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Paradifferential Calculus in Gevrey Classes

By

Chen Hua and Luigi Rodino

Abstract

We present a paradifferential calculus adapted to the study of non-
linear partial differential equations in Gevrey classes. We give an applica-
tion concerning Gevrey microregularity of the solutions of fully nonlinear
equations at elliptic points.

1. Introduction

Bony [4], 1981, presented a version of the pseudo-differential calculus, the
so-called paradifferential calculus, adapted to the study of the nonlinear equa-
tions

F [u] = F (x, u, · · · , ∂αu, · · · )|α|≤m = 0.(1.1)

The basic idea was to write

F [u] = TF ′(u)u + r,(1.2)

where TF ′(u) is the paradifferential operator having as symbol the linearization
F ′ of F at u, and r is a smooth error. Precisely, if u is assumed of Sobolev class
Hs+m, s > n/2, then r ∈ H2s−n/2. Through (1.2) one is reduced to the study of
the paradifferential equation TF ′(u)u ∈ H2s−n/2 and obtains linear-type results
of existence, regularity and propagation.

Assume now F is analytic in the respective variables, and let u be of Gevrey
class Gσ, i.e. locally

|∂αu(x)| ≤ C |α|+1(α!)σ.(1.3)

Naively, one could try to reproduce for the Gevrey scale Gσ, 1 < σ < ∞, the
results of Bony for the scale Hs, n/2 < s < ∞. It is easily seen, however,
that the error r in (1.2) turns out to be of class Gσ, with apparent no gain of
regularity. This corresponds to the known impossibility of obtaining linear-type
results of propagation for (1.1) in the analytic-Gevrey category, but for very
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special equations, cf. Alinhac and Métivier [1], Godin [8], Chen and Rodino
[5], [6] and Sasaki [17].

Here we propose a different approach, developing some preliminary results
of Chen and Rodino [5]. Namely, we refer to the Sobolev-Gevrey spaces Hs

τ,σ,
1 < σ < ∞, τ > 0, s ∈ IR, defined by

‖ u ‖Hs
τ,σ

=‖ exp[τ〈D〉1/σ]u ‖Hs< ∞.(1.4)

Spaces of this type have been already studied, for example, in Kajitani
and Nishitani [13], Kajitani and Wakabayashi [14] and Taniguchi [18].

Locally we have Gσ = ∪τ,sH
s
τ,σ. For fixed σ and τ , the scale Hs

τ,σ, n/2 <
s < ∞, is indeed appropriate for the paradifferential calculus, the error r in
(1.2) belonging to H

2s−n/2
τ,σ , if u ∈ Hs

τ,σ.
As an application, we may extend to the fully nonlinear case the result

of micro-elliptic Gevrey regularity proved in [5] for the semilinear equations.
Namely, from u ∈ Hs

τ,σ we deduce u ∈ H2s−λ
τ,σ , for some fixed constant λ,

microlocally in (1.1) at any elliptic point. Though very weak, this result is
nearly the best possible; in fact, starting from a solution u ∈ Gσ, there is no
hope in general of reaching Gσ′ regularity, where 1 ≤ σ′ < σ, as in the linear
case, see the counter-examples in [5] and [6].

Other possible applications in the nonlinear setting, which we leave to the
future, concern Gevrey propagation, cf. Bony [4] and Hörmander [11] for the
Hs category, existence of Gevrey Riemannian embeddings, cf. Hörmander [10]
and Chen and Rodino [7], existence of Gevrey solutions for equations with
multiple characteristics, cf. Gramchev and Rodino [9], and weakly hyperbolic
Cauchy problems, cf. Mizohata [15] and Kajitani [12].

Finally, we observe that part of the arguments in the following may keep
valid for other weighted Sobolev spaces; essentially, one can replace the operator
exp[τ〈D〉1/σ] in (1.4) with a more general operator Φ(D), provided Φ(ξ + η) ≤
CΦ(ξ)Φ(η).

The paper is organized as follows: in Section 2, we recall the results of
[5] about Littlewood-Paley decomposition and Hs

τ,σ spaces; in Section 3, we
treat some classes of Gevrey pseudo-differential operators; in Sections 4 and
5, we study paraproducts and paradifferential operators, respectively, in the
Hs

τ,σ frame; in Section 6, we present the above-mentioned application to micro-
ellipticity.

2. Gevrey-Sobolev spaces and non-linear operations

Let σ > 1, τ, s ∈ IR; we introduce Gevrey-Sobolev spaces as follows:

Hs
τ,σ(IRn) = {u ∈ S ′−τ,σ(IRn), exp[τ〈D〉1/σ]u ∈ Hs(IRn)},

where 〈D〉 = (1−∆)1/2, the space S ′τ,σ is defined as the dual of Sτ,σ, which in
turn for τ ≥ 0 is defined by inverse Fourier transform from

Ŝτ,σ = {v(ξ) ∈ C∞(IRn) | exp[τ〈ξ〉1/σ]v(ξ) ∈ S(IRn)};



Paradifferential Calculus in Gevrey Classes 3

for τ < 0, the space Sτ,σ is defined by transposition of inverse Fourier transform
from Ŝτ,σ (cf. [14]). We shall also write Hs

τ,σ for short. The infinite order
pseudo-differential operator exp[τ〈D〉1/σ] is defined by Fourier transform as
usual; see for example Rodino [16].

We define the norms in Hs
τ,σ by

‖ u ‖Hs
τ,σ

= ‖ exp[τ〈D〉1/σ]u‖Hs .

Hs
τ,σ is a Hilbert space with inner product

〈u, v〉Hs
τ,σ

= 〈exp[τ〈D〉1/σ]u, exp[τ〈D〉1/σ]v〉Hs .

Taking K > 1 a constant, for p ∈ Z+, we denote:

Cp = {ξ ∈ IRn, K−12p ≤ |ξ| ≤ K2p+1},
C−1 = B(0,K) = {ξ ∈ IRn, |ξ| ≤ K}.

Thus {Cp}∞p=−1 is a circular cover of IRn
ξ . From Bony [4], we have the following

result:

Lemma 2.1. There exists N1 ∈ N, depending only on K, such that for
any Cp the number of q, such that Cq ∩ Cp 6= ∅, is at most N1.

We have the following dyadic partition of unity, see again Bony [4]:

Lemma 2.2. There exist ϕ, ψ ∈ C∞0 (IRn), supp ψ ⊂ C−1, supp ϕ ⊂
C0, such that for any ξ ∈ IRn, and any l ∈ N, we have

ψ(ξ) +
∞∑

p=0

ϕ(2−pξ) = 1,(2.1)

ψ(ξ) +
l−1∑
p=0

ϕ(2−pξ) = ψ(2−lξ).(2.2)

The Littlewood-Paley decomposition (or say dyadic decomposition)
{up}∞p=−1 for a function u ∈ Hs

τ,σ will be defined as follows:

u−1(x) = ψ(D)u(x), up(x) = ϕ(2−pD)u(x) for p ≥ 0.(2.3)

It is easy to prove that the series u =
∑∞

p=−1 up is convergent in the S ′−τ,σ

topology. In fact we can use the dyadic decomposition to characterize the
Gevrey-Sobolev spaces.

Theorem 2.1. Let s > 0, σ > 1 and τ ∈ IR; then the following condi-
tions are equivalent :

(a) u ∈ Hs
τ,σ(IRn);

(b) u =
∑∞

p=−1 up, where up ∈ C∞ and supp ûp ⊂ Cp, satisfying ‖up‖L2
τ,σ

≤ cp2−ps with {cp} ∈ `2, L2
τ,σ = H0

τ,σ;
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(c) u =
∑∞

p=−1 up, where up ∈ C∞ and supp ûp ⊂ B(0,K12p) for some
K1 > 0, satisfying ‖up‖L2

τ,σ
≤ cp2−ps, {cp} ∈ `2;

(d) u =
∑∞

p=−1 up, where up ∈ C∞ and for any α ∈ Zn
+, we have

‖Dαup‖L2
τ,σ
≤ cpα2−ps+p|α| and {cpα}p ∈ `2.

It is obvious that the proof of Theorem 2.1, for τ > 0, may be deduced
directly from the proof of [5, Theorem 1.1], similarly we can prove the case for
τ ≤ 0 as well.

Remark 2.1. In (d) it is actually sufficient to argue for |α| ≤ s + 1.

Remark 2.2. The norm ‖u‖Hs
τ,σ

can be estimated in (b) and (c) by
‖(cp)‖`2 and in (d) by

∑
|α|≤s+1 ‖(cp,α)p‖`2 . The equivalence between (a) and

(b) keeps valid for s ∈ IR.

Remark 2.3. Let us recall, see for example Rodino [16], that every ϕ ∈
Gσ

0 (IRn) = Gσ(IRn) ∩ C∞0 (IRn), σ > 1, satisfies for suitable positive constants
C and ε:

|ϕ̂(ξ)| ≤ C exp[−ε|ξ|1/σ].(2.4)

It follows that Gσ′
0 (IRn) ⊂ Hs

τ,σ(IRn) for any σ′ < σ, s ∈ IR and τ > 0, with
strict inclusion; moreover if ϕ ∈ Gσ

0 (IRn), then ϕ ∈ Hs
τ,σ(IRn) for all s, if

τ > 0 is sufficiently small. In the opposite direction, it is easy to see that
Hs

τ,σ(IRn) ⊂ Gσ(IRn) for all τ > 0, s ∈ IR; cf. the proof of Theorem 1.6.1, (iii)
in [16].

Observe if u ∈ Hs
τ,σ and ϕ ∈ Gσ′

0 (IRn), 1 < σ′ < σ, then ϕu ∈ Hs
τ,σ. Thus

we can define Gevrey locally Sobolev spaces as follows (cf. [5]):

Definition 2.1. We set Hs
τ,σ,loc to be the space of all Gevrey ultra-

distributions u ∈ D′σ′(IRn) such that for every ϕ ∈ Gσ′
0 (IRn) with 1 < σ′ < σ,

we have ϕu ∈ Hs
τ,σ.

We also define, for some open subset Ω ⊂ IRn, that

Definition 2.2. We say u ∈ Hs
τ,σ,loc(Ω), if for all ϕ ∈ Gσ′

0 (Ω), 1 < σ′ <
σ, we have ϕu ∈ Hs

τ,σ. We say u ∈ Hs
τ,σ(x0) for x0 ∈ IRn if there exists a

neighborhood Vx0 of x0, such that u ∈ Hs
τ,σ,loc(Vx0).

