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Prof. Yosida’s proof of the Plancherel and the
Bochner theorems for locally compact

abelian groups

By

Hikosaburo Komatsu

Banach algebras were introduced by M. Nagumo [7] and K. Yosida [10]
in 1936. I. M. Gelfand’s celebrated paper [2] appeared five years later. The
theory was immediately applied to the reconstruction of the theory of locally
compact abelian groups. In the Soviet Union, Gelfand, D. A. Raikov, M. Krein
and M. Neumark published short notes in Doklady Nauk in 1940–1944 but the
details were shown to the public only after the war as a book [4]. Under the
isolation caused by the war, similar works were done in France by H. Cartan
and R. Godement, and in the United States by I. E. Segal independently. They
also had to wait until the end of the war before they published their results
(see Introductions in Cartan-Godement [1] and Segal [8]).

On the contrary, Japanese were able to read Doklady and publish their
works. In 1944 Professor Yosida published two papers on this subject. In [12]
he claimed that he improved Krein’s proof [6] of the Plancherel theorem, and
in [13] Raikov’s proof [9] of the Bochner theorem. I think his proofs are the
most natural ones but they did not attract due attention, probably because his
proofs yet contained some gaps. I showed how to fill in the gaps in Comments
of his Collected Papers [14] by quoting a book [5]. However, since I have again
found a gap in the book, I like to fill it in here.

Let X be a locally compact abelian group with a Haar measure dx. In the
theory of Gelfand et al. they use the group ring B0 = L1(X) with convolution
as multiplication. By adding the unity 1 if X is not discrete, we obtain a com-
mutative Banach algebra B with 1. The starting point was Gelfand-Raikov’s
observation [3] that the space SpecB of maximal ideals of B is identified with
the character group X̂ except for the point M∞ = L1(X) at infinity in the
indiscrete case. The Gelfand topology on X̂ coincides with the compact open
topology commonly used in the group theory. An explicit proof was not given
but is not difficult.

The Banach algebra B has an involution defined by

f∗(x) = f(−x), f ∈ L1(X),(1)
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740 Hikosaburo Komatsu

but it is not a C∗-algebra. This makes the theory difficult. Yosida’s idea is
to employ the C∗-algebra A generated by the convolution operators Tf on the
Hilbert space L2(X) instead, where

Tfφ(x) = f ∗ φ(x) =
∫

X

f(x− y)φ(y)dy, f ∈ L1(X), φ ∈ L2(X).(2)

Namely, let A0 be the closure of {Tf | f ∈ B0} in the normed space
L(L2(X)) of all bounded linear operators, and consider the C∗-algebra A ob-
tained by adding the identity I to A0 if X is not discrete. Yosida discussed the
Fourier transformation

Ff(ξ) = f̂(ξ) =
∫

X

f(x)e−ixξdx, f ∈ L1(X),(3)

by factorizing it through the algebra A with the aid of the following.

Lemma 1. The continuous homomorphism T : B → A defined by

T (a1 + f) = aI + Tf(4)

induces the homeomorphism

T ∗ : SpecA ∼= SpecB.(5)

Proof. Since the continuous linear operator T has a dense image, its dual
T ′ : A′ → B′ is an injective continuous linear mapping in the weak* topologies.
Hence its restriction T ∗ to SpecA is a homeomorphism onto its image. We have
only to prove its surjectivity, and this part was missing in [12].

Let τ ∈ X̂. Then, the multiplication Mτ by the character eixτ defines the
isomorphisms

Mτ : L1(X) → L1(X),
Mτ : L2(X) → L2(X).

If f ∈ L1(X), then we have

(TMτ fφ, ψ) =
∫
f(x− y)ei(x−y)τφ(y)ψ(x)dydx = (MτTfM

−1
τ φ, ψ).

Taking the uniform limits, we have an isomorphism Adτ : A → A satisfying

Adτ A = Mτ AM
−1
τ , A ∈ A,(6)

and the intertwining relation

T ◦Mτ = Adτ ◦ T.(7)
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Hence we obtain the commutative diagram of continuous mappings

SpecA T∗−−−−→ SpecB�Ad∗
τ

�M∗
τ

SpecA T∗
−−−−→ SpecB.

(8)

The homeomorphism T ∗ sends the point at infinity in SpecA to the point
at infinity in SpecB, and the nontrivial C∗-algebra A has a maximal ideal
different from the point at infinity.

If f ∈ L1(X), then

F(Mτf)(ξ) =
∫
f(x)eixτe−ixξdx = Ff(ξ − τ ).(9)

This shows that at a finite point ξ ∈ X̂, we have M∗
τ (ξ) = ξ − τ . Since the

action of X̂ on X̂ is transitive, the image of T ∗ coincides with SpecB.

