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1. Introduction

The one-dimensional motion of a perfect gas is governed by the compress-
ible Euler equation

∂ρ

∂t
+

∂

∂x
(ρu) = 0,

∂

∂t
(ρu) +

∂

∂x
(ρu2 + P ) = 0,

(1.1)

where unknowns are the density ρ and the velocity u, while the pressure P is
supposed to be a given function of ρ. We study the Cauchy problem to the
equation under the initial condition

ρ|t=0 = ρ0(x), u|t=0 = u0(x).(1.2)

The equation is a prototype of the conservation law

Ut + f(U)x = 0,(1.3)

in which

U = (ρ,m)T = (ρ, ρu)T , f(U) =
(
m,

m2

ρ
+ P

)T

.

A bounded measurable function U(t, x) is a weak solution if∫ ∞

0

∫
(UΦt + f(U)Φx)dxdt+

∫
Φ(0, x)U0(x)dx = 0

Communicated by Prof. T. Nishida, August 25, 2000



�

�

�

�

�

�

�

�

558 Tetu Makino

for any test function Φ ∈ C∞
0 ([0,∞) ×R).

Many excellent mathematicians gave existence theorems of global weak
solutions to this problem. First we refer T. Nishida, 1968 [5]. He showed the
existence of global solutions under the assumption that P = Aρ and

T.V. log ρ0 < C, T.V.u0 < C.

The approximate solutions are constructed by the Glimm’s scheme and Nishida
gave a priori estimates of the growth of the total variations of the approximate
solutions by a delicate analysis. On the other hand if we assume P = Aργ , γ >
1, we are interested weak solutions which contains the vacuum. In this case we
use the Lax-Friedrichs or Godunov’s scheme to construct approximate solutions.
A priori L∞-estimate of the approximate solutions can be obtained compara-
tively easily. A subsequence therefore converges in the weak star topology. But
it is not easy to show that the approximate solutions contain a subsequence
which converges almost everywhere. This task was done by the compensated
compactness method developed by R. J. DiPerna 1983 [2], [3]. A complete
discussion was presented by G.-Q. Chen et al. 1985–86 [1]. If we follow their
discussions, we find that the Darboux formula

η =
∫ w

z

((w − s)(s− z))Nφ(s)ds

to the Euler-Poisson-Darboux equation

∂2η

∂w∂z
+

N

w − z

(
∂η

∂w
− ∂η

∂z

)
= 0

plays a crucial role. The aim of this article is to extend the discussion to the
case in which P is proportional to ργ asymptotically.

Thus in this article we assume
(A) P = P (ρ) is a sufficiently smooth function of ρ > 0, and

0 < P, 0 < P ′ = dP/dρ, 0 < P ′′ = d2P/dρ2

for ρ > 0, and
P = Aργ(1 + P1(εργ−1))

as ρ→ 0. Here A and γ are positive constants,

γ = 1 +
2

2N + 1
,

N being a positive integer, ε is a positive parameter and P1(X) is a convergent
power series of the form

∑
k≥1 ckX

k.
Our main conclusion is

Theorem 1. Suppose (A) and

0 ≤ ρ0(x) ≤ C, |u0(x)| ≤ C.

Then there is a positive number ε1 = ε1(C) such that if ε ≤ ε1 then (1.1), (1.2)
has a global weak solution.
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The method of the proof depends upon a generalized Darboux formula
to the generalized Euler-Poisson-Darboux equation. The way of discussion is
similar to that of C.-H. Hsu, S. S. Lin and T. Makino [4].

As a corollary we have

Theorem 2. There is a positive number α such that if

0 ≤ ρ0(x) ≤ α2/(γ−1), |u0(x)| ≤ α,

and if ε ≤ 1, then (1.1), (1.2) admits a global weak solution.

2. Riemann problem

The Riemann problem is the problem to special initial data of the form

U0(x) = UL if x < 0,
= UR if x > 0,

where UL and UR are constants. In order to solve Riemann problems we intro-
duce the Riemann invariants

w = u+ y, z = u− y,

where

y =
∫ ρ

0

√
P ′

ρ
dρ.

Then (1.1) is diagonalized as

wt + λ2wx = 0, zt + λ1zx = 0,

where
λ1 = u−

√
P ′, λ2 = u+

√
P ′.

The possible states U = UR connected to UL on the right by a rarefaction wave
are

R1 : w = wL, z > zL,

and
R2 : w > wL, z = zL.

The Rankine-Hugoniot jump condition

σ[U ] = [f(U)],

where [U ] = UR − UL, [f(U)] = f(UR) − f(UL), gives the shock curve

uR − uL = −
√

[ρ][P ]
ρLρR

.
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Along this curve we have shocks

S1 : ρL < ρR, S2 : ρR < ρL.

The Riemann problem can be solved uniquely by using these rarefaction waves,
shocks and the vacuum state. Moreover if we look at a region of the form

ΣB = {(w, z) : −B ≤ z ≤ w ≤ B},
we have the following

Proposition 2.1. If the initial data UL, UR belong to ΣB, then the so-
lution of the Riemann problem is confined to ΣB.

On the other hand we have

Proposition 2.2. The region ΣB is convex in the (ρ,m)-plane.

Proof. Let us consider the above hedge m = m(ρ) which corresponds to
w = B,−B < z < B. We have to show d2m/dρ2 < 0. Along the hedge we
have

u = B −
∫ ρ

0

√
P ′

ρ
dρ,

from which
du

dρ
= −

√
P ′

ρ
.

Therefore
dm

dρ
= u−

√
P ′.

Differentiate once more, we have

d2m

dρ2
= −

√
P ′

ρ
− P ′′

2
√
P ′ < 0.

From Proposition 2.2 we have

Proposition 2.3. If U(s) ∈ ΣB for s ∈ [a, b], then the average

1
b− a

∫ b

a

U(s)ds

belongs to ΣB.

Let us look at the shock wave which connects the left state UL to the right
state UR with the shock speed σ. The right state UR and the shock speed σ
are parametrized by ρ = ρR. Then we have
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Proposition 2.4. Along S1(ρL < ρ), we have dσ/dρ < 0, and along
S2(ρ < ρL), we have dσ/dρ > 0.

Proof. We can assume uL = 0 and u = uR is given by

u = −
√

[ρ][P ]
ρLρ

,

where [ρ] = ρ− ρL, [P ] = P − PL. We have

σ =
[m]
[ρ]

=
ρu

[ρ]
.

Therefore
dσ

dρ
=

[P ] − P ′[ρ]
2[ρ]ρL

√
[ρ][P ]

.

Since P ′′ > 0, we know [P ] < P ′[ρ]. Thus we see [ρ]dσ/dρ < 0.

3. Entropies

A pair of functions η and q of the state U is called an entropy-entropy flux
if it satisfies the equation

DUq = DUη.DUf.(3.1)

Using the Riemann invariants, we can write (3.1) as

qw = λ2ηw, qz = λ1ηz.

By eliminating q, we get the second order equation for η:

∂2η

∂w∂z
+

1
4
√
P ′

(
1 − ρP ′′

2P ′

)(
∂η

∂w
− ∂η

∂z

)
= 0.(3.2)

As ε = 0, this equation is reduced to be the Euler-Poisson-Darboux equation

ηwz +
N

w − z
(ηw − ηz) = 0.(3.3)

Therefore we call (3.2) a generalized Euler-Poisson-Darboux equation.
The kinetic energy

η∗ =
1
2
ρu2 + Φ(ρ),

Φ(ρ) = ρ

∫ ρ

0

P ′

ρ
dρ− P = ρ

∫ ρ

0

P

ρ2
dρ,

and its flux

q∗ =
(

1
2
ρu2 + Φ1(ρ)

)
u, Φ1(ρ) = ρ

∫ ρ

0

P ′

ρ
dρ = Φ(ρ) + P

satisfy the generalized Euler-Poisson-Darboux equation. This entropy-entropy
flux will be called standard. The important fact is
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Proposition 3.1. The Hessian D2
Uη

∗ is positive definite, i.e., for any
fixed B there is a positive constant k such that

(ξ|D2
Uη

∗.ξ) ≥ k|ξ|2

for any U ∈ ΣB and ξ = (ξ0, ξ1) with |ξ|2 = (ξ0)2 + (ξ1)2.

Proof. By direct computations, we see

η∗ρρ =
u2

ρ
+
P ′

ρ
,

η∗ρm = −u
ρ
,

η∗mm =
1
ρ
.

