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Self-intersection local time of fractional
Brownian motions—via chaos expansion

By

Yaozhong Hu∗

Abstract

Let BH
1,t, · · · , BH

d,t be d independent fractional Brownian motions

with Hurst parameter H ∈ (0, 1). Denote Xt = (BH
1,t, · · · , BH

d,t) and let δ
be the Dirac delta function. It is shown that when H < min(3/(2d), 2/(d+
2)), the (renormalized) self-intersection local time of fractional Brownian

motion,
R T

0

R t

0
δ(Xt−Xs)dsdt−E

R T

0

R t

0
δ(Xt−Xs)dsdt, is in D1,2, where

D1,2 is the Meyer-Watanabe test functional space, i.e. the L2 space of
“differentiable” functionals, whose precise meaning is given in Section 2.

1. Introduction

Since the work of Varadhan [22], the self-intersection local times of Brow-
nian motion has been studied by many authors. Chaos expansion approach is
useful in determining their smoothness (see [1], [8], [9], [10], [15], [18] and the
references therein). In particular, the exact smoothness in the sense of Meyer-
Watanabe is discussed in [1], [10]. Let us mention relevant result: It is shown
in [1] that when d = 2, the self-intersection local time of Brownian motion is
in Dα,2 for all α < 1 and it is not in D1,2 (see (2.2) for the definition of Dα,2).
As illustrated in [1], the smoothness is important in stochastic quantization.

On the other hand, fractional Brownian motions have recently been studied
extensively. It is natural to extend the results on the self-intersection local time
of Brownian motion to fractional Brownian motion cases. Let H ∈ (0, 1). A
(real valued) Gaussian process BH

t , 0 ≤ t ≤ T , is called a fractional Brownian
motion with the Hurst parameter H if its mean is 0 and its covariance is given
by

Cov(BH
t , BH

s ) =
1
2
[
t2H + s2H − |t − s|2H

]
.(1.1)
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Let BH
1,t, · · · , BH

d,t be d independent fractional Brownian motions, let Xt =
(BH

1,t, · · · , BH
d,t), and let X = (Xt, 0 ≤ t ≤ T ). Let δ(x) , x ∈ R

d, be the
Dirac delta function, i.e. formally

∫
Rd δ(x)f(x)dx = f(0). The following formal

expression

I(d, H, T ) =
∫ T

0

∫ t

0

δ(Xt − Xs)dsdt

is called the self-intersection local time of fractional Brownian motion X. In
[19], it is shown that when d = 2 and when 1/2 < H < 3/4, I(d, H, T ) −
E I(d, H, T ) is square integrable. There are also studies on self-intersection
local time for more general Gaussian processes using the local nondeterminism
property (see [2]–[6]. This property is also used in [19]). In this paper we shall
study the smoothness of I(d, H, T )−E I(d, H, T ) in any dimension and for any
Hurst parameter H ∈ (0, 1).

As indicated in [7], any square integrable functional F of a fractional
Brownian motion can be written as F =

∑∞
n=0 Fn, where Fn is the n-th

chaos of F (see also the explanation in the next section). Define D1 :={
F ;
∑∞

n=0 nE |Fn|2 < ∞
}
. (D1 is usually denoted by D1,2 in the Malliavin

calculus). The main result of this paper is as follows (see Theorem 3.2 below).

Main Result. When H < min(3/(2d), 2/(d+2)), I(d, H, T )−E I(d, H,
T ) is in D1.

The proof of this main result will utilize the local nondeterminism of the
fractional Brownian motions. This approach is also applicable to more gen-
eral Gaussian processes. Therefore it is stated a result for general Gaussian
processes in Section 2. In Section 3, this result is applied to the fractional
Brownian motions.

The condition H < min(3/(2d), 2/(d + 2)) is also “optimal” in the sense
that when H ≥ min(3/(2d), 2/(d + 2)), I(d, H, T ) − E I(d, H, T ) might not be
in D1. In fact, it is shown in [1] that when d = 2, I(d, H, T ) − E I(d, H, T )
is not in D1 (Note that when d = 2, min(3/(2d), 2/(d + 2)) = 1/2.) It is also
interesting to note that when d = 2, although I(d, H, T ) − E I(d, H, T ) is not
in D1 for H = 1/2, however, once H < 1/2, I(d, H, T ) − E I(d, H, T ) is in D1.
Hence, H = 1/2 is a critical value.

While this paper is in revision, its idea is being applied to the local time
of fractional Brownian motions in [14].

