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Moment and almost sure Lyapunov exponents
of mild solutions of stochastic evolution

equations with variable delays via
approximation approaches

By

Kai Liu and Aubrey Truman

Abstract

Several criteria for the asymptotic exponential stability of a class
of Hilbert space-valued, non-autonomous stochastic evolution equations
with variable delays are presented. This formulation is particularly suit-
able for the treatment of mild solutions of general stochastic delay partial
differential equations. The principal technique of our investigation is to
construct a proper approximating strong solution system and carry out
a limiting type of argument to obtain the required exponential stability.
As a consequence, stability results from A. Ichikawa [8] are generalized to
cover a class of non-autonomous stochastic delay evolution equations. In
particular, we improve the recent results of T. Taniguchi [14] to remove
the time delay interval restriction there.

1. Introduction

The purpose of this paper is to investigate exponential stability of the
mild solutions for certain Hilbert space-valued stochastic evolution equations.
Roughly speaking, we shall consider the following stochastic evolution equation
over a certain Hilbert space H with norm | · |:

{
dXt = (AXt + A(t, Xt, Xt−τ(t)))dt + B(t, Xt, Xt−τ(t))dWt, ∀t ∈ [0, +∞),
Xt = φ(t), t ∈ [−h, 0],

(1.1)

where A is the infinitesimal generator of a certain C0-semigroup S(t), t ≥ 0,
over H and A(t, ·, ·) and B(t, ·, ·) are in general nonlinear mappings from H×H
to H and H × H to L(K, H), the family of all bounded linear operators from
Hilbert space K into H. Wt is some K-valued Wiener process. φ(t) : [−h, 0]×
1991 Mathematics Subject Classification(s). 60H15, 34K40
Communicated by Prof. K. Ueno, November 1, 1999
Revised March 6, 2001



�

�

�

�

�

�

�

�

750 Kai Liu and Aubrey Truman

Ω → H, h > 0, is a given initial datum such that φ(t) is F0-measurable and
sup−h≤r≤0 E|φ(r)|2 < ∞. τ : [0,∞) → [0, h], h ≥ 0, is a given continuously
differentiable function with τ ′(t) ≤ M , 0 ≤ M < 1, which will play the role of
variable delays.

Stochastic evolution equations in Hilbert space have been studied by sev-
eral authors over the last several decades. For instance, G. Da Prato and J.
Zabczyk [6], A. Ichikawa [8] and E. Pardoux [15] (amongst others) have estab-
lished results on the existence and uniqueness of solutions for a certain class of
stochastic evolution systems. For variable delay case, the same problems have
been studied by J. Real [16] for stochastic linear evolution equations and by T.
Caraballo and K. Liu [2] and T. Caraballo, K. Liu and A. Truman [4] for non-
linear cases. On the other hand, under various circumstances there exists an
extensive literature on exponential stability of stochastic differential equations
in Hilbert space with either null variable delays or not. We should mention
here T. Caraballo [1], P. L. Chow [5], G. Da Prato and J. Zabczyk [6], U. G.
Haussmann [7], A. Ichikawa [8], R. Khas’minskii and V. Mandrekar [9] and R.
Liu and V. Mandrekar [12]. In particular, for null variable delay case U. G.
Haussmann [7] obtained the exponential stability in the sense of mean square or
almost sure for A(t, ·, ·) = 0 and linear B(t, ·, ·) in (1.1). For the similar linear
equations to [7], T. Caraballo [1] generalized his results to cover the variable
delay case. Also, for null variable delay situation A. Ichikawa [8] studied the ex-
ponential stability mainly for the mild solutions of the semilinear autonomous
stochastic systems (1.1), i.e., for Lipschitz continuous A(t, x, y) = A(x) and
B(t, x, y) = B(x) in (1.1). For variable delay one, by using the properties
of the stochastic convolution, T. Caraballo and K. Liu [2] considered the ex-
ponential stability of the mild solutions for a class of autonomous stochastic
evolution equations and T. Taniguchi [14] studied the same problems for the
mild solutions of stochastic partial functional differential equations.

In the following sections we shall investigate stability conditions in the
sense of mean square and almost sure of the mild solutions for the general non-
autonomous stochastic delay evolution equations (1.1). It is worth pointing out
that the methods in this paper are quite different from those in [2], [14] and
the results derived here are more applicable for practical purposes. Indeed, our
results are much stronger than those obtained in [2], [14]. We should also men-
tion that under certain coercivity assumptions, some similar work for strong
solution has already been initiated in T. Caraballo and K. Liu [3] and T. Cara-
ballo, K. Liu and A. Truman [4]. In this work, however, we shall remove the
coercivity conditions and carry out instead a general Lyapunov function pro-
gramme for our stability criteria. The main technique is to construct a suitable
approximating solution process sequence and carry out a limiting argument to
pass on stability of strong solutions to mild solution cases. Lastly, a couple of
examples which are hard to treat by using the results mentioned in the above
papers, for instance, [8], [14], are studied to illustrate our theory.
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2. Preliminary results

Let (Ω,F , {Ft}t≥0, P ) be a complete probability space with a filtration
{Ft}t≥0 satisfying the usual conditions (i.e., it is right continuous and F0 con-
tains all P -null sets). Let K be a real separable Hilbert space, and {Wt, t ≥ 0}
a K-valued {Ft}t≥0-Brownian motion defined on (Ω,F , {Ft}t≥0, P ) with co-
variance operator Q, i.e.,

E(Wt, x)K(Ws, y)K = (t ∧ s)(Qx, y)K for all x, y ∈ K,

where Q is a nonnegative trace class operator from K into itself. In particular,
we call Wt a K-valued Q-Brownian motion with respect to {Ft}t≥0.