Observe that ∪s∈IR,τ>0H
s
τ,σ(x0) = Gσ(x0), the space of all the functions

u which are of class Gσ in a neighborhood of x0; moreover Gσ′(x0) ⊂ Hs
τ,σ(x0)

with strict inclusion for all s ∈ IR, τ > 0 and 1 < σ′ < σ.
Let (x0, ξ

0) ∈ T ∗IRn\{0}; we introduce Gevrey microlocally (i.e. near
(x0, ξ

0)) Sobolev spaces as follows:

Definition 2.3. We write u ∈ Hs
τ,σ(x0, ξ

0) if there exists Vx0 and a
conic neighborhood Γ0 of ξ0 in IRn\{0}, such that for all ϕ ∈ Gσ′

0 (Vx0), 1 <
σ′ < σ, and every ψ ∈ C∞(IRn

ξ ), 0-order homogeneous in ξ for large |ξ| with
supp ψ ⊂ Γ0, we have ψ(D)(ϕu) ∈ Hs

τ,σ.
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Next H+∞
τ,σ and H−∞

τ,σ will be defined by ∩sH
s
τ,σ and ∪sH

s
τ,σ respectively.

Similarly we can define H+∞
τ,σ,loc(Ω) and H−∞

τ,σ,loc(Ω).
To be definite, we recall here the notion of Gevrey wave front set and

related remarks used in the sequel.

Definition 2.4. For u ∈ D′σ(IRn) we write (x0, ξ
0) 6∈ WFσu if there ex-

ist ϕ ∈ Gσ
0 (IRn), with ϕ = 1 in a neighborhood of x0, and a conic neighborhood

Γ0 of ξ0 such that for positive constants C, ε:

|(ϕu)̂ (ξ)| ≤ C exp[−ε|ξ|1/σ], ξ ∈ Γ0.(2.5)

Remark 2.4. Equivalently (cf. Rodino [16, Lemma 1.7.3]), we may say
that (x0, ξ

0) 6∈ WFσu if there exist Vx0 and Γ0 such that for all ϕ ∈ Gσ
0 (Vx0) and

every ψ ∈ C∞(IRn
ξ ), 0-order homogeneous in ξ for large |ξ| with supp ψ ⊂ Γ0,

we have for some C, ε > 0:

|(ψ(ξ)(ϕu))̂ (ξ)| ≤ C exp[−ε|ξ|1/σ].(2.6)

It is then clear that (x0, ξ
0) 6∈ WFσ′u for 1 < σ′ < σ implies u ∈ Hs

τ,σ(x0, ξ
0)

for all τ > 0, s ∈ IR.

We have the following Hausdorff-Young inequality:

Theorem 2.2. Let u ∈ L1, v ∈ L2
τ,σ, τ ∈ IR, σ > 1, then

‖u ∗ v‖L2
τ,σ
≤ ‖u‖L1 · ‖v‖L2

τ,σ
.

Moreover we can easily extend the results in [5, Theorems 2.1 through 2.3]
to the case of τ ≤ 0, i.e. we have the following results:

Theorem 2.3. We have u ∈ Hs
τ,σ(x0, ξ

0) (τ , s ∈ IR, σ > 1) if and only
if there exist Vx0 and a decomposition

u = u1 + u2, for x ∈ Vx0 ,

where u1 ∈ Hs
τ,σ(IRn) and (x0, ξ

0) 6∈ WFσ′(u2) for 1 < σ′ < σ.

Theorem 2.4. Let s′ > s, τ ∈ IR and σ > 1, the following two condi-
tions are equivalent :

(a) u ∈ Hs
τ,σ(x0) ∩Hs′

τ,σ(x0, ξ
0).

(b) There exists ϕ1 ∈ Gσ′
0 (IRn), 1 < σ′ < σ, with ϕ1 = 1 in a neigh-

borhood Vx0 of x0, and there exists a conic neighborhood Γ0 of ξ0 such that
ϕ1u = u−1 +

∑∞
p=0(u

′
p + u′′p), where u−1 ∈ Gσ′(IRn), ‖u′p‖L2

τ,σ
≤ c′p2

−ps,
supp û′p ⊂ Cp∩ΓC

0 (ΓC
0 is complement of Γ0), ‖u′′p‖L2

τ,σ
≤ c′′p2−ps′ , supp û′′p ⊂ Cp,

{c′p}, {c′′p} ∈ `2.

Theorem 2.5. Let u ∈ L2
τ,σ (or u ∈ L2

|τ |,σ), τ ∈ IR, σ > 1, and v ∈
Hs
|τ |,σ (or v ∈ Hs

τ,σ), with s > n/2. Then uv ∈ L2
τ,σ and for some C > 0 :

‖uv‖L2
τ,σ
≤ C‖v‖Hs

|τ|,σ ‖u‖L2
τ,σ

(or ‖uv‖L2
τ,σ
≤ C‖v‖Hs

τ,σ
‖u‖L2

|τ|,σ
).
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It is important for us to consider when a function space would become
an algebra, which in particular is useful to study nonlinear partial differential
equations. Here for Gevrey-Sobolev spaces we have (similar to [5]):

Theorem 2.6. Let s > n/2 and τ ≥ 0, then
(a) Hs

τ,σ is an algebra, and there exists C > 0 such that for all u, v ∈
Hs

τ,σ, s > n/2:
‖uv‖Hs

τ,σ
≤ C‖u‖Hs

τ,σ
‖v‖Hs

τ,σ
.

(b) Furthermore, if s′ < 2s − n/2, then Hs
τ,σ(x0) ∩ Hs′

τ,σ(x0, ξ
0) is an

algebra.

3. Some classes of Gevrey pseudo-differential operators

We first define some classes of Gevrey symbols.

Definition 3.1. Let m ∈ IR, τ ≥ 0, σ > 1 and ε > 0. We denote by
Sm,ε

τ,σ , the class of all the symbols p(x, ξ) ∈ C∞(IRn × IRn) such that

‖Dβ
ξ p(·, ξ)‖

H
n/2+ε
τ,σ

≤ cβ〈ξ〉m−|β|,(3.1)

for constants cβ independent of ξ ∈ IRn.

Denoting by p̂(η, ξ) the partial Fourier transform of p(x, ξ) with respect to
the first variables, we can re-write (3.1) as

‖ exp[τ〈Dx〉1/σ]Dβ
ξ p(x, ξ)‖Hn/2+ε(IRn

x )(3.2)

= ‖ exp[τ〈η〉1/σ]〈η〉n/2+εDβ
ξ p̂(η, ξ)‖L2(IRn

η ) ≤ cβ〈ξ〉m−|β|.
In our setting the classes Sm,ε

τ,σ play the role of symbols with “limited smooth-
ness”; they will contain the subclasses lm,ε

τ,σ and Σm,ε
τ,σ of the Gevrey para-

differential symbols, see the next sections for precise definitions. Here let us fix
attention on the corresponding class of “smooth” symbols.

Definition 3.2. Let m ∈ IR, τ ≥ 0, σ > 1. We denote by Sm
τ,σ the class

given by ∩ε>0S
m,ε
τ,σ ; i.e. p(x, ξ) ∈ Sm

τ,σ if (3.1), or (3.2), is valid for every ε > 0.

Equivalent definitions for Sm
τ,σ are obtained by imposing for every α, β:

‖Dα
x Dβ

ξ p(·, ξ)‖Hs
τ,σ
≤ cαβ〈ξ〉m−|β|,(3.3)

for some fixed s ∈ IR; in particular for s = 0

‖Dα
x Dβ

ξ p(·, ξ)‖L2
τ,σ
≤ cαβ〈ξ〉m−|β|,(3.4)

with suitable constants cαβ . Let us write S−∞τ,σ = ∩mSm
τ,σ.

Example 3.1. Let φ ∈ Gσ′
0 (IRn), 1 < σ′ < σ. Then φ(x) belongs to

Hs
τ,σ for every τ > 0, s ∈ IR, and it can be regarded as symbol in S0

τ,σ.
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Example 3.2. Let a(ξ) ∈ C∞(IRn) satisfy the estimates |Dβ
ξ a(ξ)| ≤

cβ〈ξ〉m−|β|. Then φ(x)a(ξ), with φ(x) as in Example 3.1, belongs to Sm
τ,σ.

If p ∈ Sm
τ,σ, q ∈ Sm′

τ,σ, then pq ∈ Sm+m′
τ,σ , as we have from (3.1), the Leibniz

rule and the algebra property of H
n/2+ε
τ,σ . If p ∈ Sm

τ,σ, then Dα
x Dβ

ξ p ∈ S
m−|β|
τ,σ .

Let pj ∈ S
mj
τ,σ , j = 1, 2, · · · , mj → −∞ with mj+1 ≤ mj for all j, and let

p ∈ Sm1
τ,σ ; we write p ∼ ∑∞

j=1 pj if for all integers N ≥ 2 we have

p−
∑

1≤j<N

pj ∈ SmN
τ,σ .

Given an asymptotic sum
∑∞

j=1 pj as before, we can actually construct as
standard p ∈ Sm1

τ,σ with p ∼ ∑∞
j=1 pj .

We then define symbols corresponding to the classical smooth case.

Definition 3.3. Let m ∈ IR, τ ≥ 0, σ > 1. We denote by Sm
τ,σ,cl

the subclass of all p(x, ξ) ∈ Sm
τ,σ such that p(x, ξ) ∼ ∑∞

j=0 pm−j(x, ξ) where
pm−j(x, ξ) ∈ Sm−j

τ,σ is positively homogeneous with respect to ξ of degree m−j,
for large |ξ|.

For later reference we also introduce more general classes of ρ, δ-type.

Definition 3.4. Let m ∈ IR, τ ≥ 0, σ > 1, 0 ≤ ρ ≤ 1, 0 ≤ δ ≤ 1. We
denote by Sm

τ,σ,ρ,δ the class of all p(x, ξ) ∈ C∞(IRn × IRn) satisfying for every
α, β

‖Dα
x Dβ

ξ p(·, ξ)‖L2
τ,σ
≤ cαβ〈ξ〉m−ρ|β|+δ|α|.(3.5)

In particular we have Sm
τ,σ,1,0 = Sm

τ,σ.

Consider now pseudo-differential operators

Pu(x) = p(x, D)u(x) = (2π)−n

∫
eixξp(x, ξ)û(ξ)dξ,

with symbol in the preceding classes. For simplicity we shall limit ourselves
to the main properties of the operators with symbols in Sm

τ,σ; variants and
generalizations to Sm

τ,σ,ρ,δ are left to the reader. Proofs will follow closely the
calculus for pseudo-differential operators with limited Sobolev smoothness, see
for example Beals [2], Beals and Reed [3] and Taylor [19]. In particular the
following lemma, taken from Beals and Reed [3], will be very useful in our
context.

Lemma 3.1. Suppose that

C2 = sup
ξ∈IRn

∫
|g(λ, ξ)|2dλ < ∞ and K2 = sup

η∈IRn

∫
|G(ξ, η)|2dξ < ∞.
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For h ∈ L2 define

Ah(η) =
∫

G(ξ, η)g(η − ξ, ξ)h(ξ)dξ.

Then ‖Ah‖L2 ≤ CK‖h‖L2 .

The proof of Lemma 3.1 is elementary, by writing ‖Ah‖L2 = sup‖f‖≤1

| ∫ f(η)Ah(η)dη|, interchanging integrals and using Schwarz inequality.

