On the homology of the Kac-Moody groups and the cohomology of the 3 -connective covers of Lie groups

By
Osamu Nishimura*

Abstract

Let G be a compact, 1-connected, simple Lie group of exceptional type, g its Lie algebra, and p an odd prime. In this paper, the $\bmod p$ homology of the Kac-Moody group $K\left(g^{(1)}\right)$ and the $\bmod p$ cohomology of the 3 -connective cover over G are determined as Hopf algebras over the Steenrod algebra for every case that the integral homology of G has p-torsion.

1. Introduction

In [4], Hamanaka and Hara determined $H_{*}\left(\Omega G ; \mathbb{F}_{3}\right)$ as a Hopf algebra over \mathcal{A}_{3} for $G=F_{4}, E_{6}, E_{7}$ and E_{8} where \mathcal{A}_{p} is the $\bmod p$ Steenrod algebra. Moreover, they determined the mod 3 homology map of the adjoint action Ad: $G \times \Omega G \rightarrow \Omega G$ for G above except for one equation which is in the case $G=E_{6}$.

The first purpose of this paper is to determine this remaining equation by computing the mod 3 homology map of the adjoint action $\overline{\operatorname{Ad}}: \operatorname{Ad} E_{6} \times$ $\Omega E_{6} \rightarrow \Omega E_{6}$. Then, by using this result and the result of [4], we determine $H_{*}\left(K\left(g^{(1)}\right) ; \mathbb{F}_{3}\right)$ and $H^{*}\left(\tilde{G} ; \mathbb{F}_{3}\right)$ as Hopf algebras over \mathcal{A}_{3} for G above where g is the Lie algebra of $G, K\left(g^{(1)}\right)$ is the Kac-Moody group associated with g (see [6], [7] and [8]), and \tilde{G} is the 3 -connective cover over G. Also we give a similar result for E_{8} at prime 5 by using the result of [5].

This paper is organized as follows. In Section 2, we compute the mod 3 homology map of $\overline{\mathrm{Ad}}$ and complete the computation of the mod 3 homology map of Ad: $E_{6} \times \Omega E_{6} \rightarrow \Omega E_{6}$. In Sections 3 and 4 , we determine the mod p homology of the Kac-Moody group and the $\bmod p$ cohomology of the 3 connective cover, respectively, as Hopf algebras over \mathcal{A}_{p} for the cases stated before.

We use the following notation. The subscript of an element of a graded algebra designates the degree. The reduced coproduct of a coalgebra is denoted

[^0]by $\bar{\phi}$. The symbol $*$ is used to indicate the adjoint action as in [4]. (Also see [12].) The mod 3 cohomology and homology are simply denoted by $H^{*}()$ and $H_{*}()$.

The author expresses gratitude to Professor Akira Kono for his advices and encouragements.

2. The adjoint action of $\operatorname{Ad} E_{6}$ on ΩE_{6}

Recall from Araki [1], Borel [2] and Petrie [16],

$$
\begin{aligned}
H^{*}\left(E_{6}\right) & =\mathbb{F}_{3}\left[x_{8}\right] /\left(x_{8}^{3}\right) \otimes \wedge\left(x_{3}, x_{7}, x_{9}, x_{11}, x_{15}, x_{17}\right), \\
H^{*}\left(\operatorname{Ad} E_{6}\right) & =\mathbb{F}_{3}\left[\bar{x}_{2}, \bar{x}_{8}\right] /\left(\bar{x}_{2}^{9}, \bar{x}_{8}^{3}\right) \otimes \wedge\left(\bar{x}_{1}, \bar{x}_{3}, \bar{x}_{7}, \bar{x}_{9}, \bar{x}_{11}, \bar{x}_{15}\right), \\
H_{*}\left(\Omega E_{6}\right) & =\mathbb{F}_{3}\left[t_{2}, t_{6}, t_{8}, t_{10}, t_{14}, t_{16}, t_{22}\right] /\left(t_{2}^{3}\right)
\end{aligned}
$$

as algebras. We choose the same generators as those in Kono [9] and HamanakaHara [4]. For the detail of the coalgebra structures and the \mathcal{A}_{3}-module structures, see [9] and [4].