2. The general approach

Let Ω be the space of continuous R
d-valued functions ω on [0, T ]. Then Ω

is a Banach space with respect to the sup norm. Let F be the Borel σ-algebra
on Ω. Let P be a probability measure on the measurable space (Ω,F). Let E

denote the expectation on this probability space. Let X = (Xt , 0 ≤ t ≤ T ) be
a d-dimensional Gaussian processes on (Ω,F , P ) with mean 0 and covariance
matrices

Cov(Xt, Xs) = E (XsX
T
t ) , 0 ≤ s, t ≤ T ,
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where AT denotes the transpose of a matrix (or vector) A. The Gaussian pro-
cess Xt can also be considered as d real valued Gaussian processes X1

t , · · · , Xd
t ,

0 ≤ t ≤ T .
Denote the variance matrices of a random vector X by Var(X) = Cov(X,

X).
We define a square integrable nonlinear functional F of the Gaussian pro-

cess X as a real (or complex) valued functional on Ω such that

E (F 2) =
∫

Ω

|F (ω)|2P (dω) < ∞ .

The set of all square integrable functionals is denoted by L2.
Let p(x1, · · · , xk) be a polynomial of degree n of k variables x1, · · · , xk.

Then p(Xi1
t1 , · · · , Xik

tk
) is called a polynomial functional of X, where t1, · · · , tk ∈

[0, T ] and 1 ≤ i1, · · · , ik ≤ d. Let Pn be the completion with respect to the L2

norm of the set of all polynomials of degree less than or equal to n. Then Pn is
a subspace of L2. Let Cn be the orthogonal complement of Pn−1 in Pn. Then
L2 is the direct sum of Cn, i.e.

L2 = ⊕∞
n=0Cn .

Namely, for any functional F in L2, there are Fn in Cn, n = 0, 1, 2, · · · , such
that

F =
∞∑

n=0

Fn .(2.1)

This decomposition is called the chaos expansion of F . Fn is called the n-th
chaos of F . It is easy to see that F0 = E (F ). From the orthogonality it follows

E |F |2 =
∞∑

n=0

E |Fn|2 .

To simplify notation we also denote ‖F‖ =
(
E |F |2

)1/2. We refer to [11], [12],
[16], [17], [21], and the references therein for a more detailed study of chaos
expansion.

As in the Malliavin calculus, we introduce the spaces of “smooth” func-
tionals in the sense of Meyer-Watanabe [23]:

DH
α = DH

α,2 =

{
F ∈ L2 : ‖F‖2

α =
∞∑

n=0

(n + 1)α‖Fn‖2 < ∞
}

.(2.2)

For simplicity the super index will be omitted when there is no ambiguity. In-
troduce the second quantization operator Γ(u) on L2 by the following identity:

Γ(u)F =
∞∑

n=0

unFn(2.3)
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if F is given by (2.1), |u| ≤ 1. Denote

F (u) = Γ(
√

u)F .

Thus F = F (1). In the following we denote γF (u) = d/du
(
‖F (u)‖2

)
. The

following lemma is easy to verify.

Lemma 2.1. (a) Let F be in L2. Then F ∈ D1 if and only if γF (1) <
∞.

(b) If F =
∑∞

n=1 Fn, where Fn ∈ Cn and γF (1) < ∞, then F ∈ D1.

In addition to the polynomial functionals, the functional of the form

ea1Xt1+···+anXtn , where a1, · · · , an ∈ R
d , 0 ≤ t1, · · · , tn ≤ T

will also be used in what follows. They are called exponential functionals. We
shall find the chaos expansion of some exponential functionals.

Define the Hermite polynomials

Hn(x) =
(−1)n

n!
ex2/2 ∂n

∂xn
e−x2/2 .

In this paper we denote the scalar product of two vectors x and y in R
d by xy or

〈x, y〉. It is easy to find the chaos expansion of eiuξ(Xt−Xs)+(1/2)u2〈ξ,Var(Xt−Xs)ξ〉,
where i =

√
−1. In fact it is easy to check that

eiuξ(Xt−Xs)+ 1
2 u2〈ξ,Var(Xt−Xs)ξ〉

=
∞∑

n=0

(iu)nσ(s, t, ξ)nHn

(
ξ (Xt − Xs)

σ(s, t, ξ)

)
,

(2.4)

where σ(s, t, ξ) =
√
〈ξ , Var(Xt − Xs)ξ〉. One can verify that (iu)nσ(s, t, ξ)n

×Hn(ξ (Xt−Xs)/σ(s, t, ξ)) is the n-th chaos of eiuξ(Xt−Xs)+1/2u2〈ξ,Var(Xt−Xs)ξ〉.
In this section we shall study the self-intersection local time of X. It is

defined formally by the following expression:

I(T, X) :=
∫ T

0

∫ t

0

δ(Xt − Xs)dsdt ,(2.5)

where δ is the Dirac delta function at 0. We will give a general condition so
that I(T, X)− E I(T, X) is in D1. This condition will be applied to fractional
Brownian motions in the next section.

