Twining characters, Kostant's homology formula, and the Bernstein-Gelfand-Gelfand resolution

By

Satoshi Naito

Abstract

We give a new proof of the formulas for the twining character of the Verma module $M(\lambda)$ of symmetric highest weight λ and for the twining character of the irreducible highest weight module $L(\Lambda)$ of symmetric, dominant integral highest weight Λ over a symmetrizable generalized Kac-Moody algebra \mathfrak{g}, by using the Bernstein-Gelfand-Gelfand resolution of $L(\Lambda)$.

1. Introduction

In [FSS] and [FRS], they introduced a new type of character-like quantities, called twining characters, corresponding to a Dynkin diagram automorphism for certain highest weight modules over a symmetrizable (generalized) KacMoody algebra \mathfrak{g}. Moreover, they gave formulas (see Theorems 3.3 and 3.4) for the twining character of a Verma module $M(\lambda)$ of symmetric highest weight λ and for the twining character of an irreducible highest weight module $L(\Lambda)$ of symmetric, dominant integral highest weight Λ over \mathfrak{g}.

In the previous paper [N5], we obtained a formula of Kostant type for the twining characters of the Lie algebra homology modules $H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right), j \geq 0$, of \mathfrak{n}_{-}with coefficients in $L(\Lambda)$, where \mathfrak{n}_{-}is the sum of all the negative root spaces of \mathfrak{g}, and then gave a new proof of the twining character formula for $L(\Lambda)$ as a corollary.

In this paper, we use an existence theorem in [N2] of a resolution of $L(\Lambda)$ of Bernstein-Gelfand-Gelfand type and an Euler-Poincaré principle to derive a formula expressing the twining character of $L(\Lambda)$ in terms of the twining characters of $M(\lambda)$'s. Then we immediately deduce the twining character formula for $L(\Lambda)$ and also that for $M(\lambda)$. Here we note that, unlike the case of an ordinary character, it is not at all easy to describe the twining character of the Verma module $M(\lambda)$ of symmetric highest weight λ. Thus our proof will cast

[^0]new light on the connections among the twining character of $L(\Lambda)$, Kostant's homology formula, and the Bernstein-Gelfand-Gelfand resolution.

This paper is organized as follows. In Section 2 we recall the definition of a generalized Kac-Moody algebra and fix our notation. In Section 3, following [FSS] and [FRS], we review the definition of a twining character and the twining character formulas for $M(\lambda)$ and for $L(\Lambda)$. In Section 4 we recall briefly the twining character formula for $H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right), j \geq 0$, which is the main result of [N5]. In Section 5 we give a (new) proof of the twining character formulas for $M(\lambda)$ and for $L(\Lambda)$, by using a resolution of $L(\Lambda)$ of Bernstein-Gelfand-Gelfand type.

2. Preliminaries and notation

2.1. Generalized Kac-Moody algebras.

Let $I=\{1,2, \ldots, n\}$ be a finite index set, and let $A=\left(a_{i j}\right)_{i, j \in I}$ be an $n \times n$ real matrix satisfying:
(C1) either $a_{i i}=2$ or $a_{i i} \leq 0$ for all $i \in I$;
(C2) $a_{i j} \leq 0$ if $i \neq j \in I$, and $a_{i j} \in \mathbb{Z}$ for $j \neq i$ if $a_{i i}=2$;
(C3) $a_{i j}=0$ if and only if $a_{j i}=0$ for $i, j \in I$.
Such a matrix $A=\left(a_{i j}\right)_{i, j \in I}$ is called a GGCM. For a GGCM $A=\left(a_{i j}\right)_{i, j \in I}$, there exists a triple ($\left.\mathfrak{h}, \Pi=\left\{\alpha_{i}\right\}_{i \in I}, \Pi^{\vee}=\left\{h_{i}\right\}_{i \in I}\right)$ satisfying:
(R1) \mathfrak{h} is a finite-dimensional vector space over the complex numbers \mathbb{C} such that $\operatorname{dim}_{\mathbb{C}} \mathfrak{h}=2 n-\operatorname{rank} A$;
(R2) $\Pi=\left\{\alpha_{i}\right\}_{i \in I}$ is a linearly independent subset of $\mathfrak{h}^{*}:=\operatorname{Hom}_{\mathbb{C}}(\mathfrak{h}, \mathbb{C})$, and $\Pi^{\vee}=\left\{h_{i}\right\}_{i \in I}$ is a linearly independent subset of \mathfrak{h};
(R3) $\alpha_{j}\left(h_{i}\right)=a_{i j}$ for $i, j \in I$.
The generalized Kac-Moody algebra (GKM algebra) $\mathfrak{g}=\mathfrak{g}(A)$ associated to a GGCM $A=\left(a_{i j}\right)_{i, j \in I}$ over \mathbb{C} is the Lie algebra over \mathbb{C} generated by the vector space \mathfrak{h} above (called the Cartan subalgebra) and the elements e_{i}, f_{i} for $i \in I$ with the following defining relations:
(D1) $\left[h, h^{\prime}\right]=0$ for $h, h^{\prime} \in \mathfrak{h}$;
(D2) $\left[h, e_{i}\right]=\alpha_{i}(h) e_{i},\left[h, f_{i}\right]=-\alpha_{i}(h) f_{i}$ for $h \in \mathfrak{h}$ and $i \in I$;
(D3) $\left[e_{i}, f_{j}\right]=\delta_{i j} h_{i}$ for $i, j \in I$;
(D4) $\left(\operatorname{ad} e_{i}\right)^{1-a_{i j}} e_{j}=0=\left(\operatorname{ad} f_{i}\right)^{1-a_{i j}} f_{j}=0$ if $a_{i i}=2$ and $j \neq i$;
(D5) $\left[e_{i}, e_{j}\right]=0=\left[f_{i}, f_{j}\right]$ if $a_{i i}, a_{j j} \leq 0$ and $a_{i j}=0=a_{j i}$.
We have a root space decomposition of \mathfrak{g} with respect to the Cartan subalgebra \mathfrak{h} :

