On the number of p-subgroups of a finite group

By
Masafumi Murai

Introduction

Let G be a finite group. For each positive integer n, put

$$
G(n)=\left\{x \in G \mid x^{n}=1\right\}
$$

and $m(G ; n)=|G(n)| /(n,|G|)$. Frobenius proved:
Theorem 1 (Frobenius [Fr1, Section 2.II]). $m(G ; n)$ is always an integer.

For various generalizations of this result, see Frobenius [Fr2], Hall [Ha2] and Yoshida [Yo]. For recent results in this direction, see Asai-Takegahara [AT].

Let p be a prime. For each integer e, let $S_{e}(G)$ be the set of subgroups of G of order p^{e} and put $s_{e}(G)=\left|S_{e}(G)\right|$. Let P be a Sylow p-subgroup of G of order p^{n}. Based on Theorem 1, Frobenius proved:

Theorem 2 (Frobenius [Fr1, Section 4.I]). $\quad s_{e}(G) \equiv 1 \bmod p$ for $0 \leq$ $e \leq n$.

Related to the above theorems, the following results are known.
Theorem 3 (Kulakoff [Ku, Satz 1], Hall [Ha2, Theorem 4.6]). If p is odd and P is not cyclic, then $s_{e}(G) \equiv 1+p \bmod p^{2}$ for $1 \leq e \leq n-1$.

Theorem 4 (Mi11er [Mi]). If p is odd and P is not cyclic, the number of cyclic subgroups of G of order p^{e} is divisible by p for $2 \leq e \leq n$.

Theorem 5 (Kulakoff [Ku, Satz 2], Hall [Ha2, Theorem 1 (iii)]). If p is odd and P is not cyclic, then $m\left(G ; p^{e}\right)$ is a multiple of p for $1 \leq e \leq n-1$.

In the present paper, we improve Theorems 3 through 5 by using Theorems 1 and 2 . We formulate and prove the counterparts of Theorems 3 through 5 for the case of $p=2$. We do not exclude the case of odd primes, and Theorems 3 through 5 will be proved simultaneously.

To state our results, it is convenient to introduce the following definition.

Definition. A p-group P is called exceptional, if P is cyclic $(p \neq 2)$; if P is cyclic, quaternion, dihedral, or semi-dihedral (quasidihedral) $(p=2)$. (Here "dihedral group" means a non-abelian one (of order ≥ 8). Also, "quaternion group" means generalized quaternion of order ≥ 8.)

For a family \mathcal{X} of p-groups, a group G and an integer e, let

$$
S_{e}(G, \mathcal{X})=\left\{H\left|H \leq G,|H|=p^{e}, H \in \mathcal{X}\right\},\right.
$$

and put $s_{e}(G, \mathcal{X})=\left|S_{e}(G, \mathcal{X})\right|$.
Let $\mathcal{C}, \mathcal{Q}, \mathcal{D}$ and $\mathcal{S D}$ be the set of cyclic p-groups, the set of quaternion 2 -groups, the set of dihedral 2 -groups and the set of semi-dihedral 2 -groups, respectively. The statements (i) and (ii) of the following theorem extend Theorems 4 and 5, and determine all Gegenbeispiele mentioned on p. 471 of Hall [Ha2].

Theorem A. Let G be a group with a Sylow p-subgroup P of order p^{n}.
(i) For $1 \leq e \leq n-1, m\left(G ; p^{e}\right)$ is prime to p if and only if P is cyclic or P is non-cyclic exceptional and $e \leq n-2 .(p \geq 2)$
(ii) For $2 \leq e \leq n, s_{e}(G, \mathcal{C})$ is prime to p if and only if P is cyclic or P is non-cyclic exceptional and $e \leq n-1 .(p \geq 2)$
(iii) For $4 \leq e \leq n, s_{e}(G, \mathcal{S D})$ is odd if and only if P is semi-dihedral and $e=n$. $(p=2)$
(iv) For $3 \leq e \leq n, s_{e}(G, \mathcal{Q}) \not \equiv s_{e}(G, \mathcal{D}) \bmod 2$ if and only if P is quaternion or dihedral, and $e=n .(p=2)$

As a consequence we obtain the following.
Corollary B. Let G be a group with a Sylow p-subgroup P of order p^{n}. Let $p^{e} r$ be a divisor of $|G|$, where $1 \leq e \leq n-1$ and r is prime to p. Then if $m\left(G ; p^{e} r\right)$ is prime to p, P is exceptional.

Corollary B plays an important role in a reduction to the case of simple groups of the Frobenius conjecture stating that if $m(G ; n)=1$ for a divisor n of $|G|$, then $G(n)$ is a (normal) subgroup of G, cf. [Mu]. The Frobenius conjecture has been shown to be true by Iiyori-Yamaki [IY] on the basis of the classification theorem of finite simple groups. In their proof Corollary B also is useful, cf. Lemma 1 of [IY].

By Theorem 2, whenever p^{e} divides $|G|,\left(s_{e}(G)-1\right) / p$ is an integer. On the other hand, $m\left(G ; p^{e}\right)$ also is an integer by Theorem 1. For these two integers, we show that there holds the following congruence.

Theorem C. Let G be a group with a Sylow p-subgroup P of order p^{n} ($n \geq 2$). For any e with $1 \leq e \leq n-1$, we have

$$
\frac{s_{e}(G)-1}{p}+m\left(G ; p^{e}\right) \equiv 1 \quad \bmod p .
$$

Theorems A and C yield the following.

Theorem D. Let G be a group with a Sylow p-subgroup P of order p^{n} ($n \geq 2$).
(i) If P is non-exceptional,

$$
s_{e}(G) \equiv 1+p \quad \bmod p^{2}, \quad \text { for any } e \text { with } 1 \leq e \leq n-1
$$

(ii) If P is exceptional,

$$
s_{e}(G) \equiv 1 \quad \bmod p^{2}, \quad \text { for any } e \text { with } 1 \leq e \leq n-2
$$

and

$$
s_{n-1}(G) \equiv 1 \quad \text { or } \quad 1+p \quad \bmod p^{2} \quad \text { according as } P \text { is cyclic or not. }
$$

Theorem D strengthens Theorem 2 and extends Theorem 3. In the proofs of Theorems A and C, Hall's enumeration principle [Ha1, Theorem 1.4] ([Hu, III 8.6]) plays an important role.