As in [10], [19] , we approximate the Dirac delta function by the heat kernel
(as ε → 0)

Pε(x) =
e−|x|2/2ε

(2πε)d/2
=
∫

Rd

1
(2π)d

eixξe−ε|ξ|2/2dξ .
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Thus we shall study

Iε(T, X) =
∫ T

0

∫ t

0

Pε(Xt − Xs)dsdt

=
1

(2π)d

∫ T

0

∫ t

0

∫
Rd

eiξ(Xt−Xs)e−ε|ξ|2/2dξdsdt .

(2.6)

It is easy to verify that for any ε > 0, Iε(T, X) is an element of D1. We will
give conditions so that Iε(T, X)−E Iε(T, X) is convergent in D1 as ε → 0. As
in [1], [19], [18], [15], in order to show the convergence in D1, we know that
the most important point is to show the boundedness of Iε(T, X)−E Iε(T, X)
in D1 as ε → 0. Therefore as in the above mentioned papers, we will give
detailed argument to show the boundedness and leave the convergence issue to
the readers.

First we want to find the chaos expansion of Iε(T, X). To this end we need
to find the chaos expansion of

eiξ(Xt−Xs) = e−
1
2 〈ξ,Var(Xt−Xs)ξ〉eiξ(Xt−Xs)+ 1

2 〈ξ,Var(Xt−Xs)ξ〉 .(2.7)

Let us define

Eu(X) = euX− 1
2 u2 Var(X) .

By (2.4), the second factor in (2.7) is

E1(iξ(Xt − Xs)) =
∞∑

n=0

inHn(ξ, Xt − Xs) ,

where

Hn(ξ, Xt − Xs) = σ(s, t, ξ)nHn

(
ξ (Xt − Xs)

σ(s, t, ξ)

)
,

with σ(s, t, ξ) =
√
〈ξ , Var(Xt − Xs)ξ〉. That means, the n-th chaos of E1(iξ(Xt

−Xs)) is the coefficients of un of Eu(iξ(Xt − Xs)). Thus the n-th chaos of
eiξ(Xt−Xs) is the coefficients of un of Fu, where

Fu(s, t, ξ) = e−
1
2 〈ξ,Var(Xt−Xs)ξ〉Eu(iξ(Xt − Xs)) .

Therefore we have

Γ(u)Iε(T, X) =
1

(2π)d

∫ T

0

∫ t

0

∫
Rd

Fu(s, t, ξ)e−ε|ξ|2/2dξdsdt .

Denote

κε(u, T, X) = E |Γ(
√

u)Iε(T, X)|2 .(2.8)
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Now we are going to estimate κε(u, T, X). Let T = {0 < s < t < T ; 0 < s′ <
t′ < T}. It is easy to see

κε(u, T, X)

=
1

(2π)2d

∫
T

∫
R2d

E
{
F√

u(s, t, ξ)F√
u(s′, t′, η)

}
e−ε(|ξ|2+|η|2)/2dξdηdsdtds′dt′ .

To compute the above expectation the following identity will be useful:

E (Eu(X)Ev(Y )) = euv Cov(X,Y ) .

It is also easy to check that

Cov(ξ(Xt − Xs), η(Xt′ − Xs′)) = 〈ξ, Cov(Xt − Xs, Xt′ − Xs′)η〉 .

Thus

E
(
E√u(iξ(Xt − Xs))E√u(iη(Xt′ − Xs′))

)
= e−u〈ξ,Cov(Xt−Xs,Xt′−Xs′)η〉 .

Consequently,

E
(
F√

u(s, t, ξ)F√
u(s′, t′, η)

)
= e−

1
2 〈ξ,Var(Xt−Xs)ξ〉−u〈ξ,Cov(Xt−Xs,Xt′−Xs′ )η〉− 1

2 〈η,Var(Xt′−Xs′ )η〉 .
(2.9)

Since the above expectation is positive,∫
R2d

E
{
F√

u(s, t, ξ)F√
u(s′, t′, η)

}
e−ε(|ξ|2+|η|2)/2dξdη

is bounded by ∫
R2d

E
{
F√

u(s, t, ξ)F√
u(s′, t′, η)

}
dξdη .(2.10)

From (2.9) it follows that (2.10) is bounded by

(2π)d det(A(u; s, t, s′, t′))−1/2 ,(2.11)

where

A(u; s, t, s′, t′)

=
(

Var(Xt − Xs) u Cov(Xt − Xs, Xt′ − Xs′)
u Cov(Xt − Xs, Xt′ − Xs′) Var(Xt′ − Xs′)

)
.

