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Introduction

Cartan-type Lie superalgebras is a subclass in the classification of the
finite dimensional simple Lie superalgebras over C. Lie superalgebra W (n),
which consists of all the superderivations on Grassmann algebra Λ(n), is one
of Cartan-type Lie superalgebras. The irreducible representations of W (n) are
described in [5]. In this article, we want to develop an analogue of the classical
Weyl-Schur duality for W (n). In other words, we try to decompose the m-fold
tensor product ⊗mΛ(n) of the defining representation Λ(n) of W (n) under the
diagonal actions of W (n) and its commutant algebra. In [7], K. Nishiyama
has considered the decomposition of the m-fold tensor product of the defining
representation of Cartan-type Lie algebra Wn under the condition m ≤ n.

In the present article, we give the decomposition of ⊗mΛ(n) under the
condition m ≤ n in Section 2. As an attempt toward the general cases, in
Section 3, we consider the case n = 2, where m is arbitrary. Let us explain this
more explicitly.

Let End[m] be a semigroup of all the mappings from a finite collection
of integers [m] := {1, 2, · · · ,m} into itself. In [8] and [9], using the semigroup
End[m], Nishiyama and the author determined the commutant algebra of W (n)
in the m-fold tensor product of the defining representation under the condition
m ≤ n. More precisely, let ψ be the defining representation of W (n) on Λ(n)
and ϕ be a representation of End[m] on ⊗mΛ(n) (the definition is given in Sec-
tion 1). If m ≤ n, then the commutant algebra of ψ⊗m(W (n)) in End(⊗mΛ(n))
is the algebra generated by ϕ(End[m]) in End(⊗mΛ(n)) ([9]).

Therefore, along the idea of Schur and Weyl, we want to decompose the
space ⊗mΛ(n) as a W (n)×End[m]-module. However, in our case, the represen-
tation of W (n) on ⊗mΛ(n) is not semisimple, hence we are forced to consider
the quotient representations. Nishiyama suggested the following conjectures.
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Conjecture 1. Let ρ ⊗ σ be a finite-dimensional irreducible represen-
tation of W (n) × End[m]. Then we have

dim HomW (n)×End[m](⊗mΛ(n), ρ⊗ σ) ≤ 1,

where ρ (resp. σ) is an irreducible representation of W (n) (resp. End[m]).

Conjecture 2. For a W (n) × End[m]-module U , we put

RW (n)(U) := {ρ ∈W (n)∧ | HomW (n)(U, ρ) �= (0)}
and

REnd[m](U) := {σ ∈ End[m]∧ | HomEnd[m](U, σ) �= (0)},
whereW (n)∧ (resp. End[m]∧) is the set of the equivalence classes of all the irre-
ducible modules of W (n) (resp. End[m]). Then, for any ρ ∈ RW (n)(⊗mΛ(n)),
there is one and only one σ ∈ REnd[m](⊗mΛ(n)) such that

dim HomW (n)×End[m](⊗mΛ(n), ρ⊗ σ) �= 0.

Furthermore, the following mapping is a bijection:

W (n)∧ ⊇ RW (n)(⊗mΛ(n)) � ρ↔ σ ∈ REnd[m](⊗mΛ(n))/1End[m] ⊆ End[m]∧,

where 1End[m] denotes the trivial representation of End[m].

In the simplest case n = 1, we have an affirmative result (see [11]). Unfor-
tunately, along the method of [11], it seems difficult to prove conjectures above
in general. In this article, we apply Nishiyama’s method in [7] to the cases
m ≤ n and get the affirmative answers to the above conjectures. Also we con-
sider the case n = 2, where m is arbitrary. Through the detailed calculation,
we obtain more concrete results.

In [10], Sergeev has given the decomposition of the k-fold tensor space
of the natural representation of Lie superalgebra gl(n,m). Because W (2) is
isomorphic to the classical Lie superalgebra A(1, 0) ∼= sl(2, 1) (see [5]), it is
possible to deduce the decomposition of W (2)×Sm-module ⊗m(Λ(2)/C) from
Sergeev’s results. In the third section of this article, we give the decomposition
of W (2) × Sm-module ⊗m(Λ(2)/C) by a method completely different from
Sergeev’s one. Note that our proof is constructive, and the information of the
explicit decomposition will be helpful when we consider the decomposition of
W (n) × Sm-module ⊗m(Λ(n)/C) for arbitrary n < m. The latter is our goal,
and to consider the case n = 2 is a preliminary step for this aim.

Let us describe the contents of each section briefly. In the first section,
we give the basic notations and preliminary results. In the second section, we
give the decomposition under the condition m ≤ n. In this section, firstly,
we decompose the top level ⊗m(Λ(n)/C) as a W (n) × Sm-module using the
traditional method, that is, first to calculate the commutant algebra, then
to get the decomposition. With this result, along the way appeared in [7],
we obtain the decomposition of the whole space (Theorem 2.6). In the third
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section, we consider the case n = 2. Along the similar arguments in Section 2,
we first decompose the top level of the representation ⊗mΛ(2). However, since
the commutant algebra of W (2) is not available at hand, we cannot follow the
arguments in Section 2 literally. Instead, we use the classical Weyl-Schur duality
in the lowest degree space. For a space of general degree, we can decompose
it into two parts. One is the space consisting of images of the operators of
W1(2) coming from the lower degree spaces. The other is new. We decompose
these new spaces as Sm-modules (Lemma 3.2). In this way, we obtain all
the representations which actually appear in the top level (Theorem 3.3). We
believe that this method will be helpful to consider the case m > n. For the
decomposition of the whole space, we again use the method in [7] and obtain
Theorem 3.12.

Convention. The ground field is always C. In the following, we will
omit it if it does not cause a confusion.

Acknowledgement. The author expresses sincere thanks to Professors
T. Hirai and K. Nishiyama for their instructions and encouragements. For this
article, they have given many suggestions.