Let H be a real Hilbert space and we denote by 〈·, ·〉 its inner product
and by | · | its vector and operator norms. Assume h > 0 is a given positive
constant. In this work, we shall consider the following semilinear stochastic
evolution equation over H with variable delays on I = [−h, T ], ∀T ≥ 0,

{
dXt = (AXt + A(t, Xt, Xt−τ(t)))dt + B(t, Xt, Xt−τ(t))dWt, t ∈ [0, T ],
X0 = x, Xt = φ(t) ∈ H, t ∈ [−h, 0].

.

(2.1)

In particular, throughout this paper we shall impose the following assumptions:
(H1) A is the infinitesimal generator of a C0-semigroup S(t), t ≥ 0, over

H satisfying ‖S(t)‖ ≤ M · ert, r ∈ R1, M ≥ 1. A(t, ·, ·) and B(t, ·, ·), t ≥ 0, are
in general measurable nonlinear mappings from H ×H into H and H ×H into
L(K, H) respectively, satisfying the following Lipschitz condition and linear
growth condition

|A(t, y1, z1) − A(t, y2, z2)| ∨ ‖B(t, y1, z1) − B(t, y2, z2)‖2(2.2)
≤ k(|y1 − y2| + |z1 − z2|)

and

|A(t, y1, z1)| ∨ ‖B(t, y1, z1)‖2 ≤ k (1 + |y1| + |z1|)(2.3)

for some constant k > 0 and all yi, zi ∈ H, i = 1, 2. Here ‖ · ‖2, or simply ‖ · ‖,
denotes the Hilbert-Schmidt norm of a nuclear operator, i.e., ‖B(t, y, z)‖2

2 =
tr(B(t, y, z)QB(t, y, z)∗), y, z ∈ H. Wt is a certain K-valued Q-Wiener process.
φ(t) : [−h, 0] × Ω → H, h > 0, is a given initial datum such that φ(t) is F0-
measurable and sup−h≤r≤0 E|φ(r)|2 < ∞. τ : [0,∞) → [0, h], h ≥ 0, is a given
differentiable function with τ ′(t) ≤ M , 0 ≤ M < 1.

We introduce two kinds of solutions of (2.1) as follows similarly to [8]:

Definition 2.1. A stochastic process Xt, t ∈ I, is a strong solution of
(2.1) if

(i) Xt is adapted to Ft;
(ii) Xt is continuous in t almost sure;
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(iii) Xt ∈ D(A) on I × Ω with
∫ T

0
|AXt|dt < ∞ almost surely

and{
Xt = x +

∫ t

0
(AXs + A(s, Xs, Xs−τ(s)))ds +

∫ t

0
B(s, Xs, Xs−τ(s))dWs,

X0 = x, Xt = φ(t), t ∈ [−h, 0],

for all t ∈ I with probability one.

In general this concept is rather strong and a weaker one described below
is more appropriate for practical purposes.

Definition 2.2. A stochastic process Xt, t ∈ I, is a mild solution of
(2.1) if

(i) Xt is adapted to Ft;
(ii) Xt is measurable with

∫ T

0
|Xt|2dt < ∞ almost surely

and 


Xt = S(t)x +
∫ t

0
S(t − s)A(s, Xs, Xs−τ(s))ds

+
∫ t

0
S(t − s)B(s, Xs, Xs−τ(s))dWs,

X0 = x, Xt = φ(t), t ∈ [−h, 0],

for all t ∈ I with probability one.
Remark. If Xt, t ∈ I, is a strong solution of (2.1) then it is also a mild

solution.

The following existence theorem can be obtained similarly by an adapted
argument from [2] or [10]. The reader is referred to them for further details on
this aspect.

Theorem 2.1. Let φ(t), t ∈ [−h, 0], be a given F0-measurable initial
datum with sup−h≤r≤0 E|φ(r)|2 < ∞. Suppose the hypothesis (H1) holds, then
(2.1) has a unique mild solution Xφ

t , or simply Xt, in C(0, T ; L2(Ω,F , P ; H)).

For our purposes, we can introduce Itô’s formula as follows which will play
an important role in our stability analysis.

Let C2(H) denote the space of all real-valued functions v on H with prop-
erties:

(i) v(x) ∈ C2(H) is twice (Fréchet) differentiable;
(ii) v′(x) and v′′(x) are both continuous in H and L(H) = L(H, H), re-

spectively.

Theorem 2.2 (Itô’s formula). Suppose v ∈ C2(H) and {Xφ
t , t ≥ 0} is

the strong solution of (2.1), then

v(Xt) = v(x) +
∫ t

0

Lv(s, Xs, Xs−τ(s))ds +
∫ t

0

〈v′(Xs), B(s, Xs, Xs−τ(s))dWs〉,

where Lv(t, x, y) = 〈v′(x), Ax+A(t, x, y)〉+1/2·tr(v′′(x)B(t, x, y)QB∗(t, x, y)),
x ∈ D(A), y ∈ D(A), t ≥ 0, is called the infinitesimal generator of Equation
(2.1).
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Since Itô’s formula is only applicable to the strong solution, we introduce
the following approximating systems of (2.1){

dXt = (AXt + R(n)A(t, Xt, Xt−τ(t)))dt + R(n)B(t, Xt, Xt−τ(t))dWt

X0 = R(n)x, Xt = R(n)φ(t), t ∈ [−h, 0],
(2.4)

where n0 ≤ n ∈ ρ(A), the resolvent set of A, and R(n) = nR(n, A). The
infinitesimal generator Ln corresponding to this equation is Lnv(t, x, y) =
〈v′(x), Ax + R(n)A(t, x, y)〉 + 1/2 · tr(v′′(x)R(n)B(t, x, y)Q(R(n)B(t, x, y))∗),
x ∈ D(A), y ∈ D(A), t ≥ 0.

