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Spaces of polynomials with real roots of
bounded multiplicity
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1. Introduction

The principal motivation for this paper derives from work of V. A. Vassiliev
[16], [17], [18] and [19]. He describes a general method for calculating the
cohomology of certain spaces of discriminants. For K = R or C, we denote by
Pd

n(K) the space consisting of all monic polynomials

f(z) = zd + a1z
d−1 + · · · + ad−1z + ad ∈ K[z]

of degree d which have no n-fold real roots (but may have complex ones of
arbitrary multiplicity!). As his typical example, he takes the space Pd

n(R) and
in particular, he computes the cohomology of the space Pd

n(R).

Theorem 1.1 (Vassiliev [16] and [17]). If n ≥ 3,

Hj(Pd
n(R), Z) =

{
Z if j = k(n − 2), 0 ≤ k ≤ [d/n],
0 otherwise,

where [x] denotes the integer part of a real number x.

There is a “jet map” jd
n = jd

n;R : Pd
n(R) → ΩR Pn−1 given by

jd
n(f)(t) =

{
[f(t) : f ′(t) : f ′′(t) : · · · : f (n−1)(t)] if t ∈ R,
[1 : 0 : 0 : · · · : 0] if t = ∞,

for f ∈ Pd
n(R) and t ∈ S1 = R ∪∞.

If n ≥ 3 and k ∈ Z/2 = π0(ΩR Pn−1), we denote by ΩkR Pn−1 the space
consisting of all base point preserving maps f : S1 → R Pn−1 with [f ] = k.
Remark that jd

n(Pd
n(R)) ⊂ Ω[d]2R Pn−1, where [d]2 denotes the number d mod

2. So it is regarded as the map jd
n : Pd

n(R) → Ω[d]2R Pn−1 � ΩSn−1. For K = C,
we can also define the jet map jd

n;C : Pd
n(C) → Ω[d]2(C

n − {0})/R∗ � ΩS2n−1

in a similar way.
Vassiliev also obtains the following result.

1991 Mathematics Subject Classification(s). 55P35, 58D15, 57R45
Communicated by Prof. A. Kono, June 27, 2000
Revised August 25, 2000



�

�

�

�

�

�

�

�

106 Kohhei Yamaguchi

Theorem 1.2 (Vassiliev [16], [17], [18] and [19]).
(1) Let sd : Pd

n(R) → Pd+1
n (R) denote the stabilization map given by

adding point from the edge. Then for any n ≥ 3, the induced map

(sd)∗ : Hk(Pd
n(R), Z)

∼=→ Hk(Pd+1
n (R), Z)

is an isomorphism for any k ≤ ([d/n] + 1)(n − 2) − 1.
(2) If n ≥ 4, the jet map jd

n : Pd
n(R) → ΩSn−1 is a homotopy equivalence

up to dimension ([d/n] + 1)(n − 2) − 1.
(3) If n = 3, jd

3 : Pd
3(R) → ΩS2 is a homology equivalence up to dimension

[d/3].
(4) If n = 3, (jd

n)∗ : πk(Pd
3(R)) → πk(ΩS2) is an isomorphism when k = 1

and d ≥ 3, and it is a surjection when k = 2 and d ≥ 6.

Remark. We shall call a map f : X → Y is a homotopy equivalence
(resp. homology equivalence) up to dimension N if the induced homomorphism
f∗ : πj(X) → πj(Y ) (resp. f∗ : Hj(X, Z) → Hj(Y, Z)) is bijective when j < N
and surjective when j = N .

A. Kozlowski and the author studied the homotopy type of spaces Pd
n(K)

and classified their homotopy types explicitely in [11] except for the case (K, n) =
(R, 3). In this paper we hope to study the homotopy type of Pd

3(R).
Remark that the conjugation on C induces the Z/2-action on Pd

n(C) and
its fixed points set is Pd

n(C)Z/2 = Pd
n(R). Similarly, if we identify S2n−1 =

{(z1, . . . , zn) ∈ Cn :
∑n

k=1 |zk|2 = 1}, we also regard S2n−1 as Z/2-space
whose action is given by (z1, . . . , zn) → (z1, . . . , zn). If we regard S1 as trivial
Z/2-space, the jet map jd

n;C may be considered as Z/2-equivariant map. In this
paper, we shall prove the following 2 results.

