The intersection pairings on the configuration spaces of points in the projective line

By

Hiroshi Konno*

Abstract

We compute the intersection pairings on the configuration spaces of points in \mathbb{CP}^1 with arbitrary weight from an algebro-geometric point of view. We also derive their generating function, which was originally proved by Takakura based on symplectic technique and representation theory.

1. Introduction

Let $m \geq 3$ be an integer and $\alpha = (\alpha_1, \ldots, \alpha_m) \in (\mathbf{R}_{>0})^m$ be an ordered set of positive real numbers. Let $M(\alpha)$ be the space of stable configurations of m points in \mathbb{CP}^1 with weight α . This space is constructed as an algebrogeometric quotient of $(\mathbb{CP}^1)^m$ by $PSL(2; \mathbb{C})$. On the other hand, $M(\alpha)$ can be also constructed as a symplectic quotient of $(\mathbb{CP}^1)^m$ by SO(3). Many authors studied its topology and geometry from both algebro-geometric and symplectic points of view. For example, the Betti numbers [Ki1], the rational cohomology ring [B], [Ki2], and the intersection pairings [KT], [M] are computed in the case $\alpha = (1, \ldots, 1)$ for odd m. For general α , the Betti numbers [KI], [HK] and the integral cohomology ring [HK] are also computed.

Recently Takakura computed the intersection pairings on $M(\alpha)$ for general α [T]. He also gave their generating function by applying the 'quantization commutes with reduction' theorem due to [GS] and representation theory. One may also compute them by other symplectic technique due to [JK], [M].

In this paper we compute the intersection pairings on $M(\alpha)$ from an algebro-geometric point of view. We do it by using the information on α -unstable points. We also derive their generating function, which was originally proved in [T] from a symplectic point of view. Our result is enough to give all Chern numbers and the symplectic volume of $M(\alpha)$ as pointed out in [T]. Our method can be considered as a generalization of the method due to [KT],

¹⁹⁹¹ Mathematics Subject Classification(s). Primary 14L30; Secondary 14F45. Communicated by Prof. K. Ueno, March 17, 2000

^{*}Supported in part by Grant-in-Aid for Scientific Research (C) (No. 09640124), the Ministry of Education, Science, Sports and Calture, Japan.

and it is quite simple and geometric in a sense that it enables us to understand natural cycles in $M(\alpha)$ and their intersections directly.

In Section 2 we discuss basic properties of $M(\alpha)$, especially natural cycles and their intersections. In Section 3 we compute the intersection pairings and derive their generating function.

The author would like to thank Y. Kamiyama, T. Takakura and H. Nishi for explaining their works and stimulating discussions.

2. The configuration spaces of points in CP¹

In this section we fix our notations and discuss basic properties of the configuration spaces of points in \mathbf{CP}^1 .

Let $m \geq 3$ be an integer and $\alpha = (\alpha_1, \ldots, \alpha_m) \in (\mathbf{R}_{>0})^m$ be an ordered set of positive real numbers. We recall the notion of α -stability for the configuration of points in \mathbb{CP}^1 due to [DM] as follows;

Definition. $(x_1, \ldots, x_m) \in (\mathbf{CP}^1)^m$ is α -stable if and only if

$$\sum_{i=1}^{m} \delta_y(x_i) \alpha_i < \frac{1}{2} \sum_{i=1}^{m} \alpha_i \quad \text{for any } y \in \mathbf{CP}^1,$$

where $\delta_y \colon \mathbf{CP}^1 \to \mathbf{R}$ is defined by

$$\delta_y(x) = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{if } x \neq y. \end{cases}$$

Moreover we say that α is generic if $\sum_{i=1}^{m} \epsilon(i) \alpha_i \neq 0$ for any $\epsilon \colon \{1, \ldots, m\} \rightarrow \{\pm 1\}$.

Suppose that α is generic. We define the configuration space $M(\alpha)$ with weight α by

$$M(\alpha) = \{(x_1, \dots, x_m) \in (\mathbf{CP}^1)^m | \alpha \text{-stable} \} / PSL(2; \mathbf{C}),$$

where $PSL(2; \mathbf{C})$ acts on $(\mathbf{CP}^1)^m$ diagonally. It is well known that $M(\alpha)$ is a compact complex manifold of dimension m - 3 [DM]. Throughout this paper we assume that α is generic.

