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Paradifferential Calculus in Gevrey Classes

By

CHEN Hua and Luigi RobpiNo

Abstract
We present a paradifferential calculus adapted to the study of non-
linear partial differential equations in Gevrey classes. We give an applica-
tion concerning Gevrey microregularity of the solutions of fully nonlinear
equations at elliptic points.

1. Introduction

Bony [4], 1981, presented a version of the pseudo-differential calculus, the
so-called paradifferential calculus, adapted to the study of the nonlinear equa-
tions

(1.1) Flu] = F(z,u,- , 0%, )jaj<m = 0.
The basic idea was to write
(1.2) Flu] = Tpiyu +r,

where T (., is the paradifferential operator having as symbol the linearization
F’ of F at u, and r is a smooth error. Precisely, if u is assumed of Sobolev class
H*™ s >n/2, thenr € H**~"/2. Through (1.2) one is reduced to the study of
the paradifferential equation Tp/(,yu € H 25=1/2 and obtains linear-type results
of existence, regularity and propagation.

Assume now F' is analytic in the respective variables, and let u be of Gevrey
class G7, i.e. locally

(1.3) |0%u(z)| < CleH(al)e.

Naively, one could try to reproduce for the Gevrey scale G%, 1 < o < oo, the
results of Bony for the scale H®, n/2 < s < co. It is easily seen, however,
that the error r in (1.2) turns out to be of class G?, with apparent no gain of
regularity. This corresponds to the known impossibility of obtaining linear-type
results of propagation for (1.1) in the analytic-Gevrey category, but for very
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special equations, cf. Alinhac and Métivier [1], Godin [8], Chen and Rodino
[5], [6] and Sasaki [17].

Here we propose a different approach, developing some preliminary results
of Chen and Rodino [5]. Namely, we refer to the Sobolev-Gevrey spaces HY
1<o<oo,7>0,s € R, defined by

o

(1.4) Il [z, =l explr(D)*Ju || 77 < oo

Spaces of this type have been already studied, for example, in Kajitani
and Nishitani [13], Kajitani and Wakabayashi [14] and Taniguchi [18].

Locally we have G7 = U; sH7 . For fixed o and 7, the scale H} ,, n/2 <
s < 00, is indeed appropriate for the paradifferential calculus, the error r in
(1.2) belonging to HZ% "2 if u e H? .

As an application, we may extend to the fully nonlinear case the result
of micro-elliptic Gevrey regularity proved in [5] for the semilinear equations.
Namely, from v € H} , we deduce u € Hzf{;A, for some fixed constant A,
microlocally in (1.1) at any elliptic point. Though very weak, this result is
nearly the best possible; in fact, starting from a solution w € G, there is no
hope in general of reaching G’ regularity, where 1 < ¢’ < o, as in the linear
case, see the counter-examples in [5] and [6].

Other possible applications in the nonlinear setting, which we leave to the
future, concern Gevrey propagation, cf. Bony [4] and Hérmander [11] for the
H# category, existence of Gevrey Riemannian embeddings, c¢f. Hérmander [10]
and Chen and Rodino [7], existence of Gevrey solutions for equations with
multiple characteristics, cf. Gramchev and Rodino [9], and weakly hyperbolic
Cauchy problems, cf. Mizohata [15] and Kajitani [12].

Finally, we observe that part of the arguments in the following may keep
valid for other weighted Sobolev spaces; essentially, one can replace the operator
exp[r{D)'/?] in (1.4) with a more general operator ®(D), provided ®(¢ +17) <
CO(E)D(1).

The paper is organized as follows: in Section 2, we recall the results of
[5] about Littlewood-Paley decomposition and H:? , spaces; in Section 3, we
treat some classes of Gevrey pseudo-differential operators; in Sections 4 and
5, we study paraproducts and paradifferential operators, respectively, in the
H? , frame; in Section 6, we present the above-mentioned application to micro-
ellipticity.

2. Gevrey-Sobolev spaces and non-linear operations
Let 0 > 1, 7, s € IR; we introduce Gevrey-Sobolev spaces as follows:

H: ,(R")={ueS ,,(R"), exp[r(D)"/"jue H*(R")},

—T,0

where (D) = (1 — A)'/2, the space S. , is defined as the dual of S;,,, which in
turn for 7 > 0 is defined by inverse Fourier transform from

Sro = {v(€) € C®(R") | exp[r(€)/7]v(€) € S(R™)};
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for 7 < 0, the space S, is defined by transposition of inverse Fourier transform
from S;, (cf. [14]). We shall also write H; , for short. The infinite order

pseudo-differential operator exp[r(D)'/?] is defined by Fourier transform as
usual; see for example Rodino [16].
We define the norms in H; , by

1w [z, = |l explr (D) “Jul| -

H? _ is a Hilbert space with inner product

(u,0) s, = (exp[r(D)"7Ju, exp(r (D)7 Jv) gro.
Taking K > 1 a constant, for p € Z, we denote:

Cp={£€R", K~'2F < [¢| < K2P*Y,
C—IZB(07K):{§€IR7I7 |£‘§K}

Thus {Cp}p2_4 is a circular cover of IR. From Bony [4], we have the following
result:

Lemma 2.1.  There exists N1 € N, depending only on K, such that for
any C), the number of q, such that Cy N Cp # 0, is at most Ny.

We have the following dyadic partition of unity, see again Bony [4]:

Lemma 2.2.  There exist p, ¥ € C§°(IR™), suppy C C_q, suppp C
Co, such that for any £ € R™, and any | € N, we have

(2.1) P&+ (277 =1,
p=0
-1

(2:2) P(E) + Y e(27PE) = p(2749).
p=0

The Littlewood-Paley decomposition (or say dyadic decomposition)
{up}pe_y for a function u € H; , will be defined as follows:

(2.3) u_i(z) = Y(D)u(z), up(z) = @(27PD)u(x) for p >0.

It is easy to prove that the series u = Z;O:_l u, is convergent in the 8" _
topology. In fact we can use the dyadic decomposition to characterize the
Gevrey-Sobolev spaces.

Theorem 2.1. Lets >0, 0 > 1 and 7 € IR; then the following condi-
tions are equivalent:

(a) we H:, (R

(b) w=322 | up, wherew, € C> andsupp i, C Cy, satisfying lupllrz
< 2775 with {cp} € (*, L2 , = H?

T,07



4 Chen Hua and Luigi Rodino

(c) w=30" | uy, where u, € C* and supp i, C B(0, K12P) for some
Ky >0, satisfying |luplzz , < cp277%, {cp} € 0%

(d) w = Z;o:_lup, where u, € C* and for any a € Z7, we have
[ D%upllrz < cpa2 PPl and {cp0}, € €2

It is obvious that the proof of Theorem 2.1, for 7 > 0, may be deduced
directly from the proof of [5, Theorem 1.1], similarly we can prove the case for
7 <0 as well.

Remark 2.1. In (d) it is actually sufficient to argue for |a| < s+ 1.

Remark 2.2.  The norm |lul|g:  can be estimated in (b) and (c) by
[(cp)llez and in (d) by >°, <11 [[(cp,a)pllez. The equivalence between (a) and
(b) keeps valid for s € R.

Remark 2.3.  Let us recall, see for example Rodino [16], that every ¢ €
GZ(R™) = G°(IR™) N C§(IR™), o > 1, satisfies for suitable positive constants
C and e:

(2.4) (6] < C expl—elé[/7].

It follows that Gg (R™) C H: ,(IR") for any 0’ < 0, s € R and 7 > 0, with
strict inclusion; moreover if ¢ € G§(IR"), then ¢ € H; (IR") for all s, if
7 > 0 is sufficiently small. In the opposite direction, it is easy to see that
H: (R") C G7(IR™) for all 7 > 0, s € R; cf. the proof of Theorem 1.6.1, (iii)
in [16].