Theorem A. The jet map induces a Z/2-equivariant homotopy equiv-
alence

j∞3,C : lim
d→∞

Pd
3(C) �→ ΩS5,

where the limit is taken from stabilization maps Pd
3(C) → Pd+1

3 (C) given by a
adding point from the edge.

Theorem B. The jet map jd
3 : Pd

3(R) → ΩS2 is a homotopy equivalence
up to dimension [d/3].

The motivation of this paper is as follows. For a complex projective variety
X � C PN , let Hol∗D(S2, X) be the space consisting of all based holomorphic
maps f : S2 → X with [f ] = D ∈ π2(X). G. Segal studies the topology of
the space Hol∗d(S

2, X) for X = C PN in [14] and shows that Hold(S2, C PN )
is a finite dimensional model for the infinite dimensional space Ω2C PN . This
result is generalized for more wide several another complex varieties (e.g. [7],
[9] and [10]). Recently R. Cohen, J. Jones and G. Segal ([3] and [4]) investigate
the Floer homotopy type which is the inverse system of spectra derived from
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Floer functions, and they obtain loop space models using the classifying spaces
of flow categories. Both results suggest that Morse theoretic principle should
hold for wide infinite dimensional manifolds and in particular, it should hold
for infinite loop spaces ΩkX with k = 1, 2. The author tries to obtain another
finite dimensional model of ΩX for X = K Pn. This attempt is already well
studied in [7], [11] and [20] except for the case (K, n) = (R, 3) and we shall
treat this case here.

The similar result of Theorem A was first proved in [7] except the case
(K, n) = (R, 3). For studying this case, we shall study the fundamental group
π1(Pd

3(R)) more carefully. The topology of Pd
n(R) was first investigated by

Vassiliev well [16]. However, its proof has a gap for the case n = 3. He asserted
there that (3) and (4) of Theorem 1.2 would imply Theorem B using Whitehead
theorem. But it is not sufficient and in fact, he also admit this gap in [17]. So
we shall give its corrected proof here.

This paper is organized as follows. In Section 2, we compute the funda-
mental group π1(Pd

3(R)) and prove Theorem A. In Section 3, we consider the
subspace Pd

3 ⊂ Pd
3(R) and study the retraction map Rd : Pd

3 → C∗ for an odd
integer d ≥ 3, which is the keypoint of the proof of Theorem B. Finally in
Section 4, we study the universal covering of Pd

3 and prove Theorem B.

Acknowledgements. The author is indebted to M. A. Guest and A.
Kozlowski for numerous helpful conversations concerning configuration spaces.
The author was partially supported by a grant from the Ministry of Education
of Japan.

2. Fundamental group and stability result

Lemma 2.1. If d ≥ 3, the stabilization map induces an isomorphism

(sd)∗ : π1(Pd
3(R))

∼=→ π1(Pd+1
3 (R)).

In particlular, since P3
3(R) � S1, π1(Pd

3(R)) = Z if d ≥ 3.

Proof. Although the assertion easily follows from (1.2), we give another
easy proof. Using a similar method given in appendix of [6], we can see that
π1(Pd

3(R)) is abelian. Consider the commutative diagram

π1(Pd
3(R))

(sd)∗−−−−→ π1(Pd+1
3 (R))

∼=
� ∼=

�
H1(Pd

3(R), Z)
(sd)#−−−−→∼=

H1(Pd+1
3 (R), Z) ∼= Z.

It follows from (1.2) that (sd)# is bijective. Hence the assertions easily follow.
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Consider the map

j∞3 = lim
d

jd
3 : P∞

3 (R) = lim
d→∞

Pd
3(R) → lim

d→∞
Ω[d]2R P2 � ΩS2,(2.2)

where the limit is taken by stabilization maps sd. Then we obtain

Theorem 2.3. The map j∞3 : P∞
3 (R) �→ ΩS2 is a homotopy equiva-

lence.

Proof. Note that π1(Pd
3(R)) = Z and it is abelian. Hence the proof given

in (3.3) of [7] equally works for the case n = 3 and the detail is omitted.

Now we can give the proof of Theorem A.

Proof of Theorem A. Consider the Z/2-equivariant map

j∞3;C = lim
d

jd
3;C : lim

d→∞
Pd

3(C) → ΩS5.