Hence

(ξ|D2η∗.ξ) = ηρρξ
2
0 + 2ηρmξ0ξ1 + ηmmξ

2
1

=
1
ρ
((u2 + P ′)ξ20 − 2uξ0ξ1 + ξ21)

≥ 2P ′

ρ(A+ C +
√

(A− C)2 + 4B2)
,

where
A = u2 + P ′, B = −u, C = 1.

4. Construction of approximate solutions

Let us construct approximate solutions using the Godunov scheme. The
construction is similar if we use the Lax-Friedrichs scheme.

Suppose that the initial data U0(x) is confined to an invariant region ΣB.
Put Λ0 = sup{|λj(U)||j = 1, 2, U ∈ ΣB}. Fixing Λ1 > Λ0, we take mesh
lengths ∆x,∆t such that ∆x = Λ1∆t. We denote ∆ = ∆x.

Let us construct the approxomate solution U∆(t, x). First we put

U∆
0 (x) = U0(x)χ[−1/∆,1/∆].

We define

U∆(+0, x) =
1

2∆

∫ (2j+2)∆

2j∆

U∆
0 (x)dx

for 2j∆ < x ≤ (2j + 2)∆. Solving the Riemann problem on each interval
[2(j − 1)∆, 2(j + 1)∆], we define U∆(t, x) for 0 ≤ t < ∆t. Since the Courant-
Friedrichs-Lewy condition is satisfied, the wave from the center 2j∆ does not
intersect. If U∆(t, x) for 0 ≤ t < n∆t has been defined, then we define

U∆(n∆t, x) =
1

2∆

∫ (2j+2)∆

2j∆

U∆(n∆t− 0, x)dx
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for 2j∆ < x ≤ (2j + 2)∆. Solving the Riemann problem, we define U∆(t, x)
for n∆t ≤ t < (n+ 1)∆t.

By Propositions 2.1 and 2.3, it is inductively guaranteed that U∆ remains
in ΣB, say,

Proposition 4.1. The approximate solution U∆(t, x) satisfies U∆(t, x)
∈ ΣB, therefore,

0 ≤ ρ∆(t, x) ≤ C, |u∆(x)| ≤ C.

Moreover we shall prove

Proposition 4.2. For any test function Φ it holds that∫∫
(ΦtU

∆ + Φxf(U∆))dxdt+
∫

Φ(0, x)U∆
0 (x)dx = O(∆1/2).

In order to prove Proposition 4.2, we prepare

Proposition 4.3. For any shock wave from UL to UR with the shock
speed σ and for any convex entropy η, we have

σ[η] − [q] ≥ 0,

where [η] = η(UR) − η(UL), [q] = q(UR) − q(UL).

Proof. The right state of shocks can be parametrized by ρ = ρR. Putting

Q(ρ) = σ[η] − [q],

we shall see dQ/dρ ≥ 0 along S1 : [ρ] > 0 and dQ/dρ ≤ 0 along S2 : [ρ] <
0. Using the equation (3.1) and the differentiation of the Rankine-Hugoniot
condition, we have

dQ

dρ
=
dσ

dρ
([η] −DUη(U).[U ])

= −dσ
dρ

∫ 1

0

θ(U − UL|D2
Uη(UL + θ(U − UL).(U − UL))dθ.

We supposed D2
Uη ≥ 0. By Proposition 2.4, we know dσ/dρ < 0 on S1 and

dσ/dρ > 0 on S2.

Proof of Proposition 4.2. We fix T to consider U∆ on 0 ≤ t ≤ T . First
we shall show

∑
j,n

∫ (2j+2)∆

2j∆

|U(n∆t− 0, x) − U(n∆t+ 0, (2j + 1)∆)|2dx ≤ C.(4.1)
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Let us consider the standard entropy η∗. Then we have

0 =
∫
η∗(U(T, x))dx−

∫
η∗(U(0, x))dx+ L+ Σ,

L =
∑
j,n

∫ (2j+2)∆

2j∆

(η∗(U(n∆t− 0, x)) − η∗(U(n∆t+ 0, (2j + 1)∆)))dx,

Σ =
∫ T

0

∑
shocks

(σ[η∗] − [q∗])dt.

We write U0 = U(n∆t+ 0, (2j + 1)∆), U1 = U(n∆t− 0, x). Since

U0 =
1

2∆

∫ (2j+2)∆

2j∆

U1dx,

we see

L =
∑
j,n

∫ (2j+2)∆

2j∆

∫ 1

0

(1 − θ)(U1 − U0|D2
Uη

∗(U0 + θ(U1 − U0)).(U1 − U0))dθdx

≥ 0.

On the other hand we have Σ ≥ 0 from Proposition 4.3. Thus L ≤ C,Σ ≤ C.
But from Proposition 3.1, we have D2

Uη
∗ ≥ k. Therefore

C ≥ L ≥ k

2

∑
j,n

∫ (2j+2)∆

2j∆

|U1 − U0|2dx.

Thus we get (4.1).
Now let us consider a test function Φ. Put

J =
∫∫

(ΦtU
∆ + Φxf(U∆))dxdt+

∫
Φ(0, x)U∆

0 dx.

Since U∆ is a weak solution on each time strip n∆t < t < (n+ 1)∆t, we have

J =
∑

n

∫
Φ(n∆t, x)(U(n∆t− 0, x) − U(n∆t+ 0, x))dx

= J1 + J2,

J1 =
∑
j,n

∫ (2j+2)∆

2j∆

Φ(n∆t, (2j + 1)∆)(U(n∆t− 0, x) − U(n∆t+ 0, x))dx,

J2 =
∑
j.n

∫ (2j+2)∆

2j∆

(Φ(t, x) − Φ(n∆t, (2j + 1)∆))(U(n∆t− 0, x)

− U(n∆t+ 0, x))dx.

Since

U(n∆t+ 0, x) =
1

2∆

∫ (2j+2)∆

2j∆

U(n∆t− 0, x)dx



�

�

�

�

�

�

�

�

Weak solutions to the compressible Euler equation 565

for 2j∆ < x < (2j + 2)∆, we see J1 = 0. It follows from (4.1) that

|J2| ≤ C∆1/2||Φ||C1


∑

j,n

∫ (2j+2)∆

2j∆

|U(n∆t− 0, x) − U(n∆t+ 0, x)|2dx



1/2

≤ C ′∆1/2.

Here we have used T/∆t = O(1/∆).

Summing up, we have the following theorem.

Theorem 3. The approximate solution U∆(t, x) satisfies

0 ≤ ρ∆(t, x) ≤ C, |u∆(t, x)| ≤ C

and ∫∫
(ΦtU

∆ + Φxf(U∆))dxdt+
∫

Φ(0, x)U∆
0 (x) = O(∆1/2)

for any test function Φ.

We expect that U∆ tends to a weak solution everywhere. For the case
ε = 0 this was done by DiPerna [2], [3] and G. Q. Chen et al. [1]. In their proof
the Darboux formula

η =
∫ w

z

((w − s)(s− z))Nφ(s)ds

which gives solutions of the Euler-Poisson-Darboux equation (3.3), φ being
arbitrary, plays an important role. Section 5 will be devoted to find such an
integral formula for the generalized Euler-Poisson-Darboux equation (3.2).

Remark. We note that

λ2 − λ1 =
√
P ′ > 0,

∂λ1

∂z
=

1
2

(
1 +

ρP ′′

2P ′

)
> 0,

∂λ2

∂w
=

1
2

(
1 +

ρP ′′

2P ′

)
> 0

for ρ > 0.
This says that the system is strictly hyperbolic and genuinely nonlinear on

ρ > 0. Therefore the Glimm’s theory can be applied if

||U0(x) − U∗||L∞ + T.V.U0

is sufficiently small, where U∗ is a constant state such that ρ∗ > 0. But the
vacuum may not be covered by this application of the general theorem.
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5. Generalized Darboux formula

In this section we seek an integration formula for solutions of the general-
ized Euler-Poisson-Darboux equation (3.2). Using

y =
∫ ρ

0

√
P ′

ρ
dρ,

as an independent variable, we can write (3.2) as

ηuu − ηyy +
1√
P ′

(
1 − ρP ′′

2P ′

)
ηy = 0.(5.1)

Using the assumption (A), we can write

1√
P ′

(
1 − ρP ′′

2P ′

)
=

2N
y

+ a(y, ε), a = εy[εy2]0,(5.2)

where [X]0 denotes a convergent power series.
Let us introduce the sequence of variables η0 = η, η1, . . . , ηN = V by

∂ηj

∂y
= yηj+1

and
ηj(u, y) = Iηj+1(u, y) =

∫ y

0

Y ηj+1(u, Y )dY.

