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Introduction

Lie algebras of Cartan type are infinite-dimensional simple Lie algebras,
and are realized as holomorphic vector fields with polynomial coefficients on a
vector space over C. Their Z-gradings are naturally given. They were classified
by E. Cartan into four series, the general series Wn, the special series Sn, the
Hamiltonian series Hn, and the contact series Kn. Irreducible representations of
Cartan type Lie algebras were studied by A. Rudakov and I. Kostrikin in 1970’s.
Rudakov [4] introduced the notion of the height of an irreducible representation.
Representations of height greater than or equal to 1 are induced from some
representations of the subalgebra which consists of all elements of degree 0.
Kostrikin [1] showed that if V is an irreducible g-module of finite type for a Lie
algebra of Cartan type g �∼= W1, then either V or its conjugate V ∗ is a g-module
of height 1. He also determined all irreducible W1-modules of finite type whose
homogeneous components are equally one-dimensional (see Section 2).

However, since representations of Wn are not necessarily semisimple, it is
not sufficient even if we have determined all the irreducible representations.

K. Nishiyama resumed the study on these subjects in the latter half of
1990’s. The modules he treated was the m-fold tensor products of the defining
representations, denoted as P(m). He determined the commutant algebra Cm

of P(m) in the case m ≤ n. Then he studied Schur duality and constructed
simultaneous decomposition of representations P(m) as modules of the direct
product of Wn and its commutant algebra Cm. But the case m > n is more
complicated. H. Wang extended the study to Cartan type Lie superalgebra
W (n), which is a “super-analogue” of Cartan type Lie algebra Wn ([5], [6]).

In this article, we treat the Lie algebra W1, and give the complete struc-
ture of representations P(m) for m = 1 and m = 2 of W1. Our main theorem
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796 Junko Tanaka

is Theorem 4.5, where we decompose the W1-module P(2) into two invariant
subspaces and construct Jordan-Hölder composition series of them. The sub-
quotient modules for them can be described in terms of standard irreducible
modules V (k) which are introduced in Definition 2.5.

Let us describe the contents of each section briefly. In the first section, we
review basic notation and preliminary results. In the second section, we survey
elementary properties of the modules P(m) = C[x1, x2, . . . , xm] (m = 1, 2, . . . )
of the Lie algebra W1. In Definition 2.5, we introduce a series of standard
representations V (k) (k ∈ N ∪ {0}) of W1 on the spaces SpanC{vj | j ≥ k}
spanned by weight vectors vj of weight j. Proposition 2.8 shows that, for any
m, the tensor product representation P(m) is composed of those modules V (k).
In the third and the fourth sections, we give structures of representations P(1)

and P(2), respectively. The module P(1) is isomorphic to V (0). In Theorem
4.5 we give the complete structure of the 2-fold tensor product P(2). The
module P(2) has a submodule P ′ = P ′

s ⊕P ′
a
∼= V (0)⊕ V (1), which is generated

by {x1, x2}. The quotient module is decomposed as P/P ′ = P+
s ⊕ P+

a into
two invariant subspaces, each of which has composition series of lowest weight
modules respectively as

P+
s= P+

s [2] ⊃ P+
s [4] ⊃ P+

s [6] ⊃ · · · ⊃ P+
s [2k] ⊃ P+

s [2k + 2] ⊃ · · · ,

P+
a= P+

a [5] ⊃ P+
a [5] ⊃ P+

a [7] ⊃ · · · ⊃ P+
a [2k+1] ⊃ P+

a [2k + 3] ⊃ · · · .

The quotient modules of composition series are isomorphic to V (k) for some k,
namely,

P+
s [2k]/P+

s [2k + 2] ∼= V (2k), P+
a [2k + 1]/P+

a [2k + 3] ∼= V (2k + 1).

In the last section, we consider the action of the commutant algebra C2 given
by K. Nishiyama [2], on the representation spaces P(2) and P+

(2).