It follows from (3.5) of [7] that j∞3;C is a homotopy equivalence. Remark that
the restriction of j∞3;C to the Z/2-fixed point sets is just the map (j∞3;C)Z/2 = j∞3 .
So it is also a homotopy equivalence. Hence for any subgroup H � Z/2, (j∞3;C)H

is a homotopy equivalence. Then using equivariant Whitehead theorem, j∞3;C is
a Z/2-equivariant homotopy equivalence.

Since we know that j∞n;C is Z/2-equivariant homotopy equivalence by (3.7)
of [7] for n ≥ 4, we also obtain the following.

Corollary 2.4. For any n ≥ 3, the induced map

j∞n;C = lim
d

jd
n;C : lim

d→∞
Pd

n(C) �→ ΩS2n−1

is a Z/2-equivarinat homotopy equivalence.

Let H = {w = x +
√−1y ∈ C : x ∈ R, y ≥ 0} denote closed upper half

space, let H+, H−, H ⊂ H be subspaces


H+ = {w = x +
√−1y ∈ C : x > 0, y ≥ 0},

H− = {w = x +
√−1y ∈ C : x < 0, y ≥ 0},

H = {w = x +
√−1y ∈ C : x ∈ R, y > 0},

and φ+ : H
∼=→ H+, φ− : H

∼=→ H− be fixed homeomorphisms. Then define the
map µs,t : Ps

3(R) × Pt
3(R) → Ps+t

3 (R) by

µs,t(f, g) =
s∏

k=1

(z − φ−(αk)) ·
t∏

k=1

(z − φ+(βk))(2.5)

for (f, g) = (
∏s

k=1(z − αk),
∏t

k=1(z − βk)) ∈ Ps
3(R) × Pt

3(R).
Let P0

3(R) = {∗}. Then {µs,t : s, t ≥ 0} induces the monoid structure on∐
d≥0 Pd

3(R) and it is easy to see the following result using the group completion
theorem and Theorem 2.3.
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Corollary 2.6. There is a homotopy equivalence ΩB(
∐

d≥0 Pd
3(R)) �

ΩS2 × Z.

3. The subspace space Pd
3

Let Pd
3 ⊂ Pd

3(R) be the subspace consisting of all monic polynomials f(z) ∈
Pd

3(R) of the form

f(z) = zd + ad−2z
d−2 + ad−3z

d−3 + · · · + a2z
2 + a1z + a0

(i.e. the coefficient of zd−1 = 0). It is known that

Lemma 3.1 ([1] and [14]). The inclusion Pd
3

⊂→ Pd
3(R) is a deformation

retract. Hence it is a homotopy equivalence.

Hence, from now on, we shall consider the space Pd
3. For example, it is

easy to see that

P3
3 = {z3 + az + b : a, b ∈ R, (a, b) �= (0, 0)}(3.2)

and there is a homeomorphism P3
3

∼=→ C
∗ given by z3 + az + b 
→ a +

√−1b.
Remark that f(z) = zd +az +b ∈ R[z] has no 3-fold real root if and only if

(a, b) �= (0, 0). Hence, for any d ≥ 3, we can define the map id : C∗ = C−{0} →
Pd

3 by
id(a +

√−1 b) = zd + az + b (for a +
√−1 b ∈ C

∗).

Assume that d is an odd integer ≥ 3 and let f(z) ∈ Pd
3. Since deg(f ′′) is

an odd integer, the polynomial f ′′(z) can be written as the form

f ′′(z) = (z − α1)(z − α2) · · · (z − αt−1)(z − αt) · g(z),

where α1 ≤ α2 ≤ · · · ≤ αt and the polynomial g(z) ∈ R[z] has no real roots.
In this situation, we take

Rd(f) =
t∏

j=1

(f ′(αj) +
√−1 f(αj))ε(j) (where ε(j) = (−1)j−1).

Since polynomials f(z), f ′(z), f ′′(z) have no common real roots, Rd(f) ∈ C
∗.

Moreover, if αj−1 = αj ,

(f ′(αj−1) +
√−1 f(αj−1))ε(j−1) · (f ′(αj) +

√−1 f(αj))ε(j) = 1.

Hence Rd : Pd
3 → C∗ is a continuous map.