The sequence of integro-differential operators Lj is defined by

Ljηj = ηj,uu − ηj,yy +
(

2(N − j)
y

+ a

)
ηj,y + jãηj +

j−1∑
k=1

cjkãkI
kηj ,

where

ã =
∂a

∂y
+
a

y
,

ãk =
(

1
y

d

dy

)k

ã,

cj1 =
j(j − 1)

2
,

cj+1,k = cj,k−1 + cjk (2 ≤ k ≤ j).
cjj = 0

Clearly ã, ãk are of the form ε[εy2]0 and are smooth functions of 0 ≤ y < ∞.
By the definition we have formally

1
y

∂

∂y
(Ljηj) = Lj+1ηj+1.
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Now we consider the equation LNV = 0. The Cauchy problem

(Q) Vyy − Vuu = aVy +NãV +
N−1∑
k=1

ckãkI
kV,

V = 0, Vy = 2N+1N !φ(u) at y = 0

is to be considered, where ck = cNk.

Proposition 5.1. If φ ∈ C1(R), then the problem (Q) admits a unique
solution V in C2([0,∞) ×R).

Proof. Let us denote by H(u, y;V ) the right hand side of the equation of
(Q). Then the problem (Q) is transformed to the integral equation

V (u, y) = 2NN !
∫ u+y

u−y

φ(ξ)dξ +
1
2

∫ y

0

∫ u+y−Y

u−y+Y

H(X,Y ;V )dXdY.

We can solve this integral equation by the iteration

V 0(u, y) = 2NN !
∫ u+y

u−y

φ(ξ)dξ,

V n+1(u, y) = 2NN !
∫ u+y

u−y

φ(ξ)dξ +
1
2

∫ y

0

∫ u+y−Y

u−y+Y

H(X,Y ;V n)dXdY.

Then it is easy to get the estimates

|V n+1(u, y) − V n(u, y)| ≤ Cn+1yn+1

(n+ 1)!
.

Thus V n tends to a limit V uniformly, which solves (Q).

Now we put
ηN = V, ηN−k = IηN−k+1.

Since ηN−k and its derivatives of order ≤ 2 all vanish on y = 0 for k ≥ 1, we see
that Ljηj = 0 and particularly η = η0 satisfies the generalized Euler-Poisson-
Darboux equation (5.1).

Proposition 5.2. There is a CN+2-function G(v, y) of |v| ≤ y, 0 ≤ y
such that the solution V of (Q) satisfies

V (u, y) =
∫ u+y

u−y

G(ξ − u, y)φ(ξ)dξ.(5.3)

Moreover

G = 2NN ! +O(εy2),
∂p1

v ∂p2
y G = O(ε) for 1 ≤ p1 + p2 ≤ N + 2.
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Proof. We consider the approximate solution V n(u, y) which appeared in
the proof of Proposition 5.1. We write

H = (aV )y + bV +
N−1∑
k=1

ckãkI
kV,

where
b = Nã− ∂a

∂y
.

It is easy to see inductively that there is a kernel Gn(v, y) such that

V n(u, y) =
∫ u+y

u−y

Gn(ξ − u, y)φ(ξ)dξ.

In fact G0 = 2NN ! and

Gn+1 = 2NN ! +
1
2

(
T1G

n + T2G
n +

N−1∑
k=1

T3kG
n

)
,

T1G(v, y) =
∫ y

(v+y)/2

a(Y )G(v + y − Y, Y )dY

+
∫ y

(y−v)/2

a(Y )G(v − y + Y, Y )dY,

T2G(v, y) =
∫∫

D(v,y)

b(Y )G(v − Z, Y )dZdY,

where

D(v, y) = {(Z, Y ) : Z − Y ≤ v ≤ Z + Y,−y + Y ≤ Z ≤ y − Y },
for |v| < Y , by which 0 < Y < y on D(v, y),

T3kG(v, y) =
∫∫

D(v,y)

ckãk(Y )JkG(v − Z, Y )dZdY,

where

JG(v, y) =
∫ y

|v|
Y G(v, Y )dY.(5.4)

It is easy to see Gn converges uniformly to a limit G which satisfies (5.3). We
can differentiate Gn+1 (N + 2)-times by supposing that Gn ∈ CN+2, and it is
easy to see that the derivatives converge uniformly, so G ∈ CN+2. Since the
limit G satisfies the integral equation

G = 2NN ! +
1
2

(
T1G+ T2G+

N−1∑
k=1

T3kG

)
,(5.5)
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it is easy to observe the stated estimates by keeping in mind that a = O(εy), ãk

= O(ε) and their derivatives are of O(ε).

By putting
KN−k = JKN−k+1 = JkG,

we have

ηN−k =
∫ u+y

u−y

KN−k(ξ − u, y)φ(ξ)dξ.

So, if we put
K = JNG,

then

η(u, y) =
∫ u+y

u−y

K(ξ − u, y)φ(ξ)dξ

is the solution of the generalized Euler-Poisson-Darboux equation. By induc-
tion we see

JkG(v, y) =
2NN !
2kk!

(y2 − v2)k(1 +O(εy2)).

Thus we get

Proposition 5.3. There is a kernal K(v, y) which is of class CN+2 in
|v| ≤ y, 0 ≤ y such that

η(u, y) =
∫ u+y

u−y

K(ξ − u, y)φ(ξ)dξ(5.6)

gives a solution of the generalized Euler-Poisson-Darboux equation for any
smooth φ. Moreover

K(v, y) = (y2 − v2)N (1 +O(εy2)).(5.7)

In order to apply this formula (5.6), which will be called the generalized
Darboux formula, we need more detailed estimates.

Proposition 5.4. We have

Gv, Gy = O(εy).(5.8)

At (v, y) = ((2s− 1)y, y), s being a parameter, we have

K = 22N (s− s2)Ny2N +O(εy2N+2),(5.9)

(2s− 1)Kv +Ky = 22N+1N(s− s2)Ny2N−1 +O(εy2N+1),(5.10)
(2s− 1)((2s− 1)Kv +Ky)v + ((2s− 1)Kv +Ky)y(5.11)

= 22N+1N(2N − 1)(s− s2)Ny2N−2 +O(εy2N ).
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Proof. It is easy to get (5.8) by differentiating the terms of the integral
equation (5.5). (5.9) is nothing but (5.7). In order to prove (5.10), it is sufficient
to see

(2s− 1)Kv +Ky = yJN−1G(v, y) − (2s− 1)vG(v, |v|)JN−11
+ (2s− 1)JNGv.

Let us show (5.11). If N = 1, then

((2s− 1)Kv +Ky)y = G+ yGy + (2s− 1)yGv

= 2 +O(εy2),
((2s− 1)Kv +Ky)v = yGv − (2s− 1)G(v, |v|)

− (2s− 1)(vGv + |v|Gy) − (2s− 1)vGv + (2s− 1)JGvv

= −2(2s− 1) +O(εy2),

therefore

(2s− 1)((2s− 1)Kv +Ky)v + ((2s− 1)Kv +Ky)y = 8(s− s2) +O(εy2).

Suppose N ≥ 2. Then

((2s− 1)Kv +Ky)y = JN−1G+ y2JN−2G

− (2s− 1)vG(v, |v|)yJN−21 + (2s− 1)yJN−1Gv

= 22N−1N(s− s2)N−1y2N−2

+ 22N−2N(N − 1)(s− s2)N−2y2N−2 +O(εy2N ),
((2s− 1)Kv +Ky)v = −yvJN−2G(v, |v|) + yJN−1Gv

− (2s− 1)G(v, |v|)JN−11 + (2s− 1)(vGv + |v|Gy)JN−11
+ (2s− 1)v2G(v, |v|)JN−21 − (2s− 1)vJN−1Gv

+ (2s− 1)JNGvv

= −22N−2(2s− 1)N(N − 1)(s− s2)N−2y2N−2

− 22N−1(2s− 1)N(s− s2)N−1y2N−2

+ 22N−2(2s− 1)3N(N − 1)(s− s2)N−2y2N−2O(εy2N ).