Let $p_i: (\mathbf{CP}^1)^m \to \mathbf{CP}^1$ be the projection to the *i*-th component for $i = 1, \ldots, m$. Let $H \to \mathbf{CP}^1$ be the hyperplane bundle. The action of $PSL(2; \mathbf{C})$ on \mathbf{CP}^1 cannot lift to the action on H, but the action on $(\mathbf{CP}^1)^m$ lifts to the action on $p_i^*H \otimes p_j^*H$ holomorphically. This induces the holomorphic line bundles $L_{i,j}$ on $M(\alpha)$. We set

$$z_i = c_1(L_{i,i}) \in H^2(M(\alpha); \mathbf{Z})$$
 for $i = 1, ..., m$.

Then we have

$$\frac{z_i + z_j}{2} = c_1(L_{i,j}) \in H^2(M(\alpha); \mathbf{Z}).$$

Here we recall the observation due to [KT].

The intersection pairings on the configuration spaces of points in the projective line 279

Lemma 2.1. The Poincaré dual of $(z_i + z_j)/2$ is represented by the divisor

$$D_{i,j} = \{ [x_1, \dots, x_m] \in M(\alpha) | x_i = x_j \} \quad for \quad i \neq j.$$

Next we discuss the generators of the cohomology ring of $M(\alpha)$ and their relations. It is well known that $H^*(M(\alpha); \mathbf{R})$ is generated by z_1, \ldots, z_m as a ring and that they satisfy the relations [B], [Ki2];

(1)
$$z_1^2 = z_2^2 = \dots = z_m^2$$

To see other relations, we introduce the following notations. Let \mathcal{L} be a set of subsets of $\{1, \ldots, m\}$, which is defined by

$$L \in \mathcal{L}$$
 if and only if $\sum_{i \in L} \alpha_i > \frac{1}{2} \sum_{i=1}^m \alpha_i$.

Then we have

(2)
$$\prod_{i \in L \setminus \{j\}} \frac{z_i + z_j}{2} = 0 \quad \text{for} \quad L \in \mathcal{L}, \quad j \in L.$$

In fact, thanks to Lemma 2.1, the Poincaré dual of the left hand side of (2) is the homology class represented by $\bigcap_{i \in L \setminus \{j\}} D_{i,j}$, which is empty because of α -stability. The relation (1) can be also proved similarly.

We rewrite the above relations with respect to another basis. We set

$$v_i = \frac{z_i + z_m}{2}$$
 for $i = 1, ..., m$.

Then the relation (1) is written as

(3)
$$v_i^2 - v_i v_m = 0$$
 for $i = 1, \dots, m-1$.

If $L \in \mathcal{L}$, $m \in L$, then the relation (2) is written as

(4)
$$\prod_{i \in L \setminus \{m\}} v_i = 0 \quad \text{for} \quad L \in \mathcal{L}, \quad m \in L .$$

Next we consider the relation (2) in the case $L \in \mathcal{L}$, $m \notin L$. If $j \in L$, since $(z_i + z_j)/2 = v_i + v_j - v_m$, then we have

$$0 = \prod_{i \in L \setminus \{j\}} (v_i + v_j - v_m) = \sum_{S' \subset L \setminus \{j\}} \left(\prod_{i \in S'} v_i\right) (v_j - v_m)^{\#(L \setminus S') - 1} .$$

Since $v_j(v_j - v_m) = 0$, we have

$$0 = \prod_{i \in L \setminus \{j\}} v_i + \sum_{\substack{S' \not\subseteq L \setminus \{j\} \\ i \in S'}} \left(\prod_{i \in S'} v_i \right) \{ v_j (-v_m)^{\#(L \setminus S') - 2} + (-v_m)^{\#(L \setminus S') - 1} \}$$
$$= \sum_{\substack{S \not\subseteq L \\ i \in S}} \left(\prod_{i \in S} v_i \right) (-v_m)^{\#(L \setminus S) - 1} .$$

Thus the relation (2) in this case turns out to be

(5)
$$\sum_{\substack{S \subseteq L \\ \neq J}} \left(\prod_{i \in S} v_i \right) (-v_m)^{\#(L \setminus S) - 1} = 0 \quad \text{for} \quad L \in \mathcal{L}, \quad m \notin L.$$

Here we should mention the following result due to [HK], although we don't use it in this paper.