Observe if u € H7 , and ¢ € G3' (R™), 1 < o’ <0, then pu € H: .. Thus
we can define Gevrey locally Sobolev spaces as follows (cf. [5]):

Definition 2.1.  We set H? ,,. to be the space of all Gevrey ultra-

distributions u € D’,(IR"™) such that for every ¢ € G§ (IR") with 1 < ¢’ < o,
we have pu € H7 .

We also define, for some open subset 2 C IR", that

Definition 2.2.  Wesay u € HS (), if forallp € G§ (Q), 1 <o’ <
o, we have pu € H:,. We say u € H; ,(xo) for z9 € IR™ if there exists a
neighborhood V;, of x¢, such that u € H? (Vo)

7,0,loc
Observe that User >0 ,(z0) = G7(z0), the space of all the functions

u which are of class G7 in a neighborhood of z0; moreover G7 (zo) C H? (z0)
with strict inclusion for all s € IR, 7 > 0 and 1 < ¢’ < 0.

Let (70,£°%) € T*R™\{0}; we introduce Gevrey microlocally (i.e. near
(w0,£%)) Sobolev spaces as follows:

Definition 2.3.  We write v € H} ,(20,&°) if there exists V;, and a

conic neighborhood Ty of £€° in IR™\{0}, such that for all ¢ € GF (Vy,), 1 <
o' < o, and every ¢ € C’OO(IRQ), 0-order homogeneous in £ for large |¢| with
suppv C I'%, we have (D) (pu) € H: .
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Next HY>° and H, 3° will be defined by N H? , and U H?
Similarly we can define Hj:;’oloc(Q) and H_ ().
To be definite, we recall here the notion of Gevrey wave front set and

related remarks used in the sequel.

- respectively.

Definition 2.4.  For u € D, (IR") we write (x¢,£%) & WF,u if there ex-
ist ¢ € GZ(IR™), with ¢ = 1 in a neighborhood of zy, and a conic neighborhood
Iy of €9 such that for positive constants C, e:

(2.5) |(pu)(€)] < Cexpl—el¢]'/7], € €T

Remark 2.4. Equivalently (cf. Rodino [16, Lemma 1.7.3]), we may say
that (zo, &%) & WF,u if there exist V,,, and T'g such that for all p € G§(V,,) and
every ¢ € C*°(IRg), 0-order homogeneous in ¢ for large [§] with supp C Do,
we have for some C, € > O:

(2.6) [(¥(€)(pu)) (€] < Cexp[—el¢|'/7].

It is then clear that (x9,£°) ¢ WForu for 1 < o’ < o implies u € HS ,(x0,&°)
forall 7 > 0, s € R.

We have the following Hausdorff-Young inequality:

Theorem 2.2. Letuec L', velIl?_,7€R, o >1, then

T,07

luxvllzz, <flufle - o]z, -

Moreover we can easily extend the results in [5, Theorems 2.1 through 2.3]
to the case of 7 < 0, i.e. we have the following results:

Theorem 2.3.  We have u € H? ,(x0,£°) (7, s € R, 0 > 1) if and only
if there exist Vy, and a decomposition

u=1u +ug, for x& Vy,,
where uy € HE ,(R™) and (20,£°) & WFo/(ug) for 1 <o’ <o.

Theorem 2.4. Let s’ > s, 7 € R and o > 1, the following two condi-
tions are equivalent:

(2) u€ H; y(wo) M H (w0, €°).

(b)  There exists 1 € G§ (R™), 1 < 0/ < o, with ¢1 = 1 in a neigh-
borhood V., of o, and there exists a conic neighborhood Ty of £° such that
pru = u_1 + 307 (uy, + uy), where u_y € G (R™), lupllrz , < 27P,
supp iy, C C,NI'§ (T is complement of Ty), lupllzz, < c;,’2_ps/, supp i, C Cp,
{ep) {epr € 2.

Theorem 2.5. Letu € L%, (oru € L\2¢|,a)’ Te€lR,0>1, andv €
Hp, , (orve H?,), withs>n/2. Then uv € L2 and for some C > 0:

T,0

[uv]| L2

T,0

< Cllvllag, , llullzz,  (or fluvllez < Clloflag, llulzz )
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It is important for us to consider when a function space would become
an algebra, which in particular is useful to study nonlinear partial differential
equations. Here for Gevrey-Sobolev spaces we have (similar to [5]):

Theorem 2.6.  Let s >n/2 and T > 0, then
(a) H:, is an algebra, and there exists C > 0 such that for all u, v €

T,0

H: , s>n/2

T,07

lwolles,, < Cllullas, llvlla;,-
(b)  Furthermore, if s' < 25 —n/2, then H? (z¢) N Hﬁjg(mo,fo) is an

algebra.

3. Some classes of Gevrey pseudo-differential operators
We first define some classes of Gevrey symbols.

Definition 3.1. Let m € IR, 7 >0, 0 > 1 and ¢ > 0. We denote by
Sme the class of all the symbols p(x,&) € C*°(IR™ x IR™) such that

T,0 )

(8-1) 1DZ0C )l jzve < cale)™ 1,
for constants cs independent of £ € IR™.

Denoting by p(n, £) the partial Fourier transform of p(x, &) with respect to
the first variables, we can re-write (3.1) as

(3.2) I exp[T<Dm>1/a]D?p(x,S)HH,L/HE(]R;)
= [l explr () /7)) **= DEp(n, )l 2y < eal@™ .

In our setting the classes S7";° play the role of symbols with “limited smooth-
ness”; they will contain the subclasses [ and X7°;° of the Gevrey para-
differential symbols, see the next sections for precise definitions. Here let us fix

attention on the corresponding class of “smooth” symbols.

Definition 3.2.  Let m € R, 7 > 0, 0 > 1. We denote by ST, the class
given by NexoS7%; i.e. p(x,§) € ST, if (3.1), or (3.2), is valid for every ¢ > 0.

T,0

m
T,0

Equivalent definitions for ST  are obtained by imposing for every «, 3:

(33) 1D DEp( &), < cas (€)™,
for some fixed s € IR; in particular for s = 0

(34) IDEDEp(-, &)z, < capt)™ 1,
with suitable constants cag. Let us write S72° = N, ST, .

Example 3.1. Let ¢ € G§'(IR"), 1 < 0/ < 0. Then ¢(z) belongs to
H; , for every 7 > 0, s € IR, and it can be regarded as symbol in 5270.
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Example 3.2. Let a(§) € C*°(IR"™) satisfy the estimates |Dga(§)| <
cp(€)m= I8l Then ¢(x)a(), with ¢(x) as in Example 3.1, belongs to ST,

Ifpe ST, g€ S;"U, then pg € Serm as we have from (3.1), the Leibniz
rule and the algebra property of Hf,{fﬁ. If p e ST, then D“Dﬂp €Sy, 181,

Let p; € ST i =12, m; — —oo with mj1 < my for all j, and let
p € ST'4; we write p ~ Z;; p; if for all integers NV > 2 we have

Z p; € 875

1<j<N

Given an asymptotic sum Z _, Pj as before, we can actually construct as
standard p € S7'% with p ~ ijl Dj-

We then define symbols corresponding to the classical smooth case.

Definition 3.3. Let m € R, 7 > 0, 0 > 1. We denote by ST, ,
the subclass of all p(z,&) € S, such that p(z,&) ~ Y272 pm—j(z,§) where
Pm—j(r,&) € ST 7 is positively homogeneous with respect to & of degree m — j,
for large |¢].

For later reference we also introduce more general classes of p, J-type.

Definition 3.4. LetmeR, 7>0, 0>1,0<p<1, 0<§<1. We
denote by ST", 5 the class of all p(z, &) € C*(R™ x IR™) satisfying for every
a, B

(3-5) 1D DEp(- €)1z, < caplé)m eIl

3 m — m
In particular we have ST", | o = ST',.