Theorem 2.3 ([10]). Under the hypotheses of Theorem 2.1, Equation
(2.4) has a unique strong solution Xφ

t (n) in C(0, T ; L2(Ω,F , {Ft}t≥0, P ; H))
for all T ≥ 0. Moreover, Xφ

t (n) converges to the mild solution Xφ
t of (2.1) in

C(0, T ; L2(Ω,F , {Ft}t≥0, P ; H)) as n → ∞, i.e.,

lim
n→∞ sup

t∈[0,T ]

E
(|Xφ

t − Xφ
t (n)|2) = 0.

3. The Main Results

In this section, we shall carry out a Lyapunov function programme to
study exponential stability of the mild solution of (2.1) in the sense of mean
square and pathwise with probability one. Due to mainly paying our attention
to stability analysis, throughout this paper we suppose there exists a unique
global mild solution of the equation (2.1). In particular, we shall obtain the
following consequences whose proof essentially follows those in X. R. Mao [13].

Theorem 3.1. Let v(x) : H → R1 satisfy
(i)

v(x) ≥ c1 · |x|2 for some c1 > 0;(3.1)

(ii) v(x) is twice Fréchet differentiable and v′(x), v′′(x) are continuous in
H and L(H) respectively, and

|v(x)| + |x||v′(x)| + |x|2|v′′(x)| ≤ c2|x|2 for some c2 > 0;(3.2)

(iii) There exist constants α > 0, µ > 0, λ ∈ R+ and a nonnegative
function γ(t), t ∈ R+, such that

Lv(t, x, y) ≤ −αv(x) + λv(y) + γ(t)e−µt, x ∈ D(A), y ∈ D(A)(3.3)

where γ(t) satisfies that for any δ > 0, γ(t) = o(eδt), as t → ∞, i.e.,
limt→∞ γ(t)/eδt = 0.

Assume furthermore the condition α > λ/(1−M) holds (recall τ ′(t) ≤ M ,
0 ≤ M < 1), then there exist constants τ > 0, C(φ) > 0 such that for the mild
solution Xφ

t of (2.1),

E|Xφ
t |2 ≤ C(φ) · e−τt, ∀t ≥ 0.(3.4)

That is, the mild solution is mean square exponentially stable.
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Remark. The term γ(t)e−µt appearing in (3.3) is of the essence for our
stability purposes. Indeed, just as the example below shows that any weaker
type decay, for instance, polynomial one is not sufficient to ensure exponential
stability in either mean square or almost sure sense.

Example 3.1. Assume Xt satisfies the following one-dimensional sto-
chastic differential equation

dXt = −pXtdt + (1 + t)−qdBt, t ≥ 0

with initial data X0 = 0, where p, q > 0 are two positive constants and Bt is a
one-dimensional standard Brownian motion.

Choose v(x) = x2, x ∈ R1, in Theorem 3.1 and then (3.3) turns out to be

Lv(t, x) = 2〈−px, x〉 +
[
(1 + t)−q

]2 = −2pv(x) + (1 + t)−2q,

where 〈·, ·〉 denotes the standard inner product in R1. On the other hand, it is
easy to obtain the explicit solution

Xt = e−pt

∫ t

0

eps · (1 + s)−qdBs ≡ e−ptMt, t ≥ 0

which immediately implies that for arbitrarily given p > 0, q > 0, the Lyapunov
exponent

lim
t→∞

log E|Xt|2
t

= 0.

In the meantime, noticing the law of the iterated logarithm

lim sup
t→∞

Mt√
2〈Mt〉 log log〈Mt〉

= 1 a.s.

and

lim sup
t→∞

log
( ∫ t

0
e2ps(1 + s)−2qds

)
t

= 2p,

we therefore get for arbitrarily given p > 0, q > 0, the Lyapunov exponent

lim sup
t→∞

log |Xt|
t

= 0 a.s.

Proof. Firstly, from (3.3) it is easy to deduce that

Lv(t, x, y) ≤ −αv(x) + λv(y) + γ(t)e−(α∧µ)t, x ∈ D(A), y ∈ D(A).(3.5)

Since α > λ/(1 − M), we can find a positive constant ε ∈ (0, (α ∧ µ)/2) such
that

λeεh

(1 − M)(α − ε)
< 1.(3.6)
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On the other hand, applying Itô’s formula to the function v(t, x) = eαtv(x) and
the strong solution Xφ

t (n) of (2.4) yields

eαtv(Xφ
t (n)) − v(Xφ

0 (n))

= α

∫ t

0

eαsv(Xφ
s (n))ds

+
∫ t

0

eαs〈v′(Xφ
s (n)),

AXφ
s (n) + R(n)A(s, Xφ

s (n), Xφ
s−τ(s)(n)), Xφ

s−τ(s)(n)〉ds

+
∫ t

0

eαs〈v′(Xφ
s (n)), R(n)B(s, Xφ

s (n), Xφ
s−τ(s)(n))dWs〉

+ 1/2 ·
∫ t

0

eαstr{R(n)B(s, Xφ
s (n), Xφ

s−τ(s)(n))

· Q[R(n)B(s, Xφ
s (n), Xφ

s−τ(s)(n))]∗v′′(Xφ
s (n))}ds.

(3.7)

Therefore, by virtue of (3.5) we can deduce

eαtEv(Xφ
t (n))

≤ Ev(Xφ
0 (n)) + λ

∫ t

0

eαsEv(Xφ
s−τ(s)(n))ds +

∫ t

0

γ(s)e[α−(α∧µ)]sds

+
∫ t

0

eαsE{〈v′(Xφ
s (n)), (R(n)− I)A(s, Xφ

s (n), Xφ
s−τ(s)(n))〉

+ 1/2 · tr[R(n)B(s, Xφ
s (n), Xφ

s−τ(s)(n))

Q
(
R(n)B(s, Xφ

s (n), Xφ
s−τ(s)(n))

)∗
· v′′(Xφ

s (n))

− B(s, Xφ
s (n), Xφ

s−τ(s)(n))QB(s, Xφ
s (n), Xφ

s−τ(s)(n))∗v′′(Xφ
s (n))]}ds.