Theorem 3.1. If p(x, ξ) ∈ Sm
τ,σ(m ∈ IR, τ ≥ 0, σ > 1), then P :

Hs
τ,σ → Hs−m

τ,σ , P : Hs
−τ,σ → Hs−m

−τ,σ continuously for every s ∈ IR.
It follows P : H+∞

τ,σ → H+∞
τ,σ , P : H−∞

τ,σ → H−∞
τ,σ . In particular we have

that if p(x, ξ) ∼ 0, i.e. p(x, ξ) ∈ S−∞τ,σ , then P is regularizing, in the sense that
P : H−∞

τ,σ → H+∞
τ,σ .

Proof. Let us prove P : Hs
τ,σ → Hs−m

τ,σ continuously. We first write

P̂ u(η) = (2π)−n

∫
p̂(η − ξ, ξ)û(ξ)dξ,

where as before p̂ is the partial Fourier transform of p with respect to the
x-variables. We then have to estimate the L2-norm of

exp[τ〈η〉1/σ]〈η〉s−m(P̂ u)(η)(3.6)

= (2π)−n

∫
H(ξ, η)〈η〉s−m〈ξ〉−s exp[τ〈η − ξ〉1/σ]p̂(η − ξ, ξ)v̂(ξ)dξ,

where
v = exp[τ〈D〉1/σ]〈D〉su,

so that ‖u‖Hs
τ,σ

= ‖v‖L2 , and we have set

H(ξ, η) = exp[τ〈η〉1/σ − τ〈ξ〉1/σ − τ〈η − ξ〉1/σ].

Note that H(ξ, η) ≤ 1. We apply Lemma 3.1 by taking there

g(λ, ξ) = exp[τ〈λ〉1/σ]〈λ〉N p̂(λ, ξ)〈ξ〉−m,

which satisfies for every fixed N

C2 = sup
ξ∈IRn

∫
|g(λ, ξ)|2dλ < ∞,

in view of Definition 3.2. We set also

G(ξ, η) = H(ξ, η)〈η〉s−m〈ξ〉m−s〈η − ξ〉−N ,

for which
K2 = sup

η∈IRn

∫
|G(ξ, η)|2dξ < ∞

if N has been chosen sufficiently large. Therefore by Lemma 3.1, the L2-norm
of (3.6) is estimated by CK‖v‖L2 , and this gives the conclusion. Similarly we
prove P : Hs

−τ,σ → Hs−m
−τ,σ .
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Remark 3.1. Concerning symbols with limited Gevrey-Sobolev
smoothness, p(x, ξ) ∈ Sm,ε

τ,σ , the corresponding operators act with continuity
from Hs

τ,σ to Hs′
τ,σ, s′ ≤ s−m, provided s is sufficiently large and s′ sufficiently

small, depending on ε and m.

Theorem 3.2. (1) Let p(x, ξ) ∈ Sm
τ,σ and consider the corresponding

pseudo-differential operator P . Define the L2-adjoint P ∗ by

〈P ∗u, v〉L2 = 〈u, Pv〉L2 , u ∈ Hs+m
τ,σ , v ∈ H−s

−τ,σ.

Then P ∗ is a pseudo-differential operator with symbol p∗(x, ξ) ∈ Sm
τ,σ, hav-

ing asymptotic expansion

p∗(x, ξ) ∼
∑
α

(α!)−1∂α
ξ Dα

x p̄(x, ξ).(3.7)

(2) Let pj ∈ S
mj
τ,σ , j = 1, 2, and consider the corresponding pseudo-

differential operators Pj, j = 1, 2. Then P1P2 is a pseudo-differential oper-
ator with symbol p(x, ξ) ∈ Sm1+m2

τ,σ , having asymptotic expansion

p ∼ p1#p2 =
∑
α

(α!)−1∂α
ξ p1(x, ξ)Dα

x p2(x, ξ).(3.8)

Proof. We prove (2) and leave (1) to the reader. By standard computa-
tions we may express the symbol of P1P2 in the form

p(x, ζ) = (2π)−n

∫
exp[−i(y − x)(ξ − ζ)]p1(x, ξ)p2(y, ζ)dydξ(3.9)

= (2π)−n

∫
exp[ixξ]p1(x, ζ + ξ)p̂2(ξ, ζ)dξ,

where p̂2 is the Fourier transform of p2 with respect to the x-variables.
Let us first show that p(x, ζ) ∈ Sm1+m2

τ,σ . To this end, we compute p̂(η, ζ),
Fourier transform of p(x, ζ) with respect to the x-variables, and obtain

p̂(η, ζ) = (2π)−n

∫
p̂1(η − ξ, ζ + ξ)p̂2(ξ, ζ)dξ.

We have to estimate for any s ∈ IR the L2-norm with respect to η of

〈ζ〉−m1−m2+|β| exp[〈η〉1/σ]〈η〉sDβ
ζ p̂(η, ζ),

uniformly in the parameter ζ. Let us limit ourselves to treat the case β = 0,
the generalization to arbitrary β being trivial by Leibniz rule. We have

〈ζ〉−m1−m2 exp[τ〈η〉1/σ]〈η〉sp̂(η, ζ)(3.10)

= (2π)−n

∫
H(ξ, η)〈η〉s〈ζ〉−m1−m2 p̃1(η − ξ, ζ + ξ)p̃2(ξ, ζ)dξ,



10 Chen Hua and Luigi Rodino

where H(ξ, η) = exp[τ〈η〉1/σ − τ〈ξ〉1/σ − τ〈η − ξ〉1/σ] ≤ 1 and

p̃1(η − ξ, ζ + ξ) = exp[τ〈η − ξ〉1/σ]p̂1(η − ξ, ζ + ξ),
p̃2(ξ, ζ) = exp[τ〈ξ〉1/σ]p̂2(ξ, ζ).

We shall apply again Lemma 3.1, all the terms there depending on the parame-
ter ζ with uniformly bounded norms. Namely, we set

h(ξ, ζ) = p̃2(ξ, ζ)〈ζ〉−m2〈ξ〉L

with L2-norm with respect to ξ bounded uniformly with respect to ζ, for any
L; moreover

g(λ, ξ, ζ) = p̃1(λ, ζ + ξ)〈ζ + ξ〉−m1λM

with L2-norm with respect to λ bounded uniformly with respect to ζ and ξ, for
any M . Finally, we take

G(ξ, η, ζ) = H(ξ, η)〈η〉s〈ζ〉−m1〈ξ〉−L〈ζ + ξ〉m1〈η − ξ〉−M ,

for which
sup
η,ζ

∫
|G(ξ, η, ζ)|2dξ < ∞

if L and M have been chosen sufficiently large. From Lemma 3.1 we therefore
deduce that the L2-norm with respect to η of (3.10) is bounded, uniformly with
respect to ζ. We pass now to prove the asymptotic formula in (2). As standard
in the pseudo-differential calculus, after Taylor expanding p1(x, ζ + ξ) in (3.9)
with respect to ξ, we are reduced to consider the remainder

rN (x, ζ) =
∑

|γ|=N

N

γ!

∫ 1

0

rNγ(x, ζ, t)(1− t)N−1dt,

where

rNγ(x, ζ, t) = (2π)−n

∫
exp[ixξ]∂γ

ξ p1(x, ζ + tξ)ξγ p̂2(ξ, ζ)dξ.

We have to prove that rNγ ∈ Sm1+m2−N
τ,σ , N = |γ|, with uniform bounds with

respect to the parameter t, 0 ≤ t ≤ 1.
Arguing as before, we are led to consider

r̂Nγ(η, ζ, t) = (2π)−n

∫
∂γ

ξ p̂1(η − ξ, ζ + tξ)ξγ p̂2(ξ, ζ)dξ.

Repeating the preceding arguments, and in particular applying Lemma 3.1
with ζ and t as parameters, we get easily the conclusion.

Corollary 3.1. If u ∈ H−∞
τ,σ , u ∈ Hs

τ,σ(x0) and P has symbol in Sm
τ,σ,

then Pu ∈ Hs−m
τ,σ (x0).
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Proof. Take φ ∈ Gσ′
0 (IRn), 1 < σ′ < σ, with φ(x) = 1 in a neighborhood

V of x0, such that φu ∈ Hs
τ,σ. Take then any φ′ ∈ Gσ′

0 (IRn) with suppφ′ ⊂ V .
Writing

φ′Pu = φ′Pφu + φ′P (1− φ)u,

applying Theorem 3.1 to the first term in the right hand side and (3.8) in
Theorem 3.2 to the second term, we get φ′Pu ∈ Hs−m

τ,σ , hence Pu ∈ Hs−m
τ,σ (x0).

Corollary 3.2. If u ∈ H−∞
τ,σ , u ∈ Hs

τ,σ(x0, ξ
0) and P has symbol in

Sm
τ,σ, then Pu ∈ Hs−m

τ,σ (x0, ξ
0).

Proof. Let ψ(ξ), ψ′(ξ) ∈ C∞(IRn) be 0-order homogeneous for large |ξ|
with ψ(ξ) = 1 in a conic neighborhood Γ of ξ0 and supp ψ′ ⊂ Γ. Let φ, φ′ be
as in the preceding proof, such that ψ(D)(φu) ∈ Hs

τ,σ. The conclusion is easily
obtained by writing

ψ′(D)(φ′Pu) = ψ′(D)φ′P (ψ(D)φu) + ψ′(D)φ′P (1− ψ(D)φ)u

and applying (3.8) to the second term in the right hand side.

Given Ω open subset of IRn, the class of symbols Sm
τ,σ(Ω) is the set of all

p(x, ξ) ∈ C∞(Ω× IRn) such that φ(x)p(x, ξ) ∈ Sm
τ,σ for every φ ∈ Gσ′

0 (Ω), 1 <
σ′ < σ. Similarly we define Sm,ε

τ,σ (Ω), Sm
τ,σ,cl(Ω) and Sm

τ,σ,ρ,δ(Ω). The preced-
ing Theorems 3.1 and 3.2 have obvious variants for the corresponding pseudo-
differential operators.

Let p(x, ξ) ∼ ∑∞
j=0 pm−j(x, ξ) in Sm

τ,σ,cl(Ω) be elliptic, i.e. for every K ⊂⊂
Ω we have

|pm(x, ξ)| ≥ cK |ξ|m, x ∈ K, ξ ∈ IRn,

for a suitable positive constant cK . Then q−m(x, ξ) = (pm(x, ξ))−1 ∈ S−m
τ,σ (Ω)

for large ξ and we may recursively construct as standard q(x, ξ) ∼∑∞
j=0 q−m−j(x, ξ) in S−m

τ,σ,cl(Ω), such that q#p = 1, p#q = 1. From (2) in
Theorem 3.2 we therefore obtain:

Theorem 3.3. Let p(x, ξ) ∈ Sm
τ,σ,cl(Ω) be elliptic in Ω. Assume P =

p(x,D) is properly supported, i.e. it is well defined as a map P : H+∞
τ,σ,loc(Ω) →

H+∞
τ,σ,loc(Ω), H−∞

τ,σ,loc(Ω) → H−∞
τ,σ,loc(Ω), preserving compactness of supports.