Let $\pi: E_{6} \rightarrow \operatorname{Ad} E_{6}$ be the natural projection. Let y_{j} and \bar{y}_{j} be the dual elements of the indecomposable classes of x_{j} and \bar{x}_{j} respectively. Let \bar{y}_{6} be the dual element of \bar{x}_{2}^{3} with respect to the monomial basis of $H^{*}\left(\operatorname{Ad} E_{6}\right)$. We can see $\pi_{*}\left(y_{8}\right)=\bar{y}_{8}=\bar{y}_{6} \bar{y}_{2}-\bar{y}_{2} \bar{y}_{6}$. (See [14].) Note that $H_{*}\left(\operatorname{Ad} E_{6}\right)$ is generated by \bar{y}_{1}, \bar{y}_{2} and \bar{y}_{6} as an algebra.

Proposition 1. The map $\overline{A d}_{*}$ is given by $\bar{y}_{1} * t_{j}=0$ for any j and by the following table:

	t_{2}	t_{6}	t_{8}	t_{10}	t_{14}	t_{16}	t_{22}
$\bar{y}_{2} *$	0	t_{8}	t_{10}	0	t_{16}	κt_{6}^{3}	$-\kappa t_{8}^{3}$
$\bar{y}_{6} *$	$-t_{8}$	$t_{8} t_{2}^{2}$	t_{14}	$-t_{16}$	0	t_{22}	0

where κ is the same one as that in [4]. Moreover, $\delta=-\kappa \neq 0$ in Theorem 2 of [4].

Proof. By the dimensional reason and the primitivity, we have $\bar{y}_{1} * t_{j}=0$ for any j and $\bar{y}_{2} * t_{2}=\bar{y}_{2} * t_{10}=\bar{y}_{6} * t_{14}=\bar{y}_{6} * t_{22}=0$. Since $\overline{\operatorname{Ad}}_{*} \circ\left(\pi_{*} \otimes 1\right)=\operatorname{Ad}_{*}$, we have $t_{10}=y_{8} * t_{2}=\bar{y}_{8} * t_{2}=-\bar{y}_{2} *\left(\bar{y}_{6} * t_{2}\right)$. Hence we may assume that $t_{8}=-\bar{y}_{6} * t_{2}$ and $t_{10}=\bar{y}_{2} * t_{8}$. Then, we can see that $\bar{\phi}\left(\bar{y}_{6} * t_{6}\right)=\bar{\phi}\left(t_{8} t_{2}^{2}\right)$ and hence $\bar{y}_{6} * t_{6}=t_{8} t_{2}^{2}$. By applying \wp^{1} to this, we have $\bar{y}_{2} * t_{6}=t_{8}$. Since $\left(\bar{y}_{6} * t_{8}\right) \wp^{1}=\bar{y}_{2} * t_{8}=t_{10}$, we can conclude that $\bar{y}_{6} * t_{8}=t_{14}$. We can see that $t_{16}=\bar{y}_{8} * t_{8}=\bar{y}_{6} * t_{10}-\bar{y}_{2} * t_{14}$ while by applying \wp^{1} to $\bar{y}_{6} * t_{14}=0$, we have $\bar{y}_{2} * t_{14}+\bar{y}_{6} * t_{10}=0$. Hence we have $\bar{y}_{2} * t_{14}=t_{16}$ and $\bar{y}_{6} * t_{10}=-t_{16}$. We have $\bar{y}_{8} * t_{10}=\bar{y}_{2} * t_{16}=\kappa t_{6}^{3}$ and since $\left(\bar{y}_{6} * t_{16}\right) \wp^{1}=\bar{y}_{2} * t_{16}=\kappa t_{6}^{3}$, we have $\bar{y}_{6} * t_{16}=t_{22}$. We have $y_{8} * t_{16}=\kappa \bar{y}_{6} *\left(t_{6}^{3}\right)-\bar{y}_{2} * t_{22}$ while by applying \wp^{1} to $\bar{y}_{6} * t_{22}=0$, we have $\bar{y}_{2} * t_{22}+\kappa \bar{y}_{6} *\left(t_{6}^{3}\right)=0$. Hence we have $y_{8} * t_{16}=\bar{y}_{2} * t_{22}=-\kappa \bar{y}_{6} *\left(t_{6}^{3}\right)$. We can see that $\bar{y}_{6} *\left(t_{6}^{3}\right)=t_{8}^{3}$ and hence, the proposition is proved.