(3.8)

Hence, in view of Conditions (H1), (3.2) and Theorem 2.3, there exists a sub-
sequence of {n} in ρ(A) (still denoted by {n}) such that Xφ

t (n) → Xφ
t in

C(0, T ; H), as n → +∞ almost surely. Consequently, letting n → ∞ in (3.8)
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immediately yields that

eαtEv(Xφ
t ) ≤ Ev(Xφ

0 ) + λ

∫ t

0

eαsEv(Xφ
s−τ(s))ds

+
∫ t

0

γ(s)e[α−(α∧µ)]sds

≤ Ev(Xφ
0 ) + λ

∫ t

0

eαsEv(Xφ
s−τ(s))ds

+ e[α−(α∧µ)]t · e[(α∧µ)−2ε]t ·
∫ t

0

γ(s)e−[(α∧µ)−2ε]sds

≤ Ev(Xφ
0 ) + λ

∫ t

0

eαsEv(Xφ
s−τ(s))ds

+ e(α−2ε)t

∫ t

0

γ(s)e−[(α∧µ)−2ε]sds

(3.9)

for arbitrary t ∈ [0, T ], ∀T ∈ R+. Consequently,

Ev(Xφ
t )

≤ Ev(φ(0)) ·e−αt +λe−αt

∫ t

0

eαsEv(Xφ
s−τ(s))ds+e−2εt

∫ t

0

γ(s)e−[(α∧µ)−2ε]sds

for all t ≥ 0. Therefore, we have

∫ ∞

0

eεtEv(Xφ
t )dt

≤ Ev(φ(0)) ·
∫ ∞

0

e−(α−ε)tdt

+ λ

∫ ∞

0

e−(α−ε)t

∫ t

0

eαsEv(Xφ
s−τ(s))dsdt

+
∫ ∞

0

e−εt

∫ ∞

0

γ(s)e−[(α∧µ)−2ε]sdsdt

≤ 1
α − ε

Ev(φ(0)) +
λ

α − ε

∫ ∞

0

eεsEv(Xφ
s−τ(s))ds +

M(ε)
ε

,

(3.10)

where M(ε) =
∫∞
0

γ(s)e−[(α∧µ)−2ε]sds < ∞.
However, as the function ρ(t) = t − τ (t) is strictly increasing with

limt→+∞ ρ(t) = +∞, there exists δ1 ∈ (0, h] such that ρ(δ1) = 0, ρ(t) ∈ [−h, 0]
for all t ∈ [0, δ1] and ρ(t) > 0 for all t > δ1. Thus, taking into account the
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change of variables u = s − τ (s), it follows∫ ∞

0

eεsEv(Xφ
s−τ(s))ds

≤
∫ δ1

0

eεsEv(Xφ
s−τ(s))ds + eεh

∫ ∞

δ1

eε(s−τ(s))Ev(Xφ
s−τ(s))ds

≤ δ1 · eεδ1 sup
−h≤r≤0

Ev(φ(r)) +
eεh

1 − M

∫ ∞

0

eεsEv(Xφ
s )ds

≤ h · eεh sup
−h≤r≤0

Ev(φ(r)) +
eεh

1 − M

∫ ∞

0

eεsEv(Xφ
s )ds

(3.11)

which, together with (3.10), immediately implies that∫ ∞

0

eεtEv(Xφ
t )dt ≤

(
1

α − ε
+

λ · h · eεh

α − ε

)
sup

−h≤r≤0
Ev(φ(r))

+
M(ε)

ε
+

λeεh

(1 − M)(α − ε)

∫ ∞

0

eεtEv(Xφ
t )dt,

i.e., noticing (3.6), we have there exists a positive constant C̃ = C̃(α, µ, λ, h) <
∞ such that ∫ ∞

0

eεtEv(Xφ
t )dt ≤ C̃,(3.12)

where

C̃ =
1

1 − λeεh

(1−M)(α−ε)

[( 1
α − ε

+
λ · h · eεh

α − ε

)
sup

−h≤r≤0
Ev(φ(r)) +

M(ε)
ε

]
.

Now we are in a position to complete our proof. Firstly, note that by carrying
out a similar limiting argument as in (3.8), (3.9) and using the condition (3.2),
we can obtain for the above ε > 0,

eεtEv(Xφ
t ) ≤ c2E|φ(0)|2 + c2λ

∫ t

0

eεsE|Xφ
s−τ(s)|2ds +

∫ t

0

γ(s)e[ε−(α∧µ)]sds

which, in addition to (3.1), (3.11) and (3.12), immediately yields

eεtE|Xφ
t |2 ≤ 1/c1 · eεtEv(Xφ

t )

≤ 1
c1

{
c2E|φ(0)|2 + c2λ

∫ t

0

eεsE|Xφ
s−τ(s)|2ds

+
∫ t

0

γ(s)e[ε−(α∧µ)]sds
}

≤ 1
c1

{
c2E|φ(0)|2 + c2λ

(
heεh sup

−h≤r≤0
E|φ(r)|2 +

eεhC̃

1 − M

)

+
∫ ∞

0

γ(s)e[ε−(α∧µ)]sds
}

:= C(φ) < ∞,
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i.e.,
E|Xφ

t |2 ≤ C(φ) · e−εt

for all t ≥ 0. In other words, the solution is mean square stable and the proof
is now complete.

Theorem 3.2. Assume the hypotheses in Theorem 3.1 hold. Then there
exist positive constants K, θ and a subset Ω0 ⊂ Ω with P (Ω0) = 0 such that,
for each ω �∈ Ω0, there exists a positive random number T (ω) such that

|Xφ
t |2 ≤ K · e−θt, ∀t ≥ T (ω).(3.13)

That is, the mild solution is also exponential almost surely stable.
Proof. We shall split our proof into the following several steps.

