1+a
Jy = J (s — I)J (g, VuV (rve) + g1y div u div (ko) — p(p)div (kve)
Q

1—a

tta

—pu- ((u-V)(kve)) — purig)dxds —

9'(s—1) [Q K (puv,)(s)dxds

Ji—a

t+a
= J o(s—1) [ (i kVu - Vo, — kpu- ((u-V)v,) — purvy)dxds
Jo

1—a

+a

. J o'(s— 1 JQ w(puv) (s)edxds + J

1—=a —a

o(s — 1) jg(u.(w Vi) v,

8
+ 15(Vie - v )div u — p(u - Vi) (u - v;) — p(p) (Vi - v,))dxds =: ka. (3.62)
k=1

The integrals Jy,...,J4 can be estimated quite analogously as the integrals
IF (), . ... I; () in (3.38) and we leave the details to the reader. To estimate the
remaining terms Js to Jg we need the following lemma.

Lemma 3.7. Let Q be of class C2. Then for any sufficiently small n > 0 there
exists a domain Q, = Q such that Q, = Q, |Q\Q,| < Cn and if x € 0Q then there is
a unique y = y(x) € 02, such that v(x) = v(y(x)) and |x — y(x)| = 5 for all x € Q.
In addition, there is a function k € W (Q) such that k(x) = 1 for x € 2,. k(x) =0

d .
for xe Q\Q,,5. |Vk(x)| < Cn~" for xe Q,,\Q, and an

] =0, where t is the
T 02,

tangential unit vector to the boundary.

Proof. Asume that Q is of class C?. i.e. there are open sets D, =« RN~
functions a, € C*(D,, R) and coordinate systems (x/.x,y), r=1...., m, such that
0Q =" {xe R : x,y = ay(x])}, where x] = (x1....,x, y-1). Further, we as-
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sume that there exist f, > 0. r=1,.... m such that {xe RV;x/ e D,.a,(x]) < x,y
<a,(x;)+p,} = Q2. In the sequel we shall omit the indeces when working on
a local part of the boundary. For xedQ the unit normal vector v(x)=
(1+ [Va(x')|*)™"3(=Va(x').1)" points out of Q. Let  be small enough (i.e.
so small that it still holds xy —J < a,(x' —dv(x)') + 8 for all § € (0.5); by con-
tinuity, # can be chosen uniformly with respect to x' e D,, r=1,..., m). Then
Sy={y=x-0v(x):0<d<yxeiQ} cQ Define Q,:=0\S,. Then 0Q, =
{yeRN:y=x—nv(x),xedR}. This can be proved by rather lengthy but
routine argument and so we do not present it in detail.

Denote by v”(y) the unit exterior normal vector at y to 09,. Show that
vy(¥) = v(x), where y = x —nv(x). Indeed, solving the system y’ = x'—nv(x)’,
we get X' = ¢(y’) and by differentiation

0d, N 0 [ da _ 0
9 _ O + 3 (—(1 +|Va|?) ‘“) W

ay; - Oxk ay;

Further, the local equation for 0€2, near y is

v = al@(y) = n(1+ [Va(p(y))I*) ™2
So by an elementary calculation after evident cancellations we obtain
dyy _ Cua da , ,

!
== (00") = 5= (X)),
Ay, 0x; 0x;

and the assertion is proved. Now, let & be a smooth function such that k(&) =0
for £ <y/2 and k(&) =1 for £ > 5. Define x(x) =1 on £, and for x e Q\Q,,
k(x) := k(|x — y(x)]), where (y(x),u(x)) is a solution of the system

Fi(y,p) ==y, —x;—wi(») =0, j=1... N Fyu(y,u):=yy—a(y)=0
near the point (3%, z) := (x,0). By Implicit Function Theorem the solution exists

since

det a

ZU+MMWWang)‘iW)

(x,0)

and the rows in the matrix can be shown linearly independent.
dx

Finally, prove that o

= 0, where 7 is any vector orthogonal to v/(x) with
0Q,

x € 0Q,. Since

oK N AT AT yay,\. )
g =N (- 5 =Ky (w3 - ),

by orthogonality of v(y(x)) and t = t7(x) we have

dk Ok OV
e _F‘TITJ =k'(]x = y(¥)]) ax, VkTj-
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Differentiating the relations

a B —
ykzxk—'?%(lﬂmz) Vk=1. . N-1  yy=xy+n(l+Va’)~"

by an elementary calculation we obtain

Yk
F \’k‘[j = O

X
Finally, [V&(x)] < C(1 +sup{|V3(E)]: & € 2\ 2, Hsupzeyyap IK(E)] for xe
Q,,\2, and it is clear that k can be chosen in such a way that
SUDec (y2. K'(E)| < Cp~'. Since Q is C?, by preceding formulas we have
|Vk(x)] < Cp~! for all xe Q.