1. Notation and Preliminaries

1.1. Cartan type Lie algebra Wn

A Z-graded Lie algebra is a Lie algebra g endowed with a decomposition
g = ⊕i∈Zgi with a property [gi, gj ] ⊂ gi+j for every i, j ∈ Z. A Z-graded
g-module is a g-module V = ⊕Vj such that gi · Vj ⊂ Vi+j .

The general algebra g = Wn of Cartan type consists of all C-derivations
of the polynomial algebra P (n) = C[z1, z2, . . . , zn]. The algebra P (n) has a
natural grading as

P (n) =
∞⊕

j=0

Pj ,

Pj = P (n)j = {f(z) ∈ P (n) | homogeneous polynomials of degree j} ,

where z = (z1, . . . , zn). Any element in g has the form v =
∑n

i=1fi(z)∂/∂zi,
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with fi(z) ∈ P (n). A Z-grading of g is given as

g =
∞⊕

j=−1

gj , gj =

{
n∑

i=1

fi(z)
∂

∂zi

∣∣∣∣ fi(z) ∈ P (n)j+1

}
.

The algebra g acts naturally on the polynomial algebra P (n) with giPj ⊂
Pi+j . It is a Z-graded g-module with the natural grading of polynomials, and
is called the defining representation of g.

Let us consider the m-fold tensor product P(m) := ⊗mP (n). The space
P(m)

+ := ⊗m
(
P (n)/C

)
is called the top level of P(m), where C denotes the

space of constant functions in P (n).
The enveloping algebra of g = Wn is denoted by U(g). In this article, the

grading on a monomial u = wj1
d1

· wj2
d2

· · · · · wjk

dk
∈ U(g), with wdl

∈ gdl
is

defind as d(u) = j1d1 + j2d2 + · · · + jkdk. We can extend the definition of the
grading to the linear span of monomials, and we call an element u ∈ U(g)l a
homogeneous element of degree l in U(g). A homogeneous element u ∈ U(g)l

acts homogeneously, that is, u maps a homogeneous component Vk into Vk+l

of V = ⊕jVj .

Remark. The filtration usually defined on elements in U(g) for a Lie
algebra g, which we touch on in Lemma 4.1, is different from that of the above
definition of grading.

1.2. The symmetric group Sm and a semigroup Mm

Let Sm be the symmetric group of degree m. Denote the set of Young
diagrams of size m as Ym. Define a Young tableau B = B(D) on a given Young
diagram D ∈ Ym to be a numbering of the boxes by integers 1, 2, . . . , m. For
such B, we define two subgroups of Sm as

PB := {g ∈ Sm | g preserves numbers in each row} ,

QB:= {g ∈ Sm | g preserves numbers in each column} ,

and an element in the group algebra C[Sm] as

cB :=


 ∑

g∈PB

g





 ∑

g∈QB

(sgn g)g


 ,(1.1)

which is called a Young symmetrizer of B(D). It is well-known that C[Sm]·cB is
an irreducible Sm-module, and C[Sm] ·cB(D)

∼= C[Sm] ·cB′(D′) as Sm-modules
if and only if associated Young diagrams coincide, that is, D = D′. We denote
the equivalence class of those modules by σD.

Let us return to the Wn-module P(m). The group algebra C[Sm] acts
naturally on P(m) from the right. Since C[Sm] is semisimple and commutes
with Wn, we have the following lemma.
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Lemma 1.1. Let V be a submodule of P(m). Then V is decomposed into
a sum of Wn × Sm-invariant subspaces as

V =
∑

D∈Ym

⊕
HomSm

(σD,V) ⊗ σD(1.2)

with and graded Wn-modules HomSm
(σD,V).

Put Mm := {ϕ : [m] −→ [m]}, the semigroup of all maps from the set
[m] := {1, 2, . . . , m} into itself. Denote the semigroup ring of Mm by C[Mm].
The set of all invertible elements in Mm coincides with the symmetric group
Sm.