Step 1. We firstly claim that there exists a positive constant C > 0,
independent of t ∈ R+, such that∫ t

s

E‖B(s, Xφ
s , Xφ

s−τ(s))‖2
2ds ≤ C < ∞, 0 ≤ s ≤ t.(3.14)

Indeed, applying Itô’s formula as in the proof of Theorem 3.1 to the strong
solution Xφ

t (n) and letting n → ∞, we get for arbitrary t ∈ R+

Ev(Xφ
t ) ≤ Ev(φ(0)) + λ

∫ t

0

Ev(Xφ
s−τ(s))ds(3.15)

+
∫ t

0

γ(s)e−µsds − α

∫ t

0

Ev(Xφ
s )ds.

Evaluating now the delay term in (3.15) by using the change of variable u =
s − τ (s) in the integral and taking into account (3.4), we obtain

∫ t

0

Ev(Xφ
s−τ(s))ds ≤ 1

1 − M

∫ t−τ(t)

−h

Ev(Xφ
s )ds

(3.16)

≤ 1
1 − M

∫ 0

−h

Ev(φ(s))ds +
1

1 − M

∫ t−τ(t)

0

Ev(Xφ
s )ds

≤ 1
1 − M

∫ 0

−h

Ev(φ(s))ds +
C

τ (1 − M)
.

Consequently, noticing that there exists a positive constant K1 (independent
of t) such that

∫ t

0
γ(s)e−µsds ≤ K1, for all t ≥ 0, then in view of (3.1), (3.2),

(3.4), (3.15) and (3.16) it follows∫ t

0

E|Xφ
s |2ds ≤ 1/c1 ·

∫ t

0

Ev(Xφ
s )ds(3.17)

≤ 1
αc1

(
c2 · E|φ(0)|2 + K1

+
c2λh

1 − M
sup

−h≤s≤0
E|φ(s)|2 +

λC

τ (1 − M)

)
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and so

∫ t

0

E|Xφ
s |2ds ≤ C1 , ∀t ≥ 0,

where C1 is a positive constant independent on t.

Therefore, we can ensure that there exists a positive constant C1 > 0 such
that

∫ t

s

E|Xφ
s |2ds ≤ C1 for 0 ≤ s ≤ t.(3.18)

Now, taking into account (2.2), (3.2), (3.3) and the above change of variable,
(3.18) yields that

∫ t

s

E‖B(s, Xφ
s , Xφ

s−τ(s))‖2
2ds

≤ 2
∫ t

s

E‖B(s, Xφ
s , Xφ

s−τ(s)) − B(s, 0, 0)‖2
2ds

+ 2
∫ t

s

E‖B(s, 0, 0)‖2
2ds

≤ k1

∫ t

s

E|Xφ
s |2ds + k2

∫ t

s

E|Xφ
s−τ(s)|2ds + k3

∫ t

s

γ(s)e−µsds

≤ k1

∫ t

s

E|Xφ
s |2ds + k4

∫ t

−h

E|Xφ
s |2ds + k3

∫ t

s

γ(s)e−µsds

≤ C2 for 0 ≤ s ≤ t,

(3.19)

where k1, k2, k3, k4 and C2 are positive constants (independent of s, t).

Step 2. Next, we claim that for any T > 0 there exists a positive con-
stant M > 0, independent of T , such that

E

(
sup

0≤t<T
v(Xφ

t )
)

≤ M.(3.20)

Indeed, applying Itô’s formula to the v(t, y) = v(y) and the strong solution
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Xφ
t (n), we obtain that

v(Xφ
t (n))

= v(R(n)Xφ
0 ) − α

∫ t

0

v(Xφ
s (n))ds + λ

∫ t

0

v(Xφ
s−τ(s)(n))ds +

∫ t

0

γ(s)e−µsds

+
∫ t

0

〈v′(Xφ
s (n)), R(n)A(s, Xφ

s (n), Xφ
s−τ(s)(n)) − A(s, Xφ

s (n), Xφ
s−τ(s)(n))〉ds

+
1
2

∫ t

0

[
tr
(
R(n)B(s, Xφ

s (n), Xφ
s−τ(s)(n))Q

· B(s, Xφ
s (n), Xφ

s−τ(s)(n))∗R(n)∗v′′(Xφ
s (n))

)
− tr

(
B(s, Xφ

s (n), Xφ
s−τ(s)(n))QB(s, Xφ

s (n), Xφ
s−τ(s)(n))∗v′′(Xφ

s (n))
)]

ds

+
∫ t

0

〈v′(Xφ
s (n)), R(n)B(s, Xφ

s (n), Xφ
s−τ(s)(n))dWs〉.

Thus, in view of Theorem 2.3 we can pass to the limit in the inequality above,
together with (3.2), to obtain for any T ∈ R+

E

(
sup

0≤t<T
v(Xφ

t )
)

≤ Ev(Xφ
0 ) + α

∫ T

0

Ev(Xφ
s )ds

+ λ

∫ T

0

Ev(Xφ
s−τ(s))ds +

∫ T

0

γ(s)e−µsds

+ E

[
sup

0≤t≤T

∫ t

0

〈v′(Xφ
s ), B(s, Xφ

s , Xφ
s−τ(s))dWs〉

]
.