Theorem 2.2. Suppose that α is generic. Then we have

$$H^*(M(\alpha); \mathbf{Z}) \cong \mathbf{Z}[v_1, \dots, v_m]/I$$
 as a ring,

where the ideal I is generated by all polynomials in the left hand side of (3), (4) and (5).

Since in [HK] the relations (3), (4) and (5) are derived in a totally different way from ours, we explain their geometric meaning precicely here.

3. The intersection pairings

In this section we compute the intersection pairings on the configuration space $M(\alpha)$. To state our result, we introduce the following notations. Let S be a set of subsets of $\{1, \ldots, m\}$, which is defined by

$$S \in \mathcal{S}$$
 if and only if $\sum_{i \in S} \alpha_i < \frac{1}{2} \sum_{i=1}^m \alpha_i$.

Then our result is described as follows.

Theorem 3.1. Suppose that $\alpha \in (\mathbf{R}_{>0})^m$ is generic. Let $(d_1, \ldots, d_m) \in (\mathbf{Z}_{\geq 0})^m$ be an ordered set of non-negative integers with $d_1 + \cdots + d_m = m - 3$. Then we have

$$\int_{M(\alpha)} v_1^{d_1} \dots v_m^{d_m} = (-1)^m \sum_{S \subset T \in \mathcal{S}} (-1)^{\#T},$$

where $S = \{i | d_i > 0\} \cup \{m\}$ and #T is the number of elements of T.

Proof. By the relation (3), we have

$$\int_{M(\alpha)} v_1^{d_1} \dots v_m^{d_m} = \int_{M(\alpha)} \left(\prod_{i \in S \setminus \{m\}} v_i \right) v_m^{m-2-\#S}.$$

So we have to show

(6)
$$\int_{M(\alpha)} \left(\prod_{i \in S \setminus \{m\}} v_i\right) v_m^{m-2-\#S} = (-1)^m \sum_{S \subset T \in \mathcal{S}} (-1)^{\#T}.$$

280

We prove (6) by induction on m. First of all we show it in the case m = 3. Since $S = \{3\}$ in this case, (6) is equivalent to

$$#M(\alpha) = -\sum_{3\in T\in\mathcal{S}} (-1)^{\#T}$$

It is easy to see that both hand sides are equal to 1 if and only if $|\alpha_1 - \alpha_2| < \alpha_3 < \alpha_1 + \alpha_2$, and 0 otherwise. So we showed (6) in the case m = 3.

Next we show (6) for general m. First we show it in the case $\{m\} \subseteq S$. We may assume $m - 1 \in S$. If we set

$$\beta = (\alpha_1, \ldots, \alpha_{m-2}, \alpha_{m-1} + \alpha_m) \in (\mathbf{R}_{>0})^{m-1},$$

then β is generic. Moreover the Poincaré dual of v_{m-1} is represented by the divisor $D_{m-1,m}$, which is isomorphic to $M(\beta)$. Therefore we have

$$\int_{M(\alpha)} \left(\prod_{i \in S \setminus \{m\}} v_i\right) v_m^{m-2-\#S} = \int_{M(\beta)} \left(\prod_{i \in S' \setminus \{m\}} v_i\right) v_m^{m-3-\#S'}$$

where $S' = S \setminus \{m - 1\}$. Since we can compute the right hand side by the assumption of the induction, we finish the proof in the case $\{m\} \subsetneq S$.