Consider now pseudo-differential operators

Pu(z) = p(z, D)u(x) = (2m)" / ¢ (i, €)(€) e,

with symbol in the preceding classes. For simplicity we shall limit ourselves
to the main properties of the operators with symbols in S7",; variants and
generalizations to ST, p,o are left to the reader. Proofs will follow closely the
calculus for pseudo-dlfferential operators with limited Sobolev smoothness, see
for example Beals [2], Beals and Reed [3] and Taylor [19]. In particular the
following lemma, taken from Beals and Reed [3], will be very useful in our

context.

Lemma 3.1.  Suppose that

C? = sup /\g(/\,§)|2d/\<oo and K? = sup /|G§ n)|2d¢ < oo.
£€R™
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For h € L? define

n) = / G, mg(n — €. Oh(E)de.

Then ||Ah| 12 < CK|h| 2.

The proof of Lemma 3.1 is elementary, by writing [|Ah[/L: = sup| ;<
| [ f(n 1)dn)|, interchanging integrals and using Schwarz inequality.

Theorem 3.1.  If p(z,§) € S, (m € R, 7 > 0, 0 > 1), then P :
H},— H™, P:H® — H*"" continuously for every s € IR.

T,0 7 —T,0 —T,0

[t follows P : H+°° — H+°° P HZ* — H_2°. In particular we have

T0'7

that if p(x,&) ~ 0, i.e. p(x §) € S;5°, then P is regulamzmg, in the sense that
P H,;go — H::go

Proof.  Let us prove P : H? , — H} ™ continuously. We first write

Bu(y) = (2m)" / P(n— € €)a(€) e,

where as before p is the partial Fourier transform of p with respect to the
x-variables. We then have to estimate the L?-norm of

(3.6) explr(n)*/7(n)*~™(Pu)(n)
— 2m)" / HE, ) (m)*~™ (€)= explr(n — E)Y°1p(n — £,€)0(€)de,

where
v = exp[r(D)Y°](D)*u,
= ||v|| 2, and we have set
H(&,n) = exp[r()'/7 — (V7 —7(n—&)'7].
Note that H(&,n) < 1. We apply Lemma 3.1 by taking there
g\ &) = explr NI N VBN, €)(€)
which satisfies for every fixed NV

so that ||u||gs

T,0

Cc? = sup/\g)\§|d)\<oo
£eR™

in view of Definition 3.2. We set also

G(&n) = HEn)(m> ™™ *(n—~~
for which

K? = sup /\Gf, )[Pdé < oo
nelR"

if N has been chosen sufficiently large. Therefore by Lemma 3.1, the L?-norm

of (3.6) is estimated by CK||v||rz2, and this gives the conclusion. Similarly we

prove P: H® _ — H*'0 O

—T,0°
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Remark 3.1. Concerning symbols with limited Gevrey-Sobolev
smoothness, p(z,£) € S757, the corresponding operators act with continuity

from H? , to HY | s < s—m, provided s is sufficiently large and s’ sufficiently

T,07

small, depending on € and m.

Theorem 3.2. (1) Let p(z,§) € S, and consider the corresponding
pseudo-differential operator P. Define the L?-adjoint P* by

(P*u,v) > = (u, Pv) 2, we€ HIT™ veH?

T,0 —T,0°

Then P* is a pseudo-differential operator with symbol p*(x,&) € S, hav-

T,07
mg asymptotic expansion

(3.7) P (3,8 ~ ) (a) ' 0g DIp(x, £).

[e3%

(2) Let p; € S73. j = 1,2, and consider the corresponding pseudo-
differential operators Pj, j = 1,2. Then P1 P is a pseudo-differential oper-
ator with symbol p(x, &) € S;’:‘;*‘m"‘, having asymptotic expansion

(3.8) P~ p1#fpe = Z(a!)_lagpl(x,£)D§‘p2(w,§)-

(e

Proof. 'We prove (2) and leave (1) to the reader. By standard computa-
tions we may express the symbol of P, P, in the form

(3:9)  pe.6) = @) [ explily — 2)(¢ = Olp . pay. )dyde
= (2m)" [ expliaglp (o€ + )l )
where py is the Fourier transform of ps with respect to the z-variables.

Let us first show that p(z, () € S7°27™2. To this end, we compute (1, (),
Fourier transform of p(z, () with respect to the a-variables, and obtain

50,0 = 20" [ paln = €.C+ Opa(€. ).
We have to estimate for any s € IR the L?-norm with respect to 7 of

()7t expl(n) /7] () DB (. €),

uniformly in the parameter (. Let us limit ourselves to treat the case § = 0,
the generalization to arbitrary 3 being trivial by Leibniz rule. We have

(3.10) (¢)~™ ™= exp(r(n) /7 1(n)*p(n,¢)
- 2m) / H(Em) () (€)™ ™5 (1 — £, + E)Falé, ),
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where H(€,n) = exp[r(n)!/7 — 7(§)V7 —7(n - §)'/?] <1 and

Pi(n—&,¢+ &) =exp[r(n—&Ylpr(n — & ¢+ ),
P2(&,¢) = exp[r(&)M7]pa(€, ©).

We shall apply again Lemma 3.1, all the terms there depending on the parame-
ter ¢ with uniformly bounded norms. Namely, we set

h(€,¢) = P2(&.Q)(¢) "™ (&)

with L?-norm with respect to & bounded uniformly with respect to ¢, for any
L; moreover

g()\7§7C) = 51(>‘a< —|—f)<< + £>—m1)\M

with L?-norm with respect to A bounded uniformly with respect to ¢ and &, for
any M. Finally, we take

G(&n, Q) = HEm M ()™ ¢+ ™ -6~
for which

sup / IG(E,1,Q)[2dE < o
1,¢

if L and M have been chosen sufficiently large. From Lemma 3.1 we therefore
deduce that the L2-norm with respect to 7 of (3.10) is bounded, uniformly with
respect to (. We pass now to prove the asymptotic formula in (2). As standard
in the pseudo-differential calculus, after Taylor expanding p;(x,¢ + &) in (3.9)
with respect to £, we are reduced to consider the remainder

N !
TN(:EaC) = Z o TN (IIZ,C,t)(l 7t)N71dt7
i 7 /0 '

where
ra (G, 1) = (21) " / expliz€lOlp (z, ¢ + HE)E P (€, C)de.

We have to prove that ry, € S7atm2=N N = ||, with uniform bounds with
respect to the parameter ¢, 0 <t < 1.
Arguing as before, we are led to consider

a0, 0) = (2) " [ 01— €.C + )€ pa(€. ).

Repeating the preceding arguments, and in particular applying Lemma 3.1
with ¢ and ¢t as parameters, we get easily the conclusion. O

Corollary 3.1.  Ifu € H7 3, u € H; ,(x0) and P has symbol in ST,
then Pu € H: ™ (o).
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Proof. Take ¢ € G§ (IR"), 1 < o’ < o, with ¢(z) = 1 in a neighborhood
V' of xg, such that ¢u € H? ,. Take then any ¢’ € G5 (IR™) with supp ¢’ C V.
Writing
¢'Pu = ¢/ Pou + ¢/ P(1 — d)u,

applying Theorem 3.1 to the first term in the right hand side and (3.8) in
Theorem 3.2 to the second term, we get ¢’ Pu € H7 ™, hence Pu € HZ " (xo).
O

Corollary 3.2. Ifu € H;°, u € H ,(20,£") and P has symbol in

Sm, then Pu € HE ™ (x0,£°). ’

T,07

Proof. Let (&), ¥'(§) € C°>°(IR™) be 0-order homogeneous for large €]
with 1(£) = 1 in a conic neighborhood T of £° and supp %' C I'. Let ¢, ¢’ be
as in the preceding proof, such that ¢/(D)(¢u) € H; ,. The conclusion is easily
obtained by writing

U (D)(¢' Pu) = ' (D)¢' P((D)du) + 4 (D)¢' P(1 — (D) $)u
and applying (3.8) to the second term in the right hand side. O

Given © open subset of IR", the class of symbols S} (2) is the set of all

p(z,€) € C(Q x R™) such that ¢(z)p(x,£) € ST, for every ¢ € G§ (), 1 <
o' < o. Similarly we define S57%:°(Q), ST, ,(©2) and ST",  5(€2). The preced-
ing Theorems 3.1 and 3.2 have obvious variants for the corresponding pseudo-
differential operators.
Let p(x,§) ~ 3272 Pm—j(2,€) in ST, () be elliptic, i.e. for every K CC
Q we have
(2,6 = exle™, e K, €eR,

for a suitable positive constant cx. Then ¢_m(z,&) = (pm(z,£)) ™' € SZ7H(Q)
for large ¢ and we may recursively construct as standard ¢(z,) ~
Z?io q—m—j(z,§) in ST, (Q), such that g#p = 1, p#q = 1. From (2) in
Theorem 3.2 we therefore obtain:

Theorem 3.3.  Let p(z,§) € ST, () be elliptic in Q. Assume P =
p(xz, D) is properly supported, i.e. it is well defined as a map P : ngoloc(Q) —
H:SOZOC(Q), H_2,.() — H_>,.(), preserving compactness of supports.