1. Notations and preliminaries

1.1. Cartan type Lie superalgebra W (n) and its defining represen-
tation

Let Λ(n) be the Grassmann algebra generated by {ξi | i = 1, 2, . . . , n}
and Λj(n) its j-th homogeneous piece. Naturally, Λ(n) =

∑
j: even Λj(n) ⊕∑

j: odd Λj(n) is a Z2-graded space. Let W (n) be the set of all superderivations
over Λ(n), or explicitly,

W (n) =

{
m∑

i=1

fi∂i | fi ∈ Λ(n)

}
,

where ∂i is a superderivation determined by ∂iξj = δij . Put

Wk(n) =

{∑
i

fi∂i | fi ∈ Λk+1(n)

}
.

Then W (n) =
∑n−1

k=−1Wk(n) gives a Z-gradation and W0(n) ∼= gl(n) canoni-
cally. In the following, we identify W0(n) with gl(n). Furthermore, Wk(n) has
a natural structure of gl(n)-module.

Let ψ be the defining representation of W (n) on Λ(n). We consider the
m-fold tensor product of ψ, or, the representation ψ⊗m on ⊗mΛ(n).

Let Λ(n,m) be the Grassmann algebra generated by {ξij | i = 1, 2, . . . , n;
j = 1, 2, . . . ,m}, then

⊗mΛ(n) ∼= Λ(n,m).
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Through this isomorphism, W (n) has a representation on Λ(n,m) denoted by
the same symbol ψ⊗m, and so Λ(n,m) is also a gl(n)-module. Take a Cartan
subalgebra h of gl(n) as h = 〈ξi∂i | i = 1, 2, . . . , n〉, then we have the following
weight space decomposition:

Λ(n,m) =
∑⊕

µ
Λµ,

where µ = (µ1, µ2, . . . , µn) is a weight with respect to h and Λµ is the weight
space of weight µ. We put |µ| := µ1 + µ2 + · · · + µn.

1.2. The semigroup End[m] and its representations

Denote by [m] the set {1, 2, . . . ,m} of integers, and put End[m] = {ϕ :
[m] → [m]}. Then End[m] becomes a semigroup and the subset of its group
elements coincides with the symmetric group Sm. Let R(m) be the semigroup
ring generated by End[m], and put

Rk(m) := 〈ϕ ∈ End[m] | �ϕ([m]) ≤ k〉,
where �N means the cardinality of a finite set N and 〈A〉 denotes the vector
space spanned by A. We write Rk instead of Rk(m) if it does not cause a
confusion.

For the semigroup End[m], Hewitt and Zuckerman [1] gave the classifica-
tion of irreducible representations and Nishiyama [7] simplified their results.
Here we follow Nishiyama’s formulation. Put

Pk,m−k := {ϕ ∈ End[m] | ϕ([k]) ⊆ [k]} ⊆ End[m].

Clearly Pk,m−k is a sub-semigroup of End[m] and call it a maximal parabolic
subsemigroup. It projects naturally onto End[k], where [k] = {1, 2, . . . , k},
and this projection, denoted by P , is a semigroup morphism. Let (σ, Uσ) be
a representation of End[k]. Then the above projection P naturally induces a
representation P �σ of Pk,m−k by P �σ(ϕ) = σ(P (ϕ)). Denote this representa-
tion (P �σ, Uσ) of Pk,m−k by the same letter σ, then the induced representation
Ind σ = IndEnd[m]

Pk,m−k
σ has the following property according to [7].

Proposition 1.1 ([7], Proposition 3.1). Let (σ, Uσ) be an irreducible
representation of End[k] on which Rk−1 acts trivially. Then the End[m]-module
IndEnd[m]

Pk,m−k
σ has the unique irreducible quotient.

By this proposition, the following definition makes sense.

Definition. Let σλ be an irreducible module of Sk corresponding to
the partition λ. We extend it to the representation of End[k] on which Rk−1

acts trivially. The unique irreducible quotient of IndEnd[m]
Pk,m−k

σλ is denoted by Σλ

and call it a standard representation of End[m]. If D is the Young diagram
of shape λ, we also denote Σλ as ΣD.
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Let P(k) be the set of all the partitions of k. In [7], the following theorem
is proved.

Theorem 1.2 ([7], Theorem 3.5). The standard representations

{Σλ | λ ∈ P(k) (1 ≤ k ≤ m)}
of End[m] are mutually inequivalent, and they give a complete set of represen-
tatives of equivalence classes of irreducible representations of End[m].

1.3. End[m]-module Λ(n,m) and skew GLn ×GLm-duality

For any ϕ ∈ End[m] and for any homogenous element ξi1j1 ∧ · · · ∧ ξirjr
∈

Λ(n,m), we define

ϕ(ξi1j1 ∧ · · · ∧ ξirjr
) := ξi1ϕ(j1) ∧ · · · ∧ ξirϕ(jr),

and extend it linearly. Then Λ(n,m) becomes an End[m]-module, and the
actions of End[m] and W (n) commute with each other (see [8]). Put

Vk = RkΛ(n,m)

for k ≥ 1 and V0 = C. Then (Vk)0≤k≤m is a natural filtration ofW (n)×End[m]-
module Λ(n,m). Consider the graded module

grV = ⊕k≥0Vk/Vk−1 =: ⊕k≥0V(k) (V−1 = (0)).

Clearly V(k) = Vk/Vk−1 has a Z-graded structure which inherits from Λ(n,m),
and is a W (n) × End[m]-module. In particular, V(m) ∼= ⊗m(Λ(n)/C · 1), and
Rk acts trivially on V(m) for k < m. This means V(m) is essentially an Sm-
module.

Let ρµ be an irreducible module of gl(n) with highest weight µ. In the
article [2], Howe has established the following decomposition.

Theorem 1.3. As a gl(n)× gl(m)-module, Λ = ⊗mΛ(n) is decomposed
as

⊗mΛ(n) ∼=
∑

λ

⊕ρλ ⊗ ρλt .