The semigroup ring C[Mm] acts on P(m) faithfully and is contained in
the commutant algebra Cm of Wn-module P(m). Moreover, if m ≤ n, C[Mm]
coincides with Cm. (See [2]).

Modules V should be decomposed as Wn×Mm-modules. However, as Mm

is not necessarily semisimple, this decomposition is more complicated than the
decomposition as Wn × Sm-modules.

2. General structure of W1-modules

Hereafter we always treat the algebra g = W1:

g = SpanC

{
wj = zj+1 ∂

∂z

∣∣∣∣ j = −1, 0, 1, 2, 3, · · ·
}

,

as a vector space, where SpanC{I} denotes the C-linear space spanned by a set
I of vectors. Bracket relations of wj ’s are given by

[wi, wj ] = (j − i)wi+j (i, j ∈ Z≥−1).

Representation space treated here is P(m), and it is identified with C[x1, . . . ,

xm] by the correspondence zi1 ⊗ zi2 ⊗ · · · ⊗ zim �→ xi1
1 xi2

2 · · · · · xim
m . The action

of wj on P(m) is

wj ·f(x) =
m∑

i=1

xj+1
i

∂

∂xi
f(x).

Let

N(g) := U (g+) with g+ :=
∞∑

j=0

gj .

A Z-grading on homogeneous elements in N(g) are similarly defined as for U(g):

N(g)l = N(g) ∩ U(g)l.

The N(g)-module P(m) is finitely generated (see [2], Lemma 3.5).
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Lemma 2.1. Let V be a Z-graded g-module. Every N(g)-submodule of
V finitely generated by a set of homogeneous elements annihilated by w−1 is a
U(g)-module.

Proof. Let V ′ be an N(g)-submodule generated by {v1, v2, . . . , vk} ⊂
Ker w−1. Every element v′ ∈ V ′ can be written as v′ =

∑
i uivi with ui ∈ N(g).

We know that U(g) = N(g) + U(g)w−1 by The PBW theorem. Then for u in
U(g), there are elements u′

i ∈ N(g), u′′
i ∈ U(g) such that uui = u′

i + u′′
i w−1 and

we have

uv′ = u
∑

i

uivi =
∑

i

(u′
i + u′′

i w−1)vi =
∑

i

u′
iv ∈ V ′.

So V ′ is invariant under the actions of U(g).

We call elements in Ker w−1 lowest weight vectors. A U(g)-submodule
generated by a lowest weight vector is called a lowest weight module.

Lemma 2.2. Let u ∈ N(g) be a monomial. Then, the operator u is
injective on P+

(m).

Proof. We prove this lemma only for the case m = 2. It is sufficient
to prove the lemma when u is an element in g. Put an element in P(2) of
homogeneous degree q as v =

∑
0≤p≤q apx1

px2
q−p with coefficients ap ∈ C,

then,

wjv =
∑

0≤p≤q+j

{(p − j)ap−j + (q − p)ap}x1
px2

q−p+j ,

where ap = 0 for p < 0 and p > q by definition. Now we assume that wjv = 0,
that is,

(p − j)ap−j + (q − p)ap = 0 for 0 ≤ p ≤ q + j.(2.1)

If we solve these equation successively, we get ap = 0 for 0 ≤ p ≤ q.
Thus we have v = 0 if uv = 0, and the operator u is proved to be an

injection.
Proof for the case m ≥ 3 is similar.

Lemma 2.3. Let V be a lowest weight g-module. If the lowest weight is
not 0, then an operator w−1 on V is surjective.

Proof. We set

N(g)(r) = SpanC

{
u = wri

i w
ri−1
i−1 · · ·wr1

1

∣∣ r1 + · · · + ri ≤ r
}

.