All integrals Js to Jg are of the type

+a
J J a(x, $)Vr(x)v.(x, s)dxds. (3.63)
t—a JQ

Given x € 2,5\, issue from x the ray which is a normal to d€2, at x; and to
0Q at x. Then |x — x2| <#. Further, since v(xz) - v(x2) =0, v(x2) = v(x;) and
Vr(x;) Lv(xp), by Lemma 3.7, we have Vk(x)-v(x;) =0. Indeed, we might
construct Q, with o = |x — x| and use the same argument as in Lemma 3.7 for
Q, to show that Vk(x)-7(x)=0 for any vector 7 tangential to 0@, at x.
Consequently, by embedding theorem, we find

Vic(x) - va(x,8)] = [VR(x)(0:(x. 8) = 0s(x2.5))]
C —(N/e “N/e
< ;nv,,»(s)nl,{,|x—xz|‘ Wi < cyNa. xeQ\Q,, (3.64)

with ¢ > 1 arbitrary but fixed. So the integral (3.63) is estimated as follows

.[/+uj a(x.s)Vr(x)v,(x. s)dxds
Q

1—a

< CW_N/"J |a(x. s)|dxds,
V(D)

and we get

1+a

max{|Js|, |Jg|} < Cn_N/"J \Vuldxds < CpM/P=WNg (1), (3.65)

—a J@,\,

1+a

|7 < Cn"N/‘/J J plul* dxds
r—a Qr//.’.\gr/

< V4 sup I/J(S)|;,|1IL,(QWZ\Q”)J(,(t)Z < cp-Wlag (2. (3.66)

' 6 .
where a>yi—l for N =2 and oc=5—))—y—6, (y>6/S) for N=3. Taking ¢

sufficiently large we see that J;, k = 5.6,7 tend to zero as n — 0+. To estimate
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the last integral Jg in (3.62) we use Lemma 5.1 in Appendix. We have

1+a

|Js| < Cn_N/"J J p’ dxds
1—a Q,,/:\Q,,

/B
gCr]_N/"(J p* dxds) 12,2\, P77 < opB=nli=Nl) - (3.67)
Va(1)

whenever

J ( pPdxds < C < . (3.68)
Va(1)

Since the lemma 5.1 guarrantees the existence of f >y such that the
estimate (3.68) holds true, we conclude that due to estimates for J; to J4, (3.60)—
(3.67) we have |I4(1)| < Co,(t) + w(n), where lim,_oyw (#) =0 and in particular,
lim sup,_, . |I;"(1)] < Ca,(t). By (3.58), (3.32). (3.29), regularity of p.(s) and
Lemma 3.5 combined with (3.52), (3.54) we have

0<0Q(r) < lim O (1) < Cay(1)

and (3.30) follows from Proposition 3.3.

4. Convergence of density

In this section we show that under the assumptions of Sec. 3, for any sequence
{t,} there is a subsequence {s,} < {1,} such that there exists an equilibrium state
P =0 satisfying

lim [p(sn) = psl, = 0. (4.1)

with r e [1,y) arbitrary. Hence, if the equilibrium state is unique then it follows
that

lim |p(2) = pscl, = 0. (4.2)
We start with the following trivial observation.

Proposition 4.1. Let g€ W]'O'CI (a.0). (a € R) be such that q(s) >0 for s> a
and lim_.c [ (q(s) +|q'(s))ds = 0.  Then

lim ¢(¢) = 0. (4.3)

11—

Proof. Since
!

g(1) = q(s) + | ¢'(v)dr

for a+ 1 <s<t< oo, by integration [", ds we get
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4

o)+ j j ¢/ ()| deds < j (4(5) + ¢/ ()]s,

—1Js 1—1

!

q(1) < J

1—
and (4.3) follows immediately.