In the above direct sum, λ = (λ1, λ2, . . . , λn) ranges over all partitions with
λ1 ≤ m. The diagram λt denotes the transpose of λ. Let ΛN :=

∑
|µ|=N Λµ,

then ΛN is stable under the action of gl(n)×gl(m) and we have a decomposition:

ΛN ∼=
∑

|λ|=N

ρλ ⊗ ρλt .

Furthermore, xλ := ξ11 · · · ξ1λ1ξ21 · · · ξ2λ2 · · · ξn1 · · · ξnλn
is a joint highest

weight vector of gl(n) × gl(m)-module ρλ ⊗ ρλt .
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2. Howe correspondence for W (n) × End[m]-module Λ(n,m) (m ≤ n)

In this section, we consider the decomposition of W (n) × End[m]-module
Λ(n,m) under the condition m ≤ n. It seems difficult to do it directly. Having
considered the fact that in the W (n)-module Λ(n) there exists an invariant
space C = C · 1 under W (n), we first decompose W (n) × End[m]-module
⊗m(Λ(n)/C) ∼= V(m), just done as in [7].

2.1. Decomposition of the top level V(m) (the case m ≤ n)

To decompose theW (n)×End[m]-module V(m), it is enough to decompose
V(m) as aW (n)×Sm-module because Rk(k < m) acts on the top level trivially.
Under the condition m ≤ n, we can determine the commutant algebra of W (n)
in the space End(V(m)), so we can follow the traditional method used in Weyl-
Schur duality to get the decomposition.

First, let us determine the commutant algebra.

Lemma 2.1. Assume that m ≤ n. Then, the commutant algebra of
W (n) in the space End(V(m)) is isomorphic to C[Sm], the group ring of the
symmetric group of degree m.

Proof. We can prove the lemma by a similar method as in Theorem 2.3
of [9]. So we omit the proof.

Since the algebra C[Sm] is semisimple, we can decompose V(m) as follows:

V(m) ∼=
∑⊕

λ∈P(m)
HomSm

(σλ,V(m)) ⊗ σλ,

where P(m) is the set of partitions of size m, and σλ is the irreducible repre-
sentation of Sm corresponding to a partition λ. By the above lemma, we know
that HomSm

(σλ,V(m)) is a W (n)-module and it is indecomposable. Moreover,
by the following proposition, it is a lowest weight module of W (n).

Proposition 2.2. Assume that m ≤ n. Let λ = (λ1, λ2, . . . , λm) be a
partition of m. Then the W (n)-module HomSm

(σλ,V(m)) is a lowest weight
module with lowest weight (0, . . . , 0, µm, . . . , µ1), where µ = (µ1, . . . , µm) is
the transpose of the partition λ.

Proof. Let eλ be a standard Young symmetrizer of the partition λ, then
e 2
λ = eλ, and C[Sm] · eλ is a realization of σλ. First, we want to show that

HomSm
(σλ,V(m)) ∼= eλ(V(m)) (as W (n)-module).

In fact, by the explicit realization σλ = C[Sm] · eλ, it is easy to check that the
mapping

F : HomSm
(σλ,V(m)) −→ eλ(V(m))
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defined by
F (f) := f(eλ) (f ∈ HomSm

(σλ,V(m)))

is a W (n)-module isomorphism. So it is enough to prove that eλ(V(m)) is a
lowest weight module with lowest weight (0, . . . , 0, µm, . . . , µ1).

Let Vk(m) denote the subspace of V(m) of degree k, then V(m) =
∑nm

k=m Vk(m)
and Vk(m) is a gl(n)×Sm-module. Let V = Λ1(n) ∼= Cn, then by the classical
Weyl-Schur duality,

Vm(m) ∼=
⊕∑

λ∈P(m)

ρλt ⊗ σλ

as a gl(n) × Sm-module, where λt := (µ1, · · · , µm) denotes the transpose of λ
and ρλt denotes the representation of gl(n) corresponding to λt. Moreover, we
have

ρλt ∼= eλ(⊗mΛ1(n)) ∼= eλ(Vm(m)).

Hence, eλ(Vm(m)) is an irreducible gl(n)-module with the lowest weight (0, . . . ,
0, µm, . . . , µ1). Note that

W−1(eλ(Vm(m))) = eλ(W−1Vm(m)) ≡ (0) (mod V(m− 1)),

because Vm(m) has the smallest possible degree.
Now it is enough to prove that eλ(V(m)) is generated by eλ(Vm(m)) as

W (n)-module. But this is easy if we notice that the element ξ11 ∧ ξ22 ∧ · · · ∧
ξmm ∈ Vm(m) is a cyclic vector for W (n)-module V(m) and eλ(ξ11 ∧ ξ22 ∧ · · ·∧
ξmm) �= 0.

Let Lλ := eλ(V(m)) ∼= HomSm
(σλ,V(m)). By the above proposition, Lλ

is a lowest weight module of W (n) with lowest weight (0, . . . , 0, µm, . . . , µ1),
where (µ1, µ2, . . . , µm) = λt. So it has a unique irreducible quotient, denoted
by πλ. Then the following theorem holds.

Theorem 2.3. Assume that m ≤ n. Then, W (n) × Sm-module V(m)
decomposes as

V(m) ∼=
∑⊕

λ∈P(m)
Lλ ⊗ σλ.(2.1)

Moreover, V(m) is quotient multiplicity-free with irreducible quotients {πλ⊗σλ |
λ ∈ P(m)}, that is,

dim HomW (n)×Sm
(V(m), πλ ⊗ σλ) = 1 (∀λ ∈ P(m)).

Proof. From Lemma 2.1, the formula of the decomposition is obvious.
Noting that Lλ is a lowest weight module, we have

dim HomW (n)(Lλ, πλ) = 1.

Combining with the formula (2.1), we complete the proof of the theorem.
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2.2. Duality for general level

To decompose the module Λ(n,m) of W (n) × End[m], first we study the
structures of the general level V(k) = Vk/Vk−1.

Let Λ+(n) := Λ(n)/C. Then there is a natural injection

⊗kΛ+(n) ↪→ ⊗kΛ+(n) ⊗ 1⊗ · · · ⊗ 1 ⊆ V(k).