(3.21)

On the other hand, by virtue of Burkholder-Davis-Gundy’s inequality and Con-
dition (3.2), we get for arbitrary T ∈ R+

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

〈v′(Xφ
s ), B(s, Xφ

s , Xφ
s−τ(s))dWs〉

∣∣∣∣
]

≤ K1E



(∫ T

0

|v′(Xφ
s )|2‖B(s, Xφ

s , Xφ
s−τ(s))‖2

2ds

) 1
2



which, by using the conditions (3.1), (3.2) and Hölder’s inequality, immediately
yields

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

〈v′(Xφ
s ), B(s, Xφ

s , Xφ
s−τ(s))dWs〉

∣∣∣∣
]

(3.22)

≤ 1
2
E

[
sup

0≤s≤T
v(Xφ

s )
]

+ K2

∫ T

0

E‖B(s, Xφ
s , Xφ

s−τ(s))‖2
2ds
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where K1, K2 are two positive constants. Therefore, substituting (3.22) into
(3.21) immediately yields that

E
(

sup
0≤s≤T

v(Xφ
s )
)

≤ Ev(Xφ
0 ) + α

∫ T

0

Ev(Xφ
s )ds + λ

∫ T

0

Ev(Xφ
s−τ(s))ds +

∫ T

0

γ(s)e−µsds

+
1
2
E
(

sup
0≤s≤T

v(Xφ
s )
)

+ K2

∫ T

0

E‖B(s, Xφ
s , Xφ

s−τ(s))‖2
2ds,

i.e.,

E

(
sup

0≤s≤T
v(Xφ

s )
)

≤ 2Ev(Xφ
0 ) + 2α

∫ T

0

Ev(Xφ
s )ds + 2λ

∫ T

0

Ev(Xφ
s−τ(s))ds

+ 2
∫ T

0

γ(s)e−µsds + 2K2

∫ T

0

E‖B(s, Xφ
s , Xφ

s−τ(s))‖2
2ds.

(3.23)

Thus, we can easily obtain our claim by (3.14) and Theorem 3.1.
Step 3. Now we are in a position to prove our main result. We only

sketch the proof because it is similar to that one in U. G. Haussmann [7].
Firstly, a similar argument to (3.21) implies

v(Xφ
T ) ≤ v(Xφ

N ) + α

∫ T

N

v(Xφ
s )ds + λ

∫ T

N

v(Xφ
s−τ(s))ds

+
∫ T

N

γ(s)e−µsds

+
[

sup
t∈[N,T ]

∣∣∣ ∫ t

N

〈v′(Xφ
s ), B(s, Xφ

s , Xφ
s−τ(s))dWs〉

∣∣∣],
(3.24)

for arbitrary T ≥ N , where N is a natural number.
In particular, choosing N large enough it is not difficult to obtain

P

{
sup

t∈[N,N+1]

v(Xφ
t ) ≥ ε2N

}

≤ P
{
v(Xφ

N ) ≥ ε2N/5
}

+ P

{
α

∫ N+1

N

v(Xφ
s )ds ≥ ε2N/5

}

+ P

{
λ

∫ N+1

N

v(Xφ
s−τ(s))ds ≥ ε2

N/5

}

+ P

{[
sup

t∈[N,N+1]

∣∣∣∣
∫ t

N

〈v′(Xφ
s ), B(s, Xφ

s , Xφ
s−τ(s))dWs〉

∣∣∣∣
]
≥ ε2N/5

}
,

(3.25)
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where ε2N = Ce−τN/5. Now, we can estimate the terms on the right-hand side
of (3.25) using Kolmogorov’s inequality and (3.4) for the first two terms. We
could also estimate the last one by using Burkholder-Davis-Gundy’s lemma,
Hölder’s lemma and carrying out a similar argument as in Steps 1 and 2. We
then get for some K3 > 0,

P
[

sup
t∈[N,N+1]

v(Xφ
t ) ≥ ε2N

]
≤ K3e

−τN/5,(3.26)

and finally a Borel-Cantelli’s lemma type argument, together with condition
(3.1), completes the proof.

4. Some Corollaries, Examples and Comments

In this section, we shall apply our main results derived above to various
circumstances to obtain some useful criteria for practical purposes. As a con-
sequence, we extend the main results from A. Ichikawa [8] to cover general
stochastic evolution equations with time non-autonomous type. In the mean-
time we also improve a result from T. Taniguchi [14] to remove the time delay
interval restriction imposed there.

4.1. Stochastic evolution equations with null variable delays
Consider the following semilinear stochastic evolution equation over H:{

dXt = (AXt + A(t, Xt))dt + B(t, Xt)dWt, ∀t ∈ [0, +∞),
X0 = x,

.(4.1)

where A(t, ·) and B(t, ·), t ≥ 0, are in general measurable nonlinear mappings
from H into H and H into L(K, H) respectively, satisfying the corresponding
Lipschitz condition and linear growth condition as in (2.2) and (2.3).

Corollary 4.1. Suppose τ (t) ≡ 0, t ≥ 0, in Theorems 3.1 and 3.2 and
the corresponding condition (H1) holds. Let v(x) : H → R1 satisfy

(i)

v(x) ≥ c1 · |x|2 for some c1 > 0;(4.2)

(ii) v(x) is twice Fréchet differentiable and v′(x), v′′(x) are continuous in
H and L(H) respectively, and

|v(x)| + |x||v′(x)| + |x|2|v′′(x)| ≤ c2|x|2 for some c2 > 0;(4.3)

(iii) There exist constants α > 0, µ > 0 and a nonnegative function γ(t),
t ∈ R+, such that

Lv(t, x) ≤ −αv(x) + γ(t)e−µt, tx ∈ D(A),(4.4)

where Lv(t, x) = 〈v′(x), Ax + A(t, x)〉 + 1/2 · tr(v′′(x)B(t, x)QB(t, x)∗), x ∈
D(A), t ≥ 0 and γ(t) satisfies that for any δ > 0, γ(t) = o(eδt), as t → ∞.
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Then there exist constants τ > 0, C > 0 such that for the mild solution
Xx

t of (4.1),

E|Xx
t |2 ≤ C · e−τt, ∀t ≥ 0.(4.5)

That is, the mild solution is mean square exponentially stable. Furthermore,
under the same conditions the solution is also exponential almost surely stable.