Thus we get (5.11).

6. Estimates of the Hessian of entropies

Let us consider the entropy η given by the generalized Darboux formula

η(u, y) =
∫ u+y

u−y

K(ξ − u, y)φ(ξ)dξ,

where φ is a fixed C2-function. In this section we seek estimates of the deriva-
tives of η with respect to ρ,m = ρu. We introduce the auxiliary variables

R = y2N+1, M = uy2N+1.
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Proposition 6.1. We have

∂η

∂M
= 22N+1

∫ 1

0

(s− s2)NDφ(u+ (2s− 1)y)ds+O(εy2),(6.1)

∂η

∂R
= 22N+1

∫ 1

0

(s− s2)Nφ(u+ (2s− 1)y)ds(6.2)

+ 22N+1

∫ 1

0

(s− s2)N

(
−u+

2s− 1
2N + 1

y

)
Dφds+O(εy2),

∂2η

∂M2
= 22N+1y−2N−1

∫ 1

0

(s− s2)ND2φ(u+ (2s− 1)y)ds(6.3)

+O(εy−2N+1),

∂2η

∂R∂M
= 22N+1y−2N−1

∫ 1

0

(s− s2)N

(
−u+

2s− 1
2N + 1

y

)
D2φds(6.4)

+O(εy−2N+1),

∂2η

∂R2
= 22N+1y−2N−1

∫ 1

0

(s− s2)N(6.5)

×
((

−u+
2s− 1
2N + 1

y

)2

+
4

(2N + 1)2
(s− s2)y2

)
D2φds

+O(εy−2N+1).

Proof. We write

η = 2y
∫ 1

0

K((2s− 1)y, y)φ(u+ (2s− 1)y)ds

= 2R
1

2N+1

∫ 1

0

K((2s− 1)R
1

2N+1 , R
1

2N+1 )φ
(
M

R
+ (2s− 1)R

1
2N+1

)
ds.

Differentiating η with respect to M , we get

∂η

∂M
= 2R

−2N
2N+1

∫ 1

0

K((2s− 1)y, y)Dφ(u+ (2s− 1)y)ds.

Using Proposition 5.4 (5.9), we see (6.1). Differentiating η with respect to R,
we have

∂η

∂R
= (1) + (2) + (3),

(1) =
2

2N + 1
R

−2N
2N+1

∫ 1

0

Kφds,

(2) =
2

2N + 1
R

−2N+1
2N+1

∫ 1

0

((2s− 1)Kv +Ky)φds,

(3) = 2R
−2N
2N+1

∫ 1

0

K

(
−u+

2s− 1
2N + 1

y

)
Dφds.
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Using (5.9), we see

(1) =
22N+1

2N + 1

∫ 1

0

(s− s2)Nφds+O(εy2).

Using (5.10), we see

(2) =
22N+2N

2N + 1

∫ 1

0

(s− s2)Nφds+O(εy2).

Using (5.9), we see

(3) = 22N+1

∫ 1

0

(s− s2)N

(
−u+

2s− 1
2N + 1

y

)
Dφds+O(εy2).

Summing up, we get (6.2). We have

∂2η

∂M2
= 2R

−4N−1
2N+1

∫ 1

0

KD2φds.

Using (5.9), we get (6.3). Next we have

∂2η

∂R∂M
= (4) + (5) + (6),

(4) = − 4N
2N + 1

R
−4N−1
2N+1

∫ 1

0

KDφds,

(5) =
2

2N + 1
R

−4N
2N+1

∫ 1

0

((2s− 1)Kv +Ky)Dφds,

(6) = 2R
−4N−1
2N+1

∫ 1

0

K

(
−u+

2s− 1
2N + 1

y

)
D2φds.

In a similar manner to ∂η/∂R, we get (6.4). Finally differentiating ∂η/∂R with
respect to R, we have

∂2η

∂R2
=

∂

∂R
(1) +

∂

∂R
(2) +

∂

∂R
(3),

∂

∂R
(1) = (7) + (8) + (9),

(7) = − 4N
(2N + 1)2

R
−4N−1
2N+1

∫ 1

0

Kφds,

(8) =
2

(2N + 1)2
R

−4N
2N+1

∫ 1

0

((2s− 1)Kv +Ky)φds,

(9) =
2

2N + 1
R

−4N−1
2N+1

∫ 1

0

K

(
−u+

2s− 1
2N + 1

y

)
Dφds,

∂

∂R
(2) = (10) + (11) + (12),
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(10) =
2(−2N + 1)
(2N + 1)2

R
−4N
2N+1

∫ 1

0

((2s− 1)Kv +Ky)φds,

(11) =
2

(2N + 1)2
R

−4N+1
2N+1

∫ 1

0

((2s− 1)((2s− 1)Kv +Ky)v

+ ((2s− 1)Kv +Ky)y)φds,

(12) =
2

2N + 1
R

−4N
2N+1

∫ 1

0

((2s− 1)Kv +Ky)
(
−u+

2s− 1
2N + 1

y

)
Dφds,

∂

∂R
(3) = (13) + (14) + (15) + (16),

(13) =
−4N

2N + 1
R

−4N−1
2N+1

∫ 1

0

K

(
−u+

2s− 1
2N + 1

y

)
Dφds,

(14) =
2

2N + 1
R

−4N
2N+1

∫ 1

0

((2s− 1)Kv +Ky)
(
−u+

2s− 1
2N + 1

y

)
Dφds,

(15) = 2R
−4N−1
2N+1

∫ 1

0

K

(
u+

2s− 1
(2N + 1)2

y

)
Dφds,

(16) = 2R
−4N−1
2N+1

∫ 1

0

K

(
−u+

2s− 1
2N + 1

y

)2

D2φds.

Using (5.12) to estimate (11), we can see (6.5).

Let us recall the standard entropy η∗, which is generated by

φ∗(u) =
A′

2
u2,

where

A′ = (2N + 1)−2N (2N − 1)!!((2N + 1)/(2N + 3)A)
2N+1

2 /2N+1N !.

We note that D2φ∗(u) = A′. We are going to show the Hessian D2
Uη is domi-

nated by D2
Uη

∗.

Proposition 6.2. On each compact suset of {ρ ≥ 0} we have

|(ξ|D2
Uη.ξ)| ≤ C(ξ|D2

Uη
∗.ξ),

provided that ε is sufficiently small.

Proof. By the assumption we have

R = aρ(1 + [ερ
2

2N+1 ]1),
dR

dρ
= a+ [ερ

2
2N+1 ]1,

d2R

dρ2
= ερ

−2N+1
2N+1 [ερ

2
2N+1 ]0,
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where a = ((2N + 3)(2N + 1)A)((2N+1)/2). Using these, we see

∂R

∂ρ
= a+O(εy2),

∂R

∂m
= 0,

∂M

∂ρ
= O(εy2)u,

∂M

∂m
= a+O(εy2),

∂2R

∂ρ2
= O(εy−2N+1),

∂2R

∂m∂ρ
= 0,

∂2R

∂m2
= 0,

∂2M

∂ρ2
= O(εy−2N+1)u,

∂2M

∂ρ∂m
= O(εy−2N+1),

∂2M

∂m2
= 0.

Therefore by the chain rule we get

∂2η

∂ρ2
= a2 ∂

2η

∂R2
+O(εy−2N+1),

∂2η

∂ρ∂m
= a2 ∂2η

∂R∂M
+O(εy−2N+1),

∂2η

∂m2
= a2 ∂

2η

∂M2
+O(εy−2N+1).

Here we have used ∂η/∂R, ∂η/∂M = O(1). Hence it follows from Proposition
6.1 that

(ξ|D2η.ξ) = ηρρξ
2
0 + 2ηρmξ0ξ1 + ηmmξ

2
1

=
22N+1a2

y2N+1

∫ 1

0

(s− s2)NZ[ξ]D2φds+O(εy−2N+1),

Z[ξ] = Z00ξ
2
0 + 2Z01ξ0ξ1 + Z11ξ

2
1 ,

Z00 =
(
−u+

2s− 1
2N + 1

y

)2

+
4

(2N + 1)2
(s− s2)y2,

Z01 = −u+
2s− 1
2N + 1

y,

Z11 = 1.