By the results in Section 2.1, as a W (n)×Sk-module, ⊗kΛ+(n) is decomposed
as

⊗kΛ+(n) ∼=
∑⊕

λ∈P(k)
HomSk

(σλ,⊗kΛ+(n)) ⊗ σλ,

where HomSk
(σλ,⊗kΛ+(n)) is a lowest weight module of W (n).

Lemma 2.4.
IndEnd[m]

Pk,m−k
⊗k Λ+(n) ∼= V(k).

Proof. The proof is the same as that of Lemma 4.1 of [7].

From this lemma, we have

V(k) ∼= IndEnd[m]
Pk,m−k

(⊗kΛ+(n))

∼= IndEnd[m]
Pk,m−k

∑⊕
λ∈P(k)

HomSk
(σk,⊗kΛ+(n)) ⊗ σλ

∼=
∑⊕

λ∈P(k)
HomSk

(σk,⊗kΛ+(n)) ⊗ IndEnd[m]
Pk,m−k

σλ.

Therefore it is easy to see that the irreducible representation πλ⊗Σλ (λ ∈ P(k))
is an irreducible quotient of V(k).

Theorem 2.5. (1) Any irreducible quotient of W (n)×End[m]-module
V(k) is of the form πλ ⊗ Σλ (λ ∈ P(k)).

(2) For any λ ∈ P(k),

dim HomW (n)×End[m](V(k), πλ ⊗ Σλ) = 1.

Proof. The assertion (2) is immediate from the remark before the theo-
rem. The proof of (1) is essentially the same as that of Theorem 4.2 of [7].

2.3. Howe correspondence for W (n)× End[m]-module Λ(n,m) (m ≤ n)

In this subsection, we consider the whole W (n)×End[m]-module Λ(n,m)
and give an affirmative answer to Conjectures 1 and 2 posed in Introduction
under the condition m ≤ n. We say that an irreducible representation π ⊗ Σ
has quotient multiplicity k in a representation U if

dim HomW (n)×End[m](U, π ⊗ Σ) = k.
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Theorem 2.6. (1) The tensor product ⊗mΛ(n) is quotient multiplicity
free, that is, for an irreducible representation π ⊗ Σ of W (n) × End[m],

dim HomW (n)×End[m](⊗mΛ(n), π ⊗ Σ) ≤ 1.

(2) The quotient multiplicity is one if and only if π ⊗ Σ is isomorphic to
πλ ⊗ Σλ for some partition λ of size k (1 ≤ k ≤ m).

Since the proof of this theorem is essentially the same as that of [7, Theo-
rem 5.1], we omit it.

3. The decompositions of W (2) × End[m]-module Λ(2,m)

In the above sections, we have discussed decompositions of Λ(n,m) as a
W (n)×End[m]-module under the condition m ≤ n. For the case m > n, we do
not have a satisfactory result yet. But for n = 2, using the representation theory
of sl(2), we can make an explicit calculation and get a detailed decomposition
of the space Λ(2,m) as a W (2) × End[m]-module.

We recall some notations used in the above sections and fix some new
notations. For convenience, we denote ψ⊗m(X) by the same symbol X for any
X ∈ W (2). In the case of n = 2, we have W1(2) = 〈C1, C2〉, where Ci = ξiC
with C = ξ1∂1 + ξ2∂2. Let

e := ξ1∂2, f := ξ2∂1, hi := ξi∂i (i = 1, 2) and h := ξ1∂1 − ξ2∂2;

then H = 〈h1, h2〉/C is a Cartan subalgebra of gl(2). Let {α1, α2} be the
dual base of {h1, h2} and α = α1 − α2. In the coordinate system, we denote
α1 = (1, 0), α2 = (0, 1). Note that {α1, α2} is the set of weights of gl(2)-module
W1(2), and α1 is the highest weight.

Let Φ2(l) be the subset of the dominant integral weights of gl(2) defined
by

Φ2(l) := {µ | |µ| = l, µ1 ≤ l} ∪ {µ | l + 1 ≤ |µ| ≤ 2(l − 1), µ1 ≤ l − 1}

and Φ2 := ∪2m−2
l=1 Φ2(l). Let

P2(l) := {λ = (λ1, . . . , λl) | |λ| = l, λ2 ≤ 2}

be a subset of the set of all the partitions of l, and P2 := ∪m
l=1P2(l). Define a

mapping Θl from P2(l) to Φ2(l) as follows:

Θl(λ) := (r + k, l − r) for λ = (λ1, . . . , λr, 0, . . . , 0) ∈ P2(l) with λr ≥ 1,

where k = max{0, λ1 − 2}. Then Θl is well-defined and gives a bijection.
Denote the inverse map of Θl by Γl. For any µ ∈ Φ2(l), put k = |µ|−l, then

Γl(µ) can be expressed as Γl(µ) = (µ1 − k, µ2 − k, 1, . . . , 1︸ ︷︷ ︸
k

)t. For convenience,

define Γl(µ) = 0 if µ /∈ Φ2(l).
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Let Vµ(l) be the weight space of weight µ in the gl(2)-module V(l) (see
Section 1.3) and V +

µ (l) be the subspace of Vµ(l) consisting of the highest weight
vectors of gl(2). Let V +

µ be the set consisting of the highest weight vectors
of gl(2)-module Λ(2,m) of weight µ. Then V +

µ (l) = Rl(V +
µ )/Rl−1(V +

µ ) and
V +

µ
∼= ∑m

l=0 V
+
µ (l) as Sm-module.

3.1. The top level as gl(2) × Sm-module

In this subsection, we consider the decomposition of gl(2) × Sm-module
V(m), the top level of ⊗mΛ(2).

Lemma 3.1. Let µ be a weight of gl(2)-module V(m), then Vµ(m) is
decomposed as

Vµ(m) = f(Vµ+α(m)) ⊕ V +
µ (m).