3. The homology of the Kac-Moody groups

Let $L(G)$ be the space of free loops on G. Recall that $L(G)$ is the semidirect product of G and ΩG where the adjoint action Ad: $G \times \Omega G \rightarrow \Omega G$ twists the multiplications of G and ΩG. See [4].

Since $K\left(g^{(1)}\right)$ is the central extension by S^{1} of $L(G)$, it is identified as an A_{∞}-space with the semi-direct product of G and ΩG where the adjoint action $\widetilde{\mathrm{Ad}}: G \times \Omega \tilde{G} \rightarrow \Omega \tilde{G}$ twists the multiplications of G and $\Omega \tilde{G}$. See Kac [6] and [7], Kac-Peterson [8]. Accordingly, the Hopf algebra structure over the Steenrod algebra of $H_{*}\left(K\left(g^{(1)}\right) ; \mathbb{F}_{p}\right)$ is determined by that of $H_{*}\left(G ; \mathbb{F}_{p}\right)$, that of $H_{*}\left(\Omega \tilde{G} ; \mathbb{F}_{\tilde{p}}\right)$, and the map $\widetilde{A d}{ }_{*}$.

Let $q: \tilde{G} \rightarrow G$ be the covering projection. Let the generators of $H_{*}(G)$, $H_{*}(\Omega G), H_{*}\left(E_{8} ; \mathbb{F}_{5}\right)$ and $H_{*}\left(\Omega E_{8} ; \mathbb{F}_{5}\right)$ be as in [4] and Hamanaka-Hara-Kono [5]. Then, we have

$$
\begin{aligned}
& H_{*}\left(\Omega \tilde{F}_{4}\right)=\mathbb{F}_{3}\left[\tilde{t}_{10}, \tilde{t}_{14}, \tilde{t}_{22}, \tilde{u}_{18}\right] \otimes \wedge\left(\tilde{u}_{17}\right), \\
& H_{*}\left(\Omega \tilde{E}_{6}\right)=\mathbb{F}_{3}\left[\tilde{t}_{8}, \tilde{t}_{10}, \tilde{t}_{14}, \tilde{t}_{16}, \tilde{t}_{22}, \tilde{u}_{18}\right] \otimes \wedge\left(\tilde{u}_{17}\right), \\
& H_{*}\left(\Omega \tilde{E}_{7}\right)=\mathbb{F}_{3}\left[\tilde{t}_{10}, \tilde{t}_{14}, \tilde{t}_{22}, \tilde{t}_{26}, \tilde{t}_{34}, \tilde{u}_{18}, \tilde{u}_{54}\right] \otimes \wedge\left(\tilde{u}_{53}\right), \\
& H_{*}\left(\Omega \tilde{E}_{8}\right)=\mathbb{F}_{3}\left[\tilde{t}_{14}, \tilde{t}_{22}, \tilde{t}_{26}, \tilde{t}_{34}, \tilde{t}_{38}, \tilde{t}_{46}, \tilde{t}_{58}, \tilde{u}_{54}\right] \otimes \wedge\left(\tilde{u}_{53}\right), \\
& H_{*}\left(\Omega \tilde{E}_{8} ; \mathbb{F}_{5}\right)=\mathbb{F}_{5}\left[\tilde{t}_{14}, \tilde{t}_{22}, \tilde{t}_{26}, \tilde{t}_{34}, \tilde{t}_{38}, \tilde{t}_{46}, \tilde{t}_{58}, \tilde{u}_{50}\right] \otimes \wedge\left(\tilde{u}_{49}\right)
\end{aligned}
$$