The author expresses his thanks to the referee for valuable suggestions.

1. Proofs of Theorem A and Corollary B

The following is well known.
Lemma 1.1. Let G be a group with a Sylow p-subgroup P. Let \mathcal{X} be a set of p-groups and e an integer.
(i) $s_{e}(G, \mathcal{X}) \equiv s_{e}(P, \mathcal{X}) \bmod p$.
(ii) $s_{e}(P, \mathcal{X}) \equiv \#\left\{H \mid H \in S_{e}(P, \mathcal{X}), H \triangleleft P\right\} \bmod p$.

In particular, if $s_{e}(P, \mathcal{X})$ is prime to p, then there exists a normal subgroup H of P with $H \in \mathcal{X}$ and $|H|=p^{e}$.

Proof. Let a be the right hand side of (ii). Considering the conjugation action of P on $S_{e}(G, \mathcal{X})$, we get $s_{e}(G, \mathcal{X}) \equiv a \bmod p$. Similarly we get $s_{e}(P, \mathcal{X}) \equiv a \bmod p$. So (i) and (ii) follow.

The following is Lemma 1 of $[\mathrm{Mu}]$. For the convenience of the reader, we recall it here.

Proposition 1.2. Let G be a group with a Sylow p-subgroup P of order p^{n}. Let $p^{e} r$ be a divisor of $|G|$, where $0 \leq e \leq n-1$ and r is prime to p. Then
(i) $m\left(G ; p^{e} r\right) \equiv m\left(P ; p^{e}\right) m(G ; r) \bmod p$.
(ii) $m\left(G ; p^{e}\right) \equiv m\left(P ; p^{e}\right) \equiv s_{e+1}(G, \mathcal{C}) \equiv s_{e+1}(P, \mathcal{C}) \bmod p$.

Proof. If G has no element of order p^{e+1}, then $G\left(p^{e} r\right)=G\left(p^{n} r\right)$. So we have

$$
m\left(G ; p^{e} r\right)=\left|G\left(p^{n} r\right)\right| / p^{e} r=m\left(G ; p^{n} r\right) p^{n-e} \equiv 0 \quad \bmod p .
$$

Similarly $m\left(G ; p^{e}\right) \equiv 0 \bmod p$ and $m\left(P ; p^{e}\right) \equiv 0 \bmod p$. So the result holds in this case. Assume that G has an element of order p^{e+1}. After Frobenius [Fr1], we count the number of elements in $G\left(p^{e+1} r\right)-G\left(p^{e} r\right)$. For an element
$x \in G, x$ belongs to $G\left(p^{e+1} r\right)-G\left(p^{e} r\right)$ if and only if the p-part of x generates a cyclic subgroup, C, of order p^{e+1} and p^{\prime}-part of x belongs to $C_{G}(C)(r)$. This shows

$$
\left|G\left(p^{e+1} r\right)\right|-\left|G\left(p^{e} r\right)\right|=\sum_{C}\left(p^{e+1}-p^{e}\right)\left|C_{G}(C)(r)\right|
$$

where C runs through $S_{e+1}(G, \mathcal{C})$. Then we get

$$
\begin{equation*}
m\left(G ; p^{e} r\right) r \equiv \sum_{C}\left|C_{G}(C)(r)\right| \quad \bmod p \tag{1}
\end{equation*}
$$

For each $C \in S_{e+1}(G, \mathcal{C})$, let C act on $G(r)$ by conjugation. Then we have

$$
\begin{equation*}
|G(r)| \equiv\left|C_{G}(C)(r)\right| \quad \bmod p \tag{2}
\end{equation*}
$$

From (1) and (2), we get

$$
\begin{aligned}
m\left(G ; p^{e} r\right) r & \equiv|G(r)| s_{e+1}(G, \mathcal{C}) \quad \bmod p \\
& \equiv m(G ; r) s_{e+1}(G, \mathcal{C}) r \quad \bmod p
\end{aligned}
$$

Since r is prime to p, we get

$$
\begin{equation*}
m\left(G ; p^{e} r\right) \equiv m(G ; r) s_{e+1}(G, \mathcal{C}) \quad \bmod p \tag{3}
\end{equation*}
$$

Letting $r=1$, we get $m\left(G ; p^{e}\right) \equiv s_{e+1}(G, \mathcal{C}) \bmod p$. Letting $G=P$ we get $m\left(P ; p^{e}\right) \equiv s_{e+1}(P, \mathcal{C}) \bmod p$. Since, by Lemma 1.1, $s_{e+1}(G, \mathcal{C}) \equiv s_{e+1}(P, \mathcal{C})$ $\bmod p$, (ii) follows. (i) follows from (ii) and (3). This completes the proof.

Remark. The congruence $m\left(G ; p^{e}\right) \equiv s_{e+1}(G, \mathcal{C}) \bmod p$ is implicit in Kulakoff [Ku] (for the case where G is a p-group). It shows that Theorems 4 and 5 are equivalent.

Lemma 1.3 (Hall's enumeration principle [Ha1, Theorem 1.4]). Let P be a p-group. Let \mathcal{H} be the set of subgroups H of P with $H \geq \Phi(P)$. For $H \in \mathcal{H}$ put $p^{d_{H}}=|P / H|$. Let \mathcal{S} be a set of proper subgroups of P. For $H \in \mathcal{H}$, let $n(H)$ be the number of members of \mathcal{S} which are contained in H. Then we have

$$
\sum_{H \in \mathcal{H}}(-1)^{d_{H}} p^{\frac{d_{H}\left(d_{H}-1\right)}{2}} n(H)=0
$$

We prepare several lemmas, mainly on 2-groups. Let

$$
M\left(p^{n}\right)=\left\langle a, b \mid b^{p}=a^{p^{n-1}}=1, b^{-1} a b=a^{1+p^{n-2}}\right\rangle
$$

where $n \geq 3$ if p is odd and $n \geq 4$ if $p=2$.
Lemma 1.4. A p-group P of order p^{n} has a cyclic maximal subgroup if and only if P is isomorphic to one of the following groups:

An exceptional group of order p^{n}, an abelian group of type (p^{n-1}, p), or $M\left(p^{n}\right)$.