Yosida had proved in [11] that the Gelfand representations

A ∼= C(SpecA),(10)
A0

∼= C∞(X̂)(11)

are not only isomorphisms of C∗-algebras but also order preserving. That is,
an A ∈ A is positive definite as an operator:

(Aφ, φ) ≥ 0, φ ∈ L2(X),(12)

if and only if its spectral representation is positive:

Â(ξ) ≥ 0, ξ ∈ X̂.(13)

Combining the ∗-isomorphism T : L1(X) → A0 of algebras with isomor-
phism (11), we obtain

Theorem 1 (Riemann-Lebesgue). The Fourier transformation

F : L1(X) → C∞(X̂)(14)

is a continuous linear injection with dense image.

Remark that

(Tfφ, ψ) = f ∗ φ ∗ ψ∗(0), f ∈ L1(X), φ, ψ ∈ L2(X).(15)

In particular, we have Ff(ξ) ≥ 0 for any ξ ∈ X̂ if and only if f ∗ φ ∗ φ∗(0) ≥ 0
for any φ ∈ L2(X).

In order to introduce a Haar measure dξ on X̂, we consider the function
space Λ(X) of all linear combinations

∑
ajφj ∗ φ∗j with aj ∈ C and φj ∈

L1(X) ∩ L2(X).
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If φ and ψ are in L1(X) ∩ L2(X), then the convolution φ ∗ ψ∗ belongs to
Λ(X) because we have

φ ∗ ψ∗ =
1
4
{(φ+ ψ) ∗ (φ+ ψ)∗ − (φ− ψ) ∗ (φ− ψ)∗

+ i(φ+ iψ) ∗ (φ+ iψ)∗ − i(φ− iψ) ∗ (φ− iψ)∗}.
The space K(X) of all continuous functions with compact support in X is
included in L1(X) ∩ L2(X) and is dense both in L1(X) and in L2(X). Hence
it follows that Λ(X), which is included in L1(X) ∩ C∞(X) ⊂ L2(X), is also
dense both in L1(X) and in L2(X).

We denote its Fourier image by Λ̂(X̂):

Λ̂(X̂) = FΛ(X).

Since Λ(X) is dense in L1(X), it follows that Λ̂(X̂) is dense in C∞(X̂).
Now, we define the linear functional J on Λ̂(X̂) by

J(f̂) = f(0), f ∈ Λ(X).(16)

Krein [6] and Yosida [12] claimed that the functional J could be defined on a
much wider function space but it is very doubtful.

The linear functional J is positive in the sense that

f̂(ξ) ≥ 0, ξ ∈ X̂ =⇒ J(f̂) ≥ 0.(17)

In fact, let δV ∈ K(V ) satisfy
∫
δ(x)dx = 1. Then, as the neighborhood V of 0

shrinks to 0, we have, by (12) and (15),

J(f̂) = lim
V →0

f ∗ δV ∗ δV ∗(0) ≥ 0.

Moreover, we have for any f ∈ Λ(X)

J(Ŝτ f̂) = J(f̂), τ ∈ X̂,(18)

J(M̂tf̂) = f(t), t ∈ X,(19)

where Ŝτ denotes the shift (Ŝτ f̂)(ξ) = f̂(ξ − τ ), and M̂t the multiplication
M̂tf̂(ξ) = eitξ f̂(ξ). Equality (18) follows from (9), and Equality (19) from

(S−tf )̂(ξ) = eitξ f̂(ξ).(20)

We have (a1 + f) ∗ φ ∗ φ∗ ∈ Λ(X) for any a ∈ C, f ∈ L1(X), and φ ∈
L1(X) ∩ L2(X). The value of J at its Fourier transform (a+ f̂)|φ̂|2 is written

J((a+ f̂)|φ̂|2) = (a1 + f) ∗ φ ∗ φ∗(0) = ((aI + Tf )φ, φ).(21)

Hence we have the estimates

|J((a+ f̂)|φ̂|2)| ≤ ‖aI + Tf‖‖φ‖2 = ‖a+ f̂(ξ)‖C(Spec A)‖φ‖2
L2(X).(22)
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This shows that, when a φ ∈ L1(X)∩L2(X) is fixed, the linear functional
J((a + f̂)|φ̂|2) in a + f̂(ξ) ∈ C(SpecA) can uniquely be extended to a con-
tinuous linear functional J(c(ξ)|φ̂(ξ)|2) in c(ξ) ∈ C(SpecA).

In order to show that the extension is a positive linear functional depend-
ing only on the function c(ξ)|φ̂(ξ)|2, we first consider the case where c(ξ) ∈
C(SpecA) satisfies 0 ≤ c(ξ) < 1. The square root s(ξ) =

√
c(ξ) can be ap-

proximated uniformly by the Fourier image FB. If |s(ξ)−(an+f̂n(ξ))| ≤ 2−n−1,
then we have |c(ξ) − |an + f̂n(ξ)|2| ≤ 2−n+1. Therefore, let

b̂n(ξ) = 2−n+3 + |an + f̂n(ξ)|2.