where $(\Omega q)_{*}\left(\tilde{t}_{j}\right)=t_{j},(\Omega q)_{*}\left(\tilde{u}_{18}\right)=\kappa t_{6}^{3},(\Omega q)_{*}\left(\tilde{u}_{54}\right)=t_{18}^{3},(\Omega q)_{*}\left(\tilde{u}_{50}\right)=t_{10}^{5}$, $(\Omega q)_{*}\left(\tilde{u}_{\text {odd }}\right)=0, \tilde{u}_{18} \beta=\tilde{u}_{17}, \tilde{u}_{54} \beta=\tilde{u}_{53}$, and $\tilde{u}_{50} \beta=\tilde{u}_{49}$. If we note that $(\Omega q)_{*}$ is injective in even degrees, we can easily determine the \mathcal{A}_{p}-module structures and we can easily see that all generators except for $\tilde{u}_{54} \in H_{*}\left(\Omega \tilde{E}_{7}\right)$ are primitive and $\bar{\phi}\left(\tilde{u}_{54}\right)=-\kappa\left(\tilde{u}_{18}^{2} \otimes \tilde{u}_{18}+\tilde{u}_{18} \otimes \tilde{u}_{18}^{2}\right)$. See Kono [10] and KonoKozima [11]. Thus, we are left to determine $\widetilde{\operatorname{Ad}}_{*}$ for the determination of $H_{*}\left(K\left(g^{(1)}\right) ; \mathbb{F}_{p}\right)$ as a Hopf algebra over \mathcal{A}_{p} for the cases $(G, p)=\left(F_{4}, 3\right),\left(E_{6}, 3\right)$, $\left(E_{7}, 3\right),\left(E_{8}, 3\right)$ and $\left(E_{8}, 5\right)$. Let $\widehat{\mathrm{Ad}}: \operatorname{Ad} E_{6} \times \Omega \tilde{E}_{6} \rightarrow \Omega \tilde{E}_{6}$ be the adjoint action of $\operatorname{Ad} E_{6}$ on $\Omega \tilde{E}_{6}$.

Proposition 2.

(i) The mod 3 homology map $\widehat{\operatorname{Ad}}_{*}$ is given by $\bar{y}_{1} * \tilde{t}_{16}=\tilde{u}_{17}, \bar{y}_{1} * \tilde{t}_{j}=0$ for $j \neq 16$, and $\bar{y}_{1} * \tilde{u}_{j}=0$ for $j=17,18$, and by the following table.

	\tilde{t}_{8}	\tilde{t}_{10}	\tilde{t}_{14}	\tilde{t}_{16}	\tilde{t}_{22}	\tilde{u}_{17}	\tilde{u}_{18}
$\bar{y}_{2} *$	\tilde{t}_{10}	0	\tilde{t}_{16}	\tilde{u}_{18}	$-\kappa \tilde{t}_{8}^{3}$	0	0
$\bar{y}_{6} *$	\tilde{t}_{14}	$-\tilde{t}_{16}$	0	\tilde{t}_{22}	0	0	$\kappa \tilde{t}_{8}^{3}$

(ii) For the cases $(G, \underset{\tilde{t}}{p})=\left(F_{4}, 3\right),\left(E_{6}, 3\right),\left(E_{7}, 3\right)$ and $\left(E_{8}, 3\right), \widetilde{\operatorname{Ad}}_{*}$ is given by $y_{3} * \tilde{t}_{14}=-\tilde{u}_{17}, y_{3} * \tilde{t}_{j}=0$ for $j \neq 14, y_{7} * \tilde{t}_{10}=\tilde{u}_{17}, y_{7} * \tilde{t}_{46}=-\varepsilon \tilde{u}_{53}$, $y_{7} * \tilde{t}_{j}=0$ for $j \neq 10,46, y_{9} * \tilde{t}_{8}=-\tilde{u}_{17}, y_{9} * \tilde{t}_{j}=0$ for $j \neq 8, y_{19} * \tilde{t}_{34}=\varepsilon \tilde{u}_{53}$, $y_{19} * \tilde{t}_{j}=0$ for $j \neq 34$, and $y_{l} * \tilde{u}_{j}=0$ for $l=3,7,8,9,19,20$ and any j, and by the following table where ε is the same one as that in [4].

