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Stabilization o f weak solutions to  compressible
Navier-Stokes equations*

By

Antonin NOVOTI■ri and Ivan STRAKRABA

Abstract

In [17] the present authors investigated the stabilization of the weak solutions to space periodic problem
for barotropic compressible Navier-Stokes equations. The main goal of this paper is to show the power
of the method introduced in [17] by treating other boundary conditions. In fact, the only limitation of
the  method is potential external force and the validity o f the  Poincaré inequality for the velocity.

1. Introduction

W e consider the barotropic N avier-Stokes equations in  a  bounded domain
c  R N

(pu), + div (pu u ) + V  p (p ) — dui du — ,u2 V (div u) = pf , (1.1)

p, + div (pu) = 0, x E t > 0, (1.2)

The unknown quantities are the density p  and velocity u. The given data are
th e  functional dependence p  = p (p )  between th e  density p  and the pressure p,

viscosity constants p i >  0 ,  112
N —  2

and external forces density f  f  ( x ) .

Along w ith the  equations (1.1), (1.2) we consider such a  boundary condi-
tion that the Poincaré inequality for velocity holds t r u e .  A s  a  typical boundary
condition of this type we consider the Dirichlet boundary condition

tt(x, t) = 0, x e ao. (1.3)

O th e r  b o u n d a ry  conditions c a n  b e  c o n s id e r e d  a s  f o r  example periodic
boundary conditions with certain symmetry (see our previous paper [17]) o r  no-
stick boundary conditions. We explain all the modifications required by the latter
case in Section 6. A s usual we impose the initial conditions

u(x, 0) = uo(x),

with the  given functions uo, Po •

p(x, 0 ) = Po(x), x (1.4)
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By stabilization of solutions in this context we mean that given weak solution
of the problem (1.1)-(1.4) satisfying the energy inequality below, for any sequence
tr, —> co and  some r > 1 there is a  subsequence sn a n d  a  function p „ such that

lim - p„(x )r dx  = O. (1.5),l-,

It appears that if f  =V g  with a given smooth function g  then (1.5) holds true with
a n  equilibrium density p „, th a t is  a  solution of the rest state equations

V P (p ) = p . f x E (1.6)

Poc dx Mo f  po dx, p „ _  0. (1.7)
JQ

If (1.5) is proved and the rest state defined by (1.6), (1.7) is uniquely determined
then, of course, (1.5) holds without restriction to subsequences.

There are many results in this direction in one space variable (see e.g. [1]. [3].
[20], [23]). In  several space dimensions a related result has been proved in  [13]
and  [19 ], w hen th e  d a ta  i s  a  sm all pe rtu rba tion  o f a  constan t equilibrium.
Stability o f  stationary solutions is investigated in [21], and the convergence of
global strong solution t o  a  stationary o n e  fo r  sm all d a ta  is obtained in [22].
Stability o f  stationary solutions for the case of large external forces has been
proved in  [14], w hile a  sim ilar problem  has been solved fo r  heat-conducting
compressible fluid in [18]. T h e  uniform stability under permanently acting dis-
turbances has been tackled in [15], while in [10] it is shown that all smooth, small-
am plitude solutions are  asymptotically incom pressible. In  [17] w e started  to
investigate the  unconditional stabilization of solutions to  (1 .1), (1 .2) to  test our
technique on the space periodic problem with a certain sym m etry . This paper was
followed by [7], where the Dirichlet boundary conditions were considered and a
different method was used.

Finally, le t  u s  n o te  th a t  in  com parison to [17] th e  procedure had to be
totally revisited since otherwise the D irichlet boundary conditions produce ad-
d itiona l boundary  te rm s hard ly  to  c o n tro l. S o  t h e  function  0 , be low  w as
redefined by (3.19) which on  one  hand eliminated th e  uncontrollable boundary
terms but produced another term in (3.38) below (the integral _ 4 (0 ) . This term
can be estimated thanks to careful considerations on the boundary of S2 allowed by
Lem m a 3.7. A lso w e had to go into detailed analysis of the problem (3.19) (see
the considerations after (3.46)).

2. Preliminaries

 adopt the usual notation, namely, C k  (•) for spaces of k-times continuously
differentiable functions, W k ( . )  for the Sobolev spaces of k-th order and power g .
Lq(.) for Lebesgue spaces with power q. The norm in will be denoted by H
a n d  in  W k 'q  by 11 • T he  outer norm al t o  aS2 is denoted  by  v . W e a lso
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denote by .T (X. Y ) the space of linear continuous operators from a Banach space
X  into a Banach sp a c e  Y . In  what follows we will use the usual mollifier with
respect to  the variable t  given by

-
,(R t z)(t) := go„(t - s)r(s)ds :=! çoo

s)
z ( s ) d s

-x

where supp q)0 c  ( -1 , 1 ) , [fx „, q)0 (s)ds = 1.
N o te  th a t  f o r  vector functions u  satisfying (1.3) w e h a v e  th e  Poincaré

inequality

2  

dx const. 1Vul
2  

dx. (2.1)

Finally, let us point out that given a  smooth function 0, and if p  satisfying (1.2) is
sufficiently regular then the so-called renormalized equation o f  continuity

0(p), + div (0(p)u) + (p0' (p) - 0(p))div u = 0, (2.2)

holds true in the weak se n se . It can be proved via regularization of p  and [12].
V ol. I, Lemma 2.3 that if 0 ' is bounded and p E 42

0 ,(S2 x [0, Do)) then the result
holds (for p(p) p Y  this corresponds to  the requirement y 2). I n  [ 4 ]  it is shown
that there is a  weak solution of (1.1)-(1.4) for which the density p  satisfies better
global integral estimate making it possible to  relax the growth condition for the
state equation function p(•), (p p Y  requires y  > 1  fo r  N  = 2  a n d  y  > 3/2 for
N  = 3).

3 .  Global uniform estimates

In this section we derive some global uniform estimates of a  weak solution to
the problem  (1.1)-(1.4). W e begin with the  fundamental assumptions:

(i) =V g , g E  W 2 ' x  (Q), Of2 c C 2 ;
(ii) p(-) c C 1 ([0, co)), p(0) = 0, p i  (r) > 0 for r > 0, lim inf,„  p(r) = oo and

there exist constants y  > 1  and  C  such that

rY  < C(1 + P(r)). where P(r) :=
s p / ( r )

drds, (3.1)
1 T

y>  1  for N  = 2, y >  3 /2  for N  = 3, in particular, in what follows, for
the sake o f simplicity, we assume p(r) = A r' w ith  a positive constant
A := p(1);

(iii) po  G  L 7 (0 ), \MOO e L 2 (0 ) , p o  0 .
In the forthcomming text w e use the following definition o f the  weak solution:

Definition 3.1 (weak so lu tion ). B y  a  w eak solution of (1.1)-(1.4) we call
a  couple (u. p) such that putting  QT = Q>< (0, T ) , fo r  a n y  T  > 0  a n d  any  ti
C' (0, T; C(?̀' (Q; RN

) ) , c C' (0, T ; C' (Q: R )) su c h  th a t ti(v ,T ) 0. C(.v, T) 0
and we have PI1112 ul 2

 
E L1

1„c (Q x [0, co)) and
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f + p((tt • Vpq • u) - p i Vu • Vq - p 2 div u div q
QT

+ P(P)div g + pf • O h &  +Jpo(x)uo(x)ii(x,o)dx = o, (3.2)
(2

(PCt + P(u • V))dxdt + po (x)(x, 0)dx = 0. (3.3)
QT • f2

Remark 3.2. L et us note tha t due to assumed regularity o f  (p, u) and the
assumption (3.1) the smoothness of the test functions t i, (  in the definition 3.1 can
be relaxed to the  following inclusions:

fo r N  =  2:

q E T ;LY '+ ')(52 ))nL '(0 ,T ; wl ,Y'- 0 42)) n L '(0, T : W I ''(52)).