Then the enveloping algebra N(g) has a natural filtration

C = N(g)(0) ⊂ N(g)(1) ⊂ N(g)(2) ⊂ · · · ⊂ N(g).
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We will prove that

uv ∈ w−1N(g)v for u ∈ N(g)(l) and v ∈ Ker w−1(2.2)

by induction on the degree l of this filtration.
When l = 1, the assertion is true because

(j + 2)wjv = (w−1wj+1 − wj+1w−1)v = w−1wj+1v ∈ w−1U(g)v,

where j is an integer greater than or equal to −1.
We assume that (2.2) is true for some l, that is,

if u ∈ N(g)(l) and v ∈ Ker w−1, uv = w−1u
′v, ∃u′ ∈ N(g)(l),

and let us prove that

wiuv ∈ w−1N(g)(l+1)v for u ∈ N(g)(l)(2.3)

by induction on i ≥ 0. When i = 0, w0wjuv = cwjuv for some c ∈ C because
w0 acts as a scalar. As the hypothesis of induction, we assume wi−1u

′v ∈
w−1N(g)(l+1)v for u′ ∈ N(g)(l), then we have

wiuv = wiw−1u
′v = (w−1wi − (i + 1)wi−1)u′v ∈ w−1N(g)(l+1)v.

Thus the assertion (2.3) for any i, and then the assertion (2.2) for any l are
proved.

Immediately, we have the following lemma.

Lemma 2.4. Let V be a lowest weight g-module. then,

Vi = w−1(Vi+1), and dimVi ≤ dimVi+1.(2.4)

Definition 2.5 (W1-module V (k)). Let k ∈ N∪{0} and V = SpanC{vj |
j ≥ k, vj ∈ Vj} be a graded vector space with Vj = Cvj . The relations

wivj = (j + ik)vi+j (j ≥ k, i ≥ −1)(2.5)

give a Z-graded g-module structure on the space V , which we denote by V (k).

Lemma 2.6. (1) Let U be some Z-graded g-module and U = ⊕∞
j=kUj

as a vector space with Uj = Cvj . If the conditions w0uj = juj for all j ≥ k
and w−1uk = 0 hold, then U is isomorphic to V (k) as a g-module.

(2) Z-graded g-modules V (k) and V (l) are isomorphic if and only if k = l.

Proof. Let V be a Z-graded g-module with a basis
{
v′j ∈Vj

∣∣j ≥ k
}
, where

the elements w0 and w−1 in g act as wiv
′
k = (i + 1)kv′i+k, w0v

′
j = jv′j .

To show that V ∼= V (k), let us show

wiv
′
j = (j + ik)v′i+j for j ≥ k, i ≥ −1.(2.6)
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The action of

[w−1, wj−k] = (j − k + 1)wj−k−1 = w−1wj−k − wj−kw−1

on v′k determines the action of w−1 as w−1v
′
j = (j − k)v′j−1 for j > k. If we

put wiv
′
j = ci,jv

′
i+j with ci,j ∈ C, then, the action of

[w−1, wi] = (i + 1)wi−1 = w−1wi − wiw−1

on v′j forces the following condition on ci,j ’s

(i + 1)ci−1,j v′i+j−1 = {(j + i − k)ci,j + (j − k)ci,j−1} v′i+j−1.

If we solve this equation successively, and we get ci,j = j + ik, and it concludes
the equations (2.6). The isomorphisms V (k) ∼= V and V ∼= U are clear.

Modules V (k) are irreducible when k �= 0. The module V (0) has an
invariant subspace C·v0 and

V (0)/C·v0
∼= V (1).

Remark. Kostrikin [1] introduced Z-graded irreducible g-modules V (α,
β) with equally one-dimensional homogeneous components, that is, dim V (α, β)j

= 1 for −∞ < j < ∞, where α, β ∈ C. Our module V (k) (k ≥ 1) coincides
with the maximal submodule of V (0, k). Here (·)k denotes the homogeneous
subspace of degree k.

Lemma 2.7. Let V ⊂ P(m) be a Z-graded g-submodule generated by an
element vk in

(P(m)

)
k
∩ Ker w−1. Then V has V (k) as its quotient module.