By this lemma, the decomposition of V(m) as a gl(2)×Sm-module follows
from the decomposition of Sm-module V +

µ (m).
Let us consider the lowest degree space Vm(m) of V(m). We have Vm(m) ∼=

⊗mV as gl(2)-module and Vm(m) ⊗ sgn ∼= ⊗mV as Sm-module, where V ∼=
C2 is the defining representation space of gl(2). By the Weyl-Schur duality,
V +

µ (m) ∼= σµt ∼= σΓm(µ) if |µ| = m. For the space Vm+r(m)(r ≥ 1), we have

Lemma 3.2. Take µ ∈ Φ2(m) and put r = |µ| − m. As a module of
Sm, V +

µ (m) is decomposed as

V +
µ (m) ∼= IndSm

Sm−r×Sr
((⊗m−rΛ+(2))+µ−(r,r) ⊗ 1Sr

)
∼= σΓm(µ) ⊕ σΓm(µ−α1) ⊕ σΓm(µ−α2) ⊕ σΓm(µ−α1−α2),

where 1Sr
denotes the identity representation, and Λ+(2) = Λ(2)/C · 1.

Proof. Let Uµ−(r,r) = (⊗m−rΛ+(2))µ−(r,r) and U+
µ−(r,r) = (⊗m−rΛ+

(2))+µ−(r,r). We abbreviate IndSm

Sm−r×Sr
as Ind in this proof.

At first, we prove the following isomophism:

Vµ(m) ∼= Ind(Uµ−(r,r) ⊗ 1Sr
).(3.1)

Define the mapping F as follows:

F (ϕ⊗ x⊗ 1) = ϕ(x · ξ1,m−r+1ξ2,m−r+1 · · · ξ1,mξ1,m) (ϕ ∈ Sm, x ∈ Uµ−(r,r)),

and extend it linearly to the space C[Sm] ⊗ Uµ−(r,r) ⊗ 1Sr
. Obviously, F is

well-defined Sm-mapping and is a surjection. Therefore, from the following
equality of dimensions

dimVµ(m) =
m!

r!(m− µ1)!(µ1 − r)!
= dim Ind (Uµ−(r,r) ⊗ 1),

F is an isomorphism and (3.1) is deduced.
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Note that U+
µ−(r,r) is the subspace of Uµ−(r,r) consisting of the highest

weight vectors of gl(2) of weight µ− (r, r), so Ind(U+
µ−(r,r) ⊗1Sr

) is a subspace
of Ind(Uµ−(r,r) ⊗1Sr

). Furthermore, the mapping F sends Ind(U+
µ−(r,r) ⊗1Sr

)
to V +

µ (m), because

e · F (ϕ⊗ x⊗ 1) = ϕ((e · x) · ξ1,m−r+1ξ2,m−r+1 · · · ξ1,mξ1,m) = 0 (x ∈ U+).

On the other hand,

dimV +
µ (m) = dimVµ(m) − dimVµ+α(m) =

m!(µ1 − µ2 + 1)
r!(m− µ1)!(µ1 − r + 1)!

= dim Ind(U+
µ−(r,r) ⊗ 1).

Therefore, the first isomorphism in this lemma is established by the restriction
of F on the space Ind(U+

µ−(r,r) ⊗ 1Sr
).

By the Weyl-Schur duality, U+
µ−(r,r)

∼= σΓm−r(µ−(r,r))
∼= σ(µ−(r,r))t . By

Young’s rule (see [4]), we complete the proof.

Combining Lemmas 3.1 and 3.2, we obtain

Theorem 3.3. As a gl(2) × Sm-module, V(m) decomposes as follows :

V(m) ∼=
∑

|µ|=m
µ1≥µ2≥0

ρµ ⊗ σΓm(µ) ⊕

∑
m+1≤|µ|≤2m
m≥µ1≥µ2≥1

ρµ ⊗ [
σΓm(µ) ⊕ σΓm(µ−α1) ⊕ σΓm(µ−α2) ⊕ σΓm(µ−α1−α2)

]

∼=
∑

µ∈Φ2(m)

(
ρµ ⊕ ρµ+α1 ⊕ ρµ+α2 ⊕ ρµ+α1+α2

)
⊗ σΓm(µ).

Here, if µ + α2 is not a dominant weight (resp. µ1 + 1 > m), we interpret
ρµ+α2 = 0 (resp. ρµ+α1 = 0).

3.2. The top level as W (2) × Sm-module

From Theorem 3.3, we obtain the decomposition of V(m) as a gl(2)×Sm-
module. In this subsection, we consider it as a W (2) × Sm-module.

Because Sm is contained in the commutant algebra of W (2), it is obvious
that

V(m) ∼=
∑

λ

⊕
HomSm

(σλ,V(m))⊗ σλ,

where λ runs over all the partitions of m. By Theorem 3.3, if λ is not in P2(m),
HomSm

(σλ,V(m)) = (0), and if λ ∈ P2(m),

HomSm
(σλ,V(m)) ∼= ρΘm(λ) ⊕ ρΘm(λ)+α1 ⊕ ρΘm(λ)+α2 ⊕ ρΘm(λ)+α1+α2 .
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Using the same method as Proposition 2.2, we have

HomSm
(σλ,V(m)) ∼= eB(V(m)) (as W (2)-module),

where B is a Young tableau of shape λ, and eB is the standard Young sym-
metrizer of B. Put πµ := eB(V(m)), where µ = Θm(λ). Then, by the above
formula, πµ is independent of the choice of B as a W (2)-module, and as gl(2)-
modules,

πµ
∼= ρµ ⊕ ρµ+α1 ⊕ ρµ+α2 ⊕ ρµ+α1+α2 .

Let us show that the W (2)-module πµ is irreducible. First, we consider actions
of the operators in W1(2) and W2(2).

Let kµ = (µ1 − µ2 + 1)−1, and put

C̃2
def= C2 − kµfC1, ∂̃1

def= ∂1 + kµf∂2.