W" 2 (0. T: (Q )) fl L 2 (0, T; W I 'Y' (0 )). with 6 > 0 arbitrarily small.

Y 
Y   ): (3.4)

fo r N  =  3:

W" 2 (0, T:
 L 6 y / ( 5 7 - 6 )

 (.(2)) n (0 ,T ; W I ' 3 Y R 2 Y - 3 )  (Q)) n L' (0, T: W (Q)).

E L 1 (0, T; LYY - I ) (Q )) n L 2 (0, T ; / 1' 6Y1 (5 Y- 6 )  (Q )). 3.5)

W e shall make further basic assumptions:
(iv) W e are  given a globally  def ined weak solution (p, u) o f  (1.1)-(1.4) sat-

isfying the energy inequality

d
7 + 13 (14 - Pfl)dx IVId 2 dx + 112 

j Q

 div /41 2 d x  0 . (3.6)

in the sense of  distributions;
(y ) f or a function 0 constructed in the proof of  Lemma 3.4 below the equation

(2.2) holds in  the  w eak  sense up to the boundary, i.e.

(C,0(p)+ 0(p)(u • V)C + (0(p) - p0'(p))diy uC)cixdt = 0
QT

f or all ((0, T ); C ' (Q : R)) .

The definition 3.1 and  energy inequality (3.6) imply the  following

Proposition 3 .3 .  L et f  e W 1 ' 2 (S2), I =  Vg an d  le t th e  assumptions (iii) and
(iv) be satisfied. T h e n  f o r this globally defined weak solution of (1.1)-(1.4) we have

p, P(p) c L (0, oo; L I (Q )), u E L 2 (0, oc); W 1'2 (Q)). (3.7)
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In particular,

urn 1VU(S)1 22 '  —dv — 0 f b r any a > O.

For the existence of the global weak solution of the problem (1.1)—(1.4) we refer to
[11], [12] and  [6 ]. F o r our given solution we want to prove convergence of p(t) as
t  tends to infinity in  1 ( Q )  for some r > 1 either o n  subsequences o r  completely
(see Theorem 4.4). This requires a  series of global estimates which will form the
m ain body of th is section.

For the technical reasons let us prolong the state equation function p(•) to the
negative pa rt o f real axis by

p(r) = —p(—r). (3.8)

Denote

Mo := Po dx. (3.9)

By the use of appropriate test functions in the equation of continuity and a certain
limiting argument it can be shown that (1.2) implies

M o  = p(t)dx, t > 0. (3.10)

A  similar argument is used below and  so w e d o  not present the  proof here.
Regularize the density in  t  by means o f the  usual mollifier (see Section 2)

p,(x ,t) := R t (p(x ,•))(t), X E Q, t > 0, e > 0. (3.11)

F o r each s>  0  define  iv(s) a s  a  (unique) generalized solution of the Neumann
problem

V w,(s) • Vn dx = p,(s)f • V n dx, E  W I , MY - 1 ) ( 0 ) ,

52

Lw,(x,  )dx  = 0. (3.12)

Classical results on the generalized elliptic boundary-value problems together with
Proposition 3.3 and assumption (3.1) give us existence of w E (s) for which there is a
constant independent o f e  and s  such that the  following estimate is satisfied:

wc(s)111,),C IP ,( s ) . f . C sup1PE(T)1 )
, If I x,

r>0

<  C sup Ip(T)1, C < co,
r>0

s > O . >  0 (3.13)

(C  is always a  generic constan t). N ote  that by (ii) it follows from (3.13)

sup 1111,„ (s) s > Of C < oo, E  > 0, (3.14)
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where y*
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N y  
f  y < N , * g  > 1 sufficiently large if y = N  and y* = oc if

N — y 
i

y > N.
In  the  following lemma a n  auxiliary function 0  is introduced which will be

helpful later.

Lemma 3.4. T here ex ists a positive constant co  and  a bounded increasing
continuously  dif ferentiable function 0 on R  with lim r„ rO V )  =  0 , such that

(p(r i ) — p(r2))(0(ri) — 0(r2)) co (0(r i ) — 0(r2)) 2f o r  a l l  r i ,r, c R .

P ro o f  Let ro > 0, 0(r) = p(r) for 0 r  <  ro  and  0 be concave, bounded with
(r) < p '(r) in (ro , Go), rOV ) = 0. E x te n d  0 to (— co, 0) by 0(r) = —0(—r)

for r < 0. Clearly 0  has the  desired property.

Now, le t us introduce

G,(s, in) := ( 0  p - I )(w e (s) + m)dx. s >  0 m E R, e > O. (3.15)

Clearly, for each s >  0 , e > 0, w e have lim„,_ + „  G,(s,m) = +1521sup,. > 0  0 (r)  and
OG,

(s, m ) > 0  for m e R .  Since for almost all (x,  ) , p(x,  )  is finite we have
am

R,O(p(x,•))(s)dx „(s —  r)0(p(x,r))drdx
. - x

<0()J i :  
„(s — r)drdx = 0(co)1521.

52 

So L REO(p(x,•))(s)dx lies in the range of G,(s,•) and for any fixed s > 0 and e >  0
the  equation

G,(s, m e (s)) = R,O(p(x, •))(s)dx, (s > 0, e > 0),
. Q

(3.16)

has a unique solution ni = m e (s). N ow , let us define

h (s )  := p - 1 (wg (s) + me (s)). (3.17)

Then by (3.15), (3.16) we have

0(fie (s))dx = R,O(p(•))(s)dx, s > 0,e >  O. (3.18)
• Q

Finally, we define another auxiliary function as a solution of

div //,(s) =  R80(p)(s) — 0(A,(s)) in Q,

tp„(x„v) = 0, x c at -2,s > 0, > 0. (3.19)
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This problem is not uniquely solvable but it is known (see e.g. [9], (3.8)) that one
possible solution operator is given by

(x , s) := S(R ,O(p)(s) - 0( (s)))(x ) = f  K (x , y )(R ,O(p)(s) - 0(15,(s))dy . (3.20)

where K  is  a n  explicitly defined weakly singular kernel (see [9], (3.8)). B y [9].
Theorem 3.1, S E (L q (S 2), W  I , q (52)) fo r any  q c (1, co). W ith our particular
choice o f  0 , for any q E [1, co) we get

110,(5)111, C < 00 w ith C  independent o f  e  and s.

Further, by (3.18) w e have

(3.21)

j (0 o p - I )(w,(s) + m,(s))dx = R,O(p(•))(s)dx.

Show that
Im(s)1 C < cc,E  >  0,S > O., (3.22)

If  we had

1Q10 ( - 0 0 ) + 6 < REO(P(*))(s)dx < 1S210(oo) - 6 for e E (0,1),s > 0
f2

(3.23)

with some positive 6 then (3.22) would clearly follow. Denoting 52(s) :=
p(x, s) M }  w e have

R,O(p)dx = R,O(p)dx + I Re0(p)dx
Q(s) . s2

0 ( 1 )1Q(s)1+ 0 ( 30 )(1Q1 -  IQ(s)I).

Show that there exists M  > 0 such that infs E R IS2(s)1 > 0. If  this is not the case
then  there  a re  s „ su c h  th a t 1,52(s„)1 -> 0 and  p(x, s„) n  fo r  any XE Q\S2(s„).
Hence

n1S2V2(s„)1< p(x, sn )dx  < sup < GO,
\52(s,)

which is a contradiction when n cc. S o  w e  have proved the right-hand part of
the  inequality (3.23). Since the  left pa rt is  trivial due to positivity o f p , (3.22)
readily follows.