$$
\mathfrak{g}=\left(\bigoplus_{\alpha \in \Delta_{-}} \mathfrak{g}_{\alpha}\right) \oplus \mathfrak{h} \oplus\left(\bigoplus_{\alpha \in \Delta_{+}} \mathfrak{g}_{\alpha}\right)
$$

where $\Delta_{+} \subset Q_{+}:=\sum_{i \in I} \mathbb{Z}_{\geq 0} \alpha_{i}$ is the set of positive roots, $\Delta_{-}=-\Delta_{+}$is the set of negative roots, and \mathfrak{g}_{α} is the root space of \mathfrak{g} corresponding to a root
$\alpha \in \Delta=\Delta_{-} \sqcup \Delta_{+}$. We set

$$
\mathfrak{n}_{ \pm}:=\bigoplus_{\alpha \in \Delta_{ \pm}} \mathfrak{g}_{\alpha}, \quad \mathfrak{b}:=\mathfrak{h} \oplus \mathfrak{n}_{+}
$$

so that we have

$$
\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}=\mathfrak{n}_{-} \oplus \mathfrak{b}
$$

Note that $\mathfrak{g}_{\alpha_{i}}=\mathbb{C} e_{i}, \mathfrak{g}_{-\alpha_{i}}=\mathbb{C} f_{i}$ for $i \in I$, so that $\Pi=\left\{\alpha_{i}\right\}_{i \in I} \subset \mathfrak{h}^{*}$ is the set of simple roots.

We set $I^{r e}:=\left\{i \in I \mid a_{i i}=2\right\}, I^{i m}:=\left\{i \in I \mid a_{i i} \leq 0\right\}$, and call $\Pi^{r e}:=\left\{\alpha_{i} \in \Pi \mid i \in I^{r e}\right\}$ the set of real simple roots, $\Pi^{i m}:=\left\{\alpha_{i} \in \Pi \mid i \in I^{i m}\right\}$ the set of imaginary simple roots. For $i \in I^{r e}$, let $r_{i} \in G L\left(\mathfrak{h}^{*}\right)$ be the simple reflection of \mathfrak{h}^{*} given by:

$$
r_{i}(\lambda)=\lambda-\lambda\left(h_{i}\right) \alpha_{i} \quad \text { for } \quad \lambda \in \mathfrak{h}^{*}
$$

Then the Weyl group W of the GKM algebra \mathfrak{g} is defined by

$$
W:=\left\langle r_{i} \mid i \in I^{r e}\right\rangle \subset G L\left(\mathfrak{h}^{*}\right)
$$

Note that W is a Coxeter group with the canonical generator system $\left\{r_{i} \mid i \in\right.$ $\left.I^{r e}\right\}$, whose length function is denoted by

$$
\ell: W \rightarrow \mathbb{Z}
$$

We call $\Delta^{r e}:=W \cdot \Pi^{r e}$ the set of real roots, and $\Delta^{i m}:=\Delta \backslash \Delta^{r e}$ the set of imaginary roots. (Notice that $W \cdot \Pi^{i m} \subset \Delta^{i m}$.)

Throughout this paper, we assume that a GGCM $A=\left(a_{i j}\right)_{i, j \in I}$ is symmetrizable, i.e., that there exist a diagonal matrix $D=\operatorname{diag}\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ with $\varepsilon_{i}>0$ for all $i \in I$ and a symmetric matrix $B=\left(b_{i j}\right)_{i, j \in I}$ such that $A=D B$. Hence there exists a nondegenerate, symmetric, invariant bilinear form $(\cdot \mid \cdot)$ on $\mathfrak{g}=\mathfrak{g}(A)$. The restriction of this bilinear form $(\cdot \mid \cdot)$ to \mathfrak{h} is again nondegenerate, so that it induces (through $\nu: \mathfrak{h} \rightarrow \mathfrak{h}^{*}$) a nondegenerate, symmetric, W-invariant bilinear form on \mathfrak{h}^{*}, which is also denoted by $(\cdot \mid \cdot)$.