Further, for these groups and $2 \leq e \leq n$, the following holds.

$$
\begin{aligned}
s_{e}(P, \mathcal{C})= & 1 \text { if } P \text { is cyclic and } 2 \leq e \leq n, \\
= & p \text { if } P \text { is abelian of type }\left(p^{n-1}, p\right) \text { or isomorphic to } M\left(p^{n}\right) \\
& \text { and } 2 \leq e \leq n-1, \\
= & 1+2^{n-2} \text { if } P \text { is quaternion and } e=2, \\
= & 1 \text { if } P \text { is quaternion and } 3 \leq e \leq n-1, \\
= & 1 \text { if } P \text { is dihedral and } 2 \leq e \leq n-1, \\
= & 1+2^{n-3} \text { if } P \text { is semi-dihedral and } e=2, \\
= & 1 \text { if } P \text { is semi-dihedral and } 3 \leq e \leq n-1, \\
= & 0 \text { if } P \text { is not cyclic and } e=n .
\end{aligned}
$$

Proof. The first assertion is well known, cf. [Su, Theorem 4.4.1] for example. Using the formula

$$
s_{e}(P, \mathcal{C})=\frac{\left|P\left(p^{e}\right)\right|-\left|P\left(p^{e-1}\right)\right|}{p^{e}-p^{e-1}}
$$

we can obtain $s_{e}(P, \mathcal{C})$ by direct computation.
We obtain the following
Corollary 1.5. Assume that a p-group P has a cyclic maximal subgroup. Put $|P|=p^{n}$.
(i) Let $2 \leq e \leq n$. Then $s_{e}(P, \mathcal{C})$ is prime to p if and only if one of the following holds: P is cyclic and $2 \leq e \leq n(p \geq 2) ; P$ is quaternion, dihedral, or semi-dihedral, and $2 \leq e \leq n-1(p=2)$.
(ii) Let $p=2$ and $n \geq 4$. Then P has at least two cyclic maximal subgroups if and only if P is either abelian of type $\left(2^{n-1}, 2\right)$ or isomorphic to $M\left(2^{n}\right)$, each of which has exactly two such subgroups.

Lemma 1.6. Let P be a 2 -group of order $2^{n}, n \leq 4$. If $s_{e}(P, \mathcal{C})$ is odd for some e with $2 \leq e \leq n$, then P is exceptional.

Proof. For $n \leq 3$, the only non-trivial case to be checked is the case where P is abelian of type $(4,2)$ and $e=2$. In this case, by Lemma 1.4, $s_{2}(P, \mathcal{C})=2$, which contradicts our assumption. So we may assume $n=4$. If P has a cyclic subgroup of order 8 , then the result follows by Corollary 1.5. So we assume P has no element of order 8 and obtain a contradiction. Thus $e=2$. Let I be the set of involutions in P. By Proposition 1.2, $m(P ; 2)$ is odd. Thus

$$
\begin{equation*}
|I| \equiv 1 \quad \bmod 4 \tag{1}
\end{equation*}
$$

Further, by Lemma 1.1, P has a normal cyclic subgroup C, of order 4. Now $P / C_{P}(C)$ is identified with a subgroup of $\operatorname{Aut}(C)$, a group of order 2, so either (a) $P=C_{P}(C)$ or (b) $\left|C_{P}(C)\right|=8$.

Case (a). If P / C is cyclic, then P is abelian of type $(4,4)$. Then $|I|=3$, which contradicts (1). Thus P / C is elementary abelian. Let $x \in P-C$. We show $|x C \cap I|=2$. Let $C=\langle c\rangle$. Since $x^{2} \in C$ and P has no element of order 8 , $x^{2}=1$ or c^{2}. In the latter case $\left(x c^{-1}\right)^{2}=1$. So we may assume $x^{2}=1$. Then $x C \cap I=\left\{x, x c^{2}\right\}$. This implies $|I|=1+2 \times 3=7$, which contradicts (1).

Case (b). Clearly $C_{P}(C)$ is a non-cyclic abelian group, so $C_{P}(C)$ is of type $(4,2)$. Hence $C_{P}(C)$ has exactly 3 involutions. Let

$$
P=x_{1} C \cup x_{2} C \cup x_{3} C \cup x_{4} C
$$

be the coset decomposition, where $x_{1}, x_{2} \in C_{P}(C)$. We claim that for $i>2$, $\left|x_{i} C \cap I\right| \equiv 0 \bmod 4$. We may assume $x_{i} C \cap I \neq \emptyset$. So we may assume $x_{i} \in I$. Then $\left\langle x_{i}, C\right\rangle$ is dihedral of order 8 , so $x_{i} C \subseteq I$. Thus the claim follows. Hence $|I| \equiv 3 \bmod 4$, which contradicts (1). This completes the proof.

The essential part of the proof of Theorem A is contained in the following.
Lemma 1.7. Let P be a 2-group of order $2^{n}(n \geq 5)$ with an exceptional maximal subgroup. Then either of the following holds.
(i) P has a cyclic maximal subgroup.
(ii) P has exactly two normal cyclic subgroups of order 2^{n-2}, and $s_{n-1}(P$, $\mathcal{S D})=0,2$, or 4 .