Lemma 3.5. Under the assumptions (i)-(iv) there ex ist the limits

lim L(oc([0. co): W L Y(Q)) f o r any  r > 1
(3.24)

lim ni, =- ni. in  L (0 , c c )

e—■0+

for som e e„ -4 0 + .  In particular,
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P(Pen) +  in =: 11(1) ) (3.25)
in the above sense.

P ro o f  By (3.12), (3.13) we can write

ive (s) = Ape (s), where A  e (P (Q ), W 1.3' ( 2)). (3.26)

Since p e  L '(0 o c ;  LY(Q)), by  the continuity of mollifiers we have

lim p, = p in  any L lro c ([0, oo); LY(Q)),
e-Y0+

Then using (3.26) we get (3.24), with

1f,(s) = Ap(s),s >  O.

r E [1, co). (3.27)

(3.28)

Show that frn,L E 1 )  a r e  bounded in  W 1.q(0,T) for any  T > 0  and some q >  1.
Indeed, by (3.52), .(3.54) below we have

lin ie (s)1 C (R,(1(pu)(s)1„) + u(s)1 2 ± O ( 5 / ) ) C ( 1 ( p u ) t „  + u(s)12 )

in Lq(O, T )  fo r  some >  1 and r >  I. S in c e  b y  (3 .2 2 )  ins (s ) a re  uniformly
bounded, (3.24)2 follows by embedding theorem.

Put now

t r

Q(t) :=  
f J,Q(P(P(s))—  P(P(s)))(0(P(s))—  0 (fi(sMd-vds , t >  1. (3.29)

By monotonicity of p(•) and 0 we have Q(t) O. Our intention now is to prove
the  following global property o f  Q.

L em m a 3.6 . L et 15 be a function defined in  (3.25) of  L em m a 3.4. Then the
function Q (t) defined by  (3.29) satisfies

Proof

Q ( t )  :=

lim Q(t) = O.

Let a >  1,y e C't""- (—a, a), y 0, q)(o- ) = 1 fo r o- e (-1, 0).

(.1+a

(P(St ) (P(P(S)) P (A  ( S )))( R A P ( S )) —  6)(15 r(S))) d X d S  •
t-a Q

(3.30)

Put

(3.31)

Then clearly

Q:,(t) = f y(s — t)I (p(p(s)) — p(A(s)))(0(p(s)) — 0(p,(s)))dxds
• 1-a . 52

+ so(s — f ir(s)))(R P(s)) — () (P( S ))) C b a lS(P(P(s)) — P( A (3.32)
I - a

where the last term on the right-hand side of (3.32) tends to zero as c 0+. By
Lemma 3.5
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lim  t( p ( p ( s ) )  -  p ( ( s ) ) ) ( 0 ( p ( s ) )  -  0 ( f i ( s ) ) ) d x d s  =  Q ( t ) ,
1 Q

t > 1 (3 .3 3 )

for some E,, O. N ow  w e w ish  to  estim ate  Q ( t ) .  Denote

Va (t) := {(x,  ):x E Q. t - a < s < t +  a}. (3.34)

B y D efinition  3 .1  a n d  R em ark  3 .2 , a n d , w ith  regard  t o  th e  definition and
smoothness o f  0 ,  (we shall return to the differentiability o f  tp , with respect to  t
later in m ore detail), we can write

(p(s - t)p(p(s))(R ,O(p)(s) - 0(f i,(s)))dx ds
v,(1)

q)(s - t)p(p(s))div  C(s)dx ds
v,(t)

= y9(s - t)(-pu(s)0„(s) - pu • (u • V )0 „(s) + p i V u(s)V C(s)
11,,(0

+ 112 div u(s)(R E O(p)(s) - 0(f i,(s)) - p(s) .f  • 0,(s))dx ds

- - t)pu(s)(11,(s)dxds.
I/„(1)

Now, take the Helmholtz decomposition o f 0 ,(s) , that is

(3.35)

0,(s) = V z,(s) ut (s), div vs (s) =  0  in Q, v1(s) • v = 0 in  Q .

By the usual construction of the decomposition and by (3.21) we have SQ =  O.

= 0, V  E  W 1'4 (Q), (q c [1, c o )  arbitrary). Take into account
eg2

the  generalized formulation (3.12), namely

(V w„(s) - p E (s)f  )V ti dx  = 0 for q E W I 'Yl ( Y- 1 )  (Q ). (3.36)
f2

Then we find

go(s - t)p(fiE (s))(R E O(p)(s) - 0(p,(s)))dx ds

= q)(s - t)w e (s)div  0,(s)dx ds = (o(s - t)V w ,(s)0,(s)dxds
v(t)v„(t) „

=  - q)(s - t)V w,(V z„(s) + v„(s))dxds
t) 

- t)V w e Vz e (s)dxds - (o(s - t)p„(s) .1. • V z„(s)dxds (3.37)
v„(t) v„(0

Subtracting (3.35) and (3.37) we obtain

Z .  E  W2, q (0 )  (1'7

dv
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t aw ço(s — t)(p(p(s)) — p(fi p (s)))(R E O(p(s)) — 0( (s)))dxds

= j i 1 q)(s — t)Vu(s)Vtli c (s)dxds
v.,(t)

+ 1,12 f ço(s — t)div u(s)(R,O(P(s)) — 0 (PE(s)))dxds
. v„(,)

— (s — t)pu(s) • (u(s) • V) (s)dxds
v„(t)

— ço'(s — t)pu(s)0 1,(s)dxds — f ço(s — t)pu(s)111, i (s)dxds
V(i)„ . v„(1)

+ ço(s — t)(p,(s) — p(s))f • Vz,(s)dxds
v„(0

— ço(s — t)p(s)f • v c (s)dxds =:
v,(i) 1=1

/1(0. (3.38)

Estimate the integrals //e(t) in  (3.38) one by o n e .  Starting with 4 ( 0  and taking
into account (3.21), (3.13) we find

1-ka

11 18 WI COL tiG0120■11 e(011,2 ds
1-a

•t-l-a
C 1171(s)12 ds Ca„(t),

t-a

where we denote
t+a 1/2

a a ( t )  := 1V 14(S )1  dS )
t - a

Quite analogously we get
< Co-„(t).

To estimate 4 ( 0 ,  notice that having

y >  1 for N =  2,y >  —
3  

fo r N  = 3,
2

w e have
t+a

(3.39)

(3.40)

(3.41)

(3.42)

14(01 = q) (s t ) PninkektP,i(s)dxds
t-a o

t-Fa
<  COL 11) (S )IyI t i (S )1LOP „W ihr dS

•t-a

t+0
< C IlVit(s)1 ds Co-„(t) 2( 3 . 4 3 )

•t-a
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with r arbitrarily large and q = ry(ry - r - y) - 1  which requires y >  1 for N = 2 and
y>  3 /2  for N  = 3. C ontinuing w ith 4(0 w e notice tha t if  y > 6/5 in the case
N  = 3, then

•t+a

14 ( t ) I l o p 1P(S)Iy114(S)Iy1(y-1) 0 e(S )I.x ; dS
t—a

•t+a
<  C U(S)121P (0 ) , dcC u „ ( t ) . (3.44)

Next we estimate 4 ( t ) .  First, by (3.20) and the properties of the kernel K  it is
clear that the function lp, t exists and is sufficiently regular so that the integral 4 (0
is w ell defined . In addition, iit„ E W (Q )  fo r  any  r >  1. D e n o t e  (Dh z)(t) :=

-
1

(z(t + h) - z (t )) for any Banach space valued function z = z(t). The linearity of
h
(3.12), the estimate (3.13) and regularity of p, provide that (D i l„p,)(s) is a Cauchy
sequence in LY(Q) for each fixed s, and consequently D i pi we is  a Cauchy sequence
in  W I • r ( Q ) .  Thus (enVat)(t) exists and belongs to W 1 ')'(.(2) for each e > 0, t > 0.
Further, the regularity of iv(s) implies continuous differentiability of the function
Ge (s, m ) given by (3.15) with respect to  s and since, as w e have already proved,
OG,I am i s  positive , the function i i i ( s )  given a s  unique solution of (3 .16) is
continuously differentiable. It follows that the  function O ( j )  with fi e given by
(3.17) has derivative with respect to s in LL([0, oo); W 1:Y(S2)). T h e n ,  by the same
w ay  a s  w e proved the existence and regularity of (3w,/c9t w e  c a n  show  that
atiJe / t(5 ) exists in  the  sense o f  W ( Q )  w ith  r>  1  arbitrary  and for each s  and
e>  0  i t  is  an  element o f the  same space.