2.2. Certain Lie algebra homology modules

For $\lambda \in \mathfrak{h}^{*}$, let

$$
M(\lambda):=U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}(\lambda)
$$

be the Verma module of highest weight λ over \mathfrak{g}, where $U(\mathfrak{a})$ denotes the universal enveloping algebra of a Lie algebra \mathfrak{a} and $\mathbb{C}(\lambda)$ is the one-dimensional (irreducible) \mathfrak{h}-module of weight λ on which \mathfrak{n}_{+}acts trivially. We then define the \mathfrak{g}-module $L(\lambda)$ to be the unique irreducible quotient of $M(\lambda)$, that is,

$$
L(\lambda):=M(\lambda) / J(\lambda)
$$

where $J(\lambda)$ is the unique maximal proper submodule of $M(\lambda)$.
Let

$$
P_{+}:=\left\{\Lambda \in \mathfrak{h}^{*} \mid \Lambda\left(h_{i}\right) \geq 0 \text { for all } i \in I, \text { and } \Lambda\left(h_{i}\right) \in \mathbb{Z} \text { if } a_{i i}=2\right\}
$$

be the set of dominant integral weights. Now we recall the definition of the Lie algebra homology modules $H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right), j \geq 0$, of \mathfrak{n}_{-}with coefficients in $L(\Lambda)$ for $\Lambda \in P_{+}$. We denote by

$$
\bigwedge^{*} \mathfrak{n}_{-}=\bigoplus_{j \geq 0} \bigwedge^{j} \mathfrak{n}_{-}
$$

the exterior algebra of \mathfrak{n}_{-}, where $\bigwedge^{j} \mathfrak{n}_{-}$is the homogeneous subspace of degree j. Notice that for each $j \geq 0$, the subspace $\bigwedge^{j} \mathfrak{n}_{-}$is an \mathfrak{h}-module under the adjoint action since $\left[\mathfrak{h}, \mathfrak{n}_{-}\right] \subset \mathfrak{n}_{-}$. Let $\Lambda \in P_{+}$and $j \in \mathbb{Z}_{\geq 0}$. We define the vector space $C_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)$ of j-chains by

$$
C_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right):=\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\mathbb{C}} L(\Lambda)
$$

which is a tensor product of \mathfrak{h}-modules. Then the boundary operator d_{j} : $C_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right) \rightarrow C_{j-1}\left(\mathfrak{n}_{-}, L(\Lambda)\right)$ is defined by

$$
\begin{aligned}
& d_{j}\left(x_{1} \wedge \cdots \wedge x_{j} \otimes v\right):=\sum_{i=1}^{j}(-1)^{i}\left(x_{1} \wedge \cdots \wedge \check{x}_{i} \wedge \cdots \wedge x_{j}\right) \otimes x_{i} v \\
& +\sum_{1 \leq r<t \leq j}(-1)^{r+t}\left(\left[x_{r}, x_{t}\right] \wedge x_{1} \wedge \cdots \wedge \check{x}_{r} \wedge \cdots \wedge \check{x}_{t} \wedge \cdots \wedge x_{j}\right) \otimes v
\end{aligned}
$$

where $x_{1}, \ldots, x_{j} \in \mathfrak{n}_{-}, v \in L(\Lambda)$, and the symbols $\check{x}_{i}, \check{x}_{r}, \check{x}_{t}$ indicate terms to be omitted. It is well-known that $\left\{C_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right), d_{j}\right\}_{j \geq 0}$ with $C_{-1}\left(\mathfrak{n}_{-}, L(\Lambda)\right):=$ $\{0\}$ is a chain complex. The j-th homology of this chain complex is called the j-th Lie algebra homology of \mathfrak{n}_{-}with coefficients in $L(\Lambda)$, denoted by $H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)$. Note that for $j \geq 0$, the boundary operator $d_{j}: C_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right) \rightarrow$ $C_{j-1}\left(\mathfrak{n}_{-}, L(\Lambda)\right)$ commutes with the action of \mathfrak{h}, and hence $H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)$ is an \mathfrak{h}-module in the usual way.

3. Twining character formula for $L(\Lambda)$

3.1. Twining characters.

We recall the definition of the twining character of a certain highest weight module, following [FRS] and [FSS] (see also [N4]).

Let $A=\left(a_{i j}\right)_{i, j \in I}$ be a symmetrizable GGCM indexed by a finite set I. A bijection $\omega: I \rightarrow I$ such that

$$
a_{\omega(i), \omega(j)}=a_{i j} \quad \text { for all } \quad i, j \in I
$$

is called a (Dynkin) diagram automorphism, since such ω induces an automorphism of the Dynkin diagram of the GGCM $A=\left(a_{i j}\right)_{i, j \in I}$ as a graph. Let N be the order of $\omega: I \rightarrow I$, and N_{i} the number of elements of the ω-orbit of $i \in I$ in I. We may (and will henceforth) assume that $\varepsilon_{\omega(i)}=\varepsilon_{i}$ for all $i \in I$ in the decomposition $A=D B$ with $D=\operatorname{diag}\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ (see [N4, Section 3.1]).

The diagram automorphism $\omega: I \rightarrow I$ can be extended (cf. [FSS, Section 3.2] and [K, Section 2.2]) to an automorphism of order N of the GKM algebra $\mathfrak{g}=\mathfrak{g}(A)$ associated to the GGCM $A=\left(a_{i j}\right)_{i, j \in I}$ so that

$$
\left\{\begin{array}{ll}
\omega\left(e_{i}\right):=e_{\omega(i)} & \text { for } \quad i \in I, \\
\omega\left(f_{i}\right):=f_{\omega(i)} & \text { for } \quad i \in I, \\
\omega\left(h_{i}\right):=h_{\omega(i)} & \text { for } \quad i \in I, \\
\omega(\mathfrak{h}):=\mathfrak{h}, & \\
(\omega(x) \mid \omega(y))=(x \mid y) & \text { for }
\end{array} \quad x, y \in \mathfrak{g} .\right.
$$

Notice that this $\omega: \mathfrak{g} \rightarrow \mathfrak{g}$ extends to a unique algebra automorphism ω : $U(\mathfrak{g}) \rightarrow U(\mathfrak{g})$ by

$$
\omega\left(x_{1} \cdots x_{k}\right)=\omega\left(x_{1}\right) \cdots \omega\left(x_{k}\right) \quad \text { for } \quad x_{1}, \ldots, x_{k} \in \mathfrak{g} .
$$

We call these two automorphisms ω also diagram automorphisms by abuse of notation.