Then for P there exists a properly supported parametriz Q = q(x, D), q(x,§) €
S~ (2); namely QP = I+ Ry, PQ = I+ Ry, where Ry and Rz have symbols

T,0,cl
Corollary 3.3.  Let p(z,§) € ST, e be elliptic in a neighborhood of .
Then v € H-3°, Pu e H? (o) imply u € HI L™ (x0).

The proof is by Theorem 3.3, Corollary 3.1 and Theorem 3.1.
Using Corollary 3.2 and constructing microlocal parametrices, we deduce
similarly the following micro-regularity result.
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Corollary 3.4.  Let p(z,&) € S™ ., satisfy pm(x0,£°) # 0 for some

T,0,C

x0 €, £ #0. Thenue H-, Pue H ,(20,£°) imply u € HEE™(20,£°).

T,0 )

Comments 3.1. In the classes presented here we require only C*°
regularity with respect to £&. The corresponding symbols are comparable, for
example, with those in Taniguchi [18] defined by the estimates

(3.11) |DgD§p(x’€)| < egM el (gym=I8l,

Namely, if (3.11) is satisfied we have p(z,{) € S, for a small 7 > 0.

We point out that, with respect to the standard calculus requiring also
Gevrey estimates in &, c¢f. Rodino [16] and the references there, our present
regularizing operators R are such only in the H_2° frame. More precisely, if
R = r(z,D) with r € S75°, we have R : H7* — HX,, but for f € &'(IR")
or even f € CP(IR™), in general Rf € C is not of Gevrey class, neither
the possible Gevrey local regularities and micro-regularities of f are preserved

under applications of R or P = p(z, D) with symbol p € ST .

4. Gevrey paraproduct calculus

Let a € H"/2+E, e>0,7 € R, o >1. We can define the paraproduct

I7],0
operator T, as follows:

(4.1) Tou = Z(Sqa)uq, u€ H},,
a

where {u,}22 _; denotes the dyadic decomposition of u, Sqa =3° ;. . N, @p,

{ap} the dyadic decomposition of a. Let Ny be sufficiently large, cf. [4],[5], then
we have

Theorem 4.1. T, : H? , — H} , is a continuous mapping for every s €

IR. Moreover, w € H: 3¢ andu € H; ,(zo) imply T,u € H; ,(x0) for any s € IR

and xo € R™. We have |Taollzeas  ms ) < Csllall jynszse. Fix further €0 # 0. If
00t T o 17,

u e Hf ,(x0) with s > 0, then u € HE ,(x0,£°) implies Tyu € HE (x0,&°) for
s<t<s+e.

Proof. The same statement was already proved in [5, Theorem 3.1]. We
think however it is worth to give in the following a precise argument for the
pseudo-local property, i.e. u € H 2° and u € H; ,(zo) imply T,u € H? ,(z0)
for every s € IR, since details in this connection are missing in [5]. Our present
proof will be based on the pseudo-differential calculus of the preceding Section
3.

Let us assume for simplicity 7 > 0. We may take ¢ € G§ (IR"), 1 < ¢’ < o,
with ¢(z) = 1 in a neighborhood V%, of x¢, such that ¢u € H? ;. Let us then

show that ¢1T,u € H? , for every ¢ € GSI(VzO). In fact

¢1Tau = ¢1Ta¢u + (blTa(l - ¢)u
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where ¢1T,0u € Hﬁ,a, granted the boundedness of T, on H;U

Let us prove that ¢17,(1 — ¢)u € HI, for all h € IR. Basing on (4.1), we
write

(4.2) O Ta(1 = PJu= 1) (Sa)p(2PD)(1 - $Ju+ f,

p=>0

where f € HI2° and ¢ is defined as in Lemma 2.2. Since ¢1¢(277¢) and ¢(z)
are symbols in SS’G, we may apply Theorem 3.2 and write, with NV to be fixed
later:

S92 PD)(1=¢) = d1 Y (a) 7' Dg(1-)277°N(0¢p) (277 D) +durpn (2, D)

lal<N

where ¢17, n(2,€) € S; Y. Inserting in (4.2) and observing that ¢ Dg(1—¢) =
0, we are reduced to study the boundedness of the operator

Ry = Z(Spa)rpN(x, D).

p2>0

Namely, we shall prove that u € H" implies Ryu € Hﬁg for every h,h' € IR.

To this end, assuming without loss of generality h > 0 and applying (d) in
Theorem 2.1, we may limit ourselves to check that
43)  ID*(Spa)rpn(x, Dyullrz , < cpa2 PP e}, € 12,

By Leibniz formula and Theorem 2.5, we are further reduced to prove the same
estimates for the terms

(44) D™ (Sy0) L yosaec IDmpn (@, Dhulliz,, a1 +a2 = a,
with 0 < &’ < e. Now from the definition of S, we have easily

(45) 1D (Sy0)lyayaee < han 2l oyae:  {chap € 12

It will be then convenient to write the explicit expression of rpna,(z,§), the

symbol of D*?r,n(x, D). Namely, according to the last part of the proof of
Theorem 3.2:

N 1
@) v = X / rorvan (2, €, 6)(1 — )NV,

[v|=N

where 7pNa,y is a linear combination of terms of the form

(47) e(a.6.t) = 2m) " / €72 PN (90) (2P (€ + 10))€% (T H(C)C.

with 81 + B2 = as.
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We want to estimate the norm of the corresponding operator as a map
from Hﬁg to L2 ,. Going back to Lemma 3.1 and to the proof of Theorem 3.1,
we have then to consider

e(N€.1) = 27PN(0 ) (277 (€ + tA)EMNTTRG(N)
and evaluate the L2-norm with respect to A of

g\ & 1) = T WMeE(N €, )(€) T

where M is determined as in the proof of Theorem 3.1, depending on h'.
Assuming without loss of generality A’ < 0, we have

[(B2@)(27P(& +tA))] < ¢y (27P (& +tN)) o]
< CWQ_Ph,+P\0z2| <€ 4 t)\>h'—|a2\
< C%Qiphurp‘o@'<§>h'*|a2|<t>\>fh’+|oz2|

and moreover for some § > 0
~ _s\1/0’
[d(A)| < ce™'7,
so we obtain

sup sup ||g()‘>€at)HL2(IRK) < CQ—pN—ph'—i-p\ag\
0<t<1¢ecR®

for a constant ¢ independent of p. In view of (4.6), (4.7) and Lemma 3.1, we
deduce that

1D (2, D)ull sz, < 27PN PO ]y,
and therefore from (4.4) and (4.5)
1D ((Spa)rpn (@, DY)z, < a2 PN PP u|

where {¢]},}, € I?. To obtain (4.3) it will be then sufficient to fix N > h — h/.
This concludes the proof of the pseudo-local property. For the other state-
ments in Theorem 4.1 we refer to the proof in [5]. O

Remark 4.1. Ifae H;L,{,%E (7 < 0), then in the the same way we can
define the paraproduct operator T,, which is a continuous mapping from H, \Sr|,a
to H7 .