Proof. We assume that (i) is false and prove that (ii) is true. Let M_{1} be an exceptional maximal subgroup of P. Since $n-1 \geq 4, M_{1}$ has a unique cyclic maximal subgroup, say C. So C is a normal subgroup of P. Put $i=1+2^{n-3}$. Let

$$
\phi: P \rightarrow \operatorname{Aut}(C)=\left(\mathbf{Z} / 2^{n-2} \mathbf{Z}\right)^{\times}
$$

be the map defined by the conjugation action of P on C, where \mathbf{Z} is the integers and $\left(\mathbf{Z} / 2^{n-2} \mathbf{Z}\right)^{\times}$is the unit group of $\mathbf{Z} / 2^{n-2} \mathbf{Z}$.

We claim that P / C is elementary abelian. Assume that P / C is cyclic and put $P=\langle C, a\rangle$ for some $a \in P$. Put $\alpha=\phi(a)$. Then, since $M_{1}=\left\langle C, a^{2}\right\rangle$ is non-cyclic exceptional, $\alpha^{2}=\phi\left(a^{2}\right)=-\overline{1}$ or $-\bar{i}$, where bar denotes the residue class modulo 2^{n-2}. Since α has order 4 , we get $\alpha^{2}=\bar{i}$, a contradiction. Thus the claim follows.

Let $\left\{M_{1}, M_{2}, M_{3}\right\}$ be the set of maximal subgroups of P which contain C (with M_{1} as above). Let $M_{1}=\langle C, a\rangle, M_{2}=\langle C, b\rangle$ and $M_{3}=\langle C, c\rangle$. Put $H=\{ \pm \overline{1}, \pm \bar{i}\}$ and $K=\{\overline{1}, \bar{i}\}$. We see $\operatorname{Im} \phi \subseteq H$. Here $H=K \cup K(-\overline{1})$ is the coset decomposition of H with respect to K. Since $\phi(a) \in K(-\overline{1})$ and $\phi(b) \phi(c)=\phi(a)$, we may assume $\phi(b) \in K(-\overline{1})$ and $\phi(c) \in K$. Then M_{2} is exceptional and M_{3} is non-exceptional. By Corollary 1.5, M_{3} has exactly two cyclic maximal subgroups, one of which is C. Since C is normal in P, if D is
the other cyclic maximal subgroup, then D also is normal in P. Let E be a normal cyclic subgroup of P of order 2^{n-2} with $E \neq C$. Then, since P / C is not cyclic, $C E$ is a maximal subgroup of P. Since C is a unique cyclic maximal subgroup of $M_{1}, C E \neq M_{1}$. Likewise, $C E \neq M_{2}$. So $C E=M_{3}$, and $E=D$. Thus C and D are the only normal cyclic subgroups of P of order 2^{n-2}.

To compute $s_{n-1}(P, \mathcal{S D})$, we distinguish two cases:
(a) $C D$ is abelian of type $\left(2^{n-2}, 2\right), \quad$ (b) $C D \simeq M\left(2^{n-1}\right)$.
(Note that $C D=M_{3}$.) Since $\phi(b) \phi(c)=\phi(a)$, we get the following:
(*) In Case (a), both of M_{1} and M_{2} are semi-dihedral or neither of them are so, and in Case (b), exactly one of M_{1} and M_{2} is semi-dihedral.

Let $C=\langle x\rangle$. We claim that $P /\left\langle x^{2}\right\rangle$ is elementary abelian. Since M_{1} is not cyclic, we have that $a^{2} \in\left\langle x^{2}\right\rangle$. We may assume $c^{2}=1$. Write $a^{-1} c^{-1} a c=x^{k}$ for an integer k. Then $a^{-1} c^{-1} a=x^{k} c \in M_{3}$ has order 2 , which implies that k is even. Since $P /\left\langle x^{2}\right\rangle$ is generated by the images of a, c and x, the claim follows.

Since $\left\langle x^{2}\right\rangle=C \cap D, P / D$ is elementary abelian of order 4. Let $\{C D$, $\left.M_{4}, M_{5}\right\}$ be the set of maximal subgroups of P which contain D. Here M_{4} is exceptional. Indeed, if this is not the case, then, by Corollary 1.5, M_{4} has exactly two cyclic maximal subgroups, one of which is D. Since D is normal in P, the other cyclic maximal subgroup is also normal in P, a contradiction. So, in the above we can replace $\left(M_{1}, C\right)$ with $\left(M_{4}, D\right)$, and we see that $(*)$ is true with $\left\{M_{4}, M_{5}\right\}$ in place of $\left\{M_{1}, M_{2}\right\}$. Since $D \not \leq M_{1}$ and $D \not \leq M_{2}$, we get $\left\{M_{1}, M_{2}\right\} \cap\left\{M_{4}, M_{5}\right\}=\emptyset$. Since any semi-dihedral maximal subgroup of P contains a normal cyclic subgroup of P of order 2^{n-2}, namely C or D, it follows that $s_{n-1}(P, \mathcal{S D})$ equals 0,2 , or 4 in Case (a) and 2 in Case (b). Thus (ii) holds and the proof is complete.

Now we can prove Theorem A.
Proof of Theorem A. By Proposition 1.2, $m\left(G ; p^{e}\right) \equiv s_{e+1}(G, \mathcal{C}) \bmod p$, so (i) and (ii) are equivalent to each other, and it suffices to prove (ii) through (iv).

Since, for any set \mathcal{X} of p-groups, $s_{e}(G, \mathcal{X}) \equiv s_{e}(P, \mathcal{X}) \bmod p$, we may assume $G=P$.
(ii) "if" part: This follows from Corollary 1.5.
"only if" part: It suffices to show the following:
(1) If $s_{e}(P, \mathcal{C})$ is prime to p for some e with $2 \leq e \leq n$, then P is exceptional.

Assume (1) is false and choose a counter-example (P, e) so that n is as small as possible and then e as large as possible.

If P has a cyclic maximal subgroup, then the conclusion of (1) is true by Corollary 1.5. So P has no cyclic maximal subgroup. Hence $e \leq n-2$.