Next we show (6) in the case $S = \{m\}$, that is, we show

(7)
$$\int_{M(\alpha)} v_m^{m-3} = (-1)^m \sum_{m \in T \in \mathcal{S}} (-1)^{\#T} \quad \text{for} \quad m \ge 4.$$

Suppose that $\{i, m\} \in \mathcal{L}$ for any i = 1, ..., m - 1. By the relation (4) we have

$$z_1=\cdots=z_{m-1}=-z_m=-v_m.$$

Therefore we have

$$\int_{M(\alpha)} v_m^{m-3} = (-1)^{m-3} \int_{M(\alpha)} \prod_{i=1}^{m-3} \frac{z_i + z_{m-2}}{2} = (-1)^{m-3} \# M(\gamma),$$

where $\gamma = (\alpha_1 + \cdots + \alpha_{m-2}, \alpha_{m-1}, \alpha_m) \in (\mathbf{R}_{>0})^3$. In the second equality we used Lemma 2.1 repeatedly. Therefore we see that both hand sides of (7) is equal to $(-1)^{m+1}$ if and only if $\{m\} \in \mathcal{S}$, and 0 otherwise. Thus we finish the proof of (7) in this case.

Finally we prove (7) in the case that there exists $j \in \{1, \ldots, m-1\}$ such that $\{j, m\} \in S$. We may assume $\{m-1, m\} \in S$. If we set $L' = \{1, \ldots, m-2\}$, then $L' \in \mathcal{L}$. Therefore, by the relation (5) for L', we have

$$\int_{M(\alpha)} (-v_m)^{m-3} = -\sum_{\emptyset \neq S' \subsetneqq L'} \int_{M(\alpha)} \left(\prod_{i \in S'} v_i\right) (-v_m)^{m-3-\#S'}.$$

If we set $L = L' \cup \{m\}$ and $S = S' \cup \{m\}$, then we have

$$\int_{M(\alpha)} v_m^{m-3} = \sum_{\{m\} \subsetneqq S \gneqq L} (-1)^{\#S} \int_{M(\alpha)} \left(\prod_{i \in S \setminus \{m\}} v_i\right) v_m^{m-2-\#S}.$$

Since we can compute the right hand side by the above argument, we have

$$\begin{split} \int_{M(\alpha)} v_m^{m-3} &= (-1)^m \sum_{\{m\} \subsetneqq S \subsetneqq L} (-1)^{\#S} \sum_{S \subset T \in \mathcal{S}} (-1)^{\#T} \\ &= (-1)^m \sum_{m \in T \in \mathcal{S}'} (-1)^{\#T} \sum_{\{m\} \subsetneqq S \subset (T \cap L)} (-1)^{\#S}, \end{split}$$

where $S' = S \setminus \{\{m\}, \{m-1, m\}\}\)$. Since we have

$$\sum_{\{m\} \subsetneq S \subset (T \cap L)} (-1)^{\#S} = 1 \quad \text{for} \quad T \in \mathcal{S}', \quad m \in T,$$

we finish the proof of (7) in this case. Thus we completed the proof of Theorem 3.1. $\hfill \Box$

We can derive the generating function of the intersection pairings from Theorem 3.1 as follows.

Theorem 3.2. Suppose that α is generic. Then we have

(8)
$$\int_{M(\alpha)} \exp(t_1 v_1 + \dots + t_m v_m) = \frac{(-1)^m}{(m-3)!} \sum_{m \in T \in \mathcal{S}} (-1)^{\#T} \left(\sum_{i \in T} t_i\right)^{m-3}.$$

Proof. It is obvious that both hand sides of (8) are equal to the generating function of the intersection pairings

$$F(t_1, \dots, t_m) = \sum_{d_1 + \dots + d_m = m-3} \frac{t_1^{d_1} \dots t_m^{d_m}}{d_1! \dots d_m!} \int_{M(\alpha)} v_1^{d_1} \dots v_m^{d_m},$$

where d_1, \ldots, d_m are non-negative integers.