Proof. Let V ′ be the proper maximal submodule of V . Applying Lemma
2.4 for a g-module V/V ′, we have dim(V/V ′)i ≥ 1 for i ≥ k. Now, assume that
there is an integer i ≥ k such that dim(V/V ′)i = 1 and dim(V/V ′)i+1 > 1.
Then, the fact w−1(V/V ′)i+1 ⊂ (V/V ′)i means that V contains a lowest weight
vector v′, which is not in the submodule V ′. This vector v′ generates another
submodule V ′′ of V and V ′′ + V ′ � V ′, V ′′ + V ′ �� vk. This contradicts the
maximality of V ′, and we have dim (V/V ′)i = 1 for all i ≥ k. Therefore,
Lemma 2.6 shows that V/V ′ ∼= V (k).

Proposition 2.8. Let V be a Z-graded submodule of P(m) or P+
(m).

Then V contains V (k) as a subquotient module with multiplicity dimVk −
dimVk−1 for any k ∈ N.

Proof. Apply the proof of the previous lemma to submodules of V .

3. The module P(1) (the case m = 1)

First, we treat the case m = 1. Here, we have

P = P(1) = SpanC

{
vj = zj | j = 0, 1, . . .

}
,
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and g acts as wivj = jvi+j (j ≥ 0). This space P(1) of polynomials is nothing
but V (0) as a g-module.

The module P(1) has an invariant subspace C·v0 and the space of top level
is given as

P+ = P+
(1) = P(1)/C·v0 � SpanC{ṽj = vj + C·v0 | j = 1, 2, . . . } ,

and P+
(1) � V (1) as g-modules.

4. The module P(2) (the case m = 2)

In this section, we treat the case m = 2. Here, P = P(2) = ⊗2P (1) ∼=
C[x1, x2]. Let Ps and Pa be the subspaces consisting of symmetric elements
and anti-symmetric ones, respectively. By Lemma 1.1, we have the following
isomorphism:

Ps
∼= HomS2(σ ,P) ⊗ σ , Pa

∼= HomS2(σ ,P) ⊗ σ

as g × S2-modules. The g-module P is decomposed as P = Ps ⊕ Pa, into two
g-modules. The top level P+ = P+

(2) is also decomposed as P+ = P+
s ⊕ Pa

+.
More precisely, put

P ′
s = SpanC

{
xi

1 + xi
2 | i = 0, 1, . . .

}
, P ′

a = SpanC

{
xi

1 − xi
2 | i = 1, 2, . . .

}
,

then, P+
s = Ps/P ′

s , Pa
+ = Pa/P ′

a and P ′
s
∼= V (0), P ′

a
∼= V (1). Dimensions of

weight subspaces of these modules are as follows:

weight 0 1 2 3 4 5 6 · · ·
P 1 2 3 4 5 6 7 · · ·
P+ 0 0 1 2 3 4 5 · · ·
Ps 1 1 2 2 3 3 4 · · ·
Pa 0 1 1 2 2 3 3 · · ·
P+

s 0 0 1 1 2 2 3 · · ·
P+

a 0 0 0 1 1 2 2 · · ·

4.1. A key lemma and its consequences
The following lemma is a key to our main theorem.

Lemma 4.1. Let k ≥ 2 be an integer and v =
∑k

p=0 apx1
pxk−p

2 ∈
P (ap ∈ C) be an element of homogeneous degree k in Ker w−1. Put al

i,p :=
ap−l+i + ap−i with ap = 0 for p < 0 or p > k. Then,

N(g)lv = SpanC

{
k+l∑
p=0

al
i,px

p
1 xk+l−p

2

∣∣∣∣∣ i = 0, 1, . . . ,

[
l

2

]}
.(4.1)
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Proof. Denote by Dk,l the space in the right hand side of (4.1). Then