The restriction of the diagram automorphism $\omega: \mathfrak{g} \rightarrow \mathfrak{g}$ to the Cartan subalgebra \mathfrak{h} induces a dual map $\omega^{*}: \mathfrak{h}^{*} \rightarrow \mathfrak{h}^{*}$ by

$$
\omega^{*}(\lambda)(h):=\lambda(\omega(h)) \quad \text { for } \quad \lambda \in \mathfrak{h}^{*}, h \in \mathfrak{h} .
$$

We set

$$
\left(\mathfrak{h}^{*}\right)^{0}:=\left\{\lambda \in \mathfrak{h}^{*} \mid \omega^{*}(\lambda)=\lambda\right\},
$$

and call an element of $\left(\mathfrak{h}^{*}\right)^{0}$ a symmetric weight. Note that we may (and will henceforth) take an element $\rho \in\left(\mathfrak{h}^{*}\right)^{0}$ (called a symmetric Weyl vector) such that

$$
\rho\left(h_{i}\right)=(1 / 2) \cdot a_{i i} \quad \text { for all } \quad i \in I
$$

Let $\lambda \in\left(\mathfrak{h}^{*}\right)^{0}$ be a symmetric weight, and let $V(\lambda)$ be either the Verma module $M(\lambda)$ or the irreducible highest weight module $L(\lambda)$ of highest weight λ. Then there exists a unique linear automorphism $\tau_{\omega}: V(\lambda) \rightarrow V(\lambda)$ such that

$$
\tau_{\omega}(x v)=\omega^{-1}(x) \tau_{\omega}(v) \quad \text { for } \quad x \in \mathfrak{g}, v \in V(\lambda),
$$

and

$$
\tau_{\omega}(v)=v \quad \text { for } \quad v \in V(\lambda)_{\lambda},
$$

where $V(\lambda)_{\lambda}$ is the (one-dimensional) highest weight space of $V(\lambda)$.

Remark 3.1. Because $M(\lambda)=U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}(\lambda)$ by definition, we can take the linear automorphism $\omega^{-1} \otimes \mathrm{id}: U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}(\lambda) \rightarrow U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}(\lambda)$ for $\tau_{\omega}: M(\lambda) \rightarrow M(\lambda)$ above. Moreover, since this map $\omega^{-1} \otimes \mathrm{id}: M(\lambda) \rightarrow M(\lambda)$ stabilizes the unique maximal proper submodule $J(\lambda)$ of $M(\lambda)$, we can take for $\tau_{\omega}: L(\lambda) \rightarrow L(\lambda)$ above the linear map $M(\lambda) / J(\lambda) \rightarrow M(\lambda) / J(\lambda)$ induced from $\omega^{-1} \otimes \mathrm{id}: M(\lambda) \rightarrow M(\lambda)$.

Remark 3.2. Let V be an \mathfrak{h}-module admitting a weight space decomposition

$$
V=\bigoplus_{\chi \in \mathfrak{h}^{*}} V_{\chi}
$$

with finite-dimensional weight spaces V_{χ}, and let $f: V \rightarrow V$ be a linear map such that $f(h v)=\omega^{-1}(h) f(v)$ for $h \in \mathfrak{h}, v \in V$. Then it follows that

$$
f\left(V_{\chi}\right) \subset V_{\omega^{*}(\chi)}
$$

for all $\chi \in \mathfrak{h}^{*}$. Thus we define a formal sum:

$$
\operatorname{Tr}_{V} f \exp :=\sum_{\chi \in\left(\mathfrak{h}^{*}\right)^{0}} \operatorname{Tr}\left(\left.f\right|_{V_{\chi}}\right) e(\chi),
$$

where V_{χ} is the χ-weight space of V for a symmetric weight $\chi \in\left(\mathfrak{h}^{*}\right)^{0}$.

Let $\lambda \in\left(\mathfrak{h}^{*}\right)^{0}$. The twining character $\operatorname{ch}^{\omega}(V(\lambda))$ of $V(\lambda)(=M(\lambda), L(\lambda))$ is defined to be the formal sum

$$
\operatorname{ch}^{\omega}(V(\lambda)):=\operatorname{Tr}_{V(\lambda)} \tau_{\omega} \exp =\sum_{\chi \in\left(\mathfrak{h}^{*}\right)^{0}} \operatorname{Tr}\left(\left.\tau_{\omega}\right|_{V(\lambda)_{\chi}}\right) e(\chi) .
$$

3.2. Twining character formulas for $M(\lambda)$ and for $L(\Lambda)$.

We review the twining character formulas for $M(\lambda)$ of symmetric highest weight λ and for $L(\Lambda)$ of symmetric, dominant integral highest weight Λ, which are the main results of [FSS] and [FRS].