Remark 4.2.  Observe in Theorem 4.1 that v € H-°,u € H? (z0)
imply T,u € H? ,(zo) without any restriction on s € IR, whereas the microlo-
cal statement depends on the local regularity of w. In fact when 7 = 0 the
paraproduct Tp belongs to the Hormander’s class L?’l, cf. [4], and it is well
known that the corresponding pseudo-differential operators are pseudo-local
but not micro-local in general.
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From (4.1), the definition of T, seems dependent on the dyadic decomposi-
tion of Gevrey-Sobolev space H? , (i.e. depending on the choice of { K, ¢, N1}).
We suppose there exist two dyadic decompositions which depend on {K, ¢, N1}
and {K' ¢’ , N} respectively, and denote by T, and T as two paraproducts
corresponding to {K, ¢, N1} and {K’, ¢, N} respectively, then we have

Theorem 4.2. Ifac€ Hm?js, then T, — T, € L(H? ,, H: 1Y), for any
0<er <e, and

(48) 1T = Tl s rzseny < Collalgogose,

lo

Proof.  Let function a (resp. u € H? ) have two decompositions ) a,
and ) a;, (vesp. D up and Y vp), and Sqa = 3" . N, ap, Sga = Zpgq—z\q ay,,
then

(4.9) Ty,u —Tiu = Z Z aplly — Z Z apvy

q p<qg—N q p<q—Ni
DD RIS T
q p<g—N:1 q
Y| X | ] X e i
P q>p+N1 q | p<q—N:
=D apt Y9,
P q
Without loss of generality, we let K’ > K, then
supp w, C CZ’,JFN17 ||prL?_ﬁ < p27P%

So if we choose Nj large enough, we have supp{a,w,} C C}/, y,, and

lapwpllr2

2 < Cllapllypyse lwlzz,

l,o

< CQP(E/_E)H%HH(;/‘?;st?_ps,
where ¢’ € (0,¢), then
(4.10) lapwpllzz , < Ep||ap||H‘,,;/‘)2:E2—P(s+sl)’
where &1 = ¢ — ¢’ € (0,¢), {¢,} € I

Next we have, for N7 large enough, that suppa/J; C C;, and for any ¢’ €
(0,¢), we have
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@I )gllez, < |[la— > ap +lla = Sgall ynyaver | lvgllzz,

p<q—Ni /2t e
[Tl

S C”a”HlnT/‘Z;rs Q_Q(E_E,)C;Q—qs

(ste) ey =c—¢ €(0,e), {&,} €”

= 5Iq||CLHH‘7:—/|2:a27q
This implies that Tou — Thu € Hﬁi‘fl, for any 0 < g1 < €, and the estimate
(4.8) is obvious from the process above. Theorem 4.2 is proved. O

From Theorem 4.2, we know T, = T,(modL(H; ,, H: %)), If we de-
note L£-¢ as the Gevrey e-regular operator class, i.e. A € £-5 means A €

[,(Hja,ng‘f) for any s € IR, then we also have T, = T’(modﬁmf ), or
T, —T, € L7

We have the following composition result for the paraproduct operators:

Theorem 4.3. Let a, b € H€+n/2, 7>0,0>1 ¢>0, thus (see

Theorem 2.6 above) ab € Hfir,"m. Then for any 0 < e1 < e, TpoTy, — Ty €
L7512 and we have | Ty 0 Ty — Tab”L(HS HEEE < CH(I||H;1,/U2+EHb||H:/G2+e.

T,0 7

Proof. Let u € H; ,, {ay}, {bp} and {u,} the L-P decompostions with
respect to a, b and u. Then we know from Theorem 4.1 that v = Tpyu € H?

T,0

and v = qu, supp vy, C Cg; Sqa = Ep2<q N, @pp- Then T, 0 Tyu = Tyv =
Zq(Sqa)vq + Rv, vg = Zp1<q N, bpi g, 1€

(4.12) TooTyu=»_ > Y apbyus+ R(Thu).

q p1<q—N1p2<qg—N1

Since suppgq\a C B(0,02%), supp 9, C C, and C, C Cy, then it is similar
to the proof of (4.9), we have easily

(4.13) R(Tyu) € H; Y, 0<e <e.

Now we let

(4.14) = > ) apby,.

p1<q—N1 p2<q—N1

Observe supp d, C B(0,C2%), and

ab—d, = > py by,

p1>q—N1 or p2>q—Ni1
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we have, by Schauder-Gevrey estimate and assuming as before p; > ¢ — Ny or
p2 > q — Ny in the sums, that

(4.15)[I(ab — dg)uglizz, < llap,by, Il nyavet Uiz,
< OZ s Lot W g llzs o ' € (0,€)
< Cllal] e [b] e (Z 2—<P1+P2>81) 2%, ey =e—¢

< Cllall o jzse bl o yzs <2790 HE0,

Thus it is similar to the proof of (4.9), we have, for u € H? _, that

T,07

Tuu— Y dgug € HIE,

this means that T, o Tyu — Typu = R(Tyu) + [Z dqug — Topu] € Hs+El
The result on norm-estimate of comp051t10n may be easily checked from
the proof process above. Theorem 4.3 is proved. O

With respect to the L2-scalar product we can define the conjugation
operator T, for paraproduct Ty, : H} , — H} , by

(4.16) (Tyu,v) = (u,Tov), we HZ} , ve H}

SoTy:H=],— H_} = (H:,) (the dual space of H? ;). More precisely we
have

Theorem 4.4. Let a € H*™ (e>0, 7eR and o > 1), then T, is

ITl,o

also a paraproduct operator and Ty — T € LIG, for any €1 € (0,¢), and

1T = Tall g, ey < Clall e

Proof. Letue€ H? ,ve H:ﬁijsl), then we have

<(T; - Tﬁ)ua U> = <T;'U,, 1]> - <T(zu7 U>
=(u, Tyv) — (Tau,v),
where

(u, Tyv) Z Z /uqapvrdx

q,7 p<r—N;

(Tau, v) Z Z /apuqudx

79 p<g—Ny

Observe supp(szj;l apvy) C C), suppty C Cy, and there exists No > 0,
large enough, such that C; (" C} =0 if | — 7| > Na. Hence if |[g — r| > Na, we
have

[ @ amyia = [ ay(-ngz o =o.



18 Chen Hua and Luigi Rodino

This implies

(Tru,v)=> Y > /uqapﬁrdx,

¢ q—N2<r<q+Nzp<r—N;
T = ¥ Y [auudn
g4 q—N2<r<q+N2p<q—N:
Thus there exists a large integer N3, such that
(Tyu,v) = (Taw,0) <Y Yo llapugurllea
¢ q—N2<r<q+Nz q—N3<p<q+Ns
Let p = g+ j1,7 = q+j2, then by Cauchy-Schwarz inequality and Theorem
2.5, we have for ¢/ = ¢ — ¢ € (0,¢)
(5w, v) — (Tau, v)|
<D0 > Mageill grserellugllz vgr e -
4 172 <N2 |ja <N e

Because Ny, N3 are finite and fixed, then we can further estimate by

C’HaqHHmzje27q616q27qsc;2q(5+51) < C”a”HmQ:ngC;’

where e; =e—¢’ € (0,¢), and {c¢,}, {c;} € 1% |[{cg iz < C||UHH;U, ||{Cfl}||12 <
Cllv]| ;- s+e1)- Thus we obtain

(@17)  [Tiuw) = Taw o)l < Cllalgeraselfullg 0] - oo

Theorem 4.4 is proved. O
From [5, Section 3], we also have the following paralinearization results:

Theorem 4.5. Let FF : C — C be an entire analytic function, and
satisfy F'(0) = 0. Let f be in H ,, s >n/2, 7 >0, o > 1. Then F(f) € H?,

T,07

and F(f) = Tpi(p f + g, where g € H: , for all t <25 —n/2.
Theorem 4.5 has the following obvious corollaries:

Corollary 4.1. Let F': C — C be an entire analytic function, and let
[ bein H (z0), s >n/2, 7 >0, 0 > 1, zg € R". Then F(f), which is
well defined in a neighborhood of xo, belongs to H? ,(wo). Fix further €0 £ 0.
If f € HE (20,°) for s <t <2s—n/2, then also F(f) € HE ,(x0,£°).