N ow  w e turn  to  the  estimate for tit„. L et c  e  w l, q1(q - 1)( Q \) Then by the
weak version of renormalized continuity equation we have (q)0 i s  a  regularization
kernel)

„
R,O(p),(s)C dx = H -)0 ( p ( r ) )C drdx

e 52 0

= -E-1
S  T )

 0 (P(r))u(T) • VC dxdr + . R)(s I E) 0 (Po)C dxot

_ _if '  (a° s r)(p0/(p)_0(p))div u(r) dxdr
c o ( E

= f  R,(0(p)u(•))(s) • V C dx - R ,((p0 '(p ) - 0(p))div u)(-)(s) dx

1
+  -e çoo (s e) J PoC dx, s  >  0, e small.

So , in  the  sense of distributions we have
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(R,O(p)), = —div R,(0(p)u) —  R,((p0 1(p) — 0(p))div u )  +y ,o (s e)p o : (3.45)

(notice tha t div R,(0(p)u) c CZ-,c (0, oo; L r(Q )) fo r some r >  1). S o  by  (3.20) we
have

„,(s) = S div z + Sg — SO(,,),, (3.46)

z = —R,(0(p)u), g = R„((0(p) —  p0'(p))div u) + N(s1E)Po• (3.47)

F irs t ly , it  c a n  b e  e a s ily  c h e c k e d  th a t  z  be longs to  { n  E  C '  (0. co: L r(Q )),
div w E CI' (0, co: Ls (0 )), w  • v 01, w here r c [1, 2), s E [1, 6) a r e  such that

Secondly, if y = div q, where g E Lr(S2) with g < r < •ao and6  ' r '  2  '  y s '
g • v1,,42 = 0 then IS,,I,. < const I/IL, (cf. [9], Lemma 3.5). Thus w e have

IS div z1„ + ISgI q 0 1 - 7 1q +  N0N+0)

whenever th e  norm s o n  th e  righ t h a v e  se n se . B y  (3.47) w e have  fo r N  = 2,
IzIgC 1 V u 1 2 , I I,2q/(q+2) CM? < C(V ul2 + E( 5 1 8 ) 1 1 ) 0 1 2 ) ,  w ith  q >  1 arbitrary.
and , for N  = 3 ,  1,716 C117u12 , Ig12 a s  ab o v e . S o  w e  have proved

IS div z1q + ISgI q <  C (1Vu12 + _ o ( s / e ) )w i t h  q >  1 arbitrary if  N  = 2

and g < 6 i f  N  3. ( 3 . 4 8 )

We need here po E L 2 (0 )  which is not assumed if y < 2 but this can be overcome
by regularization o f po ,  since later the i:-dependent term disappears in  th e  limit
E 0+. Further, we have

Q
0 p - I ) / (14,„(s) m)dx. (3.49)(s, =

01)1

We claim that

co := inf I(0 (3 p - ) /(w,(s) + m ,(s))dx > 0. (3.50)
Q

Indeed, if this was not true then there were w„ W weak in  W Y(Q). in„ E R
such that, by Fatou lemma

0 < (0 o 1) - 1 ) + r7i)dx < lim  in f (0 o p- 1 )'( w„ + ni„)dx = 0,
Q

w hich  is  a  con trad ic tion . Consequently, by Implicit Function Theorem there
exists the derivative in (s ) and w e have

= (0 o (w (s) + m ,(s))dx )

x (R„O(p)), — (0 o (Ii'„(x„r) ni„(s))w„,(x..r)dx), (3.51)
. 52 . 52
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which, with the  help of (3.45), (3.48) yields

1/11:,(s)1 ciY (suP ( 0  °P -1  )'(r)Ol'o(s)11 +
re I?

   

(R8 0(p)) t dx

   

C  WEt (S) I  + 1VU(S)12 Ç6'0(S/E)) s > 0,e > O. (3.52)

Now, putting together (3.46), (3.47) and (3.52) we obtain

I kt(s)1„ 
< c

 (Vu(s)12 + Iw o ( s )  I -
;•1 q)0(s/8 ) + 1 0 ( Pr(s))tlisioN+0) •

By differentiation we get 10(1),(s)) tImoN+0 Caw(5)IAN AN+q ) + Ini(s)1).
that

liv„,(s)1r C (Rt(IPu(s)1,) -
E
1 40o (s/e)) -

for any r for which the right-hand side has se n se . To this purpose. let E  C ( (Q ).
= .61C. N ote that functions o f  th is type  are  dense  in  a n y  L r (Q ) ,  1 G r G  e.

Then by the differentiability of and (3.12) we have

(pe ,f - V  w„,)V C dx = O.

Consequently by (3.45) with 0(p) = p,

we ,n  dx  = -  P o f  •  VC dx rIlf •

<C lIf III, Ilp„,11_1„11/1r, c ( R „( Ip u ( s ) 1 , .)  + goo(5/E))11/1,—

which yields (3.54). So we have

lOrt(-5)1„ C (R ,;(1Pu(s)1N0N+q )) +1V u(s)12+ 9 0(sle)), s,e > 0 (3.55)

with q  a s  in  (3 .4 8 ) . With (3.55) in  hands we estimate 4 (0 :

14-a
14(01 1(01, sup IP (s), lu(5)1,-10,(5)1gds

< ci yu(5)1210,,(5)l i ds, (3.56)
1—a

1 1 y yw h e r e  +  <
-  1  

and, for N -= 2  we can take r e  . co a r b it r a r i ly  larger q y Y - l '
Y Yso that q > 

1 I'
can be chosen arbitrarily close to and for N  = 3, assumingy - Y  -  

(3.53)

Show

(3.54)
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6y
y>  3/2 w e fix r -= 6, g  =

6
Putting together (3.38), (3.39), (3.41). (3.43),

5y - 
(3.44), (3.56) and  (3.55) we find

(9(s — t)(p(p(s) ) — P( fi, (s) ))(R, 0(p(s) )
(t)

— o(P,(s )))dx

t±a 1
<  C (a„(t) + (REOPu(s)IN0N+0) ± u(s)12 çoo(s EOIV 1,0)1 2 ds)

—a

+ W(t)i + W(t)1 (3.57)

with o-
a (t ) given by (3.40). Since we assume t > a  and yoo has finite  support we

have

1
liM  N ( S  I E )  =E—A3+ E

for s > t — a.