Remark. If d is an even integer, f ′′(z) ∈ Pd
3 does not necessarily have

a real root. Hence the map Rd is well-defined only when d is odd.

Easy computations show the following 2 results.
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Lemma 3.3. R3 : P3
3

∼=→ C∗ is a homeomorphism. Hence P3
3(R) �

P3
3 � S1.

Proof. Let f(z) = z3+az+b ∈ R[z]. Then, by (3.2), f(z) ∈ P3
3 if and only

if (a, b) �= (0, 0). Since f ′′(z) = 6z, it has only a real root 0. Hence if f(z) ∈ P3
3,

R3(f) = f ′(0) +
√−1 f(0) = a +

√−1 b. Hence R3 is a homeomorphism.

Lemma 3.4. If d ≥ 5 is odd, the map Rd : Pd
3 → C

∗ is a retraction.
More precisely, Rd ◦ id = id.

Proof. Let α = a +
√−1b ∈ C∗ and we take id(α) = zd + az + b = fα.

Then, since f ′′
α(z) = d(d − 1)zd−2 has only a root z = 0,

Rd ◦ id(α) = Rd(fα) = f ′
α(0) +

√−1 fα(0) = a +
√−1 b = α.

Remark 3.5. For an integer d ≥ 3, let φd : S1 → Pd
3 be the map given

by
φd(eiθ) = zd + z cos θ + sin θ for eθ

√−1 ∈ S1.

Then by (2.3), (2.4) and (3.2), we see that φd : S1 → Pd
3(R) represents the

generator of π1(Pd
3) ∼= π1(Pd

3(R)) ∼= Z.

4. Universal covering space

Let ex : C → C∗ denote the universal covering projection given by ex(α) =
e2πα

√−1 for α ∈ C. For an odd interger d ≥ 3, let P̃
d

n be the space defined by

P̃
d

n = {(f(z), α) ∈ Pd
n ×C : Rd(f) = e2πα

√−1}.
There is a pullback diagram

P̃
d

3
q2−−−−→ C

q1

� ex

�
Pd

3
Rd−−−−→ C∗ ,

(4.1)

where q1 denotes the projection to the first factor.

Lemma 4.2. Let d ≥ 3 be an odd integer. Then q1 : P̃
d

3 → Pd
3 is a

universal covering projection.

Proof. It follows from (2.3) and (3.2) that Rd
∗ : π1(Pd

3)
∼=→ π1(C∗) = Z is

an isomorphism. Hence the assertion easily follows from the diagram chasing
of (4.1).
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Remark 4.3. Let d ≥ 3 be an odd integer. Then it is easy to see that
π1(Pd

3) = Z acts on the P̃
d

3 by (f, α) · n = (f, α + n) for ((f, α), n) ∈ P̃
d

3 × Z,
and that there is a homeomorphism P̃

d

3/π1(Pd
3) ∼= Pd

3. Let τn ∈ Aut(P̃
d

3)
denote the automorphism of P̃

d

3 over Pd
3 given by τn(f, α) = (f, α + n) for

(f, α) ∈ P̃
d

3, n ∈ π1(Pd
3) = Z. This gives the action of π1(Pd

3) on H∗(P̃
d

3; Z) by
n · x = (τn)∗(x) for x ∈ H∗(P̃

d

3; Z).

Although there is a homotopy equivalence Pd
3 � Pd

3(R), it is difficult to
define a canonical stabilization map Pd

3 → Pd+1
3 . So we shall consider the

composite of stabilization maps sd+1 ◦ sd : Pd
3(R) → Pd+2

3 (R). In this case,
there is a canonical stabilization map ŝd : Pd

3 → Pd+2
3 by adding points from

the edge such that the following diagram is commutative

Pd
3

ŝd−−−−→ Pd+2
3

∩
�� ∩

��

Pd
3(R)

sd+1◦sd−−−−−→ Pd+2
3 (R) .

Since P̃
d

3 is simply connected and q1 : P̃
d+2

3 → Pd+2
3 is a universal covering,

there is a map s̃d : P̃
d

3 → P̃
d+2

3 such that the following diagram is commutative.