Corollary 4.2.  Let F(z,z) = Zﬁ cp(x)2P, entire with respect to z, for
s eG(Q) (1<o' <0),zeCN and zo € Q C R", and let the components
of f=(f1, -+, fn) bein H} ,(x0), s >n/2, 7> 0; then F(x, f) € H? ,(x0).
After cutting off F and f by a function ¢ € G§'(Q) with o(x) = 1 in a neigh-
borhood of xg, we have F(x, f) = Z;\le Tor)oz;w,p)fi + 9, where g € HE (x0)
for all t < 2s —n/2. If all the components of f are in HE  (x9,£°) for
s<t<2s—mn/2, & #0, then also F(x, f) € H. ,(x0,£°).
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5. Paradifferential operators in Gevrey classes
In this section, m € IR, o > 1 as usual, but we shall assume 7 > 0.
Definition 5.1. For € > 0, let

17 ={l(z,£) | I is m order homogeneous C*°(IR" \ 0) function in &,

and Hf’{f"'s function in z for £ uniformly}.

The functions [ € I7%;° can be regarded as symbols in the classes S7";° from
Definition 3.1. Observe however that the corresponding pseudo-differential

operators [(x, D) are not LT, class operators; in fact continuity from H} ,

to H; ™ fails for large s, because of the limited Gevrey smoothness of I(z,§)
with respect to z. Following Bony [4] and using the Gevrey paraproduct cal-
culus of the preceding section, we shall then consider paradifferential operators
associated to [(z,§), which will turn out to be of class L], .

Definition 5.2.  For [ € 7,7, we can define an operator T as

(Tru)( ZS uq(z), U:ZquHgf,g,

where S,(I(x, D)) is the pseudo-differential operator with symbol S,(I(x,¢)),
defined by letting S, act on the x variables, cf. (4.1).

If U(z,€) = >, 1;(,§) is a finite sum, then we denote T; = >, Tj;.

If l(z,£) = a(x)h(§), a(z) € Hﬂ,ﬂs, h(§) € C°(IR™\ 0) and m order

homogeneous, then

(5-1) Sq(a(x)h(€)) = (Sga)h(E).

Hence we have

(Tiw)(z) = ) _ Sy(a)(h(D)u)q,

(M(D)u)q = (27T)_"/ei15¢(2_q§)h(£)ﬁ(§)d§ = h(D)ug,
(5.2) (Tyuw)(x) =Ty o h(D)u, if I =a(z)h(§).

For general [ € 7%, we can rewrite

TO"

(5.3) Uz, €) = |z, w), w= > e sn L,

€]

Let A be Laplace-Beltrami operator on S™', {\;} and {h;(w)} are corre-
sponding eigenvalues and eigenfuctions (i.e. Ah; = A;jh;), we know {h,} is
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a complete orthonormal basis in L?(S™71), and lim;j_. Ajj~2/" € (0,+00).
Since I(z,w) € L*(S"71), w € S"1, we have, by using Fourier expansion, that

(5.4) l(z,w) = Zaj(x)ﬁj(w),

where a;(z) = [q, 1 Uz, w)h;(w)dw.

Since A is self-adjoint, we have

ka(x) = 2, W) AR (w)dw
May@) = [ 1) M)

= ARz, w)h;(w)dw.

Thus by Cauchy-Schwarz inequality, we have

L@ lggeee < ([ 180100 By} gl zzgonn

Sn—1

1
2
:(/S B ||Akl(x,w)zfy/62+5dw> :

Since AFl(z,w) € Hf,{,2+a in , hence we have obtained |X;|¥||a; (2)]| n/2+-
< Cy, {Cy} is a bounded constant set. This implies a;(z) € Hﬁ{f“, and
2
(5.5) lajll yn/e+e < Chj wRE,

is rapidly decreasing in j.
On the other hand from Sobolev lemma, we have for an even integer si,
satisfying s1 > n/2 + M

17 (@) llen(sn-1y < CllAG @)l pror (sm-1y
s1/2 ~
<C Z HAkhj(W)”Lz(Sn*l)
k=0

81/2

<Y Nk
k=0

That is
- (M+4n/241)
(5.6) [hj(W)llear(sn-1y < Cmj™
is temperedly increasing in j. Actually we have proved the following result:
Lemma 5.1.  Let | € I7';°, then | has the following spherical harmonic
decomposition

(5.7) Uz,8) = Zaj(x)hj(ﬁ),
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where a;(x) € Hﬁ{fﬁ and ||a;| yn/2+= is rapidly decreasing in j, h;(§) =

€™y (E/1€]) and
fized.

\izj(w)HcM(sn—l)z's temperedly increasing in j for any M

Since (h;j(D)u)q = h;j(D)uy, now we can define the operator 7; as follows:
(5.8) Ty =Y T, ohj(Du, ueH;,,
J
where || To, || c(ms | ms ) < Cllaj|| gn/2+< is rapidly decreasing in j, and the norm

of h;(D)u is temperedly increasing, then the series (5.8) is convergent.
We can prove T, as defined by (5.8), is LI, class operator, i.e.

Theorem 5.1.  Forl ey, T;: HY , — H; ™ (Vs € R) is a bounded
linear operator.

Proof. We may write
(5'9) Tiu = ZZSQ(aj)hJ(D)um u € H:,o—v
Jj g

where supphj(/D\)uq C Cq, supqu/(\aj) C B(0,K2¢7N1). So for Ny large
enough we have

— —_—

supp Sq(a;)h;(D)ug = supp Sq(a;) * hj(D)ug, C Cy + B(O,K24_Nl) C C</1’
i.e. supp Sq(l(;,\D))uq C Cy. Thus
Sq(l(z, D))uy(z) = (277)_"/eingq(l(x,Q)ﬂq(f)df
= ZSq(aj)hj(D)“q’
J

and

1S, (1, DYy (@)l < S 1150 (a)hy (Dyugl 2
J
< S S0 (@)l o ee I (DY 2,
J
< S sl ve Iy (DYusgl e,
J

where
(€

(
= [Jexp((¢
<

1A (D)ugl[Lz , = || exp h;j (€)1l L2

hy(€/1€DIEN ™ g 2

|o(sn—1) (B2U9D) ™ | 2

>

jw

(w)
j(w)

>

< || |C(S"71)Cq2—q(s—m).
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Since ||a;|| ;n/2+e is rapidly decreasing in j and Hilj(W)HC(Snfl) is temperedly
increasing in 1j , we have

(5.10) [1Sq(l(z, D))ugllzz , < Ce,2796=™) 0 fe,} e 12
Since Tiu = 3, Sq(l(x, D))ug, and [[{cg};2 < Cillul|m: , then we have proved
Tiwe H7 ™, and [[Ti|| ;gs gy < CC1. Theorem 5.1 is proved. O

It seems, from Definition 5.2, the operator 7; depends on the dyadic de-
composition. However if {K’, ¢1, N{} is another dyadic decomposition, and 7}
is the corresponding operator, then