Moreover, ! 0 (S /E) C  <  o o  for e > 0, s > t - a. By continuity of mollifier RE

w e have

R e ( 0 11 ( *)11Val(N+q)) IPU(•)1Nal(N+q) as e - > 0 + in  L I ( t -  a, t + a: R± )

Ng
Since, by our choice of g,  <  2, we have Ipttl q1  ,9 1 ijm12 , where

N + q N1/q2/(2N+(2—N)q)

Ng 11

 i s  l e s s  t h a n  —y -  1 if N = 2 and less than -

5 

y - I  if N = 3  so that
2N + (2 - N)q 5 3
Lemma 5.1 below  applies. As

,+(f.
Ig(t)1 cl(01.1f)o, sup I„(s)1,., IPE(S) — P (0 1 ds,

S E t—a

w e have lim ,o +  .q (t) =  0 .  In  addition, there exist en t 0 such that (3.33) holds
true. So putting in  (3.57) E En a n d  n co we finally obtain

0 < (p(p(s)) - p(p(s)))(0 (p(s)) - e(fi(s)))dx < C (a a (t)
v„(1)

•s-Fa
+o -

a (t)sup I \ u(s)12 (supi In(r11Neg(2N+(2-N)q ) 4 1 7 1 1 / 2 )
.v>0 a  s—a

+ lim sup I/."(t)I. (3.58)

It remains to estimate

4(1) =- (p(s - t)p(s)f • t),(s)d.vds. (3.59)
. v„in
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where we know that

suPlIv/:(s)11 i,„ < div vs (s) = 0 and v 1 (s )  • y = 0 on Q .
E„S

Let q > 0 and K e (Q )  b e  su c h  th a t Isupp(1 — K)1 < q. T hen /. ( s )  can be
decomposed as

t+a
( t )  = ÇO(S — p(s)f v„(s)K  dxds

• 1-a

+ Iq+a 

q)(s — P(s) f V E G O  — K)dX dS =: J1 + J2, (3.60)

and clearly

11 21 241,k lit,suPit),(s)ilsupp( 1 -- All 0 7. (3.61)
E. S

Since (p , u ) is  a  weak solution of (1.1)—(1.4) we can write J1 in  th e  form

t+a

.11 = ÇO(S — t ) i  ( p i VuV(Kv„)+ p 2 div u div (Kvr ) — p(p)div (K V ,)

t- a

•+a
- -p u .( (u .V ) (K v E )) —puKuu )dxds—  I (s — t) K (puv„)(s)dxds

. 1-a Q

= q)(s —  t)f (p I KVu -VvE — KU • ((u • V)v,) — puKv o )dxds
t-a

t+a 1+a

— q) / (S  —  t) K(puv E )(s)dxds + ço(s — t) (p i (V K • Vu) • V,
t-a 1- a

+ P2(VK • vE)div u — p(u • VK)(u • rc) P (P )(V k  • v„ ))dxds = : J . ( 3 . 6 2 )
k=1

The integrals J1, , J 4  can  be  estim ated  quite  analogously  a s  the integrals
4(0, , 4 ( 0  in  (3.38) and we leave the details to the reader. To estim ate the
remaining terms J5 to  J g  we need the following lemma.

Lemma 3.7. Let Q be of class C 2 . Then f o r  any sufficiently small n > 0 there
exists a  domain t  Q such that S-2,7 Q.

 0 \ t 2 q 1
 C t i  and i fx  E OQ then there is

a unique y  =  y(x ) E 052,7 such that v (x ) =  v (y (x )) and Ix —  y(x)1= g f or all x E ao.
In addition, there is a function K e W" (Q )  such that K(x) = 1 f or x e Q,1 , k(x) = 0

dK
f o r x e Q IVic(x)1 C ir l f o r  x e 0 ,712 \f2,/ a n d —

d T

=  0, where T  is  the
052„

tangential un it v ector to th e  boundary.

P ro o f  Asume th a t Q  is  of class C 2 ,  i.e . there are open sets D,. R N _i .

functions a r E C 2 (1 ),., R ) and coordinate systems (x,", xr N ), r — 1 ....... in , such that
= where x,I x  R N  X t'N  =  ar(X ,.)}, '. = (xr i , N_I ) . Further, we as-aS2E I 

t+a
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sume that there exist /3,. > O. r =1, ..... m  such that Ix c R N ;x  c  Dr . ar (4 )  XrN
<  ar (4) + c  Q .  In  th e  sequel we shall om it the indeces when working on
a  lo c a l  p a r t  o f  t h e  b o u n d a ry . F o r  x  E 052 th e  u n it  n o rm a l vector v(x) =
(1 + 117a(x')1 2 ) - 1 1 2 (–Va(x'), 1) T p o in ts  o u t  o f  Q .  L e t n  be small enough (i.e.
so sm all that it still holds xN –  <  ar (x ' – (5v(x)') + /3 fo r all c  ( 0 .  i i ) ;  by con-
tinuity, n  can be chosen uniformly with respect to  x ' c  D,., r 1    n i ) .  Then
Spi := = x  – 6v(x);0 <6 17, x  e 0521 c Q . D e fin e  Q , 1 :=  Q \S ,,.  T hen  a (2,1 =
y c R N ; y = x  –  nv(x), x E (1521. T h is  c a n  b e  p ro v e d  b y  ra th e r  le n g th y  but

routine argument and so w e d o  not present it in  detail.
Denote by

 v ( y )
 th e  u n it  exterior normal vec to r a t y  to  00 , i . Show that

v/ (y) = v(x), where y  =  x  –  q v (x ). Indeed, solving the  system y' = x' – qv(x)',
w e get x ' =  0 ( y ' )  and  by differentiation

a
n

°k
6k i +  n

a  ( „
(5

"  (1 +iv„1 2 )- '12 )  a
°(b

y t. .
y i - ax , ox k

Further, the local equation for 0.Q,/ n e a r  y  is

YN =  a10(y')/ r/11 + 1Va(01Y /M
2 ) - 1 / 2

So by  an  elementary calculation after evident cancellations we obtain

i./)Ne a
1

O a  
00 )  =  ( x ' )Oyj '

and the assertion is  p ro v ed . Now, let k  be a  smooth function such that k ( )  = 0
for

 ç r
 1 7 /2  a n d  k ( )  =  1 for Define N(x) = 1 on 52,7 and  fo r x  c  f2 \0 1 ,

N(x) := lc(x – y(x)1), where (y(x)„ ti(x)) is  a  solution of the  system

:= y  –  x 1 –  pvi (y ) = 0, j  = I, ,  N, FN+1(Y , : =  Y  N  61(.0  =

near the point ( y ° „tio )  := (x, 0). By Implicit Function Theorem the solution exists
since

d e t  —

OF
Ox = ( 1 +  Iva(x)12 ) 2 det ( —"T(

X
) )

(x,0) v(x) 0

 

and  the  rows in  the  matrix can be shown linearly independent.

Finally, proveprove that —
d r

= O. where r is any vector orthogonal to vi/(x) with

X E 0Q,1 . S in c e

0K = k ( x ——  y(x )i) k   (a Xk a  y k

—  y(x)1 ay. aXj 
) = y(x)i)(1,ka Ykv

.1 • J )

by orthogonality o f  v(y(x)) and r =  rq(x) w e have

(1K (-)It" \i\aY k  
= O  l x  Y ( A .V k T i .ie)x• Ox•



V71 O r " plul 
2  

dxds
t —a 15202 \K2,

I+a
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Differentiating the relations

Oa
Yk = Xk (1  +IV al 2 ) -112  , k  = 1, . . , N — 1,

xk

by  an  elementary calculation we obtain

ay k
y k r;  =  O.aXi

Y N  =  X N  11(1 + (11 2) -72

Finally, IVic(x)1 C(1 + sup{IVx y(01; c 0/2\52,/})supe 
(q 1 2 ,1 7 )1 k V ) 1

 f o r  x E

‘ 2 ,7/2 \Qfri a n d  it i s  c l e a r  t h a t  k  c a n  b e  c h o s e n  i n  s u c h  a  w ay  tha t
5up e ( 1 / 2 )  IlcV ) 1  C i t .  S i n c e  Q  is C2, by  p reced ing  form ulas w e  have
IVK(x)I _<_ Cir l f o r  a ll x c Q.