Since
Z00Z11 − Z2

01 =
4

(2N + 1)2
(s− s2)y2,

we see
Z[ξ] ≥ κ(s− s2)y2|ξ|2,

κ being a positive constant uniformly taken for |u| ≤ C, 0 ≤ y ≤ C. If |D2φ| ≤
C1, then

|(ξ|D2η.ξ)| ≤ C1
22N+1a2

y2N+1

∫ 1

0

(s− s2)NZds+O(εy−2N+1).
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Since D2φ∗ = A′, we have

|(ξ|D2η.ξ)| ≤ C1

A′ (ξ|D2η∗.ξ) +O(εy−2N+1).

Since
(ξ|D2η∗.ξ) ≥ κ′y−2N+1|ξ|2,

we get the required estimate.

Remark. All estimates are obtained by assuming that φ is C2, and the
smalness of ε of Proposition 6.2 does not depend on η.

As for the first derivatives the following is now clear.

Proposition 6.3. On each compact subset of {ρ ≥ 0} we have∣∣∣∣∂η∂ρ
∣∣∣∣ ≤ C,

∣∣∣∣ ∂η∂m
∣∣∣∣ ≤ C.

7. Compactness of ηt + qx

Let us consider an entropy η generated by φ through the generalized Dar-
boux formula and its flux q. In this section we will prove

Proposition 7.1. Let U∆ be the approximate solutions constructed in
Section 4. Then η(U∆)t + q(U∆)x lies in a compact subset of H−1

loc (Ω), Ω being
a bounded open subset of {t ≥ 0}.

Proof. Let Φ be a test function and we consider

J =
∫∫

(η(U∆)Φt + q(U∆)Φx)dxdt

= N + L+ Σ,

N = −
∫
η(U∆(+0, x)Φ(0, x)dx,

L =
∑

n

∫
[η(U∆(t, x)]t=n∆t−0

t=n∆t+0Φ(n∆t, x)dx,

Σ =
∫ ∑

shock

(σ[η] − [q])Φdt.

Since U∆ is bounded, we see

|N | ≤ C||Φ||C .
Let us look at L. We see

L = L1 + L2,

L1 =
∑
j,n

Φ(n∆t, (2j + 1)∆)
∫ (2j+2)∆x

2j∆x

[η(U∆)]t=n∆t−0
t=n∆t+0dx,

L2 =
∑
j,n

∫ (2j+2)∆

2j∆

(Φ(n∆t, x) − Φ(n∆t, (2j + 1)∆)[η(U∆)]t=n∆t−0
t=n∆t+0dx.
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We note

[η(U∆)]t=n∆t−0
t=n∆t+0 = DUη(U∆(n∆t+ 0, x))[U∆]

+
∫ 1

0

(1 − θ)([U∆]|D2
U (U∆(n∆t+ 0) + θ[U∆]).[U∆])dθ.

and ∫ (2j+2)∆

2j∆

[U∆]dx = 0

by the scheme. Therefore

|L1| ≤ C||Φ||C
∑
j,n

∫∫ 1

0

(1 − θ)|F (θ, η)|dθdx,

where
F (θ, η) = ([U∆]|D2

Uη(U
∆(n∆t+ 0) + θ[U∆]).[U∆]).

By Proposition 6.2 we know |F (θ, η)| ≤ CF (θ, η∗). But in the proof of Propo-
sition 4.2 we know

∑
j,n

∫∫ 1

0

(1 − θ)F (θ, η∗)dθdx ≤ C.

Thus we know
|L1| ≤ C||Φ||C .

In the proof of Proposition 4.2 we know

∑
j,n

∫ (2j+2)∆

2j∆

|[U∆]|2dx ≤ C.

Therefore

|L2| ≤ 2α||Φ||Cα

∑
n

∫
(∆x)α|[η(U∆)]|dx

≤ 2α−1||Φ||Cα

∑
n

∫
((∆)α+ 1

2 + (∆)α− 1
2 |[η(U∆)]|2)dx

≤ C||Φ||Cα((∆)α− 1
2 + (∆)α− 1

2

∑∫
|[U∆]|2dx

≤ C ′(∆)α− 1
2 ||Φ||Cα ,

where we use the boundedness of DUη and n = O(1/(∆)). Next we look at Σ.
Along the shock we have

σ[η(U)] − [q(U)]

=
∫ ρR

ρL

(
−dσ
dρ

∫ 1

0

θ(U − UL|D2
Uη(UL + θ(U − UL))(U − UL))dθ

)
dρ.



�

�

�

�

�

�

�

�

Weak solutions to the compressible Euler equation 577

This implies
|σ[η] − [q]| ≤ C(σ[η∗] − [q∗]).

But we know ∫ ∑
shock

(σ[η∗] − [q∗])dt ≤ C

in the proof of Proposition 4.2. Therefore

|Σ| ≤ C||Φ||C .
Summing up, we know the compactness.

8. Useful entropies

Let us consider an entropy η generated by φ, that is,

η(u, y) =
∫ u+y

u−y

K(ξ − u, y)φ(ξ)dξ.

The corresponding entropy flux q is given by integrating the equations

∂q

∂w
= λ2

∂η

∂w
,

∂q

∂z
= λ1

∂η

∂z
.

We can solve these equations as

q = λ2η −
∫ w

z

∂λ2

∂w
ηdw

= λ1η +
∫ w

z

∂λ1

∂z
ηdz.

Thus we get the formula

q(u, y) =
∫ u+y

u−y

L(u, y, ξ)φ(ξ)dξ,

where

L(u, y, ξ) = λ1(u, y)K(ξ − u, y) + L1(ξ − u, y)
= λ2(u, y)K(ξ − u, y) + L2(ξ − u, y),

L1(v, y) = 2
∫ y

(−v+y)/2

µ(Y )K(v − y + Y, Y )dY,

L2(v, y) = −2
∫ y

(v+y)/2

µ(Y )K(v + y − Y, Y )dY,

µ(y) =
∂λ1

∂z
=
∂λ2

∂w

=
1
2

(
1 +

ρP ′′

2P ′

)
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=
N + 1
2N + 1

+O(εy2).

We are going to construct various useful entropies.

I) Let us put

η1
k(u, y) =

∫ u+y

u−y

K(ξ − u, y)kN+1ekξdξ,

η2
k(u, y) =

∫ u+y

u−y

K(ξ − u, y)kN+1e−kξdξ,

where k is a positive integer.

Proposition 8.1. We have

η1
k = 2NN !yN (1 +O(ε))ek(u+y)(1 +O(1/k)),(8.1)
η2

k = 2NN !yN (1 +O(ε))e−k(u−y)(1 +O(1/k))

uniformly on each compact subset of {y > 0}, and

q1k = η1
k(λ2 +O(1/k)),(8.2)

q2k = η2
k(λ1 +O(1/k)),

η2
kq

1
k − η1

kq
2
k = (2NN !)2y2(N−1)

(
1

2N + 1
+O(ε)

)
e2ky(y +O(1/k))3(8.3)

uniformly on each compact subset of {y ≥ 0}.

Proof. Since K = (y2 − v2)N (1 +O(ε)), we see

η1
k = (1 +O(ε))22N+1yNekuf(ky),

where

f(r) = rN+1e−r

∫ 1

0

(s− s2)Ne2rsds

= e−r

∫ r

0

(
σ
(
1 − σ

r

))N

e2σdσ.

It is easy to see
e−rf(r) = 2−(N+1)N ! +O(1/r).

This implies (7.1). We note

η1
k = (1 +O(ε))2NN !yN−1ek(u+y)(y +O(1/k)),
η2

k = (1 +O(ε))2NN !yN−1e−k(u−y)(y +O(1/k))
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uniformly on {y ≥ 0}. Let us consider the flux. We have

L2 = −2
(
N + 1
2N + 1

+O(ε)
)∫ y

(v+y)/2

(Y 2 − (v + y − Y )2)NdY

= −
(

1
2N + 1

+O(ε)
)

(y + v)N (y − v)N+1,

q1k − λ2η
1
k = −

(
1

2N + 1
+O(ε)

)∫ u+y

u−y

(y − u+ ξ)N (y + u− ξ)N+1

× kN+1ekξdξ.

But

0 ≤
∫ u+y

u−y

(y − u+ ξ)N (y + u− ξ)N+1kN+1ekξdξ

= (N + 1)kN

∫ u+y

u−y

(y2 − (ξ − u)2)Nekξdξ

−NkN

∫ u+y

u−y

(y − u+ ξ)N−1(y + u− ξ)N+1ekξdξ

≤ (N + 1)
1
k

∫ u+y

u−y

(y2 − (ξ − u)2)NkN+1ekξdξ.