We choose a set of representatives \widehat{I} of the ω-orbits in I, and then introduce the following subset of \widehat{I} :

$$
\breve{I}:=\left\{\begin{array}{l|l}
i \in \widehat{I} & \sum_{k=0}^{N_{i}-1} a_{i, \omega^{k}(i)}=1,2
\end{array}\right\} .
$$

We define the following subgroup of the Weyl group W :

$$
\widetilde{W}:=\left\{w \in W \mid \omega^{*} w=w \omega^{*}\right\} .
$$

We know from [FRS, Proposition 3.3] that the group \widetilde{W} is a Coxeter group with the canonical generator system $\left\{w_{i} \mid i \in \breve{I}\right\}$, where for $i \in \breve{I}$,

$$
w_{i}:= \begin{cases}\prod_{k=0}^{N_{i} / 2-1}\left(r_{\omega^{k}(i)} r_{\omega^{k+N_{i} / 2}(i)} r_{\omega^{k}(i)}\right) & \text { if } \sum_{\substack{k=0 \\ N_{i}-1}} a_{i, \omega^{k}(i)}=1, \\ \prod_{k=0}^{N_{i}-1} r_{\omega^{k}(i)} & \text { if } \sum_{k=0}^{N_{i}-1} a_{i, \omega^{k}(i)}=2 .\end{cases}
$$

Here we note that if $\sum_{k=0}^{N_{i}-1} a_{i, \omega^{k}(i)}=1$, then N_{i} is an even integer. We denote the length function of \widetilde{W} by

$$
\widehat{\ell}: \widetilde{W} \rightarrow \mathbb{Z}
$$

We also recall from [FRS, Equation (1) on p. 529] that for a symmetric weight $\lambda \in\left(\mathfrak{h}^{*}\right)^{0}$ and $i \in \breve{I}$,

$$
w_{i}(\lambda)=\lambda-\frac{2 s_{i}\left(\lambda \mid \alpha_{i}\right)}{\left(\alpha_{i} \mid \alpha_{i}\right)} \sum_{k=0}^{N_{i}-1} \alpha_{\omega^{k}(i)}
$$

where $s_{i}:=2 / \sum_{k=0}^{N_{i}-1} a_{i, \omega^{k}(i)}$.
Let $\Lambda \in P_{+} \cap\left(\mathfrak{h}^{*}\right)^{0}$ be a symmetric, dominant integral weight. We denote by $\mathcal{S}(\Lambda)$ the set of sums of distinct, pairwise perpendicular, imaginary simple roots perpendicular to Λ. Then any element $\beta \in \mathcal{S}(\Lambda) \cap\left(\mathfrak{h}^{*}\right)^{0}$ can be written in the form $\beta=\sum_{i \in \hat{I}} k_{i} \beta_{i}$, where $\beta_{i}:=\sum_{k=0}^{N_{i}-1} \alpha_{\omega^{k}(i)} \in\left(\mathfrak{h}^{*}\right)^{0}$ and $k_{i}=0,1$ for $i \in \widehat{I}$. For such $\beta \in \mathcal{S}(\Lambda) \cap\left(\mathfrak{h}^{*}\right)^{0}$, we set

$$
\widehat{\mathrm{ht}}(\beta):=\sum_{i \in \widehat{I}} k_{i},
$$

while we write $\operatorname{ht}(\alpha):=\sum_{i \in I} m_{i}$ for $\alpha=\sum_{i \in I} m_{i} \alpha_{i} \in Q_{+}$. Set for $(w, \beta) \in$ $W \times \mathcal{S}(\Lambda)$,

$$
(w, \beta) \circ \Lambda:=w(\Lambda+\rho-\beta)-\rho,
$$

where ρ is a (fixed) symmetric Weyl vector.
We have the following twining character formulas.
Theorem 3.3 ([FRS, Theorem 3.1]). Let $\lambda \in\left(\mathfrak{h}^{*}\right)^{0}$ be a symmetric weight. Then

$$
\operatorname{ch}^{\omega}(M(\lambda))=e(\lambda) \cdot\left(\sum_{\substack{w \in \widetilde{W} \\ \beta \in \mathcal{S}(0) \cap\left(\mathfrak{h}^{*}\right)^{0}}}(-1)^{\widehat{\ell}(w)+\widehat{\mathrm{ht}}(\beta)} e((w, \beta) \circ 0)\right)^{-1}
$$

Theorem 3.4 ([FRS, Theorem 3.1]). Let $\Lambda \in P_{+} \cap\left(\mathfrak{h}^{*}\right)^{0}$ be a symmetric, dominant integral weight. Then

$$
\operatorname{ch}^{\omega}(L(\Lambda))=\frac{\sum_{\substack{w \in \widetilde{W} \\ \beta \in \mathcal{S}(\Lambda) \cap\left(h^{*}\right)^{0}}}(-1)^{\widehat{\ell}(w)+\widehat{h t}(\beta)} e((w, \beta) \circ \Lambda)}{\sum_{\substack{w \in \widetilde{W} \\ \beta \in \mathcal{S}(0) \cap\left(\mathfrak{h}^{*}\right)^{0}}}(-1)^{\widehat{\ell}(w)+\widehat{h t}(\beta)} e((w, \beta) \circ 0)} .
$$