Then, b̂n(ξ) ∈ FB is a decreasing sequence converging to c(ξ) uniformly. Hence,
we have

J(c(ξ)|φ̂(ξ)|2) = lim
n→∞J(b̂n(ξ)|φ̂(ξ)|2) ≥ 0.(23)

For a general c(ξ) ≥ 0 the proof goes as well by a suitable scaling. This
shows that, when φ is fixed, the extension is a positive linear functional.

Now suppose that

c(ξ)|φ̂(ξ)|2 = d(ξ)|ψ̂(ξ)|2 ≥ 0.

Since b̂n(ξ)|φ̂(ξ)|2 > d(ξ)|ψ̂(ξ)|2, we have J(b̂n(ξ)|φ̂(ξ)|2) ≥ J(d(ξ)|ψ̂(ξ)|2).
Hence we have by (23) J(c(ξ)|φ̂(ξ)|2) ≥ J(d(ξ)|ψ̂(ξ)|2).

The converse inequality, the negative and the imaginary parts are treated
similarly.

If k(ξ) ∈ K(V ), then for a sufficiently small neighborhood V of 0 in X the
δ-type function δV ∈ K(V ) satisfies |δ̂V (ξ)|2 > 0 on supp k, and hence there is a
c(ξ) ∈ C(SpecA) such that k(ξ) = c(ξ)|δ̂V (ξ)|2. Thus we obtain the following.

Lemma 2. The positive linear functional J on Λ̂(X̂) is uniquely ex-
tended to a positive linear functional on Λ̂(X̂) + K(X̂).

By the Riesz-Markov-Kakutani theorem there is a measure dξ such that

J(k(ξ)) =
∫

X̂

k(ξ)dξ(24)

for any k ∈ K(X̂). The translation invariant property (18) holds also for the
extended J . Hence dξ is a Haar measure on X̂.

If we show that (24) holds for k(ξ) ∈ Λ̂(X̂), then the essential part of the
Plancherel theorem follows immediately. In fact, let φ(x) be an arbitrary func-
tion in L1(X) ∩ L2(X). Then, k(ξ) = |φ̂(ξ)|2 ∈ Λ̂(X̂) is the Fourier transform
of φ ∗ φ∗(x) and we have

‖φ‖2
L2(X) = φ ∗ φ∗(0) = J(|φ̂|2) =

∫
|φ̂(ξ)|2dξ = ‖φ̂‖2

L2(X̂)
.(25)
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Proof of (24) for k ∈ Λ̂(X̂). We may assume without loss of generality
that k(ξ) = |φ̂(ξ)|2 for a φ(x) ∈ L1(X) ∩ L2(X). Let h(ξ) be an arbitrary
function in K(X̂) satisfying 0 ≤ h(ξ) ≤ 1. Since J is positive, we have

J(|φ̂|2) ≥ J(h|φ̂|2) =
∫
h(ξ)|φ̂(ξ)|2dξ,

and hence
φ ∗ φ∗(0) = J(|φ̂|2) ≥

∫
|φ̂(ξ)|2dξ.

On the other hand, given an ε > 0, we can find a neighborhood V of 0 in
X such that

φ ∗ φ∗(0) − ε ≤ φ ∗ φ∗ ∗ δV ∗ δ∗V (0) = J(h|δ̂V |2|φ̂|2) + J((1 − h)|δ̂V |2|φ̂|2)
≤

∫
|φ̂(ξ)|2dξ + ‖(1 − h)|δ̂V |2‖C(Spec A)‖φ‖2

L2(X).

Since |δ̂V (ξ)|2 ∈ C∞(X̂), we can make the last term less than ε for a sufficiently
large h. The discussion in [4] seems obscure in this respect.

Since L1(X) ∩ L2(X) is dense in L2(X), the Fourier transformation is
extended by continuity to a continuous linear mapping

F : L2(X) → L2(X̂).(26)

Theorem 2 (Plancherel). The Fourier transformation (26) is a sur-
jective linear isometry. Its inverse

F : L2(X̂) → L2(X)(27)

is obtained by extension by continuity of the inverse Fourier transformation

F f̂(x) =
∫

X̂

f̂(ξ)eixξdξ, f̂ ∈ L1(X̂) ∩ L2(X̂).(28)

Proof. Since K(X̂) is dense in L2(X̂), the surjectivity is proved if we
show that for any k(ξ) ∈ K(X̂) there is a sequence gn(x) ∈ Λ(X) such that
‖ĝn − k‖L2(X̂) → 0.