P̃
d

3
s̃d−−−−→ P̃

d+2

3

q1

� q1

�
Pd

3
ŝd−−−−→ Pd+2

3

(4.4)

Theorem 4.5. s̃d : P̃
d

3 → P̃
d+2

3 is a homotopy equivalence up to dimen-
sion [d/3].

Proof. Since P̃
d

3 and P̃
d+2

3 are simply connected, it suffices to show that
s̃d is a homology equivalence up to dimension [d/3].

Let Pd ∼= Rd denote the space consisting of all monic real coefficients poly-
nomials of degree d. Then P̃

d

3 ⊂ Pd × C and we denote by Σ̃d the complement
Σ̃

d
= Pd ×C − P̃

d

3. Since Pd ×C ∼= R
d+2, it follows from Alexander duality

that there is a natural isomorphism

Hj(P̃
d

3; Z) ∼= Hc
d+1−j(Σ̃

d) for any 1 ≤ j ≤ d,(4.6)

where X denotes the one-point compactification of a locally compact space X
and Hc

∗(X) = H∗(X; Z) the Borel-Moore homology group.
Let Σd = Pd −Pd

3 and let Ad, Bd ⊂ Pd × C denote the subspaces given by{
Ad = Σd × C,

Bd = Σ̃d − Ad = {(f, α) ∈ Pd
3 ×C : Rd(f) �= e2π

√−1α}.



�

�

�

�

�

�

�

�

112 Kohhei Yamaguchi

The map s̃d naturally extends to the open embedding Pd × H → Pd+2, and
we also obtain open maps by restrictions and their extensions to one-point
compactifications


s̃d : Σ̃d × H → Σ̃d+2,

sA
d : Ad × H → Ad+2,

sB
d : Bd × H → Bd+2,

and




sd : Σ̃d+2 → Σ̃d ∧ S2,

sA
d : Ad+2 → Ad ∧ S2,

sB
d : Bd+2 → Bd ∧ S2.

Consider the commutative diagram

−−−−→ Hc
k+2(A

d+2) −−−−→ Hc
k+2(Σ̃

d+2) −−−−→ Hc
k+2(B

d+2) −−−−→
(sA

d )∗

� (sd)∗

� (sB
d )∗

�
−−−−→ Hc

k(Ad) −−−−→ Hc
k(Σ̃d) −−−−→ Hc

k(Bd) −−−−→ ,

(4.7)

where horizontal sequences are exact.

We shall call a homomorphism Hc
k+2(X) → Hc

k(Y ) is stable for any k ≥ N
if it is bijective when k > N and surjective when k = N .

Remark the following 2 results.

Lemma 4.8. The homomorphism (sA
d )∗ : Hc

k+2(A
d+2) → Hc

k(Ad) is
stable for any k ≥ N1(d) = d + 1 − [d/3].

Lemma 4.9. The homomorphism (sB
d )∗ : Hc

k+2(B
d+2) → Hc

k(Bd) is
stable for any k ≥ N2(d) = d − 1 − [d/3].

We postpone the proof of the above 2 results and complete the proof of
Theorem 4.5.

Consider the diagram (4.7). Then it follows from (4.8), (4.9) and 5-lemma
that (sd)∗ : Hc

k+1(Σ̃
d+1) → Hc

k(Σ̃d) is stable for k ≥ max(N1(d), N2(d)) =
d + 1 − [d/3].

On the other hand, it follows from (4.6) that there is a commutative dia-
gram

Hj(P̃
d+2

3 , Z)
s̃∗

d−−−−→ Hj(P̃
d

3, Z)

A.D.

�∼= A.D.

�∼=

Hc
d+3−j(Σ̃

d+2)
(sd)∗−−−−→ Hc

d+1−j(Σ̃
d)

Because d + 1 − j ≥ d + 1 − [d/3] if and only if j ≤ [d/3], the induced homo-
morphism s̃∗d : Hj(P̃

d+1

3 , Z) → Hj(P̃
d

3, Z) is bijective when j < [d/3] and is a
surjective when j = [d/3]. Hence it follows from the universal coefficient theo-
rem that s̃d is a homology equivalence up to dimension [d/3]. This completes
the proof of Theorem 4.5.

Now we can also give the proof of Theorem B using Theorem 4.5.