From the relations [e, C1] = 0, [e, C̃2] = C1−kµhC1, we know that the mappings
C1 : V +

µ (m) → V +
µ+α1

(m), C̃2 : V +
µ (m) → V +

µ+α2
(m) are well-defined. Simi-

larly, from the relations [e, ∂2] = 0, [e, ∂̃1] = −∂2 + kµh∂2, we deduce that the
mappings ∂̃1 : V +

µ (m) → V +
µ−α1

(m), ∂2 : V +
µ (m) → V +

µ−α2
(m) are well-defined.

Lemma 3.4. For the mappings C1, and C̃2, the following sequences are
exact :

0 → V +
(m−µ2,µ2)

C1→ V +
(m−µ2+1,µ2)

(m) C1→ · · · C1→ V +
(m,µ2)

(m)

for 1 ≤ µ2 ≤ [m
2 ],

(3.2)

V +
(µ2,µ2)

C1→ V +
(µ2+1,µ2)

(m) C1→ · · · C1→ V +
(m,µ2)

(m) for m ≥ µ2 > [m
2 ],(3.3)

0 → V +
(µ1,m−µ1)

(m) C̃2→ V +
(µ1,m−µ1+1)(m) C̃2→ · · · C̃2→ V +

(µ1,µ1)
(m)

for m > µ1 ≥ [m
2 ].

(3.4)

Proof. Because 2C2
1 = [C1, C1] = 0, we have ImC1 ⊆ kerC1. For any x ∈

kerC1 ∩ V +
µ (m), put x1 = C2∂2x and x2 = ∂2C2x. Then x1 + x2 = [∂2, C2]x =

µ1x. Furthermore, x1, x2 ∈ kerC1 ∩ V +
µ (m) by the relations [e, C2∂2] = −e −

∂2C1 and [C1, C2∂2] = −C2e. Therefore,

C1(∂1 + kµf ∂2)x2 = C1∂1x2 + kµf · (∂2)2C2x2 = µ2x2.

That means x2 ∈ Im(C1|V +
µ−α1

(m)). On the other hand,

C1(∂1 + kµf ∂2)x1 = µ2x1 − kµC2∂2x1

= (µ2 − µ1kµ)x1 + kµ∂2C2x1 = (µ1 − µ2)(µ2 − 1)kµx1,

so if µ1 > µ2 > 1, then x1 ∈ Im(C1|V +
µ−α1

(m)). If µ2 = 1, then (3.2) is obvious.

Hence, (3.2) and (3.3) is obtained.
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(3.4) is obtained by the same method as above.

Combining Lemmas 3.2 and 3.4, we obtain

Lemma 3.5. We have the following isomorphisms as Sm-modules.
(1) ker(∂̃1 |V +

µ (m)) ∩ ker(∂2 |V +
µ (m)) ∼= σΓm(µ).

(2) ker(C1|V +
µ (m)) = Im(C1|V +

µ−α1
(m)) ∼= σΓm(µ−α1) ⊕ σΓm(µ−α1−α2)

if m > µ1 > µ2,
ker(C1|V +

µ (m)) ∼= σΓm(µ−α1−α2) if µ1 = µ2.

(3) ker(C̃2|V +
µ (m)) = Im(C̃2|V +

µ−α2
(m)) ∼= σΓm(µ−α2) ⊕ σΓm(µ−α1−α2)

if m > µ1 > µ2,
Im(C̃2|V +

µ−α2
(m)) ∼= σΓm(µ−α2) ⊕ σΓm(µ−α1−α2) if µ1 = µ2.

(4) ker(C1|V +
µ (m)) ∩ ker(C̃2|V +

µ (m)) ∼= σΓm(µ−α1−α2).

Proof. By Lemma 3.2,

V +
µ (m) ∼= σΓm(µ) ⊕ σΓm(µ−α1) ⊕ σΓm(µ−α2) ⊕ σΓm(µ−α1−α2).

(1) Because σΓm(µ) does not appear in the decompositions of V +
µ−α1

(m)
and V +

µ−α2
(m), we get σΓm(µ) ⊆ ker(∂̃1 |V +

µ (m)) ∩ ker(∂2 |V +
µ (m)).

For any x ∈ ker(∂̃1 |V +
µ (m)) ∩ ker(∂2 |V +

µ (m)), we have ∂1∂2C1C2x =
−µ2(µ1 + 1)x. But there is only σΓm(µ) which appears in the decompositions
of both V +

µ (m) and V +
µ+α1+α2

(m). So x ∈ σΓm(µ). This establishes the isomor-
phism of (1).

(2) Assume that m > µ1 > µ2. By Lemma 3.4, ker(C1|V +
µ (m)) =

Im(C1|V +
µ−α1

(m)). Because σΓm(µ−α1) and σΓm(µ−α1−α2) do not appear the

decomposition formula of V +
µ+α1

(m), we have σΓm(µ−α1) ⊕ σΓm(µ−α1−α2) ⊆
ker(C1|V +

µ (m)). Because there are only σΓm(µ−α1) and σΓm(µ−α1−α2) appeared
in the decompositions of both V +

µ−α1
(m) and V +

µ (m), therefore, σΓm(µ−α1) ⊕
σΓm(µ−α1−α2) can only appear as irreducible components of ker(C1|V +

µ (m)).
Thus, we get the first formula in (2).

If µ1 = µ2, then V +
µ−α1

(m) = 0 and so Im(C1|V +
µ−α1

(m)) = 0. For the space

ker(∂̃1 |V +
µ (m)), it is obvious that σΓm(µ−α1−α2) ⊆ ker(C1|V +

µ (m)). On the other
hand,

Im(C1|V +
µ (m)) = ker(C1|V +

µ+α1
(m)) = σΓm(µ) ⊕ σΓm

(µ− α2).

Again, using the decomposition of V +
(µ2,µ2)

(m), we obtain that σΓm(µ−α1−α2) ⊇
ker(C1 |V +

µ (m)). Therefore, the second formula in (2) is established.
(3) It is similar to (2).
(4) It is easy to see that (2) and (3) imply (4).

Now we return to the W (2)-module πµ = eB(V(m)).
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Lemma 3.6. The W (2)-module πµ is irreducible.