All integrals J 5  to  J g  are of the type

f l± a

t —a JQ 
a(x, s)V K(x)t),(x,  )dxds.

Given x c 0,02 \52,1 issue  from x the  ray which is a  norm al to  00,7 a t  x i  a n d  to
00 a t x2 . Then Ix — x21 lb F u rth e r , s in c e  v(x2) • v(x2) = 0, v(x2) = v(xi) and
Vic(xi) 1 v(x2), by  L em m a 3.7, w e  have  VK(x) • u(x2) = O. In d e e d , w e  m ig h t
construct Q,, with a =  x  — x21 and use the same argum ent as in Lemma 3.7 for

t o  show  th a t  VK(x) • r(x) = 0 f o r  any  vec to r r  tangen tia l to  0.(2, a t  x.
Consequently, by embedding theorem, we find

1Vic(x) v,(x, s)I = IV K(x)(v E(x, s) — v,(x2,  ))1

< —

c 
111),(s)111,,,Ix - )(21" " ) < orN/q, X c Q,AS2,172 (3 .64 )

with q>  1  arbitrary b u t fixed. S o  the  integral (3.63) is estimated a s  follows

 

f  t+,
a

t —a I 52
x,, )VK(x)t),(x,  )dxds O r " la(x, s)1dxds,

v,(1)

and we get

  

r t+a [
max{1J51 , 11 61}O r " 1Vuldxds < Cr/(1 /2 ) - ( N /1) cra (t),

t—a 52,12\Q„

(3.63)

<  C lr "  s u P  1 P (S )1 1 1 11. (52„12\0) a  a ( 0 2  <  0
1(11x)— (N I a) 0 . a  ( 02 ,

w here a >  f o r  N  =  2  a n d  a  = 
5 y

6

—

y  

6
, (y  >  6/5 ) f o r  N  =  3. T aking  q

Y I
sufficiently large we see that J k , k = 5. 6, 7 tend to  zero as n —> 0 + .  To estimate

(3.65)

(3.66)
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the  last integral J 8  in  (3.62) we use Lemma 5.1 in  A ppendix . W e have

. 111

v„(op dxds 1g21/2 api - YVY < ci i (fi-y)/7-(N/q)fl (3.67)

whenever

fv,) pfi dxds < C < co. (3.68)

S in ce  t h e  le m m a  5.1 g u a r r a n te e s  th e  e x is te n c e  o f  )6  >  y  s u c h  t h a t  the
estimate (3.68) holds true, we conclude that due to estimates for J 1 to  J 4 , (3.60)—
(3.67) we have j/ Cua(t) + w (q ) , where 1 im,i -0)-(0 (q) = 0 and in particular,
lim sup <  C a ( t ) .  B y  (3 .58), (3 .32), (3 .29), regularity o f  p  ,( s )  and
Lemma 3.5 combined with (3.52), (3.54) we have

0 < Q(t) lim  07(0 < Ca„(t)

and  (3.30) follows from Proposition 3.3.

4. Convergence of density

In this section we show that under the assumptions of Sec. 3, for any sequence
{4,} there is a  subsequence {s„} {tn }  such that there exists an  equilibrium state

>  0  satisfying

lim  p(s„) — PxL  =  0. (4.1)
n—

with r c [1,y) arbitrary. H ence, if the equilibrium state is unique then it follows
that

i—xlim 1P(t) =  O. (4.2)

W e start w ith the  following trivial observation.

Proposition 4.1. L e t q E W 1 (a, co), (a c R ) be such that q(s) > 0 f o r s > a
an d  lim ,„  V _ 1 (q(s) +1q'(s)l)ds O. Then

lim  q(t) = 0. (4.3)r—oc

P ro o f  Since

q(t) = q(s) + q'(r)dz-

. s

for a + 1 < s < t < oo, by integration i t d s  we get
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q(t) < q(s)ds + lq'(r)ldrds < (q(s) +
1-1 1-1 s

)ds,

and  (4.3) follows immediately.

Put

q(t) := 1O(p(t)) — 0 (fi(t))1Z ,>  1 , (4.4)

where p ( t )  is the  function from Lemma 3.5. Then by Lem m a 3.4  w e have

q(t) C (p(p(t)) —  p(p(t)))(0(p(t)) —  0(fi(t)))dx fo r t > 0. (4.5)

SO it follows from Lemma 3 .6  that

•t
lim
r—oc

q(s)ds = 0.
t--

(4.6)

Now we are going to prove that

lim lq'(s)Ids = 0.
t-1

(4.7)

This will be a  consequence o f the  following Lemma.

Lemma 4.2. Let 1)(0 -= lim„„ 1 ) - 1  (w „ + m ,) (e f . L em m a 3.4). Then ive
have

 

2

dt C 1Vu(t)1 :
2
2 dt < (4.8)

 

d
1(1 0 (P(0) — O(P(t))IZ)

   

P ro o f  It suffices to prove that

  

(s) (0(p(s)) —  0(p(s))) 2 dxds
1 Q

<  Cilia L2 (0, ac)11V 14 11 L2 (0. x: L2 (52)) ,( 4 . 9 )

   

for any 17 E (1. co). First, by the renormalized equation of continuity we have

t (s) 0(p(s)) 2q dxds

J
i(s) (2p(s)0(p(s))0 t (p(s)) — 0(p(s)) 2 )div u(s)dxds

1 Q

< CI 1 / 1 ( 5 ) 1 1 V 1 ( s ) 1 2  dS <  C lItaL 2(0 ,0011V 141,2(0 ,,X ,1 ,2(2))• (4.10)



r ' (s )  0 ( f 5 , ( S ) ) 2  dxds
. Q f 52

n(s) 0(15,(s))0(1),(s)), ds

c Iri(s)1 I 0( , ( s ) ) , ds•

= 2
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Second, w e  know  tha t o(p,) = 0 p-  I )(wt. + m,), —> iT in  L r (Q ) w ith  r <
Ny

N  -  y  
a n d  weakly i n  W I J(Q ), m , —> (n —> oo) Hence IT e W I J(S2) and

consequently (0 o p--1 )( +  /T) = O(/) E  W  Y(Q) a s  w e ll. N o w , again  by renor-
malized equation o f  continuity, taking := i( s )0 ((x , s ) )  a s  a  te s t  function we
get

(4.12)

(4.13)

(4.14)

n'(s) 0(p(s))0(p(s))dxds

n(s) 0(p(s))(u • V )0(p(s))dxds
I 52

+ f n(s)j 0 (p(s))0(p(s)), dx ds

+ n(s) (p(s)0' (p(s)) - 0(p(s)))div u(s)0(fi(s))dxds

< c Ig(s)1(1u(s)161v 0 (fi(s))16/51 + I 0(P(s)),11

+ Ivu(s)11)ds < Q171112(0, . )(11vull L20 , 30,1.2(Q)) + II 0(P(s)),I1). (4.11)

(for the estimate of the last term see an analogous estimate below). Finally, we
have to estimate

n'(s) J 0 (p (s)) 2 dxds = lim J '(s) (s))2 dxds.
n *  7 ,

It is clear that

B y (3.52), (3.54) w e have (6 > 0 small enough)

10 (fic(s)),11 C (1Pu(s)1 i+,5 + Vu(s)12 + j5, (o„(sle))

< C (IVII(s)12 q)0 (S/e))

having thus still the  only restriction

3
> -

2
fo r  N  = 3. (4.15)
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Thus by (4.12), (4.13), (4.14) we find

(s) 0(p(s)) 2 dxds
s2

< lim  sup

 

n'(s) e(ii,„(s))2 dx-ds
. f2

    

< c f  , i ( s ) V u ( s ) I 2  ds < CIII111c2(o.x)11V x:L2(.(2))•

This completes the proof.