	\tilde{t}_{8}	\tilde{t}_{10}	\tilde{t}_{14}	\tilde{t}_{16}	\tilde{t}_{22}	\tilde{t}_{26}	\tilde{t}_{34}	\tilde{t}_{38}	\tilde{t}_{46}	\tilde{t}_{58}
$y_{8} *$	\tilde{t}_{16}	\tilde{u}_{18}	\tilde{t}_{22}	$-\kappa \tilde{t}_{8}^{3}$	$-\tilde{t}_{10}^{3}$	\tilde{t}_{34}	$-\tilde{t}_{14}^{3}$	$-\tilde{t}_{46}$	$-\varepsilon \tilde{u}_{54}$	$-\varepsilon \tilde{t}_{22}^{3}$
$y_{20} *$	-	-	\tilde{t}_{34}	-	$-\tilde{t}_{14}^{3}$	$-\tilde{t}_{46}$	$\varepsilon \tilde{u}_{54}$	\tilde{t}_{58}	$\varepsilon \tilde{t}_{22}^{3}$	$-\tilde{t}_{26}^{3}$

(iii) For the case $(G, p)=\left(E_{8}, 5\right), \widetilde{A d}_{*}$ is given by $y_{3} * \tilde{t}_{46}=-\epsilon \tilde{u}_{49}, y_{3} * \tilde{t}_{j}=0$ for $j \neq 46, y_{11} * \tilde{t}_{38}=\epsilon \tilde{u}_{49}, y_{11} * \tilde{t}_{j}=0$ for $j \neq 38$, and $y_{l} * \tilde{u}_{j}=0$ for $l=3,11,12$ and $j=49,50$, and by the following table where ϵ is the same one as that in [5].

	\tilde{t}_{14}	\tilde{t}_{22}	\tilde{t}_{26}	\tilde{t}_{34}	\tilde{t}_{38}	\tilde{t}_{46}	\tilde{t}_{58}
$y_{12} *$	\tilde{t}_{26}	\tilde{t}_{34}	\tilde{t}_{38}	\tilde{t}_{46}	$\epsilon \tilde{u}_{50}$	$\epsilon \tilde{t}_{58}$	$-\epsilon^{-1} \tilde{t}_{14}^{5}$

Proof. By the injectivity of $(\Omega q)_{*}$ in even degrees, by the results of [4] and [5], and by the result of Section 2, we have the equations of $y_{\text {even }} *$ and $\bar{y}_{\text {even }} *$ on even degree generators. Also we can easily deduce those on odd degree generator. Then, applying suitable cohomology operations, we can easily show the proposition except for the case $(G, p)=\left(E_{6}, 3\right)$ of (ii). For the remaining case, we can similarly deduce the equations of $y_{3} *$ and $y_{7} *$. Then, we can deduce those of $y_{9} *$ by using $y_{9} * t=\bar{y}_{9} * t=\left(\bar{y}_{2} \bar{y}_{7}-\bar{y}_{7} \bar{y}_{2}\right) * t=\bar{y}_{2} *\left(y_{7} * t\right)-y_{7} *\left(\bar{y}_{2} * t\right)$.

Remark 3. Note that the relation $y_{19} * \tilde{t}_{34}=\varepsilon \tilde{u}_{53}$ in $H_{*}\left(\Omega \tilde{E}_{7}\right)$ follows from that in $H_{*}\left(\Omega \tilde{E}_{8}\right)$. Except for this, all relations can be deduced without using inclusions of Lie groups and the computations are completely algebraic.