Let \mathcal{M} be the set of maximal subgroups of P. By Lemma 1.3 (with $\mathcal{S}=$
$S_{e}(P, \mathcal{C})$), we have

$$
\begin{equation*}
0 \not \equiv s_{e}(P, \mathcal{C}) \equiv \sum_{M \in \mathcal{M}} s_{e}(M, \mathcal{C}) \quad \bmod p \tag{2}
\end{equation*}
$$

Thus there exists a maximal subgroup, say M_{1}, of P such that $s_{e}\left(M_{1}, \mathcal{C}\right) \not \equiv \equiv$ $0 \bmod p$. By our choice of n, M_{1} is exceptional. Since M_{1} is not cyclic, $p=2$.

We claim $e=n-2$. Assume $e \leq n-3$. By Lemma 1.3, we have

$$
\begin{equation*}
s_{e+1}(P, \mathcal{C}) \equiv \sum_{M \in \mathcal{M}} s_{e+1}(M, \mathcal{C}) \quad \bmod 2 \tag{3}
\end{equation*}
$$

If $s_{e+1}(P, \mathcal{C})$ is odd, then P is exceptional by our choice of e. Thus $s_{e+1}(P, \mathcal{C})$ is even. Now we show $s_{e+1}(M, \mathcal{C}) \equiv s_{e}(M, \mathcal{C}) \bmod 2$ for all $M \in \mathcal{M}$. It suffices to show $s_{e+1}(M, \mathcal{C})$ is odd if and only if $s_{e}(M, \mathcal{C})$ is odd. Assume $s_{e}(M, \mathcal{C})$ is odd. Then M is exceptional. So, since $e+1 \leq n-2, s_{e+1}(M, \mathcal{C})$ is odd by Lemma 1.4. The converse is proved similarly. The above yields that the right hand sides of (2) and (3) are congruent modulo 2 . This is a contradiction, since we already see $s_{e+1}(P, \mathcal{C})$ is even. So the claim is proved.

By Lemma 1.6, (1) is true when $n \leq 4$. So $n \geq 5$. Since $s_{n-2}(P, \mathcal{C})$ is odd, if a is the number of normal cyclic subgroups of P of order $2^{n-2}, a$ is also odd by Lemma 1.1. But $a=2$ by Lemma 1.7, a contradiction. This completes the proof of (ii).
(iii) "if" part: This is trivial, since $G=P$.
"only if" part: We must prove the following:
(4) If $s_{e}(P, \mathcal{S D})$ is odd for some e with $4 \leq e \leq n$, then $e=n$ and P is semi-dihedral.

Let P be a minimal counter-example. If P has a cyclic maximal subgroup, the structure of P is determined by Lemma 1.4, and it is easy to see that (4) is true for P. Thus P has no cyclic maximal subgroup. Clearly $e \leq n-1$. Let \mathcal{M} be the set of all maximal subgroups of P. By Lemma 1.3 (with $\mathcal{S}=S_{e}(P, \mathcal{S D})$), we have

$$
s_{e}(P, \mathcal{S D}) \equiv \sum_{M \in \mathcal{M}} s_{e}(M, \mathcal{S D}) \quad \bmod 2
$$

By the minimality of P, for any $M \in \mathcal{M}, s_{e}(M, \mathcal{S D})$ is odd if and only if M is semi-dihedral and $e=n-1$. Thus the assumption yields that $e=n-1 \geq 4$ and that $s_{n-1}(P, \mathcal{S D})$ is odd. In particular, P has a semi-dihedral maximal subgroup. So we can apply Lemma 1.7 to get a contradiction. This completes the proof of (iii).
(iv) "if" part: This is trivial, since $G=P$.
"only if" part: We must prove the following:
If $s_{e}(P, \mathcal{Q}) \not \equiv s_{e}(P, \mathcal{D}) \bmod 2$ for some e with $3 \leq e \leq n$, then P is quaternion or dihedral, and $e=n$.

Put

$$
I=\left\{(Q, R) \mid Q \leq R, Q \in S_{e-1}(P, \mathcal{C}), R \in S_{e}(P)\right\}
$$

(Note that $S_{e-1}(P, \mathcal{C})$ is not empty, since $s_{e}(P, \mathcal{Q}) \not \equiv s_{e}(P, \mathcal{D}) \bmod 2$.) We count $|I|$ in two ways. First, for a given $R \in S_{e}(P)$, the number of cyclic maximal subgroups of R is odd if and only if R is exceptional by Lemma 1.4. Next, for a given $Q \in S_{e-1}(P, \mathcal{C})$, the number of subgroups of P containing Q as a maximal subgroup equals $s_{1}\left(N_{P}(Q) / Q\right)$ and hence it is odd by Theorem 2. Thus

$$
\begin{equation*}
s_{e}(P, \mathcal{E}) \equiv s_{e-1}(P, \mathcal{C}) \quad \bmod 2, \tag{5}
\end{equation*}
$$

where \mathcal{E} is the set of exceptional 2-groups. On the other hand,

$$
\begin{equation*}
s_{e}(P, \mathcal{E})=s_{e}(P, \mathcal{C})+s_{e}(P, \mathcal{Q})+s_{e}(P, \mathcal{D})+s_{e}(P, \mathcal{S D}) \tag{6}
\end{equation*}
$$

If P is non-exceptional, $s_{e}(P, \mathcal{C}), s_{e-1}(P, \mathcal{C})$ and $s_{e}(P, \mathcal{S D})$ are all even by (ii) and (iii). So (5) and (6) yield that $s_{e}(P, \mathcal{Q}) \equiv s_{e}(P, \mathcal{D}) \bmod 2$, a contradiction. Hence P is exceptional.

Assume that P is semi-dihedral. If $e<n, s_{e-1}(P, \mathcal{C})$ and $s_{e}(P, \mathcal{C})$ are odd by (ii) and $s_{e}(P, \mathcal{S D})=0$, so we get a contradiction in the same way as above. If $e=n, s_{e}(P, \mathcal{Q})=s_{e}(P, \mathcal{D})=0$, a contradiction.