Then for P there exists a properly supported parametrix Q = q(x,D), q(x, ξ) ∈
S−m

τ,σ,cl(Ω); namely QP = I +R1, PQ = I +R2, where R1 and R2 have symbols
in S−∞τ,σ (Ω).

Corollary 3.3. Let p(x, ξ) ∈ Sm
τ,σ,cl be elliptic in a neighborhood of x0.

Then u ∈ H−∞
τ,σ , Pu ∈ Hs

τ,σ(x0) imply u ∈ Hs+m
τ,σ (x0).

The proof is by Theorem 3.3, Corollary 3.1 and Theorem 3.1.
Using Corollary 3.2 and constructing microlocal parametrices, we deduce

similarly the following micro-regularity result.
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Corollary 3.4. Let p(x, ξ) ∈ Sm
τ,σ,cl satisfy pm(x0, ξ

0) 6= 0 for some
x0 ∈ Ω, ξ0 6= 0. Then u ∈ H−∞

τ,σ , Pu ∈ Hs
τ,σ(x0, ξ

0) imply u ∈ Hs+m
τ,σ (x0, ξ

0).

Comments 3.1. In the classes presented here we require only C∞

regularity with respect to ξ. The corresponding symbols are comparable, for
example, with those in Taniguchi [18] defined by the estimates

|Dα
x Dβ

ξ p(x, ξ)| ≤ cβM−|α|α!σ〈ξ〉m−|β|.(3.11)

Namely, if (3.11) is satisfied we have p(x, ξ) ∈ Sm
τ,σ for a small τ > 0.

We point out that, with respect to the standard calculus requiring also
Gevrey estimates in ξ, cf. Rodino [16] and the references there, our present
regularizing operators R are such only in the H−∞

τ,σ frame. More precisely, if
R = r(x,D) with r ∈ S−∞τ,σ , we have R : H−∞

τ,σ → H∞
τ,σ, but for f ∈ E ′(IRn)

or even f ∈ C∞0 (IRn), in general Rf ∈ C∞ is not of Gevrey class, neither
the possible Gevrey local regularities and micro-regularities of f are preserved
under applications of R or P = p(x,D) with symbol p ∈ Sm

τ,σ.

4. Gevrey paraproduct calculus

Let a ∈ H
n/2+ε
|τ |,σ , ε > 0, τ ∈ IR, σ > 1. We can define the paraproduct

operator Ta as follows:

Tau =
∑

q

(Sqa)uq, u ∈ Hs
τ,σ,(4.1)

where {uq}∞q=−1 denotes the dyadic decomposition of u, Sqa =
∑
−1≤p≤q−N1

ap,
{ap} the dyadic decomposition of a. Let N1 be sufficiently large, cf. [4],[5], then
we have

Theorem 4.1. Ta : Hs
τ,σ → Hs

τ,σ is a continuous mapping for every s ∈
IR. Moreover, u ∈ H−∞

τ,σ and u ∈ Hs
τ,σ(x0) imply Tau ∈ Hs

τ,σ(x0) for any s ∈ IR
and x0 ∈ IRn. We have ‖Ta‖L(Hs

τ,σ,Hs
τ,σ) ≤ Cs‖a‖H

n/2+ε

|τ|,σ
. Fix further ξ0 6= 0. If

u ∈ Hs
τ,σ(x0) with s > 0, then u ∈ Ht

τ,σ(x0, ξ
0) implies Tau ∈ Ht

τ,σ(x0, ξ
0) for

s < t < s + ε.

Proof. The same statement was already proved in [5, Theorem 3.1]. We
think however it is worth to give in the following a precise argument for the
pseudo-local property, i.e. u ∈ H−∞

τ,σ and u ∈ Hs
τ,σ(x0) imply Tau ∈ Hs

τ,σ(x0)
for every s ∈ IR, since details in this connection are missing in [5]. Our present
proof will be based on the pseudo-differential calculus of the preceding Section
3.

Let us assume for simplicity τ > 0. We may take φ ∈ Gσ′
0 (IRn), 1 < σ′ < σ,

with φ(x) = 1 in a neighborhood Vx0 of x0, such that φu ∈ Hs
τ,σ. Let us then

show that φ1Tau ∈ Hs
τ,σ for every φ1 ∈ Gσ′

0 (Vx0). In fact

φ1Tau = φ1Taφu + φ1Ta(1− φ)u
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where φ1Taφu ∈ Hs
τ,σ, granted the boundedness of Ta on Hs

τ,σ.

Let us prove that φ1Ta(1− φ)u ∈ Hh
τ,σ for all h ∈ IR. Basing on (4.1), we

write

φ1Ta(1− φ)u = φ1

∑

p≥0

(Spa)ϕ(2−pD)(1− φ)u + f,(4.2)

where f ∈ H+∞
τ,σ and ϕ is defined as in Lemma 2.2. Since φ1ϕ(2−pξ) and φ(x)

are symbols in S0
τ,σ, we may apply Theorem 3.2 and write, with N to be fixed

later:

φ1ϕ(2−pD)(1−φ) = φ1

∑

|α|<N

(α!)−1Dα
x (1−φ)2−p|α|(∂α

ξ ϕ)(2−pD)+φ1rpN (x,D)

where φ1rp,N (x, ξ) ∈ S−N
τ,σ . Inserting in (4.2) and observing that φ1D

α
x (1−φ) ≡

0, we are reduced to study the boundedness of the operator

RN =
∑

p≥0

(Spa)rpN (x,D).

Namely, we shall prove that u ∈ Hh′
τ,σ implies RNu ∈ Hh

τ,σ for every h, h′ ∈ IR.
To this end, assuming without loss of generality h > 0 and applying (d) in
Theorem 2.1, we may limit ourselves to check that

‖Dα(Spa)rpN (x,D)u‖L2
τ,σ
≤ cpα2−ph+p|α|, {cpα}p ∈ l2.(4.3)

By Leibniz formula and Theorem 2.5, we are further reduced to prove the same
estimates for the terms

‖Dα1(Spa)‖
H

n/2+ε′
τ,σ

‖Dα2rpN (x,D)u‖L2
τ,σ

, α1 + α2 = α,(4.4)

with 0 < ε′ < ε. Now from the definition of Sp we have easily

‖Dα1(Spa)‖
H

n/2+ε′
τ,σ

≤ c′p,α1
2p|α1|‖a‖

H
n/2+ε
τ,σ

, {c′pα1
}p ∈ l2.(4.5)

It will be then convenient to write the explicit expression of rpNα2(x, ξ), the
symbol of Dα2rpN (x,D). Namely, according to the last part of the proof of
Theorem 3.2:

rpNα2(x, ξ) =
∑

|γ|=N

N

γ!

∫ 1

0

rpNα2γ(x, ξ, t)(1− t)N−1dt,(4.6)

where rpNα2γ is a linear combination of terms of the form

e(x, ξ, t) = (2π)−n

∫
eixζ2−pN (∂γ

ξ ϕ)(2−p(ξ + tζ))ξβ1ζγ+β2 φ̂(ζ)dζ.(4.7)

with β1 + β2 = α2.
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We want to estimate the norm of the corresponding operator as a map
from Hh′

τ,σ to L2
τ,σ. Going back to Lemma 3.1 and to the proof of Theorem 3.1,

we have then to consider

ê(λ, ξ, t) = 2−pN (∂γ
ξ ϕ)(2−p(ξ + tλ))ξβ1λγ+β2 φ̂(λ)

and evaluate the L2-norm with respect to λ of

g(λ, ξ, t) = eτλ1/σ 〈λ〉M ê(λ, ξ, t)〈ξ〉−h′ ,

where M is determined as in the proof of Theorem 3.1, depending on h′.
Assuming without loss of generality h′ < 0, we have

|(∂γ
ξ ϕ)(2−p(ξ + tλ))| ≤ cγ〈2−p(ξ + tλ)〉h′−|α2|

≤ cγ2−ph′+p|α2|〈ξ + tλ〉h′−|α2|

≤ c′γ2−ph′+p|α2|〈ξ〉h′−|α2|〈tλ〉−h′+|α2|

and moreover for some δ > 0

|φ̂(λ)| ≤ ce−δλ1/σ′
,

so we obtain

sup
0≤t≤1

sup
ξ∈IRn

‖g(λ, ξ, t)‖L2(IRn
λ) ≤ c2−pN−ph′+p|α2|

for a constant c independent of p. In view of (4.6), (4.7) and Lemma 3.1, we
deduce that

‖Dα2rpN (x,D)u‖L2
τ,σ
≤ c′α2

2−pN−ph′+p|α2|‖u‖Hh′
τ,σ

and therefore from (4.4) and (4.5)

‖Dα((Spa)rpN (x,D)u)‖L2
τ,σ
≤ c′′pα2−pN−ph′+p|α|‖u‖Hh′

τ,σ

where {c′′pα}p ∈ l2. To obtain (4.3) it will be then sufficient to fix N > h− h′.
This concludes the proof of the pseudo-local property. For the other state-

ments in Theorem 4.1 we refer to the proof in [5].

Remark 4.1. If a ∈ H
n/2+ε
τ,σ (τ < 0), then in the the same way we can

define the paraproduct operator Ta, which is a continuous mapping from Hs
|τ |,σ

to Hs
τ,σ.

Remark 4.2. Observe in Theorem 4.1 that u ∈ H−∞
τ,σ , u ∈ Hs

τ,σ(x0)
imply Tau ∈ Hs

τ,σ(x0) without any restriction on s ∈ IR, whereas the microlo-
cal statement depends on the local regularity of u. In fact when τ = 0 the
paraproduct Ta belongs to the Hörmander’s class L0

1,1, cf. [4], and it is well
known that the corresponding pseudo-differential operators are pseudo-local
but not micro-local in general.
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From (4.1), the definition of Ta seems dependent on the dyadic decomposi-
tion of Gevrey-Sobolev space Hs

τ,σ (i.e. depending on the choice of {K, ϕ, N1}).
We suppose there exist two dyadic decompositions which depend on {K, ϕ, N1}
and {K ′, ϕ′, N ′

1} respectively, and denote by Ta and T ′a as two paraproducts
corresponding to {K, ϕ, N1} and {K ′, ϕ′, N ′

1} respectively, then we have

Theorem 4.2. If a ∈ H
n/2+ε
|τ |,σ , then Ta − T ′a ∈ L(Hs

τ,σ,Hs+ε1
τ,σ ), for any

0 < ε1 < ε, and

‖Ta − T ′a‖L(Hs
τ,σ,H

s+ε1
τ,σ )

≤ Cs‖a‖H
n/2+ε

|τ|,σ
,(4.8)

Proof. Let function a (resp. u ∈ Hs
τ,σ) have two decompositions

∑
ap

and
∑

a′p (resp.
∑

up and
∑

vp), and Sqa =
∑

p≤q−N1
ap, S

′
qa =

∑
p≤q−N ′

1
a′p,

then

Tau− T ′au =
∑

q

∑

p≤q−N1

apuq −
∑

q

∑

p≤q−N1

apvq(4.9)

+
∑

q

∑

p≤q−N1

apvq −
∑

q

(S′qa)vq

=
∑

p

ap


 ∑

q≥p+N1

(uq − vq)


 +

∑
q


 ∑

p≤q−N1

ap − S′qa


 vq

=
∑

p

apωp +
∑

q

ω̃q.