If we set $(t_1, \ldots, t_m) = (2s_1, \ldots, 2s_{m-1}, s_m - s_1 - \cdots - s_{m-1})$, then (8) turns out to be

$$\int_{M(\alpha)} \exp(s_1 z_1 + \dots + s_m z_m) = \frac{-1}{(m-3)!} \sum_{m \in T \in \mathcal{S}} (-1)^{\#T} \left(\sum_{i=1}^m s_i - 2 \sum_{i \in T} s_i \right)^{m-3}.$$

Since it is easy to see that

$$\sum_{m \in T \in \mathcal{S}} (-1)^{\#T} \left(\sum_{i=1}^m s_i - 2\sum_{i \in T} s_i \right)^{m-3} - \sum_{m \notin T \in \mathcal{S}} (-1)^{\#T} \left(\sum_{i=1}^m s_i - 2\sum_{i \in T} s_i \right)^{m-3} = \sum_{m \in T} (-1)^{\#T} \left(\sum_{i=1}^m s_i - 2\sum_{i \in T} s_i \right)^{m-3} = 0,$$

282

we reprove the following Takakura's formula [T], which gives the generating function of the intersection pairings with respect to the basis $\{z_1, \ldots, z_m\}$.

Corollary 3.3. Suppose that α is generic. Then we have

$$\int_{M(\alpha)} \exp(s_1 z_1 + \dots + s_m z_m) = \frac{-1}{2(m-3)!} \sum_{T \in \mathcal{S}} (-1)^{\#T} \left(\sum_{i=1}^m s_i - 2 \sum_{i \in T} s_i \right)^{m-3}$$

Takakura showed the above formula by symplectic technique, more precisely, the 'quantization commutes with reduction' theorem due to [GS] and representation theory. Here we gave an algebro-geometric proof of his formula.

Finally let us discuss the following case as an example.

Corollary 3.4. Let $\alpha_0 = (1, \ldots, 1) \in (\mathbf{R}_{>0})^m$ for odd $m = 2l + 1 \ge 3$. Let $(d_1, \ldots, d_m) \in (\mathbf{Z}_{\geq 0})^m$ be an ordered set of non-negative integers with $d_1 + \cdots + d_m = m - 3$. Then we have

$$\int_{M(\alpha_0)} v_1^{d_1} \dots v_m^{d_m} = (-1)^{l+1} \begin{pmatrix} 2l - \#S \\ l \end{pmatrix},$$

where $S = \{i | d_i > 0\} \cup \{m\}.$

Proof. Since m is odd, α_0 is generic. Since $T \in S$ is equivalent to $\#T \leq l$, both hand sides are equal to 0 in the case #S > l. So we may assume $\#S \leq l$. Then, by Theorem 3.1, we have

$$\int_{M(\alpha_0)} v_1^{d_1} \dots v_m^{d_m} = -\sum_{S \subset T \in S} (-1)^{\#T}$$
$$= -\sum_{i=\#S}^l (-1)^i \binom{m - \#S}{i - \#S} = (-1)^{l+1} \binom{2l - \#S}{l}. \quad \Box$$

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES UNIVERSITY OF TOKYO TOKYO 153-8914 JAPAN e-mail: konno@ms.u-tokyo.ac.jp

References

- [B] M. Brion, Cohomologie équivariante des points semi-stables, J. Reine Angew. Math., 421 (1991), 125–140.
- [DM] P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and non-lattice integral monodromy, Publ. of IHES, 43 (1986), 5–90.

- [GS] V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations, Invent. Math., 67 (1982), 515–538.
- [HK] J.-C. Hausmann and A. Knutson, The cohomology ring of polygon spaces, Ann. Inst. Fourier, Grenoble, 48 (1998), 281–321.
- [JK] L. Jeffrey and F. Kirwan, Localization for nonabelian group actions, Topology, 34 (1995), 291–327.
- [Ki1] F. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry, Princeton University Press, Princeton, 1984.
- [Ki2] F. Kirwan, The cohomology rings of moduli spaces of bundles over Riemann surfaces, J. Amer. Math. Soc., 5 (1992), 853–906.
- [Kl] A. Klyachko, Spatial polygons and stable configurations of points in the projective line, in 'Algebraic geometry and its applications (Yaroslavl'1992)' Aspects Math., Vieweg, (1994), 67–84.
- [KT] Y. Kamiyama and M. Tezuka, Symplectic volume of the moduli space of spacial polygons, J. Math. Kyoto Univ., 39 (1999), 557–575.
- [M] S. Martin, Transversality theory, cobordisms, and invariants of symplectic quotients, preprint.
- [T] T. Takakura, Intersection theory on symplectic quotients of products of spheres, Internat. J. Math., 12 (2001), 97–111.