Remark. In A. Ichikawa [8], stability results (Theorems 3.1 and 5.1
there) are obtained to deal with the mild solutions of the semilinear stochastic
evolution equations (4.1). However, as the following example will explain, the
results derived there are too restrictive to be applied to some interesting and
important examples, especially to the non-autonomous occasions.

Example 4.1. Consider the following semilinear stochastic partial dif-
ferential equation:{

dYt(x) = ∂2

∂x2 Yt(x)dt + e−µtα
(
Yt(x)

)
dWt, t > 0, x ∈ (0, 1),

Y0(x) = y0(x), Yt(0) = Yt(1) = 0, t ≥ 0,
(4.6)

where Wt is a real standard Wiener process (so, K = R1) and α(·) : R1 →
R1 is a certain bounded, Lipschitz continuous function and µ is a positive
number. We can set this problem in our formulation by taking H = L2[0, 1]
with elements satisfying boundary conditions above, A = ∂2/∂x2, A(t, u) = 0,
B(t, u) = e−µtα(u).

Clearly, operator B(t, ·) satisfies the corresponding conditions (2.2) and
(2.3). On the other hand, let v(x) = |x|2, x ∈ H, and it is easy to deduce (for
u ∈ D(A))

(4.7) 2〈u, Au + A(t, u)〉+ ‖B(t, u)‖2
2 ≤ −2π|u|2 + Ke−2µt,

where K is a certain positive constant.
Since the hypotheses in Corollary 4.1 are fulfilled, we therefore deduce that

the mild solution of the equation (4.6) is mean square exponentially stable, that
is, there exist positive constants τ > 0, C > 0 such that

E|Xt|2 ≤ C · e−τt, ∀t ≥ 0,

and meanwhile is also exponential almost surely stable.

Remark. Observe that Theorems 3.1 and 5.1 in [8] cannot be applied
to this occasion since the condition (3.2c) there does not hold.

4.2. Stochastic evolution equations with constant variable delays
Assume h > 0 and consider the following constant variable delay stochastic

evolution equation over H on I = [−h,∞],

(4.8)

{
dXt = (AXt + A(t, Xt, Xt−h))dt + B(t, Xt, Xt−h)dWt, ∀t ∈ [0, +∞),
X0 = x0, Xt = φ(t), t ∈ [−h, 0],
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where A(t, ·, ·) and B(t, ·, ·) are in general nonlinear mappings from H×H to H
and H × H to L(K, H), respectively. φ(t) : [−h, 0] × Ω → H, h > 0, is a given
initial datum such that φ(t) is F0-measurable and sup−h≤r≤0 E|φ(r)|2 < ∞.
Also observe that at the present moment M = 0 in the condition (H1).

Corollary 4.2. Let v(x) : H → R1 satisfy
(i)

(4.9) v(x) ≥ c1 · |x|2 for some c1 > 0;

(ii) v(x) is twice Fréchet differentiable and v′(x), v′′(x) are continuous in
H and L(H) respectively, and

(4.10) |v(x)| + |x||v′(x)| + |x|2|v′′(x)| ≤ c2|x|2 for some c2 > 0;

(iii) There exist constants α > 0, µ > 0, λ ∈ R+ and a nonnegative
continuous function γ(t), t ∈ R+, such that

(4.11) Lv(t, x, y) ≤ −αv(x) + λv(y) + γ(t)e−µt, x ∈ D(A), y ∈ D(A),

where γ(t) satisfies that for any δ > 0, γ(t) = o(eδt), as t → ∞.
Assume furthermore the condition α > λ holds, then there exist constants

τ > 0, C > 0 such that for the mild solution Xφ
t of (4.8),

(4.12) E|Xφ
t |2 ≤ C · e−τt, ∀t ≥ 0.

That is, the mild solution is mean square exponentially stable. Furthermore,
under the same conditions the solution is also exponential almost surely stable.

In what follows we shall apply Corollary 4.2 to a stochastic delay system
considered by T. Taniguchi in [14] to improve the results derived there.

Example 4.2 ([14]). Consider the semilinear stochastic heat equation
with finite variable delays r1 (r > r1 ≥ 0)

dZ(t, x) = δ
∂2

∂x2
Z(t, x)dt + α1Z(t − r1, x)dβ(t),

t ≥ 0, δ > 0, α1 ≥ 0,

Z(t, 0) = Z(t, 1) = 0, t ≥ 0,

Z(s, x) = φ(s, x), φ(·, x) ∈ C([−r, 0],R1), φ(s, ·) ∈ L2(0, 1),
s ∈ [−r, 0], x ∈ [0, 1], E‖φ‖C < ∞,

(4.13)

where β(t) is a standard Wiener process and E‖φ‖2
C =

E{sup−r≤s≤0 ‖φ(s)‖2
L2(0,1)}.

Let A = ∂2/∂x2 with the domain

D(A) =
{

u ∈ L2(0, 1),
∂u

∂x
,
∂2u

∂x2
∈ L2(0, 1), u(0) = u(1) = 0

}
.
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Suppose H = L2(0, 1) with the corresponding boundary conditions as above.
It is well known that C0-semigroup S(t), t ≥ 0, generated by the operator
δA : L2(0, 1) → L2(0, 1) satisfies ‖S(t)‖ ≤ e−δπ2t, t ≥ 0. Hence, by applying
Corollary 4.2 to the above equation with v(x) = ‖x‖2

H , x ∈ L2(0, 1), we have
(for u, v ∈ D(A))

2〈u, Au + A(t, u, v)〉 + ‖B(t, u, v)‖2
2 ≤ −2δπ2‖u‖2

H + α2
1‖v‖2

H

which immediately implies if δπ2 > 1/2 ·α2
1, the solution is mean square expo-

nentially stable and in the meantime is exponentially almost surely stable.