(2.12)

Thus we obtain

κε(u, T, X) ≤ 1
(2π)d

∫
T

(detA(u; s, t, s′, t′))−1/2dsdtds′dt′ .(2.13)
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From now on we assume that X1
t , · · · , Xd

t are independent Gaussian process.
Denote

Λ = diag(α1, · · · , αd) = Var(Xt − Xs) ,

Λ̃ = diag(α̃1, · · · , α̃d) = Var(Xt′ − Xs′) ,

Ξ = diag(ρ1, · · · , ρd) = Cov(Xt − Xs, Xt′ − Xs′) ,

and

Aε(u) =
(

Λ + εI uΞ
uΞ Λ̃ + εI

)
,

where diag means the diagonal matrix. Then it follows from (2.9) that

κε(u, T, X) =
1

(2π)2d

∫
T

∫
R2d

e−
1
2 〈ξ,Var(Xt−Xs)ξ〉−u〈ξ,Cov(Xt−Xs,Xt′−Xs′)η〉

e−
1
2 〈η,Var(Xt′−Xs′ )η〉e−ε(|ξ|2+|η|2)/2dξdηdsdtds′dt′

=
1

(2π)d

∫
T

(detAε(u; s, t, s′, t′))−1/2dsdtds′dt′ .

Hence
d

du
κε(u, T, X)

= −C

∫
T

(detAε(u; s, t, s′, t′))−3/2 d

du
det Aε(u; s, t, s′, t′)dsdtds′dt′ ,

where C is a positive constant.
It is easy to verify that

det(Aε(u)) =
d∏

i=1

[
(αi + ε)(α̃i + ε) − u2ρ2

i

]
.

By differentiating the above expression with respect to u, we obtain

d

du
det(Aε(u)) = −2u

d∑
j=1

∏
i �=j

[
(αi + ε)(α̃i + ε) − u2ρ2

i

]
ρ2

j .

Therefore

det(Aε(u))−3/2 d

du
det(Aε(u))

= −2u
d∏

i=1

[
(αi + ε)(α̃i + ε) − u2ρ2

i

]−1/2
d∑

j=1

[
(αj + ε)(α̃j + ε) − u2ρ2

j

]−1
ρ2

j

≥ −2u

d∏
i=1

[
αiα̃i − u2ρ2

i

]−1/2
d∑

j=1

[
αj α̃j − u2ρ2

j

]−1
ρ2

j

= det(A(u, s, t, s′, t′))−3/2 d

du
det(A(u, s, t, s′, t′))
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Thus we have
d

du
κε(u, T, X)

≤ −C

∫
T

(detA(u; s, t, s′, t′))−3/2 d

du
detA(u; s, t, s′, t′)dsdtds′dt′ ,

(2.14)

Remark 1. (a) It is easy to see that det A(u; s, t, s′, t′) is a decreasing

function of u. For example, in the 1-dimensional case, det
(

a ub
ub c

)
= ac −

u2b2 which is decreasing.
(b) When the RHS of (2.13) or (2.14) is infinity, then the corresponding

inequality is understood trivial.

Now put Θε = Iε(T, X) − E Iε(T, X). Then by (2.14), we have that

γΘε
(u) ≤ −C

∫
T

∆(u, X, s, t, s′, t′)−3/2∆̃(u, X, s, t, s′, t′)dsdtds′dt′ ,

where C is a positive constant and

∆(u, X, s, t, s′, t′) = det(A(u; s, t, s′, t′))

and

∆̃(u, X, s, t, s′, t′) =
d

du
det(A(u; s, t, s′, t′)) .

Thus from Lemma 2.1 it follows

Theorem 2.2. Let X = (Xt, 0 ≤ t ≤ T ) be a R
d-valued Gaussian

processes with independent components. Let A(u; s, t, s′, t′), ∆(u, X, s, t, s′, t′),
and ∆̃(u, X, s, t, s′, t′) be defined as above. Denote

∆(X, s, t, s′, t′) = ∆(1, X, s, t, s′, t′) , and ∆̃(X, s, t, s′, t′) = ∆̃(1, X, s, t, s′, t′) .

Then I(T, X) − E [I(T, X)] is in D1 if∫
T

∆(X, s, t, s′, t′)−3/2∆̃(X, s, t, s′, t′)dsdtds′dt′ > −∞ .(2.15)

Remark 2. We shall call the determinant ∆(u, X, s, t, s′, t′) the incre-
ment correlation determinant for the Gaussian process X.