Put
q() =10(p(1)) = Op(e)]3. =1, (4.4)

where j(1) is the function from Lemma 3.5. Then by Lemma 3.4 we have

q(1) < CL)(P(/)(’)) = p(p()))(0(p(1)) = 0(p(1)))dx  for 1 =0. (4.5)

So it follows from Lemma 3.6 that

!

lim { q(s)ds = 0. (4.6)
=% Ji
Now we are going to prove that

lim J’ lg'(s)|ds = 0. (4.7

=% -1
This will be a consequence of the following Lemma.

Lemma 4.2. Let p(t) = lim,_, p~'(w,, +mg) (¢f Lemma 3.4). Then we

have
J el
1

Proof. 1t suffices to prove that

2 o

d di < CJ V() di < oo. (4.8)
1

= (10(p(1) = 0(p(0)13)

dt

< Clinll 20,0y 1V ttll 1200, 522029 (4.9)

jx n'(s) jg(o(ms)) — 0(p(s)))? dds

for any n e Cy*(1.00). First, by the renormalized equation of continuity we have

r ') L 0(p(s))* dxcds

1

f n(s) J.Q(Zp(s)(i(p(s))()’(p(s)) — 0(p(s))*)div u(s)dxds

< CJ] [n(s)| [Vu(s)], ds < C||’7||L2(0.oo)||V“||L3(0. i L2(Q)) (4.10)
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Second, we know that 0(p,) = (0o p ")(w,+m,). w,, — ¥ in L'(2) with r <

N yy and weakly in W'7'(Q), m, —m, (n— o). Hence we W"''(Q2) and
consequently (0o p~') (v +m) = 0(p) e W'7(Q) as well. Now, again by renor-
malized equation of continuity, taking ¢ := n(s)0(p(x,s)) as a test function we
get

' 0(p())0(p(s))dxds

J% 1(s) | 0pts)) - V)0(p(o)cs

L

] 0o | 000, dvas
J1 Q

e

+] [Qm(s)a’(p(s)) — 0(p(s)))div u(s)0(p(s))dxds

o

<C 1 | () ({u($)l6VO((s))lgys] + 10(p(5)), 1,

+ Vu(s)|))ds < Clinll 20, o0y VUl 1200, c0i20)) + 10(2()), 1), (4.11)

(for the estimate of the last term see an analogous estimate below). Finally, we
have to estimate

r n'(s) J 0(p(s))* dxds = lin [ n'(s) [ 0(p,, (5))* dxds. (4.12)
1 Q ! 1 Jo

Jl
11— L

It is clear that

=2

Jmn'(nj 0(5,(5))? dxds [ 1) | 0 (5007,90), s
1 Q Q

J1

< C| IO,y ds (4.13)

By (3.52), (3.54) we have (6 > 0 small enough)
0N, = € (1ol + Wl + (/)
1
< C(qu(s)l2 + Em(s/e)) (4.14)

having thus still the only restriction

3
;‘>§ for N =3. (4.15)
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Thus by (4.12), (4.13). (4.14) we find

< lim sup
n—oC

RCIRCEREE

J1

J “ n'(s) L) o(p,, (s))? dxds

1

<[ nowu, o IVells0 2 ot
This completes the proof.

Now, by (4.4), (4.5), (4. 6) ( ,8) and Proposition 4.1 we get the following

result. (Observe that LLI Iq'(s) f, e’ ()] ds)'/z — 0 as t — oo in virtue of
(4.8).)
Lemma 4.3. Let y>1 for N=2 and y>3/2 for N=3. Then for any
rell, o)
lim [0(p(1)) = 0(p(1))], = 0. (4.16)

where 0 is a function defined in Lemma 3.4.

Proof.  The convergence of ¢(t) given by (4.4) to zero follows from Lemma
3.6, Proposition 4.1 and Lemma 4.2. Since 6 is bounded, (4.16) follows
immediately.

Finally, we shall prove the following main theorem.