T, =T =Y (Ta, - T,,) 0 h;(D).
J

We have proved in Theorem 4.2 that

silr o

To, —T,, € L5, €1 €(0,¢), and [T, — T‘;«jHL(H;‘_‘ﬁ ooy < CHajHH%ers,
and h;(D): H? , — H:7™. Thus it is easy to prove that
(5.11) Ty — T, € LT, Vey € (0,¢).
Let us consider the composition of two operators.
Theorem 5.2.  Let I(x,§) € I7'5° (k= 1,2), e§ N, and
o= 3 —OE (@, D3 (2,) = (h#h)(2,)

then
Ty, 0Ty, — Ty € L2 Tm27lE]

The proof of Theorem 5.2 depends on the following lemma:

Lemma 5.2.  Let h(§) € C°(IR"™\ 0), m order homogeneous in &; a €
HYP e >0 and e & IN. Then

R:h(D)OTaf Z %TD“aOha(D)G‘C:ﬁ;[Eh

ler| <[e]

where h*(§) = 9¢'h(§), and for suitable M, we have

”RHL(Hj_U,Hf.;mHE]) S C||a||H:’22+s||h||C2M(Sn71), h(w) =h () .
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Proof. 'We have suppS, ( Jug C Coy u = Y uq € HY . Take C; C CY,
and a function ¢g € C§°(CY)), satlbfymg ¢>0 =1 on C} and ¢9 = 0 near £ = 0.
Let 71 (&) = h(§)¢o(§), then hy(§) € S and we know if £ € Cf

h(§) = 2™h(279¢) = 2™ hy (27%).

Taking a function r(z), satisfying #(§) = h1(§), then r € S, and for M >
n + £/2, we obtain easily

(5.12) (1 + [2[*)r (@) ]| L1 mny < Cllbllgznr(sn-1)-
For uw € H} ,, we have
m — 1 (0% (03 -
Ru=Y 2" |h(279D)S,(a) — Y —Sa(Da)h§(27D) | g,
q la<[e]
where h{'(§) = Oghi(§) is Fourier transformation of (—iz)*r(z). Thus we

obtain, by using convolution formula, that
Ru = Zqu/r(t) Sq(a)(xz —279%)
q

_ Z isq(Daa)(:p)(—iQ—qt)a uq(l‘_Q_qt)dt

|| <[e]

:qu,

q

Observe supp fq C Ct’], and apply Taylor formula to S, (a), with remainder

expressed in terms of D*S,(a) € H"/2+E° for |a| = [¢], € = [¢] + €0. We have
by using Hausdorff-Young inequality and Theorem 2.5

1fallze,, < C2P(DYES (@)l szveo 2~ [ () 21 gl 22,
i.e. from the estimate (5.12)

fallzz,, < C2P T EF(DYES @)y aseo |l cars (sn-1ylugl 2,

< CCqHCL||Hn/2+s Hh||c21v1(5n—1)2q[m [E]+g)],

where {c,} € 12, |{eg}li> < Cllul|gs . Thus Lemma 5.2 is proved. O

The proof of Theorem 5.2 is as follows:
Let lx(z,&) = >_; arj(x)hi;(€), k = 1,2, the spherical harmonic decom-
position of I, then

T, 0Ty, = ZTM o hy;(D) o T,,, o hei(D ZA“
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From Lemma 5.2, we know

1 (0%
AJJ :Talj Z aTDaan lj(D)hQi(D) +Ta1jRjih2i(D)a

ler| <[e]

where T,,, R;;ho; € ,C:?},err[el, and we can easily see that

a1
[T, Rjihai Iz ars  mrotmitmaten)

< Ollajll ynszee lazill yszee gl oman gsnny iz ez sn-1)-
Also from Theorem 4.3, we have

Ty, Tpeas, BS(D)h2i(D) = Tay, Doy bS5 (D) hai(D) + RSh$;(D)hai (D),
where Rf; € L7737 (Veq € (0,6 — |a])), and

IBGill 2 srs  mrstezy < Cllargll gpove 1D azill grjzee-ian,
ie. R%AS;(D)hai(D) € Lratma=er ey € (0,¢), and
1RS:hS5 (D) hzs (D) < Cllavs | gz lazill g szve gl ca sn-n) il oaar (g1
Hence Theorem 5.2 is proved, and we have obtained, taking e; = [¢] < €, that
T3, o Th, — El#lz||L(H£10’Hf_’—a(m1+m2—[5]))

<Cy llaxjll grgze lazill yroszee 1hajll o2ne (smny lhoill g2a g1
7,0

Theorem 5.3.  Let l(z,§) € I7%°, € >0, and ¢ § IN. Denote

T,0 )

P = Y L oDio).

| <[e]

Then Ty — Ty € L35, and Ty : H; , — Hi ;™.

Proof. Let l(x,£) = Zj a;(x)h; (), ue HE , v e gl

(T} = Tie Yy o) =T u,0) — (Tiey o)
:<U,71['U> - <I}*U,U>

Secondly Tiv = >, Ty, o hj(D)v, (u,Tiv) =3 (T, u,hj(D)v).
From Theorem 4.4, we have

(. Tiv) = S (T, s hy (D)) + (Byu by (D)),

J



Paradifferential Calculus in Gevrey Classes 25

where R; € E;,Ef], and
[1Bjull st < Cllag| ynrzee lull e, -
Then we have
[{Ryu, hj(D)o)| < Clagll grz+ellull s, 11 (D)ol oo
< Ol ga o Il oyl o] -1
Next from Lemma 5.2 we have
(Ta;u, hj(D)v) = (hj(D)Ta;u, v)

1 _
Z a<TD“ﬁj h$ (D)u,v) + (Rju,v),

| <[e]

where R;» €L, [8], and

(R, )] < Cllagl ngsre [Fsllmss sy Nl ol et

Thus we obtain

(T} u,v) = (Tru,v) + Z[(Rju, hj(D)v) + (Rju,v)],

J

and
S Ry, hy (D)) + (Ryu,v)|

< 3 Cllaslpgose Wsllems syl ol st
j ,

Since ||a;|| n/2+< is rapidly decreasing in j, ||ilj||c2M(Sn—1) is temperedly in-
creasing in j, we have actually proved that T} — T}~ € L7.o €l and 17 H; , —
HS—m. D

T,0

For I € 1% & > m, we may use standard way to define a pseudo-

differential oper,ator l(z, D), cf. Remark 3.1. Concerning what is the relation
between [(x, D) and T}, we have the following result:

Theorem 5.4. Ifl €77, € > m, then for all s > m — e we have

(5.13) I(z,D) - T) € L(HE , HE ),

where s’ < min{e, s +& —m}.
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Proof.  Without loss of generality, let I(z,{) = a(z)h(§). For v € H; ,,
we have v = h(D)u € H:,™, and T; = T, o h(D)u = T,v. Thus

T,0

Tiu—l(z,D)u = T,v — av = —T,a — R(a,v),

where av = T,v + Tya + R(a,v), a € Hﬁ{f“.

Since s + & —m > 0, we know R(a,v) € H; " ', for any €1 € (m,e).
Also Tya =3, Sq(v)ag = > fq, where supp fq C suppay + supp(S,(v)) C Cy
and

fallzz,, < lagll gnszeer 196(0) 2, (for Ve € (0,€))

< Nlagll g 3 Noplize,,

p<q—Ni
gHaq”LiUQq(ﬂ/ﬂa') Z CPQ*p(S*m)
p<q—Ni1
SCQQ_Q(E_EI) Z cp2_p(3_m).
p<g—Ni

If s > m, then ¢27P57™) < ' < oo, which implies T,a € Hﬁ;,sl for any
¢ € (0,¢). If s < m, then ||quL3 < C;2—q(€_s')c’2—fI(S—m) = c:}/g—q(sst—g/_m)7
ie. Tya € Hﬁjf‘s,_m for any &’ € (0,¢). If s = m, then we have || fg|z2 <
C’cf12_q(5_5l)||vHLgyg, ie. Tya € Hi;f/ for any &’ € (0,¢). Therefore we have
proved Tya € Hﬁlg for s’ < min{e, s + & — m}. Theorem 5.4 is proved. O

Since (), 7% C S™

U 7> from Theorem 5.4, Corollaries 3.1 and 3.2 we get:

Corollary 5.1.  If I € I7%° for all ¢ > 0, then l(x,D) — T; is
“regularizing” operator, i.e. l(xz,D) —T; € E(H;U,Hﬁjg) for any s and s'.
Thus v € Hjjg(xo) implies Tiu € Hﬁ:g_m(mo), and u € Hf.:a(xo,fo) implies
Tyu € H 7™ (w0, £).