Dk,l = SpanC

{
vl
0, v

l
1, . . . , vl

[l/2]

}
with vl

i =
∑k+l

p=0 al
i,px

p
1 xk+l−p

2 , where al
i,p =

ap−l+i + ap−i.
First we prove

uv ∈ SpanC

{
k+l∑
p=0

al
i,px

p
1 xk+l−p

2

∣∣∣∣∣ i = 0, 1, . . . ,

[
l

2

]}
= Dk,l(4.2)

for u ∈ N(g)l ∩ N(g)(n) by induction on n, the degree of filtration defined in
the proof of Lemma 2.3.

When u ∈ N(g)(0), i.e., u = c ∈ C, the assertion holds clearly.
Assume that the assertion is true for some n ∈ N ∪ {0}, that is, if u ∈

N(g)l ∩ N(g)(n), there is a sequence {ci ∈ C} for 0 ≤ i ≤ [l/2] such that uv

is written as uv =
∑[l/2]

i=0 civ
l
i, with vl

i =
∑k+l

p=0 al
i,px

p
1 xk+l−p

2 , 0 ≤ i ≤ [l/2],
where al

i,p = ap−l+i + ap−i. Here vl
i can be also defined for [l/2] < i ≤ l,

and we have vl
i = vl

l−i because al
i,p = al

l−i,p. The operator wj acts on vl
i as

xj+1
1 ∂/∂x1 + xj+1

2 ∂/∂x2, so we have

wjv
l
i =

∑
p

{(p − j)al
i,p−j + (k − p + l)al

i,p}xp
1 xk+l+j−p

2 .(4.3)

Since v ∈ Ker w−1, we have

(p + 1)ap+1 + (k − p)ap = 0 for 0 ≤ p ≤ k − 1.(4.4)

This equality is valid for p ∈ Z because ap = 0 for p < 0 and for p > k. Put
bp := pap, then it can be rewritten as

bp − bp+1 = kap (p ∈ Z).

Consider the coefficient of xp
1 xk+l+j−p

2 in (4.3):

(p − j)(ap−l+i−j + ap−i−j) + (k − p + l)(ap−l+i + ap−i)
= {(p − l + i − j) + (l − i)}ap−l+i−j + {(p − i − j) + i}ap−i−j

+ {−(p − l + i) + (k + i)}ap−l+i + {−(p − i) + (k + l − i)}ap−i

= (bp−l+i−j − bp−l+i) + kap−l+i + (bp−i−j − bp−i) + kap−i

+ (l − i)(ap−l+i−j + ap−i) + i(ap−i−j + ap−l+i)
= k(ap−l+i−j + · · · + ap−l+i−1) + kap−l+i

+ k(ap−i−j + · · · + ap−i−1) + kap−i

+ (l − i)al+j
i,p + ial+j

i+j,p

= k(ap−l+i−j + · · · + ap−l+i) + k(ap−i + · · · + ap−i−j)

+ (l − i)al+j
i,p + ial+j

i+j,p

= k(al+j
i,p + · · · + al+j

i+j,p) + (l − i)al+j
i,p + ial+j

i+j,p,
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where al+j
i+p := ap−l−j+i + ap−i for 0 ≤ i ≤ l + j. Thus

wjv
l
i = (k + l − i)vl+j

i + k
(
vl+j

i+1 + · · · + vl+j
i+j−1

)
+ (k + i)vl+j

i+j ,(4.5)

and the assertion (4.2) for u ∈ N(g)(n+1) is proved, and then, we get

N(g)lv ⊂ Dk,l.