Thus
q1k − λ2η

1
k = O(1/k)η1

k.

Since

λ2 − λ1 =
√
P ′ =

(
1

2N + 1
+O(ε)

)
y,

we get (7.3).

II) Let ψ be a function in C∞
0 (−1, 1) such that ψ ≥ 0, ψ(x) = ψ(−x) and∫

ψ = 1. We put

φ3
n(u) = ψn(u) = nψ(n(u− a)),
φ4

n(u) = −Dψn(u),

η3
n(u, y) =

∫ u+y

u−y

K(ξ − u, y)φ3
n(ξ)dξ,

η4
n(u, y) =

∫ u+y

u−y

K(ξ − u, y)φ4
n(ξ)dξ,

η3(u, y) = K(a− u, y)X
η4(u, y) = Kv(a− u, y)X
q3(u, y) = L(a− u, y)X
q4(u, y) = Lv(a− u, y)X



�

�

�

�

�

�

�

�

580 Tetu Makino

X = 1 for |u− a| < y

=
1
2

for |u− a| = y

= 0 for |u− a| > y

Of course η3
n, η

4
n, q

3
n, q

4
n tends to η3, η4, q3, q4 everywhere as n→ ∞.

Proposition 8.2. We have

|η3
n| ≤ Cy2N , |q3n| ≤ Cy2N (|u| + y),

|η4
n| ≤ Cy2N−1, |q4n| ≤ Cy2N−1(|u| + y),

(8.4)

η3q4 − η4q3 =
1

2N + 1
(1 +O(ε))(y2 − (u− a)2)2N .(8.5)

Proof. The estimate (7.4) can be easily seen. Let us consider

η3q4 − η4q3 = (KLv − LKv)(a− u, y).

Suppose v = a− u ≤ 0. We have

1
2
(KLv − LKv) = K

∫ y

(−v+y)/2

µKv(v − y + Y, Y )dY

−Kv

∫ y

(−v+y)/2

µK(v − y + Y, Y )dY.

Since
Kv = −vG(v, |v|)JN−11 + JNGv,

we have

L1,v =
∫ y

(−v+y)/2

µKv(v − y + Y, Y )dY

=
(
N + 1
2N + 1

+O(ε)
)

2N
∫ y

(−v+y)/2

(−v + y − Y )

× (Y 2 − (−v + y − Y )2)N−1dY

+O(ε)
∫ y

(−v+y)/2

(Y 2 − (−v + y − Y )2)NdY

=
(
N(N + 1)
2(2N + 1)

+O(ε)
)

× (−v + y)N+1(v + y)N 1
N(N + 1)

(y − (2N − 1)v)

+O(ε)(v + y)(y2 − v2)N

Thus

K

∫ y

(−v+y)/2

µKvdY =
(

1
2(2N + 1)

+O(ε)
)

(y2 − v2)2N−1

× (v + y)(y − (2N + 1)v) +O(ε)(v + y)(y2 − v2)2N
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On the other hand we have

Kv

∫ y

(−v+y)/2

µKdY = −
(

N

2N + 1
+O(ε)

)
v(v + y)(y2 − v2)2N−1

+O(ε)(v + y)(y2 − v2)2N .

Hence

1
2
(KLv − LKv) =

(
1

2(2N + 1)
+O(ε)

)
(y2 − v2)2N .

Here we have used

0 ≤ −v(y + v) ≤ y2 − v2,

0 ≤ (y + v)(y − (2N + 1)v) ≤ (2N + 1)(y2 − v2),

provided that −y ≤ v ≤ 0. When v ≥ 0, we can discuss in a similar manner by
using L2.

III) Let Φ be a function in C∞
0 (−1, 1) such that

∫
Φ = 0 and the support

supp Φ is [−1 + α, 1 + α], where α is a small positive number. We put

ψn(u) = nΦ(n(u− a)),

η5
n(u, y) =

∫ u+y

u−y

K(ξ − u, y)DN+1ψn(ξ)dξ,

q5n(u, y) =
∫ u+y

u−y

L(u, y, ξ)DN+1ψn(ξ)dξ;

Φ̂(u) =
d

dx

(
x

∫ x

−1

Φ
)
,

ψ̂n(u) = nΦ̂(n(u− a)),

η6
n(u, y) =

∫ u+y

u−y

K(ξ − u, y)DN+1ψ̂n(ξ)dξ,

q6n(u, y) =
∫ u+y

u−y

L(u, y, ξ)DN+1ψ̂n(ξ)dξ;

B3
n = η3q5n − η5

nq
3,

B4
n = η4q5n − η5

nq
4,

Bn = η5
nq

6
n − η6

nq
5
n.

Let us divide the domain Σ = {−B ≤ u− y ≤ u+ y ≤ B} into the following 5
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parts.

S0 =
{
− 1
n
< u+ y − a ≤ 1

n
,− 1

n
≤ u− y − a <

1
n

}
∩ Σ,

S1 =
{

1
n
< u+ y − a, u− y − a < − 1

n

}
∩ Σ,

SL =
{
− 1
n
< u+ y − a ≤ 1

n
, u− y − a < − 1

n

}
∩ Σ,

SR =
{

1
n
< u+ y − a,− 1

n
≤ u− y − a <

1
n

}
∩ Σ,

S = Σ − (S0 ∪ S1 ∪ S1 ∪ SL ∪ SR).

Proposition 8.3. We have

|B3
n| ≤ C/n, |B4

n| ≤ C(8.6)

on Σ, and

|Bn| ≤ C/n(8.7)

on S0 ∪ S1 ∪ S. Moreover, on SL, we have

Bn = ny2NA1 + yNA2 +A3,(8.8)

where

A1 =
(

(N + 1)(2NN !)2

2N + 1
+O(ε)

)(∫ n(u+y−a)

−1

Φ

)2

,

|A2| ≤ C

(∣∣∣∣∣
∫ n(u+y−a)

−1

Φ

∣∣∣∣∣+ |Φ(n(u+ y − a))|
)
,

|A3| ≤ C

n
.

On SR, we have

Bn = ny2NC1 + yNC2 + C3,

C1 =
(

(N + 1)(2NN !)2

2N + 1
+O(ε)

)(∫ n(u−y−a)

−1

Φ

)2

,

|C2| ≤ C

(∣∣∣∣∣
∫ n(u−y−a)

−1

Φ

∣∣∣∣∣+ |Φ(n(u− y − a))|
)
,

|C3| ≤ C

n
.
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Proof. For the simplicity, we write ηn = η5
n, qn = q5n, η̂n = η6

n, q̂n = q6n.
It is easy to see inductively that, for Gj = JjG = KN−j , we have

∂p
vGj = J∂p

vGj−1

for j ≥ p+ 1 and

∂p
vGp = (−1)pvpG(v, |v|) + J∂p

vGp−1.

Therefore
∂p

vK = ∂p
vGN (v, y) = 0

for p ≤ N − 1 and y = |v|. Thus by integration by parts we have

ηn = (−1)N∂N
v K(y, y, )ψn(u+ y)(−1)N∂N

v K(−y, y)ψn(u− y)
+ F 1

n(u, y),

F 1
n(u, y) = (−1)N+1

∫ u+y

u−y

∂N+1
v K(ξ − u, y)ψn(ξ)dξ.

We see

∂p
vL2(v, y) = −2

∫ y

(v+y)/2

µ2∂
p
vK(v + y − Y, Y )dY

for p ≤ N − 1. Therefore

∂p
vL2(y, y) = ∂p

vL2(−y, y) = 0

for p ≤ N − 1. Moreover we see

∂N
v L2(y, y) = 0.

Therefore by integration by parts we have

σn(u, y) = qn(u, y) − λ2ηn(u, y)
= −(−1)N∂N

v L2(−y, y)ψn(u− y) + F 2
n(u, y),

F 2
n(u, y) = (−1)N+1

∫ u+y

u−y

∂N+1
v L2(ξ − u, y)ψn(ξ)dξ.

Similarly

σ̄n(u, y) = qn(u, y) − λ1ηn(u, y)
= (−1)N∂N

v L1(y, y)ψn(u+ y) + F̄ 2
n(u, y),

F̄ 2
n(u, y) = (−1)N+1

∫ u+y

u−y

∂N+1
v L1(ξ − u, y)ψn(ξ)dξ.