Applying further Corollary 3.4, we deduce

Corollary 5.2. Letl € II%, ¢ > m, e § N. Ifu € H?

T,0

o> then u €
Hﬁjg(xmfo) implies Tyu € HY ,(20,£°) for t = min{s + [¢] —m,s’ —m}.

Theorem 5.5.  Letl € I, € >0, then for the symbol o(T;) of T}, we
have

(5.14) 102080 (T1) || r2, < Cap(l+ [g])mloItBI=n/2me,

that is o(T;) € gmonree ¢f. Definition 3.4.

7,0,1,1
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Proof. Without loss of generality, we take l(x,£) = a(z)h(£), a € HQ{THE
and order of h is m. Then
€)= 5,(Uz,))p(27%)
q

=" S,(a)(@)h(€)p(27%).

Thus
0¢0 o (Ti)(w, &) = Za Sq(a)(2)0¢ (h(€)p(279€)),
10202 (T (&) 12, <Z||aﬂs ez 102 h(€)p(277)]
<Y el Co | h““( )||f|m farlg-alos | fo2) (9-1¢) .
q p<q—N; ajtar=a

Then, from Theorem 2.1,
108 07 o (T; )(~ Ollcz,
< Zcﬁgq[lﬁl (n/2+e)] ||hHC”(S" 1)Qq(m lad) | ple2) (2-1g)]

q

< é(/x Z Cqﬂgq(m—lal-ir\ﬁ\—n/?—E)|(p(2—q§)|,
q

/\

where {c,5}, € I2. Since on supp p(279), |¢| ~ 29, then the estimate above
implies that (5.14) holds. O

Next, let Q C IR"™ be an open subset, m € R, £ > 0, and €& IN, we define
Gevrey paradifferential symbol class X7, E(Q) as follows:

Definition 5.3.  We call T'(z, ) € X77(Q), if

(5.15) [(z,8) =Tm(2,8) + Tr1(2,8) + oo + T (2, €),
where I'y,_g(z,§) is C°(IR™ \ 0) and m — k order homogeneous in ¢, and is
:g;giik(ﬂ) in x for £ uniformly.

If T% € ©%(Q), (k= 1,2), we define I'#I'? € £ Tm2:5(Q) as

1
| +k1 4k <[e] '
If T € X777 (Q2), we define I'™* € X77(Q) as

* 1 R
(5.17) * = Z aag*D;Tm_k.
o] +k<[e]
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For a compact set K CC Q we take y € G (), 1 < ¢/ < 0, and x = 1 near
K. We know for I' € X7°(Q), xI' = xT'yy + X1 + o + XD, XDk €

lﬁfgk’s_k, for 0 < k < [¢]. Thus we could define T\r as T)r = ZE:]:O Tyt s
We denote H; , = {u | u € H],,suppu C K}, where K CC Q is

compact; H? Q) =UxH;, = H .. ()N E!. Then we have

T,0,comp. T,0,loc

Definition 5.4.  Wesay L: H_ X (2) — H_7,.(Q), with proper sup-
port, is a m-order e-class Gevrey paradifferential operator defined on €2, if there

exists I' € X" (€2) such that for any compact K CC € and a cut-off function
X €G3 (Q), 1 <o’ <o, x=1near K, we have the mapping

L—XTyr: H 5 e — H3 5 ()

T T,0,co0mp.

is continuous for any s € IR. We shall use Op{%7;7(€2)} as the notation of such
operator class, and say T is the symbol of L, denoted also by o(L).

Observe if L € Op{X7";7(Q2)}, then for any s € IR, we have

(5.18) L:HS . (Q) — H™ (Q).

#‘thC( 7,0,loc

We also have the following results, the proof being similar to that in Bony [4],
we shall leave it to readers.

Theorem 5.6. (a) L € Op{¥7';(Q)} has an unique symbol o(L) €
¥ (82), and mapping o : Op{X7;7(Q)} — Y77 (Q) is surjective; Ker(o) =
{L|L:H:, Q) — H @)

(b) If Lj € Op{ST3°(N)} (j = 1,2), then Ly o Ly € Op{S71tm22(Q)},
o(Ly o Ly) = o(Ly)#0(La).

(c) If L € Op{E757 ()}, then L* € Op{ET'7 ()}, and o(L*) = o(L)*.

(d) If l(x,&) ~ Z?;olm—j(%f) € ST, 4(Q), then for any fized h € Z,
h(z, &) = Z?:o Im—j(7,§) € X2 (Q) for [e] = h. The pseudo-differential
operator l(x, D) can be regarded as m-order e-class Gevrey paradifferential op-
erator in S, with symbol I"(x, &) in the sense of Definition 5.4.

We may be also able to construct parametrix of a Gevrey paradifferential
operator, i.e.

Theorem 5.7. LetI' € ¥75(Q), IV € E;’?;E(Q), and Ty (z,€) # 0 on
a neighborhood of suppI’. Then there exist I'* € ZZ?;_’”’E(Q), k=1,2, such

that
TH#I =T2#T =T,
6. Application

Let us consider the following nonlinear equation

(6.1) F[u]:F(Jc,u,-~-,agu,--~)w§m:0,
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where F is of class G7, ¢’ < o, in = near z( € ), entire function with respect
to other variables, cf. the hypotheses of Corollary 4.2.

Let uw € H? ,(z0), s > m +n/2, be a local solution of (6.1). Then we are
able to introduce the symbol of F', near xg, as

_ OF )
p(xag) = ﬁIZ< Fﬁ(Z€)B7 FB = %(.’IJ,U,' o ,8 u, - - )|a\§m7 uﬁ = 85“)

and the principal symbol of F' is defined as

(6.3) p(z,6) = Y Fyli€)"”.
|Bl=m
Theorem 6.1. Under the preceding assumptions, we have u €

H! ,(20,€") for all £ # 0 satisfying pm(x0,£°) # 0, and s < t < 25 — A
with A =m +n/2.

Proof.  Observe first that Fjg € H; ™ () in view of Corollary 4.2. There-
fore p(z,§) € X7°(V) for a neighborhood V' of xg, with ¢ = s —m —n/2.
Applying the paralinearization result in Corollary 4.2, we may write

Flul = Y Tp,0°u+u,
|8]<m

that is,

Flu]l = Tyu+wv,
where v € HJ ,(zo) for r < 2s —2m —n/2. At this moment we are reduced to
treat the paradifferential equation

(6.4) Tou = —v.

Assume p,,(7,€) # 0 in the conic neighborhood A of (z¢,£%). To prove u €
H! ,(20,£%) we fix I(x,€) € S, (V) with I(z,§) ~ lo(z,&) homogeneous of
order 0 in £ and supported in A, and ly(z, ) = 1 in a smaller conic neighborhood
A of (20,£%). In view of Corollary 3.4, it will be sufficient to check I(x, D)u €
H‘f‘,a (ﬂfo, 50)

Applying Theorem 5.6 (d), we may regard [(z,D) as paradifferential
operator with symbol [y € ZQ:?(V). We then apply Theorem 5.7 and find
q € ¥759°(V) such that g#p = lp. We have from Theorem 5.6 (b) T, o T}, €
Op{X25(V)} with symbol Iy and then, from Theorem 5.6 (a)

T, o Tpu = l(xz, D)u + Ru,
where R € ET_,[C}E]. Therefore from (6.4)

l(z,D)u = —Ru — Tyv,
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which gives the conclusion. O
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