N ow , by (4.4), (4.5), (4.6), (4.8) and Proposition 4.1 w e ge t th e  following
result. (Observe that ,f; 1 1,71(s) Ids ( 1 1 q ' ( s ) 2 ds) 1 1 2 —> 0  as t —> oo in virtue of
(4.8).)

L em m a 4 .3 . L e t y  > 1  f o r N  = 2  and y  > 3/2  f o r N  = 3. T hen for any
r e [1, co),

lim I0(p(t)) — o(p(0)1,= o, (4.16)

w here 0 is a function def ined in  Lem m a 3.4.

P ro o f  The convergence of q(t) given by (4.4) to zero follows from Lemma
3 .6 , P ro p o sitio n  4 .1  a n d  L e m m a  4 .2 . S in c e  0  is bounded, (4.16) follow s
immediately.

Finally, we shall prove the  following m ain theorem.

T heorem  4 .4 . Under the assumptions of  Lemma 4 .3  (and assumptions (i)—(v)
f rom  S ection 3) f o r any sequence t„ co  and  any  r E [1,y ) there ex ists a  sub-
sequence {s„},x,i i{ t „ }  1 an d  a f u n c tio n  p  E  LY (Q) satisfying (4.22) below with
J p  d x  =  So  po d x  such that

IP(sn) d X  = O. (4.17)

If , moreover, the above equilibrium is uniquely determined then

lim Ip(t) — dx  = 0. (4.18)

P ro o f  In (3.26) w e have defined operator A  E (LY (52), (Q )), and  by
(3.28) we h a v e  (t) =  A p(t) fo r  t > O. L et t„ 0 9  be arbitrary . Then w e can
select {s„} { t „ } ,  such that p(s„) p  weakly in  L )'(Q), w(s„) =  A (p,c ) E

Ny
WLY(Q) weakly in  W I 'Y(Q), strongly in  L q  ( Q )  w ith  q < N

»  
 a n d  almost

 —
everywhere in  Q  and  also such that m (s ) (since m(.) is bounded) and by
Lemma 4.3 0(p(s„)) —  0((s)) — + 0 ac. in  Q . H ence given r > 1 , 0((s,,)) 0 o
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p - 1  (w „ +m ), 0(p(s„)) — > 0 o p - 1 (w „ + m „) a.e. in Q and in Lr 421. and p(s„)
(w „ + m ad  a.e. in Q  and by boundedness of ip(s„)L, also in Lq (S2), 1 < q < y.

Since p(s,) — > p„ weakly in  LY (Q) we find p p - i (A (p „)+ m „), or

P(I)c:) = A (Px) + ni( 4 . 1 9 )

Since w ( s )  —> wo o w eakly  in W Y (Q ) and w ( t )  satisfy (3.36), we obtain

I(V  w„ —  p„f)V O dx = 0 for a ll 0 e  C (,Q ),

o r , since

(Vp(p„) —  f dx  = 0 fo r a ll 0 E C x (Q). (4.20)

Now, given z  in  Ci?,'(Q) arbitrary, we have z  -= VO + y, where 9  is a solution of
the  problem

AO -= div z in  S2

d 9  n

dv "
o n  0,Q, (4.21)

dx  = 0,

y  is smooth enough, and  div u = 0 in  Q  and  y • v = 0 on Q .  L e t  u s  prove

v p (p c ,)=  p .f . (4.22)

Since (4.20) is valid it is only to prove that

(V p(p„)— f )1) dx = 0. (4.23)

A s we have

JV p(px )y dx = p (p )d iv  y dx  = 0, (4.24)

it rem ains to show

SQ p o c f  • y dx  = 0. (4.25)

It is c lear that the  proof will be complete when we show that

n—cc Q
lim p(s„)f • y dx = 0, (4.26)
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since then 0 = lim, cc $Q p(sf l )f  • y dx  = p f  •  y d x  b y  th e  w eak convergence
of p(s„) to p o,  in  L Y (Q ). To prove (4.26) it suffices to show that fo  p(•)f • v dx c
W i '2 (0, cc), i.e.

J.G° n(s) p(s)f • v dxds
0 Q

C lIrd  W 1 ,2 (0, cc)

 

n'(s) p(s)f  • y dxds
0 Q

 

for any g E CT (0, oo). (4.27)

integral / --(t)
technique we

The following estimate is almost a  repetition of the estimate of the
given by (3.60) with the function K  defined in  Lem m a 3.7. By this
obtain the  estimate

n(s) p ( s ) f  y  dxds
0 52

liiiV 0 1211Vulit.2(o,x1.2(.(2))11rI111.2(o,cc)

+ foc 11/(s) IV v .1)9 (5 )1,V2 W ( 5 )u(s)121u(s)16ds +1 1)1 , Jo ds

< CHO wi. 2 (0,,e) (if > 3/2).

Further, from the  weak equation of continuity

(s) p(s)f  • I, dxds
0 Q

 

n(s) fo P(s)(u(s) • V)(f • v)dx

   

elk/ 42 (0 ,  . ) if y 6/5.

So, (4 .26) is  p roved  a n d  th is y ie lds (4 .25). T hus (4 .23) is estab lished . This
completes the proof o f the  theorem.

R em ark  4 .5 . I f  considering strictly positive equilibria densities only. the
necessary and sufficient condition for uniqueness may be derived from [2]. If this
condition is not satisfied then necessarily, {p c e (x ) = 0 }  0  0  and the optim al
condition for uniqueness is given in [8].

5. Global estimate of density

The purpose of this section is to prove the global estimate (3.68) for certain
fl > y. L e t  u s  formulate it a s  the  following

Lem m a 5.1. L et y  > 1 for N -= 2 and y  > 3/2  if  N  = 3. Then for any global
weak solution (u, p) we have p e 4 0

+:
(

2 x [0, oo)) for some a > 0. More precisely.
if N  = 2  then a y  —  1  fo r  ye(1,2], y12 f or y  > 2 , and if  N  = 3  then 7

—
2

y — 1 for y E (1,6], a y / 2  for y  > 6. To achieve a > 0 we need y> 1 for N  = 2
3
and y > 3/2 J r  N  = 3.
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P r o o f  L e t 0  = 0 (r), r e  R  b e  a  C I , unbounded, nondecreasing function,
0(r) > 0 for r > 0. F o r  example, 0(r) = r" with a specified above. For (5 > 0 let
0,5 b e  a fam illy of positive sm ooth cut-off functions such that 0 ( r)  /  0 ( r)  as
(5 -4  0 +  for r > 0  a n d  0(r)  0 ' ( r )  f o r  r > 0. Define 1//,. 6  as a  so lu tion  o f

div Li =  R6 06(p) - MR,06(p), x  c Q,

111,, ( 5(X, t) = 0. x c (5.1)

0„3 dx = 0, t > 0,
Q

where My := IS21-1
 J  y  dx for y e L I (Q), (R ,z )(t) = So

x̀ " - s)z (s)ds is
th e  mollifier i n  t. W e consider aga in  th e  so lu t io n  o f  th e  ty p e  0,.. 6 (x.  ) =
S(R E06(p(• s)) - M R,06(• s))(x), where S  is a s  in  (3 .20 ). Write in short C . 6 =
From  the properties o f the  operator S  listed in Section 3 we have c  W i 'q(.52)
for any q c [1, Do) and

11 0 11 , < const106(P) Lp
If 1 < q < yloc then

111//111 ,q  < constIpl; < C < oo uniformly fo r a ll E,S  > 0, q c (1, yl a]. (5.2)