To get the converse inclusion, we prove

dimN(g)lv ≥
[

l

2

]
+ 1(4.6)

by induction on l. Of course it is true for l = 0. We assume that the assertion
is true for numbers less than some l. From the equation (4.5) we have

w1v
l
i = (k + l − i)vl+1

i + (k + i)vl+1
i+1

(
0 ≤ i ≤

[
l

2

])
.(4.7)

In the case where l is an even number, we have

w1v
l
l/2 =

(
k +

l

2

)
vl+1

l/2 +
(

k +
l

2

)
vl+1

l/2+1 = (2k + l)vl+1
l/2 .(4.8)

The latter equality of (4.8) is deduced from vl
i = vl

l−i. As {vi | 0 ≤ i ≤ l/2}
are linearly independent by the hypothesis of induction, and k + l − i �= 0 for
0 ≤ i ≤ l/2 and k > 0, elements in the set {w1v

l
i | 0 ≤ i ≤ l/2} are linearly

independent.
In the case where l is an odd number, we have

w1v
l
(l−1)/2 =

1
2
(2k + l + 1)vl+1

(l−1)/2 +
1
2
(2k + l − 1)vl+1

(l+1)/2,

w2v
l−1
(l−1)/2 =

1
2
(2k + l − 1)vl+1

(l−1)/2 + kvl+1
(l+1)/2 +

1
2
(2k + l − 1)vl+1

(l+3)/2

= (2k + l − 1)vl+2
(l−1)/2 + kvl+2

(l+1)/2.

The condition k > 0, l ≥ 1 leads the determinant of the coefficient matrix

−(2k − l − 1)2 + k(2k + l + 1) = −k(4k + 3l − 5) − (l − 1)2 < 0,

and it shows that w2v
l−1
(l−1)/2 and w1v

l
(l−1)/2 are linearly independent. These

facts lead that

vl+1
i ∈ SpanC

{
w1v

l
0, w1v

l
1, . . . , w1v

l
(l−1)/2, w2v

l−1
(l−1)/2

}
for 0 ≤ i ≤ (l + 1)/2. Altogether, the assertion (4.6) is true for l + 1. Conse-
quently we get the converse inclusion N(g)lv ⊃ Dk,l.
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Remark. The latter half of the above proof can also be carried out by
using Lemma 2.4.

We have the following corollary.

Corollary 4.2. Let v ∈ P be a homogeneous element annihilated by
w−1. If v is not constant as a polynomial, then,

dimN(g)l v =
[

l

2

]
+ 1.

4.2. Main results for P(2)

Theorem 4.3. Let g = W1 and P = P(2).
(1)

dim (P+
s ∩ Ker w−1)i =

{
1 (i = 2, 4, 6, · · · )
0 (i = 3, 5, 7, · · · )

.(4.9)

(2) Denote by vs
2i (i = 1, 2, · · · ) a non-zero element of (P+

s )2i ∩ Ker w−1

of dimension one. Denote by P+
s [2i] the g-module generated by vs

2i. Then,

dim
(P+

s [2i]
)
l
=

[
l

2
− i + 1

]
.(4.10)

Proof. Applying the Corollary 4.2 to v = vs
2, we get (4.10) in the case of

i = 1. Equality (4.9) is clear in the case of i = 2, and we get (4.10) and (4.9)
for all i inductively.

Similarly, we have the following result for P+
a .

Theorem 4.4. Let g = W1 and P = P(2).
(1)

dim(Pa
+ ∩ Ker w−1)i =

{
1 (i = 3, 5, 7, · · · )
0 (i = 4, 6, 8, · · · ) .(4.11)

(2) Denote by va
2i+1(i = 1, 2, · · · ) a non-zero element of (P+

a )2i+1∩Ker w−1

of dimension one. Denote by P+
a [2i + 1] the g-module generated by va

2i+1. Then,

dim
(P+

a [2i + 1]
)
l
=

[
l − 1

2
− i

]
.(4.12)

Now the g-module structure of P = P(2) is completely clear. P is de-
composed into two invariant indecomposable subspaces as P = Ps ⊕ Pa. They
contains submodules P ′

s and P ′
a respectively:

P ′
s
∼= V (0) ⊂ Ps, Pa

′ ∼= V (1) ⊂ Pa.
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Here, P ′
s has a one-dimensional submodule C, and Pa

′ is irreducible. For i ∈ N,
(P+

s )2i = (Ps/P ′
s )2i has an element vs

2i killed by w−1.