4. The cohomology of the 3 -connective covers

Recall that

$$
\begin{aligned}
& H^{*}\left(\tilde{F}_{4}\right)=\mathbb{F}_{3}\left[\tilde{z}_{18}\right] \otimes \wedge\left(\tilde{x}_{11}, \tilde{x}_{15}, \tilde{z}_{19}, \tilde{z}_{23}\right), \\
& H^{*}\left(\tilde{E}_{6}\right)=\mathbb{F}_{3}\left[\tilde{z}_{18}\right] \otimes \wedge\left(\tilde{x}_{9}, \tilde{x}_{11}, \tilde{x}_{15}, \tilde{x}_{17}, \tilde{z}_{19}, \tilde{z}_{23}\right), \\
& H^{*}\left(\tilde{E}_{7}\right)=\mathbb{F}_{3}\left[\tilde{z}_{54}\right] \otimes \wedge\left(\tilde{x}_{11}, \tilde{x}_{15}, \tilde{x}_{27}, \tilde{x}_{35}, \tilde{z}_{19}, \tilde{z}_{23}, \tilde{z}_{55}\right), \\
& H^{*}\left(\tilde{E}_{8}\right)=\mathbb{F}_{3}\left[\tilde{z}_{54}\right] \otimes \wedge\left(\tilde{x}_{15}, \tilde{x}_{27}, \tilde{x}_{35}, \tilde{x}_{39}, \tilde{x}_{47}, \tilde{z}_{23}, \tilde{z}_{55}, \tilde{z}_{59}\right), \\
& H^{*}\left(\tilde{E}_{8} ; \mathbb{F}_{5}\right)=\mathbb{F}_{5}\left[\tilde{z}_{50}\right] \otimes \wedge\left(\tilde{x}_{15}, \tilde{x}_{23}, \tilde{x}_{27}, \tilde{x}_{35}, \tilde{x}_{39}, \tilde{x}_{47}, \tilde{z}_{51}, \tilde{z}_{59}\right) .
\end{aligned}
$$

Except for the \mathcal{A}_{p}-action on $\tilde{z}_{\text {even }}$, the \mathcal{A}_{p}-module structures of these are easily determined by those of $H_{*}\left(\Omega \tilde{G} ; \mathbb{F}_{p}\right)$. Moreover, we may assume that all generators except for $\tilde{z}_{18} \in H^{*}\left(\tilde{E}_{6}\right)$, $\tilde{z}_{54} \in H^{*}\left(\tilde{E}_{7}\right), \tilde{z}_{54} \in H^{*}\left(\tilde{E}_{8}\right)$, and $\tilde{z}_{50} \in H^{*}\left(\tilde{E}_{8} ; \mathbb{F}_{5}\right)$ are primitive.

Proposition 4. We can choose the generators such that
(i) $\bar{\phi}\left(\tilde{z}_{18}\right)=\tilde{x}_{9} \otimes \tilde{x}_{9}$ where $\tilde{z}_{18} \in H^{*}\left(\tilde{E}_{6}\right)$,
(ii) $\bar{\phi}\left(\tilde{z}_{54}\right)=\tilde{x}_{27} \otimes \tilde{x}_{27}$ where $\tilde{z}_{54} \in H^{*}\left(\tilde{E}_{7}\right)$,
(iii) $\bar{\phi}\left(\tilde{z}_{54}\right)=\tilde{x}_{27} \otimes \tilde{x}_{27}+\tilde{x}_{15} \otimes \tilde{x}_{39}+\tilde{x}_{39} \otimes \tilde{x}_{15}$ where $\tilde{z}_{54} \in H^{*}\left(\tilde{E}_{8}\right)$,
(iv) $\bar{\phi}\left(\tilde{z}_{50}\right)=\tilde{x}_{23} \otimes \tilde{x}_{27}+\tilde{x}_{27} \otimes \tilde{x}_{23}-\tilde{x}_{15} \otimes \tilde{x}_{35}-\tilde{x}_{35} \otimes \tilde{x}_{15}$ where $\tilde{z}_{50} \in$ $H^{*}\left(\tilde{E}_{8} ; \mathbb{F}_{5}\right)$.