H ence can  be  used  as a test function in the definition of the weak solution. L et
a>  1, q) e CV ( - a ,  a ) ,  ço 0 , k a )  =  1  for a- c  ( - 1 ,  0 ) .  N ow , se t in  a  weak for-
mulation ri (x, s) = -  t )1 1 1 (x , s )  for test function. W e get

r+a
Q (t) := - t) p(p)(R e 0b(p) - MOb(p))dxds

t–a

r+ar fr+a
ÇO(S — t) J p(p)div tP(s)dxds = -  t) J Cui Vu • VO(s)

I —a I—a

+112 div u div

•t+ei

-  P((u • V)0 • u) - P i . • 0  - Pu • 0 i )dxds

6
— (0/ (S — t) pull( dxds = (5.3)

t–a Q :1=1

Estimate integrals / I ,• , 4  o n e  by  one. Then w e have
1/2

1/1 (t) P11000(70(0 (1 IVIII(S)12 dXds) <  C a ( t ) (5.4) 
V(t)„

a s  soon as y/ a 2. T he same holds for 12(0:

112(01 Co-
a (t). (5.5)

F o r  / 3 ( t)  we get
•t+a

110 1
2 )2

11)13,111161V 013;.1(2;,-3) ds CO- „(1 (5.6)
1—a
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if a y  —  1  fo r  N  = 2 and a < —
2

y — 1 for N  = 3. Further,
3

14(01 
t+,

1Ç91 1,0 IP111/1,/(y -1) d s  < c <If
t-a

(5.7)

if  a  <  
N  + 1  

y 1 ,  a n d  16(t) can be estimated analogously as 13 ( 0  even with the
N

4N — 5
milder restriction a < 

4 N  —  6  
y 1 .  To estimate 115(t)1 we notice that

115(01
f t + a

l - a
t i„ d S

1-1-a

CJ IV U121 C lq d S ,
I-a

(5.8)

w here q >  i f  N  = 2  a n d  q =
6y 

i f  N  = 3. A s  in  (3 .4 6 ) , w e  have
— 15 y  —  6

1//t (s) = S  div Sg —  S(R,M06(p)),, where z  and  g  a re  given by (3.47) with 06

in  p la c e  o f  O. In  S e c tio n  3  w e  have  derived th e  estimate IS div z S g l q  <
C(Izi g + Igl ivo N ± q ) )  fo r  any q E (1, co) fo r  which th e  norm s o n  th e  right have
se n se . So we get

<  R,10(p)ul q + Rn ( 0(p) — to(F(P))cliv ulivoN+q) +  1m (R eo(P ) ),IN0N+0• (5 .9 )

Clearly,

10(p)ul q  < Clp"ui g (5.10)

IR,((0(p)—  p0 1(p))div u)i r < CR ,1,0 div ui r

Nq (5.11)< CR ,( K d iv  u l y r io—y o) < r =
N  + q

,

and, by (3.45)

1M (R ,e(P)), C(Re.IPOE div UI1 +
 ço0(sle))

1 „< C(R,Idiv ul y/(y_,) + goo(s/E)) • (5.12)

I f  N  = 2  then w e m ust satisfy the restrictions q >   Y
T y

and   <  2 ,  which
y — 1 y — ra

leads to 0 < a < y —  1. If N  = 3, then q =
6y clYand the restrictions  <  6

5y — 6 y — qa
2

and  
r y

<  2  le a d  to  th e  requirement a j  y — I. I n  b o t h  cases (5.4), (5.5)
y — rIX
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gives the restriction oc < —

2 '  
so  in conclusion, we can allow

a < y —  1 & oc < y/2 if N = 2  and a  < ;y —  1 & a <  y/2 if N = 3. ( 5 .1 3 )

Then we have in  (5 .8 ) 11 ,, C R ,IV td 2 a n d  consequently

1-ka
15(01 C i 1Vtd2RdVul2 ds.

I—a

Returning back to (5.3), w e have

j o p(p)R,0(p)dxds (s — t)p(p)R80,5(p)dxds
v.,(0

= 4)(s — t) MR606(P(s))1.13 (P(s))11 dxds + Q(t)
v(t)

1491cc suP(10 (P(s))111P(P(s))11) 1V.,(01 C < co . (5.14)

By the continuity o f mollifier we have limc_ o +  R,0,5(p) = 0,5(p) in  L q (V (t)) with
V(t) = Q x (t —  1, t) and q e (1 , oo) arbitrary and R,06(p) 0 6 (p )  a.e. in  V (t) for
some en —> 0 + .  It follows by Fatou lemma a n d  (5.14) that

p(p)0,5(p)dxds C  <  o o for any ô > 0.
vco

Since limo—o+  0 (p ) =  0 (p ) a .e . i n  V (t ), w e  m a y  u se  Fatou lem m a again to
conclude

p(p)0(p)dxds lim inf p(p)06(p)dxds C  <  o o .
V(t) r>—,o+ v ( ,)

This completes the  proof o f Lemma.

6. Other boundary conditions

In this section we discuss the applicability of our method to the problem (1.1).
(1.2), (1.4) with other boundary conditions, namely, the no-stick boundary con-
ditions. To this purpose w e w rite (1.1) rather in  the  form

(pu), + div (pu 0  u) — div (2/11 D(u)) — (p 2 — p i )V div u + V p(p) = p f . (6.1)

1
where D 11( u) = + We consider the system (6.1), (1.2) (1.4) equipped

with the so-called no-stick boundary conditions

u • r = 0, riDii(u)v; =  0  in  052 (6.2)
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(y and T  denotes respectively the normal and tangential vector to 052) in a domain
which is not rotationally symmetric. In this case, several modifications have to

be  made:
In  the  definition 3.1, it is obvious to change the  se t o f te st functions q  to

17E C 1 (0, T : C ' (Q. R N )) with q • v 0 on 0.Q. Clearly, under (6.2)1, the Poincaré
inequality (2.1) holds.

The energy inequality now reads

Ipiu2 +  P(p ) -  p g )d x 2111 1D(u)1 2 dx (P2 - uI2 dx  <  O.

(6.3)

It implies (3.6) due to the inequalities NIDul
N -  2

and the KornP2>

inequality 1VP1 2C I D ( u ) 1 2 , which holds for all functions from W 1' 2 (Q) satisfying
(6.2) 1 since Q is not rotationally symmetric.

Now, we are in position to  sta te  the corresponding Theorem:

Theorem  6.1 . Let (p , u )  b e  a  w eak  solution to  the problem  given by  (6.1),
(1.2), (6.2), (1.4) with g,p o ,u0.52 satisfying assumptions (i)-(iii), (v) f rom  Section 3,

it2 >
N  -  2

 a n d  (6.3). T hen under the hypotheses o f  L em m a 4.3, f o r  any

r E  [I. y ) a n d  an y  se q u e n c e  t„ -> oo, th e re  e x is ts  a  sub sequ en ce  {s„} n'  an d  a
f unc tion  po, E LY (Q) satisf y ing (4.22) and To  poo dx =  ff 2 po  d x  such that

lim Ip(s„) - dx  = 0.

I f  moreover, the equilibrium is uniquely determined then

lim J I P ( t )  P .c r  d x  =  O.t-,00

P ro o f  T h e  proof o f  Theorem 6.1 follows precisely th e  sam e lines up to
(3.28). T he proof of (3.30) requires a  slight modification: The formula (3.38)
rem ains valid a s  w ell a s  all estimates concerning {11}- 1 (see (3.39)-(3.58)).
Estimate of /4 can be done in a m ore sim ple way. One uses the fact that (3.59),
when using the weak formulation of the momentum equation, becomes

t+a
yo(s - t) C u i D(u)D(v) - pu • (u • V )v  - puv ,)dxds

1-,
t+a

— (s  —  t)puv dxds.
t—a

Clearly, it tends to zero as t o o. This observation completes the proof of (3.30)
in the case of no-stick boundary conditions. The reasoning of Section 4 remains
without changes. This completes the  proof.
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