If P is cyclic, $s_{e}(P, \mathcal{Q})=s_{e}(P, \mathcal{D})=0$, a contradiction.
If P is quaternion, $s_{e}(P, \mathcal{D})=0$. However, if $e<n$, then $s_{e}(P, \mathcal{Q})$ is even by Lemma 1.4 and Theorem 2, a contradiction. Hence $e=n$.

If P is dihedral, $s_{e}(P, \mathcal{Q})=0$. However, if $e<n$, then $s_{e}(P, \mathcal{D})$ is even by Lemma 1.4 and Theorem 2, a contradiction. Hence $e=n$.

Thus the proof is complete.
Now we prove Corollary B.
Proof of Corollary B. By Proposition 1.2, $m\left(G ; p^{e} r\right) \equiv m\left(P ; p^{e}\right) m(G ; r)$ $\bmod p$. So $m\left(P ; p^{e}\right)$ is prime to p. Thus the result follows from Theorem A.

Remark. Theorem 6.2 (Thompson) of Lam [La] (see also [Is, Theorem 4.9 (Alperin-Feit-Thompson)]) says that if the number of solutions of the equation $x^{2}=1$ in a 2 -group P is not divisible by 4 , then P is exceptional. This theorem is a special case of Corollary B, since the assumption is equivalent to the fact that $m(G ; 2)$ is odd. We note that the proof in [La] (or [Is]) needs character theory (especially the Frobenius-Schur theorem), while our proof is purely group-theoretical.

Some well-known elementary facts on p-groups involving exceptional p groups follow immediately from Theorem A.

Corollary 1.8. Let P be a p-group.
(i) ([Hu, III 8.2], [Su, 4.4.4]) If P has a unique subgroup of order p, then P is cyclic or $p=2$ and P is quaternion.
(ii) ([Go, Theorem 5.4.10 (i)], [Hu, III 7.6], [Su, 4.4.3]) If every normal abelian subgroup of P is cyclic, then P is cyclic or $p=2$ and P is quaternion, dihedral of order ≥ 16 or semi-dihedral.

Proof. We may assume $|P| \geq p^{2}$.
(i) By assumption $m(P ; p)=1$. Thus P is exceptional by Theorem A, and the result follows.
(ii) Let a be the number of normal subgroups of P of order p^{2}. By Lemma 1.1, $a \equiv s_{2}(P) \bmod p$. By assumption and Lemma 1.1, $a \equiv s_{2}(P, \mathcal{C}) \bmod p$. Thus $s_{2}(P, \mathcal{C}) \equiv s_{2}(P) \equiv 1 \bmod p$ by Theorem 2. So P is exceptional by Theorem A, and the result follows.

2. Proofs of Theorems C and D

First we prove Theorem D.
Proof of Theorem D (under Theorem C). If P is cyclic, the result follows from Theorem C and Proposition 1.2. If P is not cyclic, the result follows from Theorems A and C.

Remark. Hall [Ha2, Lemma 4.61] proved that if G has a cyclic Sylow p subgroup of order p^{n}, then $s_{e}(G) \equiv 1 \bmod p^{n-e+1}$ for $1 \leq e \leq n$. When G has a non-cyclic exceptional Sylow 2-subgroup, we can obtain similar congruences which are better than Theorem D (ii). Indeed, $s_{e}(G) \equiv s_{e}(G, \mathcal{C}) \equiv 1 \bmod 2^{n-e}$ for $3 \leq e \leq n-1$ for example.

We begin with a special case of Theorem C.
Lemma 2.1. Let P be a p-group of order $p^{n}(n \geq 2)$. For any e with $1 \leq e \leq n-1$, we have

$$
\frac{s_{e}(P)-1}{p}+m\left(P ; p^{e}\right) \equiv 1 \quad \bmod p
$$

Proof. The congruence is rewritten as

$$
\begin{equation*}
s_{e}(P)+m\left(P ; p^{e}\right) p \equiv 1+p \quad \bmod p^{2} . \tag{1}
\end{equation*}
$$

We argue by induction on n. If P is cyclic, then (1) is true. So we assume P is not cyclic. If $n=2$, then P is elementary abelian of order p^{2}, so $s_{1}(P)=p+1$ and $m(P ; p)=p$. Thus (1) is true in this case. Assume $n \geq 3$. Since P is not cyclic, a standard argument yields $s_{n-1}(P) \equiv 1+p \bmod p^{2}$. Since $m\left(P ; p^{n-1}\right)=p$, (1) is true if $e=n-1$. Assume $e \leq n-2$. Since P is not cyclic, $|P / \Phi(P)| \geq p^{2}$. Let \mathcal{M} be the set of maximal subgroups of P. Let \mathcal{M}^{\prime} be the set of subgroups Q of P such that $\Phi(P) \leq Q$ and that $|P / Q|=p^{2}$. Then, by Lemma 1.3 (with $\mathcal{S}=S_{e}(P)$)

$$
s_{e}(P) \equiv \sum_{M \in \mathcal{M}} s_{e}(M)-p \sum_{Q \in \mathcal{M}^{\prime}} s_{e}(Q) \quad \bmod p^{2} .
$$

Since, by Theorem $2, s_{e}(Q) \equiv 1 \bmod p$ for $Q \in \mathcal{M}^{\prime}$ and $\left|\mathcal{M}^{\prime}\right| \equiv 1 \bmod p$, we get

$$
s_{e}(P) \equiv \sum_{M \in \mathcal{M}} s_{e}(M)-p \quad \bmod p^{2} .
$$

By Lemma 1.3

$$
s_{e+1}(P, \mathcal{C}) \equiv \sum_{M \in \mathcal{M}} s_{e+1}(M, \mathcal{C}) \quad \bmod p
$$

So by Proposition 1.2,

$$
m\left(P ; p^{e}\right) \equiv \sum_{M \in \mathcal{M}} m\left(M ; p^{e}\right) \quad \bmod p
$$