Remark. In [14], by using the properties of stochastic convolution in-
tegral T. Taniguchi only obtained that if δπ2 > 3α2

1 · eδπ2r, i.e., r < 1/(δπ2)
ln(δπ2/3α2

1), the solution of the equation (4.13) is exponentially stable. In
other words, the results derived in [14] involved with a strong restriction to
delay interval parameter r, i.e., the requirement of the so-called small delay
interval.

Remark. In [14], a class of more general stochastic partial functional
differential equations are considered in addition to Example 4.2. However, it
is worth pointing out that the methods employed in this paper can be carried
over there in a quite similar manner. As a matter of fact, our results derived in
the paper are even much stronger because of the fact that we actually obtain
general results in the sense of the special consideration of variable time delay
function instead of constant one.

4.3. Stochastic evolution equations with fractional power type sta-
bility condition.

As the final application, we shall try to investigate the so-called fractional
power type stability result to close this paper.

Corollary 4.3. Assume τ ′(t) ≤ M , 0 ≤ M < 1, t ∈ R+. Let v(x) :
H → R1 satisfy

(i)

(4.14) v(x) ≥ c1 · |x|2 for some c1 > 0;

(ii) v(x) is twice Fréchet differentiable and v′(x), v′′(x) are continuous in
H and L(H) respectively, and

(4.15) |v(x)| + |x||v′(x)| + |x|2|v′′(x)| ≤ c2|x|2 for some c2 > 0;

(iii) There exist constants α > 0, ν > 0, µ > 0, θ > 0, λ ∈ R+, 0 ≤ σ ≤ 1
and nonnegative continuous functions ξ(t), ζ(t) and γ(t), t ∈ R+, such that

Lv(t, x, y) ≤ −αv(x) + λv(y) + ξ(t)e−νtv(x)σ(4.16)

+ ζ(t)e−θtv(y)σ + γ(t)e−µt, x ∈ D(A), y ∈ D(A),
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where ξ(t), ζ(t) and γ(t) satisfy that for any δ > 0, ξ(t) = o(eδt), ζ(t) = o(eδt)
and γ(t) = o(eδt), as t → ∞.

Assume furthermore the condition α > λ/(1 − M) holds, then there exist
constants τ > 0, C > 0 such that for the mild solution Xφ

t of (2.1),

(4.17) E|Xφ
t |2 ≤ C · e−τt, ∀t ≥ 0.

That is, the mild solution is mean square exponentially stable. Furthermore,
under the same conditions the solution is also exponential almost surely stable.

Remark. Observe that letting σ = 0 or σ = 1 in (4.16), we simply
obtain Theorem 3.1 once again.

Proof. Observe that the case σ = 0 or σ = 1 is trivial. For 0 < σ < 1, by
virtue of Young’s inequality

a · b ≤ ap

p
+

bq

q
for any a ≥ 0, b ≥ 0, p, q > 1 with

1
p

+
1
q

= 1,

we have for arbitrary ε > 0, the third and fourth terms on the right hand side
of (4.16) turn out

ξ(t)e−νtv(x)σ ≤ σε1/σv(x) + (1 − σ)ε
1

1−σ ξ(t)
1

1−σ · e− ν
1−σ t

and
ζ(t)e−θtv(y)σ ≤ σε1/σv(y) + (1 − σ)ε

1
1−σ ζ(t)

1
1−σ · e− θ

1−σ t

which, together with (4.16), immediately implies that

Lv(t, x, y)

≤− αv(x) + λv(y) + σε1/σv(x) + σε1/σv(y)

+
(
γ(t) + (1 − σ)ε

1
1−σ ξ(t)

1
1−σ + (1 − σ)ε

1
1−σ ζ(t)

1
1−σ

)
e−( ν

1−σ ∧ θ
1−σ ∧µ)t,

x, y ∈ D(A).

Hence, in view of Theorems 3.1 and 3.2, it is easy to deduce that if α−σε1/σ >
(λ + σε1/σ)/(1 − M), the mild solution is mean square exponentially stable
and meanwhile exponential almost surely stable. Observe ε > 0 is an arbitrary
constant, the proof of the corollary is therefore complete.

Example 4.3. Consider the following semilinear stochastic partial dif-
ferential equation:




dYt(x) = ∂2

∂x2 Yt(x)dt + e−t/2(Yt−τ(t)(x))
1
3 dt +

√
µ Yt(x)

1+|Yt−τ(t)(x)|dWt,

t > 0, x ∈ (0, 1),
Y0(x) = y0(x), Yt(0) = Yt(1) = 0, t ≥ 0,

(4.18)
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where µ ≥ 0 is a nonnegative real number and τ (t) : R1 → [0, h], is a certain
differentiable function with τ ′(t) ≤ 0. Wt is a real standard Wiener process (so,
K = R1 and Q = 1). We can set this problem in our formulation by taking
H = L2[0, 1] with the corresponding boundary conditions above, Au(x) =
(d2/dx2)u(x), A(t, u, v) = e−t/2v(x)1/3 and B(t, u, v) =

√
µu(x)/(1 + |v(x)|).

Suppose v(x) = ‖x‖2
H and it is easy to deduce that for arbitrary δ > 0

small enough and u, v ∈ D(A)

2〈Au + A(t, u, v), u〉 + ‖B(t, u, v)‖2
2(4.19)

≤ −2π2|u|2H + (δ + µ)|u|2H + δ · e−t|v|2/3
H .

Therefore, whenever 2π2 > δ +µ ≥ 0, or equivalently, 2π2 > µ ≥ 0 (notice
δ > 0 is an arbitrary positive number), we easily deduce from Corollary 4.3
that for arbitrary delay interval [−h, 0], h > 0, the mild solution of the equation
(4.18) is mean square exponentially stable and also almost surely stable.

Remark. Observe once more that Theorems 3.1 and 5.1 in A. Ichikawa
[8] cannot be applied to the corresponding null variable delay occasion of Ex-
ample 4.3 to obtain the required exponential stability.
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