3. Fractional Brownian motions

In this section we apply Theorem 2.2 (i.e. (2.15)) to the fractional Brownian
motions. The main result of this paper will be proved.

Let H ∈ (0, 1) be a parameter. A (real valued) Gaussian process BH
t ,

0 ≤ t ≤ T , is called a fractional Brownian motion with the Hurst parameter H
if its mean is 0 and its covariance is given by

Cov(BH
t , BH

s ) =
1
2
[
t2H + s2H − |t − s|2H

]
.(3.1)
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From (3.1) the following identities follow easily:

Var(BH
t − BH

s ) = |t − s|2H(3.2)

and

Cov(BH
t − BH

s , BH
t′ − BH

s′ )

=
1
2
[
|s − t′|2H + |t − s′|2H − |t − t′|2H − |s − s′|2H

]
.

(3.3)

We will use the property of the local nondeterminism of the fractional Brownian
motions (see e.g. [2], [3], [4], [5], [6]), which states: if 0 ≤ t1 < t2 < · · · < tn ≤
T , then there is a constant k > 0 so that

Var

(
n∑

i=2

ui(BH
ti

− BH
ti−1

)

)
≥ k

n∑
i=2

u2
i |ti − ti−1|2H(3.4)

for any vector (u2, u3, · · · , un). This property is also used in [19] for the study
of self-intersection local time of two dimensional fractional Brownian motions.
In the remaining part of this paper k will be a generic positive constant whose
values may differ from line to line. We also assume that k is sufficiently small,
however, positive.

Let us now estimate the following increment correlation determinant

dH(s, t, s′, t′)

:= det
(

Var(BH
t − BH

s ) Cov(BH
t − BH

s , BH
t′ − BH

s′ )
Cov(BH

t − BH
s , BH

t′ − BH
s′ ) Var(BH

t′ − BH
s′ )

)
= Var(BH

t − BH
s ) Var(BH

t′ − BH
s′ ) − Cov(BH

t − BH
s , BH

t′ − BH
s′ )2 ,

(3.5)

where 0 < s < t < T, 0 < s′ < t′ < T . There are three possibilities of
the position of the two intervals (s, t) and (s′, t′). They are disjoint; the one
contains the another; or they are overlapped but no one contains the another.
For different cases, we will have different estimates.

In the following lemma, the letters a, b, and c denote the lengths of the
left interval, the middle interval, and the right interval determined by s, t, s′, t′.
We also denote

λ = Var(BH
t − BH

s )2 = |t − s|2H ;(3.6)

ρ = Var(BH
t′ − BH

s′ )2 = |t′ − s′|2H ;(3.7)

and

µ = Cov(BH
t − BH

s , BH
t′ − BH

s′ )

=
1
2
[
|t′ − s|2H + |t − s′|2H − |t′ − t|2H − |s′ − s|2H

]
.

(3.8)
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Lemma 3.1. Let BH
t , 0 ≤ t ≤ T be a (real valued) fractional Brownian

motion with the Hurst parameter H. Let dH(s, t, s′, t′) be defined by (3.5).
Namely,

dH(s, t, s′, t′) = λρ − µ2 .

(1) Let 0 < s < s′ < t < t′ < T . Denote a = s′ − s, b = t − s′, and
c = t′ − t. Then

dH(s, t, s′, t′) ≥ k
[
(a + b)2Hc2H + (b + c)2Ha2H

]
.(3.9)

(2) Let 0 < s′ < s < t < t′ < T . Denote a = s−s′, b = t−s, and c = t′−t.
Then

dH(s, t, s′, t′) ≥ k (a + b + c)2H b2H .(3.10)

(3) Let 0 < s < t < s′ < t′ < T . Denote a = t − s and c = t′ − s′. Then

dH(s, t, s′, t′) ≥ ka2Hc2H .(3.11)

Proof. First we prove (1). By the local nondeterminism (3.4), for all u
and v,

Var(u(BH
t − BH

s ) + v(BH
t′ − BH

s′ ))

= Var(u(BH
s′ − BH

s ) + (u + v)(BH
t − BH

s′ ) + v(BH
t′ − BH

t ))

≥ k(a2Hu2 + b2H(u + v)2 + c2Hv2) .

This implies that

λu2 + 2µuv + ρv2 ≥ k(a2Hu2 + b2H(u + v)2 + c2Hv2) .

Namely

(λ − ka2H − kb2H)u2 + 2(µ − kb2H)uv + (ρ − kb2H − kc2H)v2 ≥ 0

for all u and v. Hence the discriminant of the left hand side of the above
inequality must satisfy

(λ − ka2H − kb2H)(ρ − kb2H − kc2H) − (µ − kb2H)2 ≥ 0 .