Proof. From the definition of πµ and Theorem 3.3 and Lemma 3.5, the
following formulas are deduced easily:

πµ = eB(V |µ|(m)) ⊕ eB(V |µ|+1(m)) ⊕ eB(V |µ|+2(m)),

and

eB(V |µ|(m)) ∼= ρµ,

eB(V |µ|+1(m)) = C1(eB(V |µ|(m))) + C̃2(eB(V |µ|(m))) ∼= ρµ+α1 + ρµ+α2 ,

eB(V |µ|+2(m)) = C1C̃2(eB(V |µ|(m))) = C1C2(eB(V |µ|(m))) ∼= ρµ+α1+α2 .

Therefore, it is enough to prove that

{x ∈ πµ | ∂1(x) = 0, ∂2(x) = 0} = eB(V |µ|(m)).

Let Lµ denote the set in the left hand side. It is obvious that eB(V |µ|(m)) ⊆ Lµ.
Assume that x ∈ Lµ ∩V |µ|+1

µ′ (m) and x = C1(y1)+C2(y2), where µ
′
= (µ

′
1, µ

′
2)

and y1 ∈ V |µ|
µ′−α1

(m), y2 ∈ V |µ|
µ′−α2

(m). By ∂1x = ∂2x = 0, we have

0 = ∂1x = ∂1C1y1 + ∂1C2y2 = µ
′
2y1 − fy2,(3.5)

0 = ∂2x = ∂2C1y1 + ∂2C2y2 = −ey1 + µ
′
1y2.(3.6)

Assume that y2 �= 0, then y1 �= 0 and by the isomorphism eB(V |µ|(m)) ∼= ρµ,
there is an integer N > 0 such that eNy2 = 0 and eN−1y2 �= 0. From (3.6),
eN+1y1 = 0 and eNy1 �= 0. Therefore,

µ
′
1µ

′
2e

Ny1 = µ
′
1e

Nfy2 = µ
′
1Ne

N−1(h+N − 1)y2
= N(µ

′
1 − µ

′
2 +N)eN−1y2 = N(µ

′
1 − µ

′
2 +N)eNy1.

This forces N = µ
′
2 and contradicts the fact y2 ∈ V |µ|

µ′−α2
. Hence y1 = y2 = 0

and Lµ ∩ eB(V |µ|+1(m)) = {0}.
Using the same method as above, we get Lµ ∩ eB(V |µ|+2(m)) = {0}. Thus

the proof is completed.

Summarizing the above results, we obtain the main theorem in this sub-
section.

Theorem 3.7. As a W (2) × Sm-module, the top level V(m) is decom-
posed as follows :

V(m) ∼=
∑

|µ|=m
m≥µ1≥µ2≥0

πµ ⊗ σΓm(µ) ⊕
∑

m+1≤|µ|≤2m−2
m≥µ1≥µ2≥1

πµ ⊗ σΓm(µ)

∼=
∑

µ∈Φ2(m)

πµ ⊗ σΓm(µ).
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Compare this with Theorem 2.3 in the case m ≤ n. Then we find that the
first summand in the above formula is similar to that of Theorem 2.3, for which
the lowest weight vectors come from the space of the lowest degree m. But in
the case m > n (at least in the case n = 2), when the degree increases, new
W (n)-modules appear, such as in the second summand in the above formula.
This is an evident difference from the case m ≤ n.

3.3. The decompositions for general levels

In this subsection, we consider the decompositions of general levels V(l).
The method of proofs is similar to those appeared in Section 2, so we omit the
proofs and give only the results.

Recall V(l) = Rl(Λ(2,m))/Rl−1(Λ(2,m)). We know that V(l) is a Z-
graded W (2)-module with the lowest degree l and the highest degree 2l. Using
the results of the above subsections, we have the following decomposition.

Theorem 3.8. (1) As a W (2) × End[m]-module,

V(l) ∼=
∑
|µ|=l

l≥µ1≥µ2≥0

πµ ⊗ IndEnd[m]
Pl,m−l

σΓl(µ) ⊕
∑

l+1≤|µ|≤2l−2
l≥µ1≥µ2≥1

πµ ⊗ IndEnd[m]
Pl,m−l

σΓl(µ)

∼=
∑

µ∈Φ2(l)

πµ ⊗ IndEnd[m]
Pl,m−l

σΓl(µ).

(2) Any irreducible quotient of W (2)×End[m]-module V(l) is of the form
πµ ⊗ ΣΓl(µ), where µ = (µ1, µ2) runs over the set Φ2(l).

(3) For any µ ∈ Φ2(l),

dim HomW (2)×End[m](V(l), πµ ⊗ ΣΓl(µ)) = 1.

3.4. End[m]-module Λ(2,m)

The aim of this subsection is to decompose End[m]-module Λ(2,m). By
Lemma 3.2, it is enough to consider End[m]-module V +

µ . Note that, as vector
spaces, V +

µ = ⊕m
l=0V

+
µ (l).

Let Uµ(l) := ker(∂̃1 |V +
µ (l))∩ker(∂2 |V +

µ (l)), then Uµ(l) is a subspace of V +
µ ,

and as an Sm-module, Uµ(l) ∼= IndSm

Sl×Sm−l
(σΓl(µ) ⊗ 1).

Lemma 3.9.
V +

µ (l − 1) ⊆ Rl−1 · Uµ(l).

Proof. Let r = |µ| − l and put K+ := (⊗l−r−2Λ+(2))+µ−(r+1,r+1) where
Λ+(2) = Λ(2)/C · 1. Then K+ ∼= σΓl−r−2(µ−(r+1,r+1)) is an irreducible module
of Sl−r−2. From Theorem 3.8 and Lemma 3.2,

V +
µ (l − 1) = 〈ϕ(x · ξ1,l−r−1ξ2,l−r−1 · · · ξ1,l−1ξ2,l−1) | ϕ ∈ Sm, x ∈ K+〉.
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Hence it is enough to show that there is a nonzero element x ∈ K+ such that

x · ξ1,l−r−1ξ2,l−r−1 · · · ξ1,l−1ξ2,l−1 ∈ Rl−1 · Uµ(l).