Without loss of generality, we let K ′ > K, then

supp ω̂p ⊂ C ′p+N1
, ‖ωp‖L2

τ,σ
≤ cp2−ps.

So if we choose N1 large enough, we have supp{âpωp} ⊂ C ′′p+N1
, and

‖apωp‖L2
τ,σ
≤ C‖ap‖H

n/2+ε′
|τ|,σ

‖ωp‖L2
τ,σ

≤ C2p(ε′−ε)‖ap‖H
n/2+ε

|τ|,σ
cp2−ps,

where ε′ ∈ (0, ε), then

‖apωp‖L2
τ,σ
≤ c̃p‖ap‖H

n/2+ε

|τ|,σ
2−p(s+ε1),(4.10)

where ε1 = ε− ε′ ∈ (0, ε), {c̃p} ∈ l2.
Next we have, for N1 large enough, that supp ̂̃ωq ⊂ C ′q, and for any ε′ ∈

(0, ε), we have
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‖ω̃q‖L2
τ,σ
≤




∥∥∥∥∥∥
a−

∑

p≤q−N1

ap

∥∥∥∥∥∥
H

n/2+ε′
|τ|,σ

+ ‖a− S′qa‖H
n/2+ε′
|τ|,σ


 ‖vq‖L2

τ,σ
(4.11)

≤ C‖a‖
H

n/2+ε

|τ|,σ
2−q(ε−ε′)c′q2

−qs

= c̃′q‖a‖H
n/2+ε

|τ|,σ
2−q(s+ε1), ε1 = ε− ε′ ∈ (0, ε), {c̃′q} ∈ l2.

This implies that Tau − T ′au ∈ Hs+ε1
τ,σ , for any 0 < ε1 < ε, and the estimate

(4.8) is obvious from the process above. Theorem 4.2 is proved.

From Theorem 4.2, we know Ta ≡ T ′a(modL(Hs
τ,σ, Hs+ε1

τ,σ )). If we de-
note L−ε

τ,σ as the Gevrey ε-regular operator class, i.e. A ∈ L−ε
τ,σ means A ∈

L(Hs
τ,σ,Hs+ε

τ,σ ) for any s ∈ IR, then we also have Ta ≡ T ′a(modL−ε1
τ,σ ), or

Ta − T ′a ∈ L−ε1
τ,σ .

We have the following composition result for the paraproduct operators:

Theorem 4.3. Let a, b ∈ H
ε+n/2
τ,σ , τ ≥ 0, σ > 1, ε > 0, thus (see

Theorem 2.6 above) ab ∈ H
ε+n/2
τ,σ . Then for any 0 < ε1 < ε, Ta ◦ Tb − Tab ∈

L−ε1
τ,σ , and we have ‖Ta ◦ Tb − Tab‖L(Hs

τ,σ,H
s+ε1
τ,σ )

≤ C‖a‖
H

n/2+ε
τ,σ

‖b‖
H

n/2+ε
τ,σ

.

Proof. Let u ∈ Hs
τ,σ, {ap}, {bp} and {up} the L-P decompostions with

respect to a, b and u. Then we know from Theorem 4.1 that v = Tbu ∈ Hs
τ,σ,

and v =
∑

vq, supp v̂q ⊂ C ′q; Sqa =
∑

p2≤q−N1
ap2 . Then Ta ◦ Tbu = Tav =∑

q(Sqa)vq + Rv, vq =
∑

p1≤q−N1
bp1uq, i.e.

Ta ◦ Tbu =
∑

q

∑

p1≤q−N1

∑

p2≤q−N1

ap2bp1uq + R(Tbu).(4.12)

Since supp Ŝqa ⊂ B(0, C2q), supp v̂q ⊂ C ′q and Cq ⊂ C ′q, then it is similar
to the proof of (4.9), we have easily

R(Tbu) ∈ Hs+ε1
τ,σ , 0 < ε1 < ε.(4.13)

Now we let

dq =
∑

p1≤q−N1

∑

p2≤q−N1

ap2bp1 .(4.14)

Observe supp d̂q ⊂ B(0, C2q), and

ab− dq =
∑

p1>q−N1 or p2>q−N1

ap2bp1 ,
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we have, by Schauder-Gevrey estimate and assuming as before p1 > q −N1 or
p2 > q −N1 in the sums, that

‖(ab− dq)uq‖L2
τ,σ
≤

∑
‖ap2bp1‖H

n/2+ε′
τ,σ

‖uq‖L2
τ,σ

(4.15)

≤ C
∑

‖ap2‖H
n/2+ε′
τ,σ

‖bp1‖H
n/2+ε′
τ,σ

‖uq‖L2
τ,σ′

, ε′ ∈ (0, ε)

≤ C‖a‖
H

ε+n/2
τ,σ

‖b‖
H

ε+n/2
τ,σ

(∑
2−(p1+p2)ε1

)
cq2−qs, ε1 = ε− ε′

≤ c̃q‖a‖H
n/2+ε
τ,σ

‖b‖
H

n/2+ε
τ,σ

2−q(s+ε1).

Thus it is similar to the proof of (4.9), we have, for u ∈ Hs
τ,σ, that

Tabu−
∑

q

dquq ∈ Hs+ε1
τ,σ ,

this means that Ta ◦ Tbu− Tabu = R(Tbu) + [
∑

q dquq − Tabu] ∈ Hs+ε1
τ,σ .

The result on norm-estimate of composition may be easily checked from
the proof process above. Theorem 4.3 is proved.

With respect to the L2-scalar product we can define the conjugation
operator T ∗a for paraproduct Ta : Hs

τ,σ → Hs
τ,σ by

〈T ∗a u, v〉 = 〈u, Tav〉, u ∈ H−s
−τ,σ, v ∈ Hs

τ,σ.(4.16)

So T ∗a : H−s
−τ,σ → H−s

−τ,σ = (Hs
τ,σ)′ (the dual space of Hs

τ,σ). More precisely we
have

Theorem 4.4. Let a ∈ H
n/2+ε
|τ |,σ (ε > 0, τ ∈ IR and σ > 1), then T ∗a is

also a paraproduct operator and T ∗a − Tā ∈ L−ε1
τ,σ , for any ε1 ∈ (0, ε), and

‖T ∗a − Tā‖L(Hs
τ,σ,H

s+ε1
τ,σ )

≤ C‖a‖
H

n/2+ε

|τ|,σ
.

Proof. Let u ∈ Hs
τ,σ, v ∈ H

−(s+ε1)
−τ,σ , then we have

〈(T ∗a − Tā)u, v〉 = 〈T ∗a u, v〉 − 〈Tāu, v〉
=〈u, Tav〉 − 〈Tāu, v〉,

where

〈u, Tav〉 =
∑
q,r

∑

p≤r−N1

∫
uqāpv̄rdx,

〈Tāu, v〉 =
∑
r,q

∑

p≤q−N1

∫
āpuq v̄rdx.

Observe supp( ̂∑
p≤r−N1

apvr) ⊂ C ′r, supp ûq ⊂ Cq, and there exists N2 > 0,
large enough, such that Cq

⋂
C ′r = ∅ if |q − r| > N2. Hence if |q − r| > N2, we

have ∫
uq(x)(apvr)dx =

∫
ûq(−η)âpvr(η)dη = 0.
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This implies

〈T ∗a u, v〉 =
∑

q

∑

q−N2≤r≤q+N2

∑

p≤r−N1

∫
uqāpv̄rdx,

〈Tāu, v〉 =
∑

q

∑

q−N2≤r≤q+N2

∑

p≤q−N1

∫
āpuq v̄rdx.

Thus there exists a large integer N3, such that

|〈T ∗a u, v〉 − 〈Tāu, v〉| ≤
∑

q

∑

q−N2≤r≤q+N2

∑

q−N3≤p≤q+N3

‖apuqvr‖L1 .

Let p = q+j1, r = q+j2, then by Cauchy-Schwarz inequality and Theorem
2.5, we have for ε′ = ε− ε1 ∈ (0, ε)

|〈T ∗a u, v〉 − 〈Tāu, v〉|
≤

∑
q

∑

|j2|≤N2

∑

|j3|≤N3

‖aq+j1‖H
n/2+ε′
|τ|,σ

‖uq‖L2
τ,σ
‖vq+j2‖L2

−τ,σ
.

Because N2, N3 are finite and fixed, then we can further estimate by

C‖aq‖H
n/2+ε

|τ|,σ
2−qε1cq2−qsc′q2

q(s+ε1) ≤ C‖a‖
H

n/2+ε

|τ|,σ
cqc

′
q,

where ε1 = ε−ε′ ∈ (0, ε), and {cq}, {c′q} ∈ l2, ‖{cq}‖l2 ≤ C‖u‖Hs
τ,σ

, ‖{c′q}‖l2 ≤
C‖v‖

H
−(s+ε1)
−τ,σ

. Thus we obtain

|〈T ∗a u, v〉 − 〈Tāu, v〉| ≤ C‖a‖
H

n/2+ε

|τ|,σ
‖u‖Hs

τ,σ
‖v‖

H
−(s+ε1)
−τ,σ

.(4.17)

Theorem 4.4 is proved.

From [5, Section 3], we also have the following paralinearization results:

Theorem 4.5. Let F : C → C be an entire analytic function, and
satisfy F (0) = 0. Let f be in Hs

τ,σ, s > n/2, τ > 0, σ > 1. Then F (f) ∈ Hs
τ,σ

and F (f) = TF ′(f)f + g, where g ∈ Ht
τ,σ for all t < 2s− n/2.

Theorem 4.5 has the following obvious corollaries:

Corollary 4.1. Let F : C → C be an entire analytic function, and let
f be in Hs

τ,σ(x0), s > n/2, τ > 0, σ > 1, x0 ∈ IRn. Then F (f), which is
well defined in a neighborhood of x0, belongs to Hs

τ,σ(x0). Fix further ξ0 6= 0.
If f ∈ Ht

τ,σ(x0, ξ
0) for s < t < 2s− n/2, then also F (f) ∈ Ht

τ,σ(x0, ξ
0).

Corollary 4.2. Let F (x, z) =
∑

β cβ(x)zβ, entire with respect to z, for
cβ ∈ Gσ′(Ω) (1 < σ′ < σ), z ∈ CN and x0 ∈ Ω ⊂ IRn, and let the components
of f = (f1, · · · , fN ) be in Hs

τ,σ(x0), s > n/2, τ > 0; then F (x, f) ∈ Hs
τ,σ(x0).