Finally, we have the following Jordan-Hölder series of submodules.

Theorem 4.5. Let g = W1 and P = P(2).
(1) The top level P+

s = Ps/V (0) is an indecomposable g-module with

P+
s = P+

s [2] ⊃ P+
s [4] ⊃ P+

s [6] ⊃ · · · ⊃ P+
s [2k] ⊃ P+

s [2k + 2] ⊃ · · · ,(4.13)

where, P+
s [2i] is a Z-graded g-module generated by an element vs

2i ∈ (P+
s )2i ∩

Ker w−1. The composition factors are

P+
s [2i]/P+

s [2i + 2] ∼= V (2i) (i ≥ 1).(4.14)

(2) The top level P+
a = Pa/V (1) is an indecomposable g-module with

P+
a = P+

a [3] ⊃ P+
a [5] ⊃ P+

a [7] ⊃ · · · ⊃ P+
a [2i + 1] ⊃ P+

a [2i + 3] ⊃ · · · ,(4.15)

where P+
a [2i + 1] is a Z-graded g-module generated by va

2i+1 ∈ (P+
a )2i+1 ∩

Ker w−1. The composition factors are

P+
a [2i + 1]/P+

a [2i + 3] ∼= V (2i + 1) (i ≥ 1).(4.16)

5. The commutant algebra C2

The commutant algebra C2 of the W1-module P(2) was studied in [2].
Let D ∈ End[C[x1, x2]] be an operator on P(2) defined as

D(x1
kx2

l) =
lx1

k+l + kx2
k+l

k + l
(k, l ≥ 0, k + l > 0), D(1) = 1.

Then, the commutant algebra C2 is generated by a semigroup ring C[M2] and
an operator D (cf. [2]). Here, M2 consists of four elements, 1, τ1, τ2 and σ, and
1 acts on P(2) as the identity operator and

τi(xj) = xi (i, j = 1, 2); σ(x1) = x2, σ(x2) = x1.

Put τs = (τ1 + τ2)/2, τa = (τ1 − τ2)/2, then,

τs(x1
kx2

l) =
1
2

(
τ1(x1

kx2
l) + τ2(x1

kx2
l)

)
=

1
2
(x1

k+l + x2
k+l),

τa(x1
kx2

l) =
1
2

(
τ1(x1

kx2
l) − τ2(x1

kx2
l)

)
=

1
2
(x1

k+l − x2
k+l).

We have C[M2] = C[M′
2] with M′

2 = {1, τs, τa, σ}. All the elements in Ps and
Pa are linear combinations of

xs(k, l) := x1
kx2

l + x1
lx2

k (k, l ≥ 0),
xa(k, l) := x1

kx2
l − x1

lx2
k (k, l ≥ 0, k + l > 0),
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respectively. The upper part of the following table shows the action of M′
2 on

these elements in Ps and Pa.
The lower part of the table shows the action of elements of the commutant

algebra C2 on each representation space. Elements 1 and σ act as ± (identity).
Elements τs and τa kill the whole spaces Pa and P+. Elements τs and D map
Ps into its submodule P ′

s , and act as identities on P ′
s . Element τa maps Ps into

P ′
a.

1 σ τs τa D

xs(k, l) xs(k, l) xs(k, l) xs(k + l, 0) xa(k + l, 0) xs(k + l, 0)
xa(k, l) xa(k, l) −xa(k, l) 0 0 l−k

l+k ·xa(k + l, 0)
Ps 1 1 P ′

s P ′
a P ′

s

P ′
s 1 1 1 P ′

a 1
P+

s 1 −1 0 0 0
Pa 1 −1 0 0 P ′

a

P ′
a 1 −1 0 0 −1

P+
a 1 −1 0 0 0
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