�

�

�

�

�

�

�

�

Spaces of polynomials 113

Proof of Theorem B. It follows from theorems (4.2), (4.5) and the dia-
gram (4.4) that sd+1 ◦ sd : Pd

3(R) → Pd+2
3 (R) is a homotopy equivalence up to

dimension [d/3]. Hence using Theorem 2.4, jd
3 : Pd

3(R) → ΩS2 is a homotopy
equivalence up to dimension [d/3].

It remains to prove (4.8) and (4.9).

Proof of Lemma 4.8. It follows from Alexander duality and its naturality
that there is a commutative diagram

Hc
k+2(A

d+2)
(sA

d )∗−−−−→ Hc
k(Ad)

σ

�∼= σ

�∼=

Hc
k(Σd+2) → Hc

k−2(Σ
d)

A.D.

�∼= A.D.

�∼=

Hd−k+1(Pd+2
3 ) → Hd−k+1(Pd

3)
∼=

∼=

Hd−k+1(Pd+1
3 (R))

(sd+1◦sd)∗−−−−−−−→ Hd−k+1(Pd
3(R)) .

Remark that sd : Pd
3(R) → Pd+1

3 (R) is a homology equivalence up to dimension
[d/3] and that H∗(Pd

3(R)) is torsion free by Theorems 1.1 and 1.2. Because
d − k + 1 ≤ [d/3] if and only if k ≥ d + 1 − [d/3], the assertion easily follows
from the above diagram.

Proof of Lemma 4.9. Remark that there is a homeomorphism Bd ∼=
Pd

3 ×(C − Z). Note also that ŝd : Pd
3 → Pd+2

3 and sd+1 ◦ sd : Pd
3(R) → Pd+2

3 (R)
naturally extend to the open embeddings and corresponding maps between
one-point compactifications{

ŝd : Pd
3 × H → Pd+2

3 ,

sd+1 ◦ sd : Pd
3(R) × H → Pd+2

3 (R),

and

{
ŝd : Pd+2

3 → Pd
3 ∧ S2,

sd+1 ◦ sd : Pd+2
3 (R) → Pd

3(R) ∧ S2.

Moreover there is a commutative diagram

Bd × H
sB

d−−−−→ Bd+2

∼=
� ∼=

�
Pd

3 × H × (C − Z) ŝd×id−−−−→ Pd+2
3 × (C − Z) .

Hence it follows from Künneth formula that it suffices to show that the in-
duced homomorphism ŝd∗ : Hc

k+2(P
d+2
3 ) → Hc

k(Pd
3) is stable for any k ≥
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N2(d). Remark that the inclusion Pd
3 → Pd

3(R) naturally extends to the
open embedding i′d : Pd

3 ×R → Pd
3(R) such that the induced homomorphism

i′d∗ : Hc
k+1(P

d
3(R))

∼=→ Hc
k(Pd

3) is bijective for any k, because the inclusion
Pd

3 → Pd
3(R) is a deformation retract and the codimension of Pd

3 ⊂ Pd
3(R) is

one (cf. [1]). Since Pd
3(R) ⊂ Pd ∼= Rd is an open subset, it is an open manifold of

dimension d. So the Poincaré duality Hc
k(Pd

3(R)) ∼= Hd−k(Pd
3(R)) holds. Hence

there is a commutative diagram

Hc
k+2(P

d+2
3 )

ŝd∗−−−−→ Hc
k(Pd

3)

i′d+2∗


∼= i′d∗


∼=

Hc
k+3(P

d+2
3 (R)) → Hc

k+1(P
d
3(R))

P.D.

�∼= P.D.

�∼=

Hd−k−1(Pd+2
3 (R))

(sd+1◦sd)∗−−−−−−−→ Hd−k−1(Pd
3(R)) .

Then it follows from (1.2) that (sd+1 ◦ sd)∗ is bijective if d− k − 1 < [d/3] and
is surjective if d − k − 1 = [d/3]. Hence ŝd∗ : Hc

k+2(P
d+2
3 ) → Hc

k(Pd
3) is stable

for any k ≥ d − 1 − [d/3] = N2(d).
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[20] K. Yamaguchi, Complements of resultants and homotopy types, J. Math.
Kyoto Univ., 39 (1999), 675–684.

[21] K. Yamaguchi, Spaces of holomorphic maps with bounded multiplicity,
Quart. J. Math., 52 (2001), 249–259.