Thus

$$
\begin{aligned}
s_{e}(P)+m\left(P ; p^{e}\right) p & \equiv \sum_{M \in \mathcal{M}}\left\{s_{e}(M)+m\left(M ; p^{e}\right) p\right\}-p \bmod p^{2} \\
& \equiv(1+p)|\mathcal{M}|-p \bmod p^{2}(\text { by induction }) \\
& \equiv(1+p)^{2}-p \bmod p^{2}\left(\text { since }|\mathcal{M}| \equiv 1+p \quad \bmod p^{2}\right) \\
& \equiv 1+p \bmod p^{2} .
\end{aligned}
$$

Thus the lemma is proved.
We need the following
Lemma 2.2. Let G be a group with a Sylow p-subgroup P of order p^{n} ($n \geq 2$).
(i) If P is non-exceptional, $s_{1}(G) \equiv 1+p \bmod p^{2}$.
(ii) If P is exceptional, $s_{1}(G) \equiv 1 \bmod p^{2}$.

Proof. We have

$$
s_{1}(G)(p-1)+1=|G(p)|=m(G ; p) p
$$

Thus the result follows from Theorem A. (Note that, by Proposition 1.2, $m(G ; p) \equiv 1 \bmod p$ if P is cyclic.)

In the following we write $C_{e}(G)$ instead of $S_{e}(G, \mathcal{C})$ and put $c_{e}(G)=$ $\left|C_{e}(G)\right|$.

Proof of Theorem C. By Proposition 1.2 and Lemma 2.1, it suffices to show the following:

$$
\begin{equation*}
s_{e}(G) \equiv s_{e}(P) \quad \bmod p^{2} \quad \text { for any } e \text { with } 1 \leq e \leq n-1 \tag{1}
\end{equation*}
$$

By Lemma 2.2,

$$
\begin{equation*}
s_{1}(G) \equiv s_{1}(P) \quad \bmod p^{2} . \tag{2}
\end{equation*}
$$

So (1) is true when $n=2$. Assume $n \geq 3$. We shall show

$$
\begin{equation*}
s_{e+1}(G)-s_{e+1}(P) \equiv s_{e}(G)-s_{e}(P) \quad \bmod p^{2} \quad \text { for } \quad 1 \leq e \leq n-2 \tag{3}
\end{equation*}
$$

Then (1) follows from (2) and (3).

Let $1 \leq e \leq n-2$. Let $X_{e}(G)$ be the set of all subgroups Q of G of order p^{e} such that $N_{G}(Q) / Q$ has an exceptional Sylow p-subgroup. Let $Y_{e}(G)$ be the set of all subgroups Q of G of order p^{e} such that $N_{G}(Q) / Q$ has a Sylow p-subgroup of order p. So $Y_{e}(G) \subseteq X_{e}(G) \subseteq S_{e}(G)$. Put $x_{e}(G)=\left|X_{e}(G)\right|$ and $y_{e}(G)=\left|Y_{e}(G)\right|$. Let

$$
I=\left\{(Q, R) \mid Q \leq R, Q \in S_{e}(G), R \in S_{e+1}(G)\right\}
$$

We count $|I|$ in two ways. For a given $R \in S_{e+1}(G)$, the number of $Q \in S_{e}(G)$ with $Q \leq R$ equals $s_{e}(R)$, which equals 1 if R is cyclic. On the other hand, for a given $Q \in S_{e}(G)$, the set of $R \in S_{e+1}(G)$ with $Q \leq R$ is identified with $S_{1}\left(N_{G}(Q) / Q\right)$. Thus we get

$$
\begin{equation*}
c_{e+1}(G)+\sum_{R} s_{e}(R)=\sum_{Q} s_{1}\left(N_{G}(Q) / Q\right), \tag{4}
\end{equation*}
$$

where R and Q run over $S_{e+1}(G)-C_{e+1}(G)$ and $S_{e}(G)$, respectively. We have $s_{e}(R) \equiv 1+p \bmod p^{2}$ for $R \in S_{e+1}(G)-C_{e+1}(G)$. On the other hand, by Lemma 2.2,

$$
\begin{aligned}
s_{1}\left(N_{G}(Q) / Q\right) & \equiv 1+p \quad \bmod p^{2}, \quad \text { if } \quad Q \in S_{e}(G)-X_{e}(G), \\
& \equiv 1 \quad \bmod p^{2}, \quad \text { if } \quad Q \in X_{e}(G)-Y_{e}(G) .
\end{aligned}
$$

Let $\left\{Q_{i}\right\}$ be a set of representatives of G-conjugacy classes in $Y_{e}(G)$. Then

$$
\begin{aligned}
\sum_{Q \in Y_{e}(G)} s_{1}\left(N_{G}(Q) / Q\right) & =\sum_{i} s_{1}\left(N_{G}\left(Q_{i}\right) / Q_{i}\right)\left|G: N_{G}\left(Q_{i}\right)\right| \\
& \equiv \sum_{i}\left|G: N_{G}\left(Q_{i}\right)\right| \bmod p^{2} \\
& \equiv y_{e}(G) \bmod p^{2} .
\end{aligned}
$$

Here we have used the fact that $s_{1}\left(N_{G}\left(Q_{i}\right) / Q_{i}\right) \equiv 1 \bmod p($ Sylow's theorem $)$ and the fact that $\left|G: N_{G}\left(Q_{i}\right)\right| \equiv 0 \bmod p$ since $e \leq n-2$. Thus (4) yields

$$
\begin{aligned}
& c_{e+1}(G)+(1+p)\left\{s_{e+1}(G)-c_{e+1}(G)\right\} \\
& \equiv(1+p)\left\{s_{e}(G)-x_{e}(G)\right\}+\left\{x_{e}(G)-y_{e}(G)\right\}+y_{e}(G) \bmod p^{2} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
(1+p) s_{e+1}(G)-c_{e+1}(G) p \equiv(1+p) s_{e}(G)-x_{e}(G) p \quad \bmod p^{2} \tag{5}
\end{equation*}
$$