So

dH(s, t, s′, t′) = λρ − µ2

≥ kλ(b2H + c2H) + kρ(a2H + b2H) − 2kµb2H

− k2(a2Hb2H + b2Hc2H + a2Hc2H) .
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Since µ2 ≤ λρ,

µ ≤
√

λρ ≤ 1
2
(λ + ρ) .

Therefore

dH(s, t, s′, t′) ≥ k
(
λc2H + ρa2H

)
− k2(a2Hb2H + b2Hc2H + a2Hc2H) .

But in this case

λ = (a + b)2H , ρ = (b + c)2H .

Thus

λc2H + ρa2H ≥ 1
2
(
a2Hb2H + b2Hc2H + a2Hc2H

)
.

Therefore when k is small enough we have

dH(s, t, s′, t′) ≥ k
[
(a + b)2Hc2H + (b + c)2Ha2H

]
.

Secondly, we prove (2). In this case λ = b2H and ρ = (a + b + c)2H . By
the local nondeterminism (3.4), for all u and v,

Var(u(BH
t − BH

s ) + v(BH
t′ − BH

s′ ))

= Var(u(BH
t − BH

s ) + v(BH
s − BH

s′ ) + v(BH
t − BH

s ) + v(BH
t′ − BH

t ))

≥ k(b2Hu2 + (a2H + b2H + c2H)v2) .

This implies that

λu2 + 2µuv + ρv2 ≥ k(b2Hu2 + (a2H + b2H + c2H)v2) .

Consequently,

(λ − kb2H)(ρ − ka2H − kb2H − kc2H) − µ2 ≥ 0 .

Thus

dH(s, t, s′, t′) = λρ − µ2

≥ kλ(a2H + b2H + c2H) + kρb2H − k2(a2H + b2H + c2H)b2H

≥ k(a + b + c)2Hb2H

when k is sufficiently small. This proves (2).
Lastly we show (3). In this case λ = a2H and ρ = c2H . By (3.4),

Var(u(BH
t − BH

s ) + v(BH
t′ − BH

s′ )) ≥ k(a2Hu2 + c2Hv2) .

Thus

λu2 + 2µuv + ρv2 ≥ k(a2Hu2 + c2Hv2) .
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Hence (
λ − ka2H

) (
ρ − kc2H

)
− µ2 ≥ 0 .

This implies that

λρ − µ2 ≥ ka2Hc2H .

This completes the proof of the lemma.

Now let XH
t = (BH

1,t , · · · , BH
d,t), 0 ≤ t ≤ T be d independent fractional

Brownian motions. We shall study the self-intersection local time of the d-
dimensional fractional Brownian motions XH

t :

I(d, H, T ) =
∫ T

0

∫ t

0

δ(XH
s − XH

s )dsdt .

We are interested in the smoothness of I(d, H, T ) − E I(d, H, T ). We will
continue to use the notations introduced earlier. Recall

dH(u, s, t, s′, t′) = λρ − uµ2 ,

where λ, ρ, and µ are defined by (3.6)–(3.8). Since BH
1,t , · · · , BH

d,t are indepen-
dent,

∆(u, XH , s, t, s′, t′) = dH(u, s, t, s′, t′)d .

It is then easy to see that

∆(u, XH , s, t, s′, t′)−3/2∆̃(u, XH , s, t, s′, t′)

= −dH(u, s, t, s′, t′)−
d
2−1µ2 .

(3.12)

Now we state the main result of this paper.

Theorem 3.2. If H < min(3/(2d), 2/(d + 2)), then I(d, H, T )−E I(d,
H, T ) is in D1.

Proof. By (3.12) and Theorem 2.2 it suffices to show that∫
T

dH(s, t, s′, t′)−d/2−1µ2dsdtds′dt′ < ∞ ,

where T = {0 < s < t < T, 0 < s′ < t′ < T}. Therefore it suffices to show that
for j = 1, 2, 3, ∫

Tj

dH(s, t, s′, t′)−d/2−1µ2dsdtds′dt′ < ∞ ,(3.13)

where T1 = {s, t, s′, t′; 0 < s < s′ < t < t′ < T}, T2 = {s, t, s′, t′; 0 < s′ < s <
t < t′ < T}, and T3 = {s, t, s′, t′; 0 < s < t < s′ < t′ < T}.