4. Twining character formula for $H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)$

4.1. Setting.

Since the inverse $\omega^{-1}: \mathfrak{g} \rightarrow \mathfrak{g}$ of the diagram automorphism $\omega: \mathfrak{g} \rightarrow \mathfrak{g}$ stabilizes \mathfrak{n}_{-}, i.e., $\omega^{-1}\left(\mathfrak{n}_{-}\right)=\mathfrak{n}_{-}$, it induces an algebra automorphism

$$
\bigwedge^{*} \omega^{-1}: \bigwedge^{*} \mathfrak{n}_{-} \rightarrow \bigwedge^{*} \mathfrak{n}_{-}
$$

of the exterior algebra $\Lambda^{*} \mathfrak{n}_{-}$of \mathfrak{n}_{-}. The restriction of the $\Lambda^{*} \omega^{-1}: \Lambda^{*} \mathfrak{n}_{-} \rightarrow$ $\Lambda^{*} \mathfrak{n}_{-}$to each homogeneous subspace $\Lambda^{j} \mathfrak{n}_{-}$for $j \geq 0$ is denoted by

$$
\bigwedge^{j} \omega^{-1}: \bigwedge^{j} \mathfrak{n}_{-} \rightarrow \bigwedge^{j} \mathfrak{n}_{-}
$$

Let $\Lambda \in P_{+} \cap\left(\mathfrak{h}^{*}\right)^{0}$ be a symmetric, dominant integral weight, and let $\tau_{\omega}: L(\Lambda) \rightarrow L(\Lambda)$ be the linear automorphism in Section 3.1. We define a linear automorphism

$$
\Phi:=\left(\bigwedge^{*} \omega^{-1}\right) \otimes \tau_{\omega}:\left(\bigwedge^{*} \mathfrak{n}_{-}\right) \otimes_{\mathbb{C}} L(\Lambda) \rightarrow\left(\bigwedge^{*} \mathfrak{n}_{-}\right) \otimes_{\mathbb{C}} L(\Lambda)
$$

and for $j \geq 0$, we define a linear automorphism

$$
\Phi_{j}:=\left(\bigwedge^{j} \omega^{-1}\right) \otimes \tau_{\omega}:\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\mathbb{C}} L(\Lambda) \rightarrow\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\mathbb{C}} L(\Lambda)
$$

Let $j \geq 0$. It is easily seen that

$$
\begin{equation*}
\Phi_{j}(h v)=\omega^{-1}(h) \Phi_{j}(v) \tag{4.1}
\end{equation*}
$$

for $h \in \mathfrak{h}$ and $v \in\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\mathbb{C}} L(\Lambda)$. It also follows that for $h \in \mathfrak{h}$ and $v \in$ $\left(\bigwedge^{*} \mathfrak{n}_{-}\right) \otimes_{\mathbb{C}} L(\Lambda)$,

$$
\Phi(h v)=\omega^{-1}(h) \Phi(v) .
$$

Moreover, we have the following commutative diagram for each $j \geq 0$:

where $d_{j}:\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\mathbb{C}} L(\Lambda) \rightarrow\left(\bigwedge^{j-1} \mathfrak{n}_{-}\right) \otimes_{\mathbb{C}} L(\Lambda)$ is the boundary operator in Section 2.2. Hence the linear automorphism $\Phi_{j}:\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\mathbb{C}} L(\Lambda) \rightarrow\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\mathbb{C}}$ $L(\Lambda)$ induces in the usual way a linear automorphism

$$
\bar{\Phi}_{j}: H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right) \rightarrow H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)
$$

for $j \geq 0$. Notice that for $j \geq 0$ and $h \in \mathfrak{h}, v \in H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)$,

$$
\bar{\Phi}_{j}(h v)=\omega^{-1}(h) \bar{\Phi}_{j}(v)
$$

by (4.1).

4.2. Main result of [N5].

We define the twining character $\operatorname{ch}^{\omega}\left(H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)\right)$ of the Lie algebra homology module $H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)$ for each $j \geq 0$ by

$$
\operatorname{ch}^{\omega}\left(H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)\right):=\operatorname{Tr}_{H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)} \bar{\Phi}_{j} \exp ,
$$

where $\bar{\Phi}_{j}: H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right) \rightarrow H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)$ is as in Section 4.1.
The following is a summary of the main result of [N5].
Theorem 4.1 (see [N5, Section 3.2]). Let $\Lambda \in P_{+} \cap\left(\mathfrak{h}^{*}\right)^{0}$ be a symmetric, dominant integral weight, and let $j \geq 0$. Then

$$
\operatorname{ch}^{\omega}\left(H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)\right)=\sum_{\substack{w \in \widetilde{W} \\ \beta \in \mathcal{S}(\Lambda) \cap\left(\mathfrak{h}^{*}\right)^{0} \\ \ell(w)+\operatorname{ht}(\beta)=j}} c_{(w, \beta)} e((w, \beta) \circ \Lambda),
$$

where the scalar $c_{(w, \beta)} \in \mathbb{C}$ is defined by

$$
c_{(w, \beta)}:=\operatorname{Tr}\left(\left.\bar{\Phi}_{j}\right|_{\left(H_{j}\left(\mathbf{n}_{-}, L(\Lambda)\right)\right)_{(w, \beta) \circ \Lambda}}\right) .
$$

Moreover, we have

$$
\begin{aligned}
c_{(w, \beta)} & =\operatorname{Tr}\left(\left.\bar{\Phi}_{j}\right|_{\left(H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)\right)_{(w, \beta) \circ \Lambda}}\right) \\
& =\operatorname{Tr}\left(\left.\Phi_{j}\right|_{\left.\left(\left(\Lambda^{j} \mathfrak{n}_{-}\right) \otimes_{c} L(\Lambda)\right)_{(w, \beta)<\Lambda}\right)}\right) \\
& =(-1)^{(\ell(w)+\operatorname{ht}(\beta))-(\widehat{\ell(w)+h t}(\beta))} .
\end{aligned}
$$