Applying (5) to the case where $G=P$, we get

$$
\begin{equation*}
(1+p) s_{e+1}(P)-c_{e+1}(P) p \equiv(1+p) s_{e}(P)-x_{e}(P) p \bmod p^{2} \tag{6}
\end{equation*}
$$

where $x_{e}(P)$ is defined in a manner similar to $x_{e}(G)$. Now $c_{e+1}(G) \equiv c_{e+1}(P)$ $\bmod p$ by Proposition 1.2. Further, $x_{e}(G) \equiv x_{e}(P) \bmod p$. Indeed, considering the conjugation action of P on $X_{e}(G)$, we get

$$
\begin{equation*}
x_{e}(G) \equiv \#\left\{Q\left|Q \triangleleft P,|Q|=p^{e}, P / Q \text { is exceptional }\right\} \bmod p\right. \tag{7}
\end{equation*}
$$

We can obtain a similar formula for $x_{e}(P)$ in a similar way. Thus $x_{e}(G) \equiv x_{e}(P)$ $\bmod p$. So, by (5) and (6), we get

$$
s_{e+1}(G)-s_{e+1}(P) \equiv s_{e}(G)-s_{e}(P) \quad \bmod p^{2}
$$

Thus (3) is proved and the proof is complete.
Remark. Theorem C shows that Theorems 3 and 5 are equivalent.
We obtain another congruence for $m\left(G ; p^{e}\right)$.
Corollary 2.3. Let G be a group with a Sylow p-subgroup P of order p^{n}. For any e with $1 \leq e \leq n-3$, we have

$$
m\left(G ; p^{e}\right) \equiv \#\left\{Q\left|Q \triangleleft P,|Q|=p^{e}, P / Q \text { is exceptional }\right\} \bmod p\right.
$$

Proof. By Proposition 1.2,

$$
m\left(G ; p^{e}\right) \equiv m\left(P ; p^{e}\right) \equiv c_{e+1}(P) \quad \bmod p .
$$

By (6) in the proof of Theorem C, we have

$$
(1+p) s_{e+1}(P)-c_{e+1}(P) p \equiv(1+p) s_{e}(P)-x_{e}(P) p \bmod p^{2}
$$

By Theorem D, $s_{e+1}(P) \equiv s_{e}(P) \bmod p^{2}$. Thus it follows that $m\left(G ; p^{e}\right) \equiv$ $x_{e}(P) \bmod p$. Hence the assertion follows from (7) in the proof of Theorem C (with $G=P$). This completes the proof.

We give a new proof to a well-known theorem of Taussky. See [Hu, III 11.9], [Go, Theorem 5.4.5] for other proofs.

Proposition 2.4 (Taussky [Ta]). Let P be a non-abelian 2-group with $\left|P: P^{\prime}\right|=4$, where P^{\prime} is the commutator subgroup of P. Then P is quaternion, dihedral, or semi-dihedral.

Proof. Put $|P|=2^{n}$. The result is clear when $n=3$. Assume $n \geq 4$. Let X be the set of normal subgroups of P of order 2^{n-3}. For any $Q \in X, P / Q$ is either quaternion or dihedral of order 8 , since $\left|P: P^{\prime}\right|=4$. Thus P / Q is exceptional. Hence $m\left(G ; 2^{n-3}\right) \equiv|X| \bmod 2$ by Corollary 2.3. On the other hand, $|X|$ is odd by Theorem 2 and Lemma 1.1. Hence $m\left(G ; 2^{n-3}\right)$ is odd, and P is exceptional by Theorem A. Since P is not cyclic, the result follows.

Meiji-machi 2-27
Izumi Toki-shi
Gifu 509-5146, Japan

References

[AT] T. Asai and Y. Takegahara, $|\operatorname{Hom}(A, G)|$, IV, J. Algebra, 246 (2001), 543-563.
[Fr1] G. Frobenius, Verallgeminerung des Sylowschen Satzes, Sitzungsberichte der Koniglich Preußischen Akademie der Wissenschaften zu Berlin, 1895, pp. 981-993. (= Gesammelte Abhandlungen, Bd. II, pp. 664-676.)
[Fr2] G. Frobenius, Über einen Fundamentalsatz der Gruppentheorie, Sitzungsberichte der Koniglich Preußischen Akademie der Wissenschaften zu Berlin, 1903, pp. 987-991. (= Gesammelte Abhandlungen, Bd. III, pp. 330-334.)
[Go] D. Gorenstein, Finite Groups, Harper and Row, 1968. (Chelsea, 1980)
[Ha1] P. Hall, A contribution to the theory of groups of prime power order, Proc. London Math. Soc., 36 (1933), 29-95.
[Ha2] P. Hall, On a theorem of Frobenius, Proc. London Math. Soc., 40 (1935), 468-501.
[Hu] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
[IY] N. Iiyori and H. Yamaki, On a conjecture of Frobenius, Bull. Amer. Math. Soc., 25 (1991), 413-416.
[Is] I. M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976.
[Ku] A. Kulakoff, Über die Anzahl der eigentlichen Untergruppen und der Elemente von gegebener Ordnung in p-Gruppen, Math. Ann., 104 (1931), 778-793.
[La] T. Y. Lam, Artin exponent of finite groups, J. Algebra, 9 (1968), 94-119.
[Mi] G. A. Miller, An extension of Sylow's theorem, Proc. London Math. Soc., 2 (1905), 142-143.
[Mu] M. Murai, On a conjecture of Frobenius, Sugaku, 35 (1983), 82-84. (in Japanese)
[Su] M. Suzuki, Group Theory II, Springer-Verlag, Berlin, 1986.
[Ta] O. Taussky, A remark on the class field tower, J. London Math. Soc., 12 (1937), 82-85.
[Yo] T. Yoshida, $|\operatorname{Hom}(A, G)|$, J. Algebra, 156 (1993), 125-156.

Added in proof: For a generalization of Theorem A (i), see
M. Murai and Y. Takegahara, Hall's relations in finite groups, preprint.