�

�

�

�

�

�

�

�

Self-intersection local time of fractional brownian motions 245

As in Lemma 3.1, in what follows the symbols a, b, and c always denote the
lengths of the left interval, the middle interval, and the right interval determined
by the four points s, t, s′, and t′. It is elementary to see that (3.13) is true if
there are α, β, γ > −1 such that

dH(s, t, s′, t′)−d/2−1µ2 ≤ Caαbβcγ ,(3.14)

where and in what follows C will denote a generic constant whose value may
differ in different occasions. Our strategy to show (3.13) is to derive estimates
of the type (3.14) in three different cases corresponding to T1, T2, and T3.
(1) When 0 < s < s′ < t < t′ < T , we denote a = s′ − s, b = t − s′, and
c = t′ − t. By Lemma 3.1, we have

dH(s, t, s′, t′) ≥ k
[
(a + b)2Hc2H + (b + c)2Ha2H

]
.

In this case

µ = (a + b + c)2H + b2H − a2H − c2H

= (a2 + b2 + c2 + 2ab + 2ac + 2bc)H + b2H − a2H − c2H

≤ 2b2H + 2HaHbH + 2HaHcH + 2HbHcH .

Thus

µ2 ≤ C(a2Hb2H + a2Hc2H + b2Hc2H) + Cb4H .

Since each term in the above bracket is dominated by dH(s, t, s′, t′). Thus there
is a constant C such that

dH(s, t, s′, t′)−d/2−1µ2

≤ CdH(s, t, s′, t′)−d/2 + CdH(s, t, s′, t′)−d/2−1b4H .
(3.15)

The first term of the right hand side of (3.15) is estimated by

dH(s, t, s′, t′)−d/2 ≤ C
[
(a + b)2Hc2H + (b + c)2Ha2H

]−d/2

≤ C
[
(a + b)H(b + c)HaHcH

]−d/2
.

Using the inequalities a + b ≥ Ca2/3b1/3, we have

dH(s, t, s′, t′)−d/2 ≤ Ca−2dH/3b−2dH/3c−2dH/3 .

The exponent −2dH/3 is greater than −1 if the condition of the theorem is
satisfied. To estimate the second term in (3.15), we have

dH(s, t, s′, t′)−d/2−1b4H ≤ C
(
(a + b)2Hc2H + (b + c)2Ha2H

)− d+2
2 b4H

≤ C
(
b2Hc2H + b2Ha2H

)− d+2
2 b4H

≤ Ca− d+2
2 Hc−

d+2
2 Hb−(d+2)H+4H .
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If d ≤ 6 and if the condition of the theorem is satisfied, then we see that all
the exponents are greater than −1.

When d > 6, for α, β ≥ 0, α + β = 1,

dH(s, t, s′, t′)−d/2−1b4H ≤ C
(
(a + b)HcHaH(b + c)H

)− d+2
2 b4H

= Ca−(α+1) d+2
2 Hc−(α+1) d+2

2 Hb−β(d+2)H+4H .

Let α = (d − 6)/(3d + 6), β = (2d + 12)/(3d + 6). Then

dH(s, t, s′, t′)−d/2−1b4H ≤ Ca− 2dH
3 b−

2dH
3 c−

2dH
3 .

This implies (3.13) for j = 1.
(2) Let us consider the case 0 < s′ < s < t < t′. We will consider the cases
H ≥ 1/2 and H < 1/2 separately. If H ≥ 1/2, then

µ = (b + c)2H + (a + b)2H − a2H − c2H

= 2Hb

∫ 1

0

[(a + bu)2H−1 + (c + bu)2H−1]du

≤ Cb (a + b + c)2H−1
.

Thus

µ2 ≤ Cb2 (a + b + c)4H−2 .

Therefore by (3.10)

dH(s, t, s′, t′)−d/2−1µ2 ≤ C
(
(a + b + c)2Hb2H

)−d/2−1
b2 (a + b + c)4H−2

≤ C(a + b + c)−(d+2)H+4H−2b−(d+2)H+2

= C(a + b + c)−(d−2)H−2b−(d+2)H+2 .

Let α = 2Hd/(3dH + 6 − 6H) ∈ (0, 1). Since (6 + d)H ≤ 6, which is implied
by the condition of the theorem, we have that 1−2α ≥ 0. Using the inequality

a + b + c ≥ Caαcαb1−2α ,

we obtain

dH(s, t, s′, t′)−d/2−1µ2 ≤ Ca− 2dH
3 b−

2dH
3 c−

2dH
3 .

This proves that when H ≥ 1/2 and when the conditions of the theorem is
satisfied, ∫

T2

dH(s, t, s′, t′)−d/2−1µ2dsdtds′dt′ < ∞ .(3.16)

The case H < 1/2 is slightly more complicated. We shall consider the case
d ≤ 6 and d > 6. When d ≤ 6 and H < 1/2,

µ ≤ Cbaα(2H−1)b(2H−1)β + Cbcα(2H−1)b(2H−1)β
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i.e.