Remark 4.2. Here we recall from the proof of [N2, Proposition 3.3] the construction of a nonzero weight vector $v_{(w, \beta)} \in\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\mathbb{C}} L(\Lambda)$ of weight $\mu=(w, \beta) \circ \Lambda$. First we note that $w(\rho)-\rho=-\sum_{\alpha \in \Delta_{w}} \alpha$ and that the number of elements of the set Δ_{w} equals $\ell(w)$, where $\Delta_{w}:=\left\{\alpha \in \Delta_{+} \mid w^{-1}(\alpha) \in \Delta_{-}\right\}$. Second we write β in the form $\beta=\sum_{k=1}^{m} \alpha_{i_{k}}$, where $m=\operatorname{ht}(\beta), \alpha_{i_{k}} \in \Pi^{i m}$, and $i_{r} \neq i_{t}$ for $1 \leq r \neq t \leq m$. Now we take nonzero root vectors $F_{k} \in \mathfrak{g}_{-w\left(\alpha_{i_{k}}\right)}$
for $1 \leq k \leq m, F_{\alpha} \in \mathfrak{g}_{-\alpha}$ for $\alpha \in \Delta_{w}$, and a nonzero weight vector $v_{w(\Lambda)} \in$ $L(\Lambda)_{w(\Lambda)}$ of weight $w(\Lambda)$. Then we set

$$
v_{(w, \beta)}:=\left(F_{1} \wedge \cdots \wedge F_{m}\right) \wedge\left(\bigwedge_{\alpha \in \Delta_{w}} F_{\alpha}\right) \otimes v_{w(\Lambda)} \in\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\mathbb{C}} L(\Lambda)
$$

We know that the vector $v_{(w, \beta)} \in\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\mathbb{C}} L(\Lambda)$ is nonzero and of weight $\mu=(w, \beta) \circ \Lambda$. Moreover, we know that the image $\bar{v}_{(w, \beta)}$ of the vector $v_{(w, \beta)} \in$ $\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\mathbb{C}} L(\Lambda)$ of weight μ by the natural quotient map ${ }^{-}:\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\mathbb{C}} L(\Lambda) \rightarrow$ $H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)$ is nonzero, and hence that the μ-weight space $\left(H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)\right)_{\mu}$ of $H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)$ is spanned by the vector $\bar{v}_{(w, \beta)}$, i.e.,

$$
\left(H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)\right)_{\mu}=\mathbb{C} \bar{v}_{(w, \beta)} .
$$

5. New proof of the twining character formulas

5.1. Construction of a resolution.

In order to give a new proof of the twining character formulas for $M(\lambda)$ and for $L(\Lambda)$, we recall from [N 2] an existence theorem of a resolution of $L(\Lambda)$ of Bernstein-Gelfand-Gelfand type.

Theorem 5.1 ([N2, Theorem 3.4]). Let $\Lambda \in P_{+} \cap\left(\mathfrak{h}^{*}\right)^{0}$ be a symmetric, dominant integral weight. Then there exists an exact sequence of \mathfrak{g}-modules and \mathfrak{g}-module maps:

$$
0 \longleftarrow L(\Lambda) \stackrel{\partial_{0}}{\longleftarrow} C_{0}(\Lambda) \stackrel{\partial_{1}}{\longleftarrow} C_{1}(\Lambda) \stackrel{\partial_{2}}{\rightleftarrows} \cdots \stackrel{\partial_{p}}{\longleftarrow} C_{p}(\Lambda) \stackrel{\partial_{p+1}}{\rightleftarrows} \cdots,
$$

where for each $p \geq 0$, the \mathfrak{g}-module $C_{p}(\Lambda)$ has an increasing \mathfrak{g}-module filtration of finite length

$$
0=V_{0} \subset V_{1} \subset V_{2} \subset \cdots \subset V_{k_{p}}=C_{p}(\Lambda)
$$

such that the quotient module V_{i} / V_{i-1} is isomorphic to a Verma module $M\left(\lambda_{i}\right)$ of highest weight λ_{i} for $1 \leq i \leq k_{p}$. Moreover, for each $p \geq 0$, the set of highest weights $\left\{\lambda_{i} \mid 1 \leq i \leq k_{p}\right\}$ is equal to the set

$$
\{(w, \beta) \circ \Lambda \mid w \in W, \beta \in \mathcal{S}(\Lambda) \text { with } \ell(w)+\operatorname{ht}(\beta)=p\}
$$

and $\lambda_{i} \neq \lambda_{j}$ if $1 \leq i \neq j \leq k_{p}$.

By investigating the construction of this resolution, following [N2] and [GL], we will give a new proof of Theorems 3.3 and 3.4. First we have the following exact sequence of \mathfrak{g}-modules and \mathfrak{g}-module maps:

$$
0 \longleftarrow L(\Lambda) \stackrel{b_{0}}{\longleftarrow} B_{0}(\Lambda) \stackrel{b_{1}}{\longleftarrow} B_{1}(\Lambda) \stackrel{b_{2}}{\longleftarrow} \cdots \stackrel{b_{p}}{\longleftarrow} B_{p}(\Lambda) \stackrel{b_{p+1}}{\longleftarrow} \cdots
$$

where for $p \geq 0$, the \mathfrak{g}-module $B_{p}(\Lambda)$ is defined by

$$
B_{p}(\Lambda):=U(\mathfrak{g}) \otimes_{U(\mathfrak{b})}\left(\left(\bigwedge^{p}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda)\right)
$$