We choose, as above, a function φ(x) ∈ L1(X)∩L2(X) such that |φ̂(ξ)|2 >
0 on supp k and write k(ξ) = c(ξ)|φ̂(ξ)|2 with a continuous function c(ξ). There
is a sequence bn ∈ B such that b̂n(ξ) converges to c(ξ) uniformly on SpecA.
Then gn = bn ∗ φ ∗ φ∗ is a desired sequence of functions in Λ(X).

Since (26) is an isomorphism of Hilbert spaces, we have
∫

X

f(x)g(x)dx =
∫

X̂

Ff(ξ)Fg(ξ)dξ, f(x), g(x) ∈ L2(X).(29)



�

�

�

�

�

�

�

�

Prof. Yosida’s proof of the Plancherel and the Bochner theorems 745

Suppose that Ff(ξ) ∈ L1(X̂) and that g(x) ∈ L1(X). Then, we have by
Fubini’s theorem

∫
X

f(x)g(x)dx =
∫

X̂

Ff(ξ)dξ
∫

X

g(x)e−ixξdx =
∫

X

FFf(x)g(x)dx.

Since Λ̂(X̂) is included in L1(X̂), this implies that

f(x) = FFf(x), a.e. x(30)

for any f(x) ∈ Λ(X), and hence for any f(x) ∈ L2(X) because Λ(X) is dense
in L2(X). Remark also that (19) is the inversion formula (30) for f(x) ∈
Λ(X).

An easy consequence is the following.

Theorem 3 (Pontrjagin). The character group of X̂ is isomorphic to
the original group X.

A function m(x) on X is said to be positive definite if it is continuous at
the origin and satisfies the condition

n∑
i=1

n∑
j=1

αiαj m(xi − xj) ≥ 0(31)

for any xj ∈ X, and αj ∈ C.
It is easily proved that a positive definite function m(x) has the following

properties:
(i) m(x) = m∗(x) = m(−x);
(ii) |m(x)| ≤ m(0);
(iii) m(x) is uniformly continuous on X;

(iv)
∫
m(x− y)φ(y)φ(x)dydx ≥ 0, φ(x) ∈ L1(X).

Theorem 4 (Bochner). A function m(x) on X is positive definite if
and only if it is the inverse Fourier transform of a finite measure µ on X̂:

m(x) =
∫

X̂

eixξdµ(ξ).(32)

Proof. The proof of sufficiency is trivial. To prove the necessity, we first
assume that m(x) is integrable.

Then, the inequality of property (iv) holds also for any φ(x) ∈ L2(X). That
means that the Fourier transform m̂(ξ) ≥ 0 by the equivalence of (12) and (13).
If we choose a φ(x) from L1(X) ∩ L2(X), then we have m ∗ φ ∗ φ∗(x) ∈ Λ(X)
and hence ∫

X̂

m̂(ξ)|φ̂(ξ)|2dξ = m ∗ φ ∗ φ∗(0) ≤ m(0)‖φ(x)‖2
L1(X).
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Now, we choose a δ-type function δV (x) for φ(x) and let V tend to the
origin. Then we have ∫

K̂

m̂(ξ)dξ ≤ m(0)

for any compact set K̂ in X̂. Hence m̂(ξ) is integrable.
Choose a sequence fn(x) ∈ Λ(X) tending to m(x) in L1(X) and let g(x)

be an arbitrary function in Λ(X). As the limit of equality (29) we have
∫

X

m(x)g(x)dx =
∫

X̂

Fm(ξ)Fg(ξ)dξ =
∫

X

FFm(x)g(x)dx, g(x) ∈ Λ(X),

and hence
m(x) =

∫
X̂

eixξ m̂(ξ)dξ.

In the general case, we note that products of positive definite functions are
positive definite. Let V̂ be a compact neighborhood of 0 in X̂ and consider the
positive definite function

mV̂ (x) = m(x)
∣∣∣∣|V̂ |−1

∫
V̂

eixξdξ

∣∣∣∣
2

.

This is integrable because m(x) is bounded and the inverse Fourier trans-
form of the characteristic function of V̂ is square integrable. As V̂ shrinks to
0, mV̂ (x) converges to m(x) uniformly on compact sets. From the above proof
we have

mV̂ (x) =
∫

X̂

eixξ m̂V̂ (ξ)dξ

with an integrable function m̂V̂ (ξ) ≥ 0 and
∫

X̂

m̂V̂ (ξ)dξ = mV̂ (0) = m(0).

Thus the set {m̂V̂ (ξ)dξ} of measures is relatively weak∗-compact in the
dual of C∞(X̂). Let the measure µ be an accumulation point. Then we have
(32).

Department of Mathematics
Science University of Tokyo
Tokyo 162-0827, Japan
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