After cutting off F and f by a function ϕ ∈ Gσ′
0 (Ω) with ϕ(x) = 1 in a neigh-

borhood of x0, we have F (x, f) =
∑N

j=1 T∂F/∂zj(x,f)fj + g, where g ∈ Ht
τ,σ(x0)

for all t < 2s − n/2. If all the components of f are in Ht
τ,σ(x0, ξ

0) for
s < t < 2s− n/2, ξ0 6= 0, then also F (x, f) ∈ Ht

τ,σ(x0, ξ
0).
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5. Paradifferential operators in Gevrey classes

In this section, m ∈ IR, σ > 1 as usual, but we shall assume τ > 0.

Definition 5.1. For ε > 0, let

lm,ε
τ,σ ={l(x, ξ) | l is m order homogeneous C∞(IRn \ 0) function in ξ,

and Hn/2+ε
τ,σ function in x for ξ uniformly}.

The functions l ∈ lm,ε
τ,σ can be regarded as symbols in the classes Sm,ε

τ,σ from
Definition 3.1. Observe however that the corresponding pseudo-differential
operators l(x,D) are not Lm

τ,σ class operators; in fact continuity from Hs
τ,σ

to Hs−m
τ,σ fails for large s, because of the limited Gevrey smoothness of l(x, ξ)

with respect to x. Following Bony [4] and using the Gevrey paraproduct cal-
culus of the preceding section, we shall then consider paradifferential operators
associated to l(x, ξ), which will turn out to be of class Lm

τ,σ.

Definition 5.2. For l ∈ lm,ε
τ,σ , we can define an operator Tl as

(Tlu)(x) =
∑

q

Sq(l(x,D))uq(x), u =
∑

uq ∈ Hs
τ,σ,

where Sq(l(x,D)) is the pseudo-differential operator with symbol Sq(l(x, ξ)),
defined by letting Sq act on the x variables, cf. (4.1).

If l(x, ξ) =
∑

j lj(x, ξ) is a finite sum, then we denote Tl =
∑

j Tlj .

If l(x, ξ) = a(x)h(ξ), a(x) ∈ H
n/2+ε
τ,σ , h(ξ) ∈ C∞(IRn \ 0) and m order

homogeneous, then

Sq(a(x)h(ξ)) = (Sqa)h(ξ).(5.1)

Hence we have

(Tlu)(x) =
∑

q

Sq(a)(h(D)u)q,

(h(D)u)q = (2π)−n

∫
eixξφ(2−qξ)h(ξ)û(ξ)dξ = h(D)uq,

i.e.

(Tlu)(x) = Ta ◦ h(D)u, if l = a(x)h(ξ).(5.2)

For general l ∈ lm,ε
τ,σ , we can rewrite

l(x, ξ) = |ξ|ml(x, ω), ω =
ξ

|ξ| ∈ Sn−1.(5.3)

Let ∆ be Laplace-Beltrami operator on Sn−1, {λj} and {h̃j(ω)} are corre-
sponding eigenvalues and eigenfuctions (i.e. ∆h̃j = λj h̃j), we know {h̃j} is
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a complete orthonormal basis in L2(Sn−1), and limj→∞ λjj
−2/n ∈ (0, +∞).

Since l(x, ω) ∈ L2(Sn−1), ω ∈ Sn−1, we have, by using Fourier expansion, that

l(x, ω) =
∑

j

aj(x)h̃j(ω),(5.4)

where aj(x) =
∫

Sn−1 l(x, ω)h̃j(ω)dω.
Since ∆ is self-adjoint, we have

λk
j aj(x) =

∫

Sn−1
l(x, ω)∆kh̃j(ω)dω

=
∫

Sn−1
∆kl(x, ω)h̃j(ω)dω.

Thus by Cauchy-Schwarz inequality, we have

|λj |k‖aj(x)‖
H

n/2+ε
τ,σ

≤
(∫

Sn−1
‖∆kl(x, ω)‖2

H
n/2+ε
τ,σ

dω

) 1
2

‖h̃j(ω)‖L2(Sn−1)

=
(∫

Sn−1
‖∆kl(x, ω)‖2

H
n/2+ε
τ,σ

dω

) 1
2

.

Since ∆kl(x, ω) ∈ H
n/2+ε
τ,σ in x, hence we have obtained |λj |k‖aj(x)‖

H
n/2+ε
τ,σ

≤ Ck, {Ck} is a bounded constant set. This implies aj(x) ∈ H
n/2+ε
τ,σ , and

‖aj‖H
n/2+ε
τ,σ

≤ Ckj−
2
n k, ∀k,(5.5)

is rapidly decreasing in j.
On the other hand from Sobolev lemma, we have for an even integer s1,

satisfying s1 > n/2 + M

‖h̃j(ω)‖CM (Sn−1) ≤ C‖h̃j(ω)‖Hs1 (Sn−1)

≤ C

s1/2∑

k=0

‖∆kh̃j(ω)‖L2(Sn−1)

≤ C

s1/2∑

k=0

|λj |k.

That is

‖h̃j(ω)‖CM (Sn−1) ≤ CM j
(M+n/2+1)

n ,(5.6)

is temperedly increasing in j. Actually we have proved the following result:

Lemma 5.1. Let l ∈ lm,ε
τ,σ , then l has the following spherical harmonic

decomposition

l(x, ξ) =
∑

j

aj(x)hj(ξ),(5.7)
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where aj(x) ∈ H
n/2+ε
τ,σ and ‖aj‖H

n/2+ε
τ,σ

is rapidly decreasing in j, hj(ξ) =

|ξ|mh̃j(ξ/|ξ|) and ‖h̃j(ω)‖CM (Sn−1)is temperedly increasing in j for any M
fixed.

Since (hj(D)u)q = hj(D)uq, now we can define the operator Tl as follows:

Tlu =
∑

j

Taj ◦ hj(D)u, u ∈ Hs
τ,σ,(5.8)

where ‖Taj
‖L(Hs

τ,σ,Hs
τ,σ) ≤ C‖aj‖H

n/2+ε
τ,σ

is rapidly decreasing in j, and the norm
of hj(D)u is temperedly increasing, then the series (5.8) is convergent.

We can prove Tl, as defined by (5.8), is Lm
τ,σ class operator, i.e.

Theorem 5.1. For l ∈ lm,ε
τ,σ , Tl : Hs

τ,σ → Hs−m
τ,σ (∀s ∈ IR) is a bounded

linear operator.

Proof. We may write

Tlu =
∑

j

∑
q

Sq(aj)hj(D)uq, u ∈ Hs
τ,σ,(5.9)

where supp ̂hj(D)uq ⊂ Cq, supp ̂Sq(aj) ⊂ B(0,K2q−N1). So for N1 large
enough we have

supp ̂Sq(aj)hj(D)uq = supp ̂Sq(aj) ∗ ̂hj(D)uq ⊂ Cq + B(0,K2q−N1) ⊂ C ′q,

i.e. supp ̂Sq(l(x,D))uq ⊂ C ′q. Thus

Sq(l(x,D))uq(x) = (2π)−n

∫
eixξSq(l(x, ξ))ûq(ξ)dξ

=
∑

j

Sq(aj)hj(D)uq,

and

‖Sq(l(x,D))uq(x)‖L2
τ,σ
≤

∑

j

‖Sq(aj)hj(D)uq‖L2
τ,σ

≤
∑

j

‖Sq(aj)‖H
n/2+ε
τ,σ

‖hj(D)uq‖L2
τ,σ

≤
∑

j

‖aj‖H
n/2+ε
τ,σ

‖hj(D)uq‖L2
τ,σ

,

where

‖hj(D)uq‖L2
τ,σ

= ‖ exp(τ〈ξ〉 1
σ )hj(ξ)ûq‖L2

= ‖ exp(τ〈ξ〉 1
σ )h̃j(ξ/|ξ|)|ξ|mûq‖L2

≤ ‖h̃j(ω)‖C(Sn−1)(K2(q+1))m‖ûq‖L2
τ,σ

≤ ‖h̃j(ω)‖C(Sn−1)cq2−q(s−m).
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Since ‖aj‖H
n/2+ε
τ,σ

is rapidly decreasing in j and ‖h̃j(ω)‖C(Sn−1) is temperedly
increasing in j, we have

‖Sq(l(x,D))uq‖L2
τ,σ
≤ Ccq2−q(s−m), {cq} ∈ l2.(5.10)

Since Tlu =
∑

q Sq(l(x,D))uq, and ‖{cq}‖l2 ≤ C1‖u‖Hs
τ,σ

, then we have proved
Tlu ∈ Hs−m

τ,σ , and ‖Tl‖L(Hs
τ,σ,Hs−m

τ,σ ) ≤ CC1. Theorem 5.1 is proved.

It seems, from Definition 5.2, the operator Tl depends on the dyadic de-
composition. However if {K ′, φ1, N

′
1} is another dyadic decomposition, and T ′l

is the corresponding operator, then

Tl − T ′l =
∑

j

(Taj − T ′aj
) ◦ hj(D).

We have proved in Theorem 4.2 that

Taj
− T ′aj

∈ L−ε1
τ,σ , ε1 ∈ (0, ε), and ‖Taj

− T ′aj
‖L(Hs

τ,σ,H
s+ε1
τ,σ )

≤ C‖aj‖H
n/2+ε
τ,σ

,

and hj(D) : Hs
τ,σ → Hs−m

τ,σ . Thus it is easy to prove that

Tl − T ′l ∈ Lm−ε1
τ,σ , ∀ε1 ∈ (0, ε).(5.11)

Let us consider the composition of two operators.

Theorem 5.2. Let lk(x, ξ) ∈ lmk,ε
τ,σ (k = 1, 2), ε \∈ IN, and

l(x, ξ) =
∑

|α|<[ε]

1
α!

∂α
ξ l1(x, ξ)Dα

x l2(x, ξ) = (l1#l2)(x, ξ)

then
Tl1 ◦ Tl2 − Tl ∈ Lm1+m2−[ε]

τ,σ .

The proof of Theorem 5.2 depends on the following lemma:

Lemma 5.2. Let h(ξ) ∈ C∞(IRn \ 0), m order homogeneous in ξ; a ∈
H

n/2+ε
τ,σ , ε > 0 and ε \∈ IN. Then

R = h(D) ◦ Ta −
∑

|α|<[ε]

1
α!

TDαa ◦ hα(D) ∈ Lm−[ε]
τ,σ ,

where hα(ξ) = ∂α
ξ h(ξ), and for suitable M , we have

‖R‖L(Hs
τ,σ,H

s−m+[ε]
τ,σ )

≤ C‖a‖
H

n/2+ε
τ,σ

‖h̃‖C2M (Sn−1), h̃(ω) = h

(
ξ

|ξ|
)

.
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Proof. We have supp ̂Sq(a)uq ⊂ C ′q, u =
∑

uq ∈ Hs
τ,σ. Take C ′q ⊂ C ′′q ,

and a function φ0 ∈ C∞0 (C ′′0 ), satisfying φ0 = 1 on C ′0 and φ0 = 0 near ξ = 0.
Let h1(ξ) = h(ξ)φ0(ξ), then h1(ξ) ∈ S and we know if ξ ∈ C ′q

h(ξ) = 2mqh(2−qξ) = 2mqh1(2−qξ).