We note
∂N

v K(v, y) = (−1)NvNG(v, |v|) + J∂N
v GN−1.
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It is easy to see inductively that

∂p+1
v Gp(v, y) = (−1)p p(p+ 1)

2
vp−1G(v, |v|) + vpHp(v) + J∂p+1

v Gp−1,

where Hp = O(ε). Therefore

∂N+1
v K(v, y) = (−1)N N(N + 1)

2
vN−1G(v, |v|) + vNHN (v) + J∂N+1

v GN−1.

1) Suppose (u, y) ∈ S. Then it is clear that η3, η4, q3, q4, ηn, qn, η̂n, q̂n,
B3

n, B
4
n, Bn all vanish.

2) Suppose (u, y) ∈ S0. Then we see

η3 = K(a− u, y)
= O((y2 − (u− a)2)N )
= O(n−2N),

η4 = Kv(a− u, y)
= O(|u− a|(y2 − (u− a)2)N−1) +O((y2 − (u− a)2)N )
= O(n−2N+1),

σ3 = L2(a− u, y)

= −2
∫ y

(−u+y+a)/2

µK(a− u+ y − Y, Y )dY

= O(n−2N−1),
σ4 = L2,v(a− u, y)

= −2
∫ y

(−u+y+a)/2

µKv(a− u+ y − Y, Y )dY

= O(n−2N).

Since y = O(1/n) and ψn = O(n), we see

(−1)N∂N
v K(y, y)ψn(u+ y) − (−1)N∂N

v K(−y, y)ψn(u− y) = O(n−N+1).

Since F 1
n = O(1), we have ηn = O(1). We see

∂N
v L2(−y, y) = −2

∫ y

0

µ2∂
N
v K(−Y, Y )dY = O(n−N−1).

Therefore
−(−1)N∂N

v L2(−y, y)ψn(u− y) = O(n−N).

Since

∂N+1
v L2(v, y) = µ∂N

v K((v + y)/2, (v + y)/2)

− 2
∫ y

(v+y)/2

∂N+1
v K(v + y − Y, Y )dY

= O((v + y)N ) +O(−v + y),
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we see

F 2
n(x, y) = (−1)N+1

∫ u+y

u−y

∂N+1
v L2(ξ − u, y)ψn(ξ)dξ

= O(n−1).

Hence σn = O(n−1). Therefore

B3
n = η3σn − ηnσ

3 = O(n−2N−1),
B4

n = η4σn − ηnσ
4 = O(n−2N),

Bn = ηnσ̂n − η̂nσn = O(n−1).

3) Suppose (x, y) ∈ S1, where u+y > a+(1/n) and u−y < a−(1/n). Then
ψn(u + y) = ψn(u − y) = ψ̂n(u + y) = ψ̂n(u − y) = 0. So, ηn = F 1

n , σn = F 2
n ,

and so on. But

F 1
n(u, y) = (−1)N+1

∫ u+y

u−y

∂N+1
v K(ξ − u, y)ψn(ξ)dξ

= (−1)N+1

∫ 1

−1

(
∂N+1

v K
(
a+

s

n
− u, y

)
− ∂N+1

v K(a− u, y)
)

Φ(s)ds

= O(1/n)

since
∫

Φ = 0 and ∂N+1
v K is Lipschitz continuous. Same estimates hold for

F 2
n , F̂

1
n , F̂

2
n . Thus

B3
n = η3F 2

n − F 1
nσ

3 = O(1/n),
B4

n = η4F 2
n − F 1

nσ
4 = O(1/n),

Bn = F 1
nF̂

2
n − F̂ 1

nF
2
n = O(1/n2).

4) Suppose (x, y) ∈ SL, where |u + y − a| ≤ 1/n. It is easy to see η3 =
O(n−N ), η4 = O(n−N+1), σ3 = O(n−N−1), σ4 = O(n−N). Since n(u− y−a) <
−1, we have ψn(u− y) = 0. Thus ηn = O(n), σn = F 2

n = O(1). Therefore

B3
n = η3σn − ηnσ

3 = O(n−N),
B4

n = η4σn − ηnσ
4 = O(n1−N).

Let us estimate Bn = ηnσ̂n − η̂nσN . Since

∂N+1
v K = (−1)N N(N + 1)

2
vN−1G(v, |v|) + vNHN (v) + J∂N

v GN−1,

we have

F 1
n = (−1)N+1

∫ u+y

u−y

∂N+1
v K(ξ − u, y)ψn(ξ)dξ

= (−1)N+1

(
(−1)N N(N + 1)

2
2NN !(a− u)N−1 + F ′(a− u)

)∫ n(u+y−a)

−1

Φ

+O(1/n)

= −N(N + 1)
2

2NN !yN−1(1 + F ′′(a− u, y))
∫ n(u+y−a)

−1

Φ +O(1/n),
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where F ′ = O(ε)|a− u|N , F ′′ = O(ε). On the other hand

∂N
v K(y, y) = (−1)NyNG(y, y).

Hence

ηn = nyNG(y, y)Φ(n(u+ y − a))

− N(N + 1)
2

2NN !yN−1(1 + F ′′(a− u, y))
∫ n(u+y−a)

−1

Φ +O(1/n).

Since

∂N+1
v L2(v, y) = µ∂N

v K((v − y)/2, (v + y)/2)

− 2
∫ y

(v+y)/2

µ∂N+1
v K(v + y − Y, Y )dY

=
(

N

2N + 1
+O(ε)

)
(−1)N

(
v + y

2

)N

×G((v − y)/2, (v + y)/2) +O(−v + y),

we see

σn = F 2
n

= (−1)N+1

∫ u+y

u−y

∂N+1
v L2(ξ − u, y)ψn(ξ)dξ

= − N

2N + 1
2NN !yN (1 + L′(a− u, y))

∫ n(u+y−a)

−1

Φ +O(1/n),

where L′ = O(ε). Here we have used(−u+ y + a

2

)N

=
(
y − u+ y − a

2

)N

= yN +O(1/n).

Similar estimates hold for η̂n, σ̂n. Thus

Bn = ny2NA1 + yNA2 +A3,

where

A1 = −G N + 1
2N + 1

2NN !(1 + L′)Φ(β)
∫ β

−1

Φ̂ +G
N + 1
2N + 1

2NN !(1 + L′)Φ̂(β)
∫ β

−1

Φ

=
N + 1
2N + 1

2NN !G(1 + L′)

(∫ β

−1

Φ

)2

,

β = n(u+ y − a).

The estimates on SR can be obtained in a similar manner considering σ̄3, σ̄4, σ̄n.
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If we put

B̂3
n = η3q6n − η6

nq
3,

B̂4
n = η4q6n − η6

nq
4,

then the same estimates hold.

9. Convergence of approximate solutions

We consider the approximate solutions U∆ constructed in Section 4. Since
U∆ is bounded, there is a sequence U∆n and a family of Young measures νt,x

such that supp νt,x ⊂ Σ = ΣB and for any continuous function f

f(U∆n(t, x)) → f̄ = 〈νt,x, f〉

in L∞ weak star topology. By Proposition 7.1 we can apply the compensated
compactness theory, and we can assume

(ηq′ − η′q)(U∆n) → 〈ν, q〉〈ν, q′〉 − 〈ν, η′〉〈ν, q〉

in L∞ weak star. Here η, q; η′, q′ are arbitrary Darboux entropy pairs. Thus
we have

Proposition 9.1. For any pairs (η, q), (η′, q′) of Darboux entropies-
entropy flux, the identity

〈ν, ηq′ − η′q〉 = 〈ν, η〉〈ν, q′〉 − 〈ν, η′〉〈ν, q〉

holds a.e.-(t, x), where ν = νt,x.

Since entropies we will use are countably many, we can assume that the
above identity holds outside a null set which is common to all η. We fix (t, x) at
which the identity holds, and we write ν = νt,x. Of course supp. ν ⊂ Σ. Suppose
that supp. ν ∩{ρ > 0} �= φ. Let Σ0 be the smallest triangle {z0 ≤ z ≤ w ≤ w0}
such that supp. ν ∩ {ρ > 0} ⊂ Σ0. Let us denote by P0 the state (w0, z0). It
will be verified that ν = δP0 . (the Dirac measure). First we show

Proposition 9.2.
P0 ∈ supp. ν.