Theorem 4.4. Under the assumptions of Lemma 4.3 (and assumptions (1)—(v)
from Section 3) for any sequence t, — oo and any re€[l.y) there exists a sub-
sequence {s,},—, < {tn},—, and a function p. € L7(Q) satisfying (4.22) below with
Jo P dx = [, podx such that

lim |p(v,, Pl dx=0. (4.17)

n—aoG

If. moreover, the above equilibrium is uniquely determined then

11m J Ip(1) = p..|" dx=0. (4.18)

Proof In (3.26) we have defined operator 4 e £ (L7(Q). W'7(2)), and by
(3.28) we have w(r) = Ap(t) for t = 0. Let 7, T oo be arbitrary. Then we can
select {s,} = {1,}. such that p(s,) — p, weakly in L"(Q), w(s,) — w, = A(p, )€

W!(Q) weakly in W!'7(Q), strongly in LY(Q) with q<NNy . and almost

everywhere in © and also such that m(s,) — m.. (since m(-) is bounded) and by
Lemma 4.3 0(p(s,)) — 0(p(s,)) — 0 a.e. in Q. Hence given r > 1. 0(p(s,)) — 0o
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P (Wae +my). 0(p(sy)) — 00 p~'(wy +my) ae. in Q and in L'(Q). and p(s,) —
p~'(wy +my) ae. in Q and by boundedness of Ip(sa)l, also in LY(Q), 1 < g <.
Since p(sy) — p,, weakly in L7(2) we find p,, = p~'(A4(p,,) + my), or

P(py) = A(ps) + mo. (4.19)
Since w(s,) — wo, weakly in W!7(Q) and w(z,) satisfy (3.36), we obtain

J (Vwe —p /IVO dx =0 for all ® € C*(Q).
Q

or, since wo = p(p,) — My,

J Vp(pe) — P IVO dx =0 for all @ € C*(Q). (4.20)
Q
Now, given z in C{*(£2) arbitrary, we have z = VO + v, where @ is a solution of
the problem
40 =div : in
doe
E’——O on 6.(2, (421)
‘ O dx =0,
Jo

v is smooth enough, and divv =0 in @ and v-v=0 on dQ2. Let us prove

Vp(p) =pf- (4.22)

Since (4.20) is valid it is only to prove that

|, ®p0) = p s =0 (4.23)
As we have
JQ Vp(p)vdx = —L) p(py)divodx =0, (4.24)
it remains to show
L? pof vdx=0. (4.25)

It is clear that the proof will be complete when we show that

lim J plsy)f - vdx =0, (4.26)
Q

h—oC
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since then 0 =lim,_o [,p(s,)f - vdx = Jop,f-vdx by the weak convergence
of p(ss) to p, in L7(Q). To prove (4.26) it suffices to show that [,p(-)f -vdxe
w12(0, ), i.e.

+

|, #t6) ], plsrs - dnas

0

| 76| ptors v avas

< Clinllwi20, o0 for any ne C;°(0, ). (4.27)

The following estimate is almost a repetition of the estimate of the integral I5(r)
given by (3.60) with the function x defined in Lemma 3.7. By this technique we
obtain the estimate

[/ 7660 | ptors v dvas

< iy |VU|2||V“||L2(0, oc:L3(Q))”77“L3(O,oc)
b 3 6)
+ L 11(5)] V0] ()12 /B(s)u(s) |y lue(5) |l + [0] ] I’ (s)||pu(s)|, ds

< C“’7“W1«2(0,m) (if y > 3/2).

Further, from the weak equation of continuity

J: 7' (s) Jgp(s)f - v dxds

jm 106) || p(o)ats)- ) e
0 Q

< Clinll 20, o) if y>6/5.

So, (4.26) is proved and this yields (4.25). Thus (4.23) is established. This
completes the proof of the theorem.

Remark 4.5. If considering strictly positive equilibria densities only, the
necessary and sufficient condition for uniqueness may be derived from [2]. If this
condition is not satisfied then necessarily, {p.(x) =0} # & and the optimal
condition for uniqueness is given in [8§].