Proof. We only show (i). The others are similar. By applying the homology suspension to $y_{9} * \tilde{t}_{8}=-\tilde{u}_{17}$, we have $y_{9} * \tilde{y}_{9}=-\tilde{b}_{18}$ where \tilde{y}_{9} and \tilde{b}_{18} are the dual elements of \tilde{x}_{9} and \tilde{z}_{18} respectively. We can also consider the adjoint action of \tilde{E}_{6} on itself. Then, we have

$$
-\tilde{y}_{9}^{2}=\left[\tilde{y}_{9}, \tilde{y}_{9}\right]=\tilde{y}_{9} * \tilde{y}_{9}=y_{9} * \tilde{y}_{9}=-\tilde{b}_{18}
$$

and hence $\tilde{b}_{18}=\tilde{y}_{9}^{2}$. We can easily see that this implies (i).
By this proposition, we can easily determine the \mathcal{A}_{p}-action on $\tilde{z}_{\text {even }}$ and hence, we determine $H^{*}\left(\tilde{G} ; \mathbb{F}_{p}\right)$ as a Hopf algebra over \mathcal{A}_{p} for every case (G, p) we consider.

Department of Mathematics
Kyoto University
Kyoto 606-8502, Japan
e-mail: osamu@kusm.kyoto-u.ac.jp

References

[1] S. Araki, Differential Hopf algebras and the cohomology mod 3 of the compact exceptional groups E_{7} and E_{8}, Ann. of Math., 73 (1961), 404436.
[2] A. Borel, Sous groupes commutatifs et torsion des groupes de Lie compacts connexes, Tôhoku Math. J., 13 (1961), 216-240.
[3] R. Bott, The space of loops on a Lie group, Michigan Math. J., 5 (1958), 35-61.
[4] H. Hamanaka and S. Hara, The mod 3 homology of the space of loops on the exceptional Lie groups and the adjoint action, J. Math. Kyoto Univ., 37 (1997), 441-453.
[5] H. Hamanaka, S. Hara and A. Kono, Adjoint actions on the modulo 5 homology groups of E_{8} and ΩE_{8}, J. Math. Kyoto Univ., 37 (1997), 169-176.
[6] V. G. Kac, Constructing Groups Associated to Infinite-dimensional Lie Algebras, Infinite-dimensional groups with applications (Berkeley, Calif., 1984), pp. 167-216, Math. Sci. Res. Inst. Publ., 4, Springer, New York-Berlin, 1985.
[7] V. G. Kac, Torsion in cohomology of compact Lie groups and Chow rings of reductive algebraic groups, Invent. Math., 80 (1985), 69-79.
[8] V. G. Kac and D. Peterson, Infinite flag varieties and conjugacy theorems, Proc. Nat. Acad. Sci. U.S.A., 80 (1983), 1778-1782.
[9] A. Kono, Hopf algebra structure of simple Lie groups, J. Math. Kyoto Univ., 17 (1977), 259-298.
[10] A. Kono, On the cohomology of the 2-connected cover of the loop space of simple Lie groups, Publ. Res. Inst. Math. Sci., 22 (1986), 537-541.
[11] A. Kono and K. Kozima, Homology of the Kac-Moody groups I, II, III., J. Math. Kyoto Univ., 29 (1989), 449-453; J. Math. Kyoto Univ., 31 (1991), 165-170; J. Math. Kyoto Univ., 31 (1991), 1115-1120.
[12] A. Kono and K. Kozima, The adjoint action of a Lie group on the space of loops, J. Math. Soc. Japan, 45 (1993), 495-510.
[13] J. Milnor and C. Moore, On the structure of Hopf algebras, Ann. of Math., 81 (1965), 211-264.
[14] O. Nishimura, On the Hopf algebra structure of the mod 3 cohomology of the exceptional Lie group of type E_{6}, J. Math. Kyoto Univ., 39 (1999), 697-704.
[15] O. Nishimura, Adjoint actions of a connected homotopy associative H space on connective covers, preprint.
[16] T. Petrie, The weakly complex bordism of Lie groups, Ann. of Math., 88 (1968), 371-402.

[^0]: Received July 28, 2000
 *Partially supported by JSPS Research Fellowships for Young Scientists.