Taking a function r(x), satisfying r̂(ξ) = h1(ξ), then r ∈ S, and for M >
n + ε/2, we obtain easily

‖(1 + |x|ε)r(x)‖L1(IRn) ≤ C‖h̃‖C2M (Sn−1).(5.12)

For u ∈ Hs
τ,σ, we have

Ru =
∑

q

2mq


h1(2−qD)Sq(a)−

∑

|α|<[ε]

1
α!

Sq(Dαa)hα
1 (2−qD)


 uq,

where hα
1 (ξ) = ∂α

ξ h1(ξ) is Fourier transformation of (−ix)αr(x). Thus we
obtain, by using convolution formula, that

Ru =
∑

q

2mq

∫
r(t)


Sq(a)(x− 2−qt)

−
∑

|α|<[ε]

1
α!

Sq(Dαa)(x)(−i2−qt)α


 uq(x− 2−qt)dt

=
∑

q

fq.

Observe supp f̂q ⊂ C ′q, and apply Taylor formula to Sq(a), with remainder

expressed in terms of DαSq(a) ∈ H
n/2+ε0
τ,σ , for |α| = [ε], ε = [ε] + ε0. We have

by using Hausdorff-Young inequality and Theorem 2.5

‖fq‖L2
τ,σ
≤ C2mq‖〈D〉[ε]Sq(a)‖

H
n/2+ε0
τ,σ

2−q[ε]‖|t|[ε]r(t)‖L1‖uq‖L2
τ,σ

,

i.e. from the estimate (5.12)

‖fq‖L2
τ,σ
≤ C2mq−[ε]q‖〈D〉[ε]Sq(a)‖

H
n/2+ε0
τ,σ

‖h̃‖C2M (Sn−1)‖uq‖L2
τ,σ

≤ Ccq‖a‖H
n/2+ε
τ,σ

‖h̃‖C2M (Sn−1)2
q[m−([ε]+s)],

where {cq} ∈ l2, ‖{cq}‖l2 ≤ C‖u‖Hs
τ,σ

. Thus Lemma 5.2 is proved.

The proof of Theorem 5.2 is as follows:
Let lk(x, ξ) =

∑
j akj(x)hkj(ξ), k = 1, 2, the spherical harmonic decom-

position of lk, then

Tl1 ◦ Tl2 =
∑

j,i

Ta1j ◦ h1j(D) ◦ Ta2i ◦ h2i(D) =
∑

j,i

Aj,i.
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From Lemma 5.2, we know

Aj,i = Ta1j


 ∑

|α|<[ε]

1
α!

TDαa2j h
α
1j(D)h2i(D)


 + Ta1j Rjih2i(D),

where Ta1j
Rjih2i ∈ Lm1+m2−[ε]

τ,σ , and we can easily see that

‖Ta1j Rjih2i‖L(Hs
τ,σ,H

s−(m1+m2−[ε])
τ,σ )

≤ C‖a1j‖H
n/2+ε
τ,σ

‖a2i‖H
n/2+ε
τ,σ

‖h̃1j‖C2M (Sn−1)‖h̃2i‖C2M (Sn−1).

Also from Theorem 4.3, we have

Ta1j
TDαa2i

hα
1j(D)h2i(D) = Ta1jDαa2i

hα
1j(D)h2i(D) + Rα

jih
α
1j(D)h2i(D),

where Rα
ji ∈ L−ε2

τ,σ (∀ε2 ∈ (0, ε− |α|)), and

‖Rα
ji‖L(Hs

τ,σ,H
s+ε2
τ,σ )

≤ C‖a1j‖H
n/2+ε
τ,σ

‖Dαa2i‖H
n/2+ε−|α|
τ,σ

,

i.e. Rα
jih

α
1j(D)h2i(D) ∈ Lm1+m2−ε1

τ,σ , ∀ε1 ∈ (0, ε), and

‖Rα
jih

α
1j(D)h2i(D)‖≤C‖a1j‖H

n/2+ε
τ,σ

‖a2i‖H
n/2+ε
τ,σ

‖h̃1j‖C2M (Sn−1)‖h̃2i‖C2M (Sn−1).

Hence Theorem 5.2 is proved, and we have obtained, taking ε1 = [ε] < ε, that

‖Tl1 ◦ Tl2 − Tl1#l2‖L(Hs
τ,σ,H

s−(m1+m2−[ε])
τ,σ )

≤ C
∑

j,i

‖a1j‖H
n/2+ε
τ,σ

‖a2i‖H
n/2+ε
τ,σ

‖h̃1j‖C2M (Sn−1)‖h̃2i‖C2M (Sn−1).

Theorem 5.3. Let l(x, ξ) ∈ lm,ε
τ,σ , ε > 0, and ε \∈ IN. Denote

l∗(x, ξ) =
∑

|α|<[ε]

1
α!

∂α
ξ Dα

x l̄(x, ξ).

Then T ∗l − Tl∗ ∈ Lm−[ε]
τ,σ , and T ∗l : Hs

τ,σ → Hs−m
τ,σ .

Proof. Let l(x, ξ) =
∑

j aj(x)hj(ξ), u ∈ Hs
τ,σ, v ∈ H

m−s−[ε]
−τ,σ ,

〈(T ∗l − Tl∗)u, v〉 =〈T ∗l u, v〉 − 〈Tl∗u, v〉
=〈u, Tlv〉 − 〈Tl∗u, u〉.

Secondly Tlv =
∑

j Taj ◦ hj(D)v, 〈u, Tlv〉 =
∑

j〈T ∗aj
u, hj(D)v〉.

From Theorem 4.4, we have

〈u, Tlv〉 =
∑

j

[〈Tāj u, hj(D)v〉+ 〈Rju, hj(D)v〉],
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where Rj ∈ L−[ε]
τ,σ , and

‖Rju‖H
s+[ε]
τ,σ

≤ C‖aj‖H
n/2+ε
τ,σ

‖u‖Hs
τ,σ

.

Then we have

|〈Rju, hj(D)v〉| ≤ C‖aj‖H
n/2+ε
τ,σ

‖u‖Hs
τ,σ
‖hj(D)v‖

H
−s−[ε]
−τ,σ

≤ C‖aj‖H
n/2+ε
τ,σ

‖h̃j‖C2M (Sn−1)‖u‖Hs
τ,σ
‖v‖

H
m−s−[ε]
−τ,σ

.

Next from Lemma 5.2 we have

〈Tāj u, hj(D)v〉 = 〈h̄j(D)Tāj u, v〉
=

∑

|α|<[ε]

1
α!
〈TDαāj h̄

α
j (D)u, v〉+ 〈R′ju, v〉,

where R′j ∈ Lm−[ε]
τ,σ , and

|〈R′ju, v〉| ≤ C‖aj‖H
n/2+ε
τ,σ

‖h̃j‖C2M (Sn−1)‖u‖Hs
τ,σ
‖v‖

H
m−s−[ε]
−τ,σ

.

Thus we obtain

〈T ∗l u, v〉 = 〈Tl∗u, v〉+
∑

j

[〈Rju, hj(D)v〉+ 〈R′ju, v〉],

and
∑

j

|〈Rju, hj(D)v〉+ 〈R′ju, v〉|

≤
∑

j

C‖aj‖H
n/2+ε
τ,σ

‖h̃j‖C2M (Sn−1)‖u‖Hs
τ,σ
‖v‖

H
m−s−[ε]
−τ,σ

.

Since ‖aj‖H
n/2+ε
τ,σ

is rapidly decreasing in j, ‖h̃j‖C2M (Sn−1) is temperedly in-

creasing in j, we have actually proved that T ∗l −Tl∗ ∈ Lm−[ε]
τ,σ and T ∗l : Hs

τ,σ →
Hs−m

τ,σ .

For l ∈ lm,ε
τ,σ , ε > m, we may use standard way to define a pseudo-

differential operator l(x,D), cf. Remark 3.1. Concerning what is the relation
between l(x, D) and Tl, we have the following result:

Theorem 5.4. If l ∈ lm,ε
τ,σ , ε > m, then for all s > m− ε we have

l(x,D)− Tl ∈ L(Hs
τ,σ,Hs′

τ,σ),(5.13)

where s′ < min{ε, s + ε−m}.
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Proof. Without loss of generality, let l(x, ξ) = a(x)h(ξ). For u ∈ Hs
τ,σ,

we have v = h(D)u ∈ Hs−m
τ,σ , and Tl = Ta ◦ h(D)u = Tav. Thus

Tlu− l(x,D)u = Tav − av = −Tva−R(a, v),

where av = Tav + Tva + R(a, v), a ∈ H
n/2+ε
τ,σ .

Since s + ε − m > 0, we know R(a, v) ∈ Hs−m+ε1
τ,σ , for any ε1 ∈ (m, ε).

Also Tva =
∑

q Sq(v)aq =
∑

fq, where supp f̂q ⊂ supp âq + supp(Ŝq(v)) ⊂ C ′q,
and

‖fq‖L2
τ,σ
≤ ‖aq‖H

n/2+ε′
τ,σ

‖Sq(v)‖L2
τ,σ

(for ∀ε′ ∈ (0, ε))

≤ ‖aq‖H
n/2+ε′
τ,σ

∑

p≤q−N1

‖vp‖L2
τ,σ

≤ ‖aq‖L2
τ,σ

2q(n/2+ε′)
∑

p≤q−N1

cp2−p(s−m)

≤ c′q2
−q(ε−ε′)

∑

p≤q−N1

cp2−p(s−m).

If s > m, then
∑

p cp2−p(s−m) ≤ C < ∞, which implies Tva ∈ Hε−ε′
τ,σ for any

ε′ ∈ (0, ε). If s < m, then ‖fq‖L2
τ,σ
≤ c′q2−q(ε−ε′)C2−q(s−m) = c′′q 2−q(s+ε−ε′−m),

i.e. Tva ∈ Hs+ε−ε′−m
τ,σ for any ε′ ∈ (0, ε). If s = m, then we have ‖fq‖L2

τ,σ
≤

Cc′q2
−q(ε−ε′)‖v‖L2

τ,σ
, i.e. Tva ∈ Hε−ε′

τ,σ for any ε′ ∈ (0, ε). Therefore we have
proved Tva ∈ Hs′

τ,σ for s′ < min{ε, s + ε−m}. Theorem 5.4 is proved.