5. Global estimate of density

The purpose of this section is to prove the global estimate (3.68) for certain
B >y. Let us formulate it as the following

Lemma 5.1. Let y > 1 for N=2and y >3/2 if N =3. Then for any global
weak solution (u.p) we have p e LIt*(Q x [0, 00)) for some a > 0. More precisely,

if N=2 then a <y—1 for ye(1,2], « <y/2 for y>2, and if N =23 then a <

2
37 1 for ye (1,6), « < y/2 for y = 6. To achieve o > 0 we need y > 1 for N =2

and y > 3/2 for N =3.
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Proof. Let 0 =0(r), re R be a C'. unbounded, nondecreasing function,
O(r) =20 for r > 0. For example, 0(r) = r* with o specified above. For 6 > 0 let
05 be a familly of positive smooth cut-off functions such that 0s(r) / 6(r) as
d — 0+ for r>0 and 05(r) < 0'(r) for r > 0. Define ¥, 5 as a solution of

div y, s = R.Os(p) — MR.0s5(p). xeQ,

Y, s(x.1) =0, X € 0Q, (5.1)

J Vosdx =0, >0,
Q

where Mv:= Q| [yudx for vel'(Q), (Rz)(t)= [ o(t—s)z(s)ds is
the mollifier in r. We consider again the solution of the type ¥, ;(x.s) =
S(R:05(p(-.5)) — MR.05(-.5))(x), where S is as in (3.20). Write in short Y, ; = .
From the properties of the operator S listed in Section 3 we have y € W' 4(Q)
for any ¢ e[l,00) and

”w”l,q = ConStl()(s(p)lq‘ .
If 1 <q<y/a then

¥l , < const|p|} < C < a0 uniformly for all ¢.d > 0.qe (l.y/«].  (5.2)

Hence i can be used as a test function in the definition of the weak solution. Let
a>1, pe Cf(—a,a), p >0, p(a) =1 for ae(—1,0). Now, set in a weak for-
mulation #(x,s) = ¢(s — 1)Y(x,s) for test function. We get

t+a

0:(0)i= [ ots =) | pr)(Ras(p) — MOs(p) s

—ua

1+u

= J’*" p(s—1) JQ p(p)div y(s)dxds = J

1—a 1—a

ols — 1) jg(mw Vis)

+uy divudivy —p((u-Vy-u) —pf -y — pu -, )dxds

ctta 6
—J o'(s - z)J pup dxds = 3 1), (5.3)
t—a Q j=1
Estimate integrals [;,...,ls one by one. Then we have
1/2
[ (0)] < )ull(plocall([)<[ ()IVI//(S)IZ dde> < Co,(1) (5.4)
JV, (1

as soon as y/a > 2. The same holds for I(r):

|2(1)] < Cau(1). (5.5)
For L(r) we get

1a

1O < ol | LIV, 0,-3 ds < Cou(n)? (5.6)

Jt—a
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if a<y—1 for N=2 and asg}'—l for N =3. Further,

t+a

L(1)] < |¢1w|f|wj DLW, 0, ds < C < o0 (5.7)
1—a

. N+1 . .
if o < T+y— 1, and Is(f) can be estimated analogously as I3(¢) even with the

. . N -5 . .
milder restriction o < av ¢!~ 1. To estimate |Is(7)] we notice that
1t+a
15O < lol, | ol Jul vyl ds

1—a

t+a

<C| Wbl ds (538)
1—a

y . _ 6y . B .
— if N=2 and q_5y—6 if N=3. As in (3.46), we have

¥, (s) = Sdivz+ Sg— S(R:M0s(p)),, where = and ¢ are given by (3.47) with 0;
in place of 0. In Section 3 we have derived the estimate |S div z + 8¢, <
C(lzl, + 19lng/(n+q) for any ge (1, 00) for which the norms on the right have
sense. So we get

where ¢ >

Wil < Rel0(p)ul, + Rel(0(p) = p0'(p))div ul gy 1) + IM(RO(P))  ngynsg)- (5:9)

Clearly,
|0(p)ulq < Clpaulq < Clpl;o'(lulyq/(;:—aq)v (510)
IR((0(p) = p0'(p))div u)], < CR,|p* div ul,
IR . Nq
< CRy(IplyIdiv ul,, yy) < CR|div ul, )0, r=N 7 (5.11)
and, by (3.45)
. 1
IM(R.0(p)), < C(Rﬂ|p°‘ div u|, + E‘PO(S/E))
. 1
< C(Rgldlv Ul iy t E(po(s/e)). (5.12)
If N =2 then we must satisfy the restrictions ¢ > yi ] and yiym < 2, which
leads to 0 < a<y—1. If N=3, then g = 6y and the restrictions —— <6
5y—-6 Y — go
2
and y_% <2 lead to the requirement o < 37 1. In both cases (5.4), (5.5)
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gives the restriction o < % so in conclusion, we can allow

a<y—1 & a<y/2if N=2 and as%y—l & a<y/2if N=3. (5.13)

Then we have in (5.8) |¢,|, < CR,|Vu|, and consequently

q —

(l1+a
|Is(1)] < CJ |VulyRe|Vul, ds.