Proof. Suppose P0 �∈ supp. ν. Since Σ0 is the smallest triangle containing
supp. ν ∩ {ρ > 0}, w = w0 and z = z0 intersect with supp. ν ∩ {ρ > 0}. On
neighborhoods of these intersection points we have

η1 ≥ 1
C
ek(w0−ε1),

η2 ≥ 1
C
e−k(z0+ε1).
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(See Proposition 8.1). Since ν, η1, η2 are nonnegative, we see

〈ν, η1〉 ≥ 1
C
ek(w0−ε1),

〈ν, η2〉 ≥ 1
C
e−k(z0+ε1).

Since P0 �∈ supp. ν, we have

〈ν, η2q1 − η1q2〉 ≤Mek(w0−z0−δ).

Taking 2ε1 < δ, we have∣∣∣∣ 〈ν, q1〉〈ν, η1〉 −
〈ν, q2〉
〈ν, η2〉

∣∣∣∣ =
∣∣∣∣ 〈ν, η2q1 − η1q2〉

〈ν, η1〉〈ν, η2〉
∣∣∣∣

≤ Ce−k(δ−2ε1)

→ 0

as k → ∞. Let β be a sufficiently small positive number, and we put

Σ2 = {z0 ≤ z ≤ w < w0 − β}
Σ3 = {z0 ≤ z ≤ w ≤ w0, w0 − β ≤ w}.

Then
η1e−kw = (1 +O(ε))2NN !yN−1(y +O(1/k))

is bounded on Σ0 and we have

〈ν|Σ2 , η
1〉 ≤ Cek(w0−β).

Taking ε1 = β/2, we know

〈ν|Σ2 , η
1〉

〈ν, η1〉 ≤ Ce−βk/2 → 0.

Since ∂λ2/∂w > 0, we know

λ2(w, z) ≥ λ2(w0 − β, z0)

on Σ3. Therefore we have

〈ν, q1〉
〈ν, η1〉 =

〈ν|Σ2 , η
1λ2〉

〈ν, η1〉 +
〈ν|Σ3 , η

1λ2〉
〈ν, η1〉 +O(1/k)

≥ o(1) + λ2(w0 − β, z0)

Similarly we see
〈ν, q2〉
〈ν, η2〉 ≤ o(1) + λ1(w0, z0 + β).
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Therefore we have

λ2(w0 − β, z0) − λ1(w0, z0 + β) ≤ 0 + o(1).

Passing to the limit, we know

λ2(w0, z0) ≤ λ1(w0, z0).

But this means P0 ∈ {ρ = 0}, a contradiction.

Let us fix a such that z0 < a < w0. We have

〈ν,B3
n〉 = 〈ν, η3〉〈ν, q5n〉 − 〈ν, η5

n〉〈ν, q3〉,
〈ν,B4

n〉 = 〈ν, η4〉〈ν, q5n〉 − 〈ν, η5
n〉〈ν, q4〉,

〈ν, η3q4 − η4q3〉 = 〈ν, η3〉〈ν, q4〉 − 〈ν, η4〉〈ν, q3〉,
〈ν,Bn〉 = 〈ν, η5

n〉〈ν, q6n〉 − 〈ν, η6
n〉〈ν, q5n〉.

From (8.5) and P0 ∈ supp. ν we know

〈ν, η3q4 − η4q3〉 > 0 〈ν, η3〉 > 0

and from(8.6) we know

〈ν,B3
n〉 → 0, 〈ν, B̂3

n〉 → 0

Using these we can prove the following propositions. Proofs can be found in
Chen et al. [1].

Proposition 9.3. As n→ ∞, 〈ν, η5
n〉, 〈ν, q5n〉, 〈ν, q6n〉, 〈ν, q6n〉 are bounded.

Proposition 9.4. As n→ ∞, we have 〈ν,Bn〉 → 0.

Now, taking

Φ0(x) =

{
e
− 1

1−x2 if |x| < 1
0 if |x| ≥ 1

we put

Φ(x) =
1
β

(
Φ0

(
x+ β

β

)
− Φ0

(
x− β

β

))

for the generating function of η5
n. Here β = (1 − α)/2. We put

S+ =
{
z ≤ w, |w − a| ≤ 1 − 3α

n

}
,

S− =
{
z ≤ w, |z − a| ≤ 1 − 3α

n

}
.

Proposition 9.5. As n→ ∞, we have

〈ν|S+ , ny
2N 〉 + 〈ν|S− , ny

2N 〉 → 0.
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Proof. Put S′
L = S+ ∩ SL, S

′
R = S− ∩ SR. It is sufficient to prove that

〈ν|S′
L
, ny2N 〉 + 〈ν|S′

R
, ny2N 〉 → 0.

From (8.7) we have

〈ν|SL
, ny2NA1 + yNA2〉 + 〈ν|SR

, ny2NC1 + yNC2〉 → 0.

Note

A1 =
(

(N + 1)(2NN !)2

2N + 1
+O(ε)

)(∫ n(u+y−a)

−1

Φ

)2

≥ 1
C0

> 0

on S′
L. Put

En =
{

0 ≤ y ≤
(

1
n

)µ}
,

where µ is a positive parameter. Then |yNA2| ≤ C(1/n)µN = o(1) on SL ∩En

and |yNA2| ≤ Cny2N (1/n)1−µN on SL − En. Choose dn ↘ 0 such that

∫ 1−α−dn

−1+α

Φ = −
∫ 1−α

1−α−dn

Φ ≥ (1/n)µ0 .

Then (∫ H

−1

Φ

)2

≥ (1/n)2µ0

for |H| ≤ 1 − α− dn, and

|Φ(H)| +
∣∣∣∣∣
∫ H

−1

Φ

∣∣∣∣∣ = o(1)

for 1 − α− dn ≤ |H| ≤ 1. Put

Sn
+ = SL ∩

{
|w − a| ≤ 1 − α− dn

n

}
.

Then S′
L ⊂ Sn

+ ⊂ SL and

|yNA2| = o(1)

on SL − Sn
+ and

ny2NA1 + yNA2 ≥ ny2N

(
1
C

(1/n)2µ0 − C(1/n)1−µN

)
≥ 0



�

�

�

�

�

�

�

�

Weak solutions to the compressible Euler equation 591

on Sn
+ − En. Here we take 0 < 2µ0 < 1 − µN . Then

〈ν|SL
, ny2NA1 + yNA2〉 = 〈ν|SL∩En

, ny2NA1〉
+ 〈ν|SL−En

, ny2NA1 + yNA2〉 + o(1)

≥ 1
C0

〈ν|S′
L∩En

, ny2N 〉 + 〈ν|SL−Sn
+∩En

, ny2NA1〉
+ 〈ν|S′

L−En
, ny2NA1 + yNA2〉

+ 〈ν|Sn
+−S′

L−En
, ny2NA1 + yNA2〉 + o(1)

≥ 1
C0

〈ν|S′
L∩En

, ny2N 〉

+
〈
ν|S′

L−En
, ny2N

(
1
C0

− C(1/n)1−µN

)〉
+ o(1)

≥ 1
2C0

〈ν|S′
L
, ny2N 〉 + o(1).

Similarly we know

〈ν|SR
, ny2NC1 + yNC2〉 ≥ 1

2C0
〈ν|S′

R
, ny2N 〉 + o(1).

Thus we see
〈ν|S′

L
, ny2N 〉 + 〈ν|S′

R
, ny2N 〉 → 0.

Proposition 9.6. We have

ν|{ρ>0} = δP0 .

Proof. Proposition 9.5 says that the projections Pwν̃, Pzν̃ of the mea-
sure ν̃ = y2Nν admits the Lebesgue lower derivatives which vanish at any a.
Therefore we can claime that

supp. ν ∩ {ρ > 0} = {P0}.

Since ν is a probability measure, we have

ν|{ρ>0} = CδP0 .

But
C(η3q4 − η4q3) = C2(η3q4 − η4q3)

at P0. Hence C = 1.

Summing up we get the proof of Theorem 1.
Let us prove the Theorem 2.
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Let α be an arbitrary positive constant. Put

ρ = α
2

γ−1 ρ̄, P = α
2γ

γ−1 P̄ ,

u = αū, x = αx̄,

ε = α−2ε̄.

Then the problem for ρ̄, ū, . . . is the same to the problem (1.1), (1.2) with the
same equation of states. Thus Theorem 1 can be applied. Taking ε1(1)1/2 = α,
we get Theorem 2.
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