Since
⋂

ε lm,ε
τ,σ ⊂ Sm

τ,σ, from Theorem 5.4, Corollaries 3.1 and 3.2 we get:

Corollary 5.1. If l ∈ lm,ε
τ,σ for all ε > 0, then l(x, D) − Tl is

“regularizing” operator, i.e. l(x,D) − Tl ∈ L(Hs
τ,σ,Hs′

τ,σ) for any s and s′.
Thus u ∈ Hs′

τ,σ(x0) implies Tlu ∈ Hs′−m
τ,σ (x0), and u ∈ Hs′

τ,σ(x0, ξ
0) implies

Tlu ∈ Hs′−m
τ,σ (x0, ξ

0).

Applying further Corollary 3.4, we deduce

Corollary 5.2. Let l ∈ lm,ε
τ,σ , ε > m, ε \∈ IN. If u ∈ Hs

τ,σ, then u ∈
Hs′

τ,σ(x0, ξ
0) implies Tlu ∈ Ht

τ,σ(x0, ξ
0) for t = min{s + [ε]−m, s′ −m}.

Theorem 5.5. Let l ∈ lm,ε
τ,σ , ε > 0, then for the symbol σ(Tl) of Tl, we

have

‖∂α
ξ ∂β

xσ(Tl)‖L2
τ,σ
≤ Cαβ(1 + |ξ|)m−|α|+|β|−n/2−ε,(5.14)

that is σ(Tl) ∈ S
m−n/2−ε
τ,σ,1,1 , cf. Definition 3.4.
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Proof. Without loss of generality, we take l(x, ξ) = a(x)h(ξ), a ∈ H
n/2+ε
τ,σ

and order of h is m. Then

σ(Tl)(x, ξ) =
∑

q

Sq(l(x, ξ))ϕ(2−qξ)

=
∑

q

Sq(a)(x)h(ξ)ϕ(2−qξ).

Thus

∂α
ξ ∂β

x σ(Tl)(x, ξ) =
∑

q

∂β
x Sq(a)(x)∂α

ξ (h(ξ)ϕ(2−qξ)),

‖∂α
ξ ∂β

xσ(Tl)(·, ξ)‖L2
τ,σ
≤

∑
q

‖∂β
x Sq(a)‖L2

τ,σ
|∂α

ξ h(ξ)ϕ(2−qξ)|

≤
∑

q

∑

p≤q−N1

‖∂β
xap‖L2

τ,σ
Cα

∑
α1+α2=α

|h(α1)

(
ξ

|ξ|
)
||ξ|m−|α1|2−q|α2||ϕ(α2)(2−qξ)|.

Then, from Theorem 2.1,

‖∂α
ξ ∂β

x σ(Tl)(·, ξ)‖L2
τ,σ

≤ C̃α

∑
q

cqβ2q[|β|−(n/2+ε)]‖h̃‖Cα(Sn−1)2q(m−|α|)|ϕ(α2)(2−qξ)|

≤ C̃ ′α
∑

q

cqβ2q(m−|α|+|β|−n/2−ε)|ϕ(2−qξ)|,

where {cqβ}q ∈ l2. Since on supp ϕ(2−qξ), |ξ| ≈ 2q, then the estimate above
implies that (5.14) holds.

Next, let Ω ⊂ IRn be an open subset, m ∈ IR, ε > 0, and ε \∈ IN, we define
Gevrey paradifferential symbol class Σm,ε

τ,σ (Ω) as follows:

Definition 5.3. We call Γ(x, ξ) ∈ Σm,ε
τ,σ (Ω), if

Γ(x, ξ) = Γm(x, ξ) + Γm−1(x, ξ) + ... + Γm−[ε](x, ξ),(5.15)

where Γm−k(x, ξ) is C∞(IRn \ 0) and m − k order homogeneous in ξ, and is
H

n/2+ε−k
τ,σ,loc (Ω) in x for ξ uniformly.

If Γk ∈ Σmk,ε
τ,σ (Ω), (k = 1, 2), we define Γ1#Γ2 ∈ Σm1+m2,ε

τ,σ (Ω) as

Γ1#Γ2 =
∑

|α|+k1+k2<[ε]

1
α!

∂α
ξ (Γ1

m1−k1
)Dα

x (Γ2
m2−k2

).(5.16)

If Γ ∈ Σm,ε
τ,σ (Ω), we define Γ∗ ∈ Σm,ε

τ,σ (Ω) as

Γ∗ =
∑

|α|+k<[ε]

1
α!

∂α
ξ Dα

x Γ̄m−k.(5.17)
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For a compact set K ⊂⊂ Ω we take χ ∈ Gσ′
0 (Ω), 1 < σ′ < σ, and χ ≡ 1 near

K. We know for Γ ∈ Σm,ε
τ,σ (Ω), χΓ = χΓm + χΓm−1 + ... + χΓm−[ε], χΓm−k ∈

lm−k,ε−k
τ,σ , for 0 ≤ k ≤ [ε]. Thus we could define TχΓ as TχΓ =

∑[ε]
k=0 TχΓm−k

.
We denote Hs

τ,σ,K = {u | u ∈ Hs
τ,σ, supp u ⊂ K}, where K ⊂⊂ Ω is

compact; Hs
τ,σ,comp.(Ω) = ∪KHs

τ,σ,K = Hs
τ,σ,loc(Ω) ∩ E ′σ. Then we have

Definition 5.4. We say L : H−∞
τ,σ,loc(Ω) → H−∞

τ,σ,loc(Ω), with proper sup-
port, is a m-order ε-class Gevrey paradifferential operator defined on Ω, if there
exists Γ ∈ Σm,ε

τ,σ (Ω) such that for any compact K ⊂⊂ Ω and a cut-off function
χ ∈ Gσ′

0 (Ω), 1 < σ′ < σ, χ ≡ 1 near K, we have the mapping

L− χTχΓ : Hs
τ,σ,K → Hs−m+[ε]

τ,σ,comp.(Ω)

is continuous for any s ∈ IR. We shall use Op{Σm,ε
τ,σ (Ω)} as the notation of such

operator class, and say Γ is the symbol of L, denoted also by σ(L).

Observe if L ∈ Op{Σm,ε
τ,σ (Ω)}, then for any s ∈ IR, we have

L : Hs
τ,σ,loc(Ω) → Hs−m

τ,σ,loc(Ω).(5.18)

We also have the following results, the proof being similar to that in Bony [4],
we shall leave it to readers.

Theorem 5.6. (a) L ∈ Op{Σm,ε
τ,σ (Ω)} has an unique symbol σ(L) ∈

Σm,ε
τ,σ (Ω), and mapping σ : Op{Σm,ε

τ,σ (Ω)} → Σm,ε
τ,σ (Ω) is surjective; Ker(σ) =

{L | L : Hs
τ,σ,loc(Ω) → H

s−m+[ε]
τ,σ,loc (Ω)}.

(b) If Lj ∈ Op{Σmj ,ε
τ,σ (Ω)} (j = 1, 2), then L1 ◦ L2 ∈ Op{Σm1+m2,ε

τ,σ (Ω)},
σ(L1 ◦ L2) = σ(L1)#σ(L2).
(c) If L ∈ Op{Σm,ε

τ,σ (Ω)}, then L∗ ∈ Op{Σm,ε
τ,σ (Ω)}, and σ(L∗) = σ(L)∗.

(d) If l(x, ξ) ∼ ∑∞
j=0 lm−j(x, ξ) ∈ Sm

τ,σ,cl(Ω), then for any fixed h ∈ Z+,

lh(x, ξ) =
∑h

j=0 lm−j(x, ξ) ∈ Σm,ε
τ,σ (Ω) for [ε] = h. The pseudo-differential

operator l(x,D) can be regarded as m-order ε-class Gevrey paradifferential op-
erator in Ω, with symbol lh(x, ξ) in the sense of Definition 5.4.

We may be also able to construct parametrix of a Gevrey paradifferential
operator, i.e.

Theorem 5.7. Let Γ ∈ Σm,ε
τ,σ (Ω), Γ′ ∈ Σm′,ε

τ,σ (Ω), and Γm(x, ξ) 6= 0 on
a neighborhood of suppΓ′. Then there exist Γk ∈ Σm′−m,ε

τ,σ (Ω), k = 1, 2, such
that

Γ#Γ1 = Γ2#Γ = Γ′.

6. Application

Let us consider the following nonlinear equation

F [u] = F (x, u, · · · , ∂βu, · · · )|β|≤m = 0,(6.1)
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where F is of class Gσ′ , σ′ < σ, in x near x0 ∈ Ω, entire function with respect
to other variables, cf. the hypotheses of Corollary 4.2.

Let u ∈ Hs
τ,σ(x0), s > m + n/2, be a local solution of (6.1). Then we are

able to introduce the symbol of F , near x0, as

p(x, ξ) =
∑

|β|≤m

Fβ(iξ)β , Fβ =
∂F

∂uβ
(x, u, · · · , ∂αu, · · · )|α|≤m, uβ = ∂βu,

(6.2)

and the principal symbol of F is defined as

pm(x, ξ) =
∑

|β|=m

Fβ(iξ)β .(6.3)

Theorem 6.1. Under the preceding assumptions, we have u ∈
Ht

τ,σ(x0, ξ
0) for all ξ0 6= 0 satisfying pm(x0, ξ

0) 6= 0, and s < t < 2s − λ
with λ = m + n/2.

Proof. Observe first that Fβ ∈ Hs−m
τ,σ (x0) in view of Corollary 4.2. There-

fore p(x, ξ) ∈ Σm,ε
τ,σ (V ) for a neighborhood V of x0, with ε = s − m − n/2.

Applying the paralinearization result in Corollary 4.2, we may write

F [u] =
∑

|β|≤m

TFβ
∂βu + v,

that is,
F [u] = Tpu + v,

where v ∈ Hr
τ,σ(x0) for r < 2s− 2m− n/2. At this moment we are reduced to

treat the paradifferential equation

Tpu = −v.(6.4)

Assume pm(x, ξ) 6= 0 in the conic neighborhood Λ of (x0, ξ
0). To prove u ∈

Ht
τ,σ(x0, ξ

0) we fix l(x, ξ) ∈ S0
τ,σ,cl(V ) with l(x, ξ) ∼ l0(x, ξ) homogeneous of

order 0 in ξ and supported in Λ, and l0(x, ξ) = 1 in a smaller conic neighborhood
Λ′ of (x0, ξ

0). In view of Corollary 3.4, it will be sufficient to check l(x,D)u ∈
Ht

τ,σ(x0, ξ
0).

Applying Theorem 5.6 (d), we may regard l(x, D) as paradifferential
operator with symbol l0 ∈ Σ0,ε

τ,σ(V ). We then apply Theorem 5.7 and find
q ∈ Σ−m,ε

τ,σ (V ) such that q#p = l0. We have from Theorem 5.6 (b) Tq ◦ Tp ∈
Op{Σ0,ε

τ,σ(V )} with symbol l0 and then, from Theorem 5.6 (a)

Tq ◦ Tpu = l(x,D)u + Ru,

where R ∈ L−[ε]
τ,σ . Therefore from (6.4)

l(x,D)u = −Ru− Tqv,



30 Chen Hua and Luigi Rodino

which gives the conclusion.
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