1—a

Returning back to (5.3), we have

1
j J p(p)&%(p)dxdssj s 0RO )
—-1JQ Va(1)

= j;' B w(S — I)MR[H(S(/)(S))lP(p(S))h dxds + ;([)

<lol,. Stslp(lﬂ(p(S))llIp(/)(S))ll) +10;(] < C < oo (5.14)

By the continuity of mollifier we have lim,oy R.0s5(p) = 0s5(p) in LI(V(z)) with
V(t)=Q x (t—1,t) and g € (1, 00) arbitrary and R, 05(p) — 6s(p) a.e. in V(1) for
some ¢, — 0+. It follows by Fatou lemma and (5.14) that

J p(p)Os(p)dxds < C < oo for any o > 0.
V(r)

Since limg_o4+ O5(p) = O(p) ae. in V(tr), we may use Fatou lemma again to
conclude

J p(p)0(p)dxds < lim ian p(p)Bs(p)dxds < C < o0.
V(1) d—0+ V(1)

This completes the proof of Lemma.

6. Other boundary conditions

In this section we discuss the applicability of our method to the problem (1.1),
(1.2), (1.4) with other boundary conditions, namely, the no-stick boundary con-
ditions. To this purpose we write (1.1) rather in the form

(pu), + div (pu @ u) — div (2p; D(u)) — (py — 1)V divu+Vp(p) =pf.  (6.1)

where Dj;(u) = %(Lt;x,+u,<,,<). We consider the system (6.1), (1.2), (1.4) equipped
with the so-called no-stick boundary conditions

u-v=0, 7;Dji(u)v; = 0 in 092 (6.2)
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(v and 7 denotes respectively the normal and tangential vector to dQ) in a domain
Q which is not rotationally symmetric. In this case, several modifications have to
be made:

In the definition 3.1, it is obvious to change the set of test functions # to
neC' 0, T;:C*(R2.RV)) with n-v=0 on dQ. Clearly, under (6.2),, the Poincaré
inequality (2.1) holds.

The energy inequality now reads

d 1 .
] (Glole? + 200 = pa s+ 20 [ 1D s = ) | i ax <0
Q Q (o]

(6.3)

L . . . N -2
It implies (3.6) due to the inequalities N|Du| > |divul, u, > — M and the Korn

inequality |Vu|, < C|D(u)|,, which holds for all functions from W!2(Q) satisfying
(6.2); since L is not rotationally symmetric.
Now. we are in position to state the corresponding Theorem:

Theorem 6.1. Let (p.u) be a weak solution to the problem given by (6.1),
(1.2), (6.2), (1.4) with g, py,uo, 2 satisfying assumptions (i)—(iii), (v) from Section 3,

-2
. and (6.3). Then under the hypotheses of Lemma 4.3, for any

y2%) >

re(l.y) and any sequence t, — oo, there exists a subsequence {s,},_, and a

function p, € LY(Q) satisfying (4.22) and [, p,, dx = [, pydx such that

lim J |p(sn) — pe|” dx=0.
Q

n—oc

If. moreover, the equilibrium is uniquely determined then
lim l Ip() —p.|"dx =0.
[—0 Jo

Proof. The proof of Theorem 6.1 follows precisely the same lines up to
(3.28). The proof of (3.30) requires a slight modification: The formula (3.38)
remains valid as well as all estimates concerning {If}f=l (see (3.39)—(3.58)).
Estimate of I can be done in a more simple way. One uses the fact that (3.59).
when using the weak formulation of the momentum equation, becomes

JM” p(s — 1) J (1 D(u)D(v) — pu - (u - V)v — puv,)dxds
Q

I—a

+a

- J @' (s — t)puv dxds.
I—a

Clearly, it tends to zero as t — oo. This observation completes the proof of (3.30)

in the case of no-stick boundary conditions. The reasoning of Section 4 remains

without changes. This completes the proof.
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