Put
x0 = eB1(ξ1,1ξ1,2 · · · ξ1,µ1−r−1ξ2,µ1−r+1 · · · ξ2,1−r−2),

where B1 is the Young tableau on the left side of Figure 1. Then x0 is a highest
weight vector of gl(2). Because B1 is a Young tableau of shape Γl−r−2(µ− (r+
1, r + 1)), so x0 ∈ K+. Put

y0 = eB2(ξ1,l−1ξ1,1 · · · ξ1,µ1−r−1 ξ2,lξ2,µ1−r · · · ξ2,l−r−2 ξ1,l−r−1ξ2,l−r−1

· · · ξ1,l−2ξ2,l−2),

where B2 is the Young tableau on the right side of Figure 1. Then y0 is a
highest weight vector of gl(2) and ∂1y0 = 0 (in V(l)), ∂2y0 = 0 (in V(l)), that
is,

y0 ∈ V +
µ (l) ∩ ker(∂1 |V +

µ (l)) ∩ ker(∂2 |V +
µ (l)) = Uµ(l).

Let ϕ be an element of Rl−1 defined as follows,

ϕ0 =
(

1 2 · · · l − 1 l l + 1 · · · m
1 2 · · · l − 1 l − 1 l − 1 · · · l − 1

)
,

Then ϕ0(y0) = c · x0 · ξ1,l−r−1ξ2,l−r−1 · · · ξ1,l−1ξ2,l−1, where c is a non-zero
constant. Therefore, the lemma is proved.

1 µ1 − r

2 µ1 − r + 1

...
...

µ2 − r − 1 l − r − 2

...
µ1 − r − 1

l − 1 l l − r − 1 · · · l − 2

1 µ1 − r

2 µ1 − r + 1

...
...

µ2 − r − 1 l − r − 2

...
µ1 − r − 1

Figure 1

From the above lemma, we know that the End[m]-module V +
µ is generated

by the subspace V +
µ (l0), where l0 = min{m, |µ|}. Combining the results of

Section 3.1 with Theorem 3.5 of [7], we get

Corollary 3.10. If 0 < |µ| ≤ m, then

REnd[m](V +
µ ) = {ΣD | D = Γ|µ|(µ)},
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and if |µ| > m and µ1 ≤ m− 1, then

REnd[m](V +
µ ) = {ΣD | D = Γm(µ),Γm(µ− α1),Γm(µ−α2),Γm(µ−α1 − α2)},

where the definition of REnd[m](V +
µ ) is given in Introduction.

Summarizing the above results, we deduce

Proposition 3.11. The set of irreducible quotients of End[m]-module
Λ(2,m) is as follows.

REnd[m](Λ(2,m)) = {ΣD | D = Γl0(µ), l0 = min{m, |µ|}} ∪ {1End[m]},

where 1End[m] denotes the trivial representation of End[m].

Proof. It is direct from Lemma 3.1 and Corollary 3.10.

3.5. Howe’s correspondence for W (2)×End[m]-module Λ(2,m)

In this subsection, we give a decomposition of W (2)×End[m]-module
Λ(2,m) and establish the main results of Section 3, which is Howe’s corre-
spondence for n = 2.

Theorem 3.12. (1) The tensor product Λ(2,m) is quotient multiplicity
free, that is, if π ⊗ Σ is an irreducible representation of W (2) × End[m], then

dim HomW (2)×End[m](Λ(2,m), π ⊗ Σ) ≤ 1.

(2) The sets of irreducible quotients of W (2)-module Λ(2,m) (denoted by
RW (n)(Λ(2,m))) and End[m]-module Λ(2,m) (denoted by REnd[m](Λ(2,m)))
are as follows,

RW (n)(Λ(2,m)) = {πµ ∈W (2)∧ | µ ∈ Φ2},
REnd[m](Λ(2,m)) = {ΣΓl0 (µ) | µ ∈ Φ2, l0 = min{m, |µ|}} ∪ {1End[m]}.

(3) The equality in (1) is valid if and only if π = πµ ∈ RW (n)(Λ(2,m)) and
Σ = ΣD ∈ REnd[m](Λ(2,m))/1End[m] and D = Γl0(µ) with l0 = min{m, |µ|}.

Furthermore, the above correspondence

RW (n)(Λ(2,m)) � µ −→ Γl0(µ) ∈ REnd[m](Λ(2,m))/1End[m]

is a bijection from RW (n)(Λ(2,m)) to REnd[m](Λ(2,m))/1End[m].

Proof. From the exact sequence:

0 −→ Vk−1 −→ Vk −→ V(k) −→ 0,
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the following inequality is deduced,

dim HomW (2)×End[m](Vm, π ⊗ Σ) ≤
m∑

k=0

dim HomW (2)×End[m](V(k), π ⊗ Σ)

(3.7)

for any irreducible module π of W (2) and an irreducible module Σ of End[m].
Therefore, by the decomposition of Theorem 3.8 of the general level spaces
V(k), we obtain (1).

If the equality in (1) is valid, then Σ is an irreducible quotient of End[m]-
module. By Proposition 3.11, there is a µ ∈ Φ2 such that Σ = ΣΓl0 (µ) or Σ is
the trivial representation, where l0 = min{m, |µ|}. From (3.7), we know that if
Σ = ΣΓl0 (µ), then π = πµ, and if Σ is the trivial representation, then π is also
the trivial representation of W (2).

Let us show that the quotient multiplicity of the trivial representation is
zero. Take f ∈ HomW (2)×End[m](Λ(2,m),C), then ξi,j − f(ξi,j) is in the kernel
of f . By the action of ∂i on ξi,j − f(ξi,j), we obtain f(C) = 0. By the similar
argument as above, we conclude that f = 0. Thus we complete the proof of
the “only if ”-part of (3).

For the proof of “if ”-part of (3), using the same method as that of [7]
([7], Theorem 5.1), we can get it. For the rest of this theorem, it is simple and
direct, we omit it.
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