µ2 ≤ Caα(4H−2)b(4H−2)β+2 + Ccα(4H−2)b(4H−2)β+2 ,

where α, β ≥ 0 and α + β = 1. Thus

dH(s, t, s′, t′)−d/2−1µ2 ≤ C
(
(a + b + c)2Hb2H

)−d/2−1
aα(4H−2)b(4H−2)β+2

+ C
(
(a + b + c)2Hb2H

)−d/2−1
cα(4H−2)b(4H−2)β+2

= I1 + I2 .

Now let us estimate I1. By a + b + c ≥ a1/2c1/2,

I1 ≤ Ca−(d+2)H/2c−(d+2)H/2aα(4H−2)bβ(4H−2)−(d+2)H+2

= Caα(4H−2)−(d+2)H/2bβ(4H−2)−(d+2)H+2c−(d+2)H/2 .

Let α = 0 and β = 1. Then

I1 ≤ Ca−(d+2)H/2c−(d+2)H/2b4H−2−(d+2)H+2 .

When d ≤ 6 and the condition of the theorem is satisfied, −(d + 2)H/2 > −1
and 4H − (d + 2)H > −1. Thus when d ≤ 6, H < 1/2, and the condition of
the theorem is satisfied,

∫
T2

I1dsdtds′dt′ < ∞. When d > 6 and H < 1/2, let
γ1, γ2, γ3 > 0 and γ1 + γ2 + γ3 = 1. Then

I1 ≤ Ca−γ1(d+2)H+α(4H−2)b−(γ2+1)(d+2)H+(4H−2)β+2c−γ3(d+2)H .

Let

γ3 =
2d

3d + 6
, γ1 =

d + 6
3d + 6

, γ2 = 0 ,

and let

α =
(d − 6)H
3(2 − 4H)

, β =
6 − 6H − dH

3(2 − 4H)
.

Then we have

I1 ≤ a
−2dH

3 b
−2dH

3 c
−2dH

3 .

Hence, we have shown that when d ≤ 6, H < 1/2, and the condition of the
theorem is satisfied,

∫
T2

I1dsdtds′dt′ < ∞. In a similar way we can show that∫
T2

I2dsdtds′dt′ < ∞. Therefore it follows that when H < 1/2 and when the
condition of the theorem is satisfied,∫

T2

dH(s, t, s′, t′)−d/2−1µ2dsdtds′dt′ < ∞ .
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(3) Now let us consider the case 0 < s < t < s′ < t′ < T . Denote a = t − s,
b = s′ − t, and c = t′ − s′. In this case we have

µ = (a + b + c)2H + b2H − (a + b)2H − (b + c)2H

= 2Ha

∫ 1

0

[
(b + c + ua)2H−1 − (b + ua)2H−1

]
du

= 2H(2H − 1)ac

∫ 1

0

∫ 1

0

(b + vc + ua)2H−2dudv .

Using

b + vc + ua ≥ Cvβuβbαcβaβ ,

where α, β > 0 and α + 2β = 1, we have

µ2 ≤ Ca2c2

∫ 1

0

∫ 1

0

(b + vc + ua)4H−4dudv

≤ Ca2c2
(
bαcβaβ

)4H−4

= Cb4αH−4α(ac)4βH−4β+2 .

Let

α =
dH

6 − 6H
, β =

1 − α

2
=

6 − 6H − Hd

12 − 12H
.

If (6 + d)H ≤ 6, then α, β ≥ 0 and α + 2β = 1. Thus

dH(s, t, s′, t′)−d/2−1µ2 ≤ C
(
a2Hc2H

)−d/2−1
b4αH−4α(ac)4βH−4β+2

≤ Ca
−2dH

3 b
−2dH

3 c
−2dH

3 .

This shows that when dH < 3/2,∫
T3

dH(s, t, s′, t′)−d/2−1µ2dsdtds′dt′ < ∞ .(3.17)

Thus we have completed the proof of the theorem.

Acknowledgements. The author is grateful to the referee for the careful
reading of the paper.

Department of Mathematics
University of Kansas
405 Snow Hall, Lawrence, KS 66045-2142
e-mail: hu@math.ukans.edu



�

�

�

�

�

�

�

�

Self-intersection local time of fractional brownian motions 249

References

[1] S. Albeverio, Y. Z. Hu and X. Y. Zhou, A remark on non smoothness of
self intersection local time of planar Brownian motion, Statist. Probab.
Letter, 32 (1997), 57–65.

[2] S. M. Berman, A central limit theorem for the renormalized self-
intersection local time of a stationary process. Probability in Banach
spaces, 8 (Brunswick, ME, 1991), 351–363, Progr. Probab. 30, Birkhäuser
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