Furthermore, we have the following commutative diagram of \mathfrak{g}-modules and \mathfrak{g}-module maps for $p \geq 0$:

$$
\begin{align*}
& \left(U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \Lambda^{p}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda) \longrightarrow U(\mathfrak{g}) \otimes_{U(\mathfrak{b})}\left(\left(\bigwedge^{p}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda)\right) \tag{5.1}\\
& d_{p} \otimes \mathrm{id} \downarrow \downarrow \downarrow b_{p} \\
& \left(U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \bigwedge^{p-1}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda) \longrightarrow U(\mathfrak{g}) \otimes_{U(\mathfrak{b})}\left(\left(\bigwedge^{p-1}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda)\right) .
\end{align*}
$$

Here the \mathfrak{g}-module map $d_{p}: U(\mathfrak{g}) \otimes_{U(\mathfrak{b})}\left(\bigwedge^{p}(\mathfrak{g} / \mathfrak{b})\right) \rightarrow U(\mathfrak{g}) \otimes_{U(\mathfrak{b})}\left(\bigwedge^{p-1}(\mathfrak{g} / \mathfrak{b})\right)$ is (well-) defined by

$$
\begin{aligned}
& d_{p}\left(x \otimes \bar{y}_{1} \wedge \cdots \wedge \bar{y}_{p}\right):=\sum_{i=1}^{p}(-1)^{i+1}\left(x y_{i}\right) \otimes \bar{y}_{1} \wedge \cdots \wedge \bar{y}_{i} \wedge \cdots \wedge \bar{y}_{p} \\
& \quad+\sum_{1 \leq r<t \leq p}(-1)^{r+t} x \otimes \overline{\left[y_{r}, y_{t}\right]} \wedge \bar{y}_{1} \wedge \cdots \wedge \check{\bar{y}}_{r} \wedge \cdots \wedge \bar{y}_{t} \wedge \cdots \wedge \bar{y}_{p}
\end{aligned}
$$

where $x \in U(\mathfrak{g}), y_{1}, \ldots, y_{p} \in \mathfrak{g}$, and ${ }^{-}: \mathfrak{g} \rightarrow \mathfrak{g} / \mathfrak{b}$ is the natural quotient map. Note that for $p=0$, the map $d_{0}: U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C} \rightarrow \mathbb{C}$ is defined by the condition that $d_{0}(x \otimes 1)$ is the constant term of $x \in U(\mathfrak{g})$.

Let $p \geq 0$. We define a linear automorphism Ψ_{p} of $U(\mathfrak{g}) \otimes_{U(\mathfrak{b})}\left(\left(\bigwedge^{p}(\mathfrak{g} / \mathfrak{b})\right)\right.$ $\left.\otimes_{\mathbb{C}} L(\Lambda)\right)$ by

$$
\Psi_{p}:=\omega^{-1} \otimes\left(\left(\bigwedge^{p} \bar{\omega}^{-1}\right) \otimes \tau_{\omega}\right)
$$

and a linear automorphism Ψ_{p}^{\prime} of $\left(U(\mathfrak{g}) \otimes_{U(\mathfrak{b})}\left(\bigwedge^{p}(\mathfrak{g} / \mathfrak{b})\right)\right) \otimes_{\mathbb{C}} L(\Lambda)$ by

$$
\Psi_{p}^{\prime}:=\left(\omega^{-1} \otimes\left(\bigwedge^{p} \bar{\omega}^{-1}\right)\right) \otimes \tau_{\omega}
$$

where $\tau_{\omega}: L(\Lambda) \rightarrow L(\Lambda)$ is the linear automorphism in Section 3.1, $\omega: U(\mathfrak{g}) \rightarrow$ $U(\mathfrak{g})$ is the unique algebra automorphism of $U(\mathfrak{g})$ extending the diagram automorphism $\omega: \mathfrak{g} \rightarrow \mathfrak{g}$, and $\bar{\omega}: \mathfrak{g} / \mathfrak{b} \rightarrow \mathfrak{g} / \mathfrak{b}$ is the linear automorphism induced from $\omega: \mathfrak{g} \rightarrow \mathfrak{g}$.

Remark 5.2. Let $p \geq 0$. Then

$$
\begin{aligned}
& \Psi_{p}(x v)=\omega^{-1}(x) \Psi_{p}(v) \quad \text { for } x \in \mathfrak{g}, v \in U(\mathfrak{g}) \otimes_{U(\mathfrak{b})}\left(\left(\bigwedge^{p}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda)\right), \\
& \Psi_{p}^{\prime}(x v)=\omega^{-1}(x) \Psi_{p}^{\prime}(v) \quad \text { for } x \in \mathfrak{g}, v \in\left(U(\mathfrak{g}) \otimes_{U(\mathfrak{b})}\left(\bigwedge^{p}(\mathfrak{g} / \mathfrak{b})\right)\right) \otimes_{\mathbb{C}} L(\Lambda) .
\end{aligned}
$$

Lemma 5.3. Let $p \geq 0$. Then the following diagram is commutative.

Proof. It immediately follows from the definitions of d_{p} and Ψ_{p}^{\prime} for $p \geq 0$ that the following diagram commutes:

$$
\begin{align*}
&\left(U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \Lambda^{p}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda) \xrightarrow{\Psi_{p}^{\prime}}\left(U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \Lambda^{p}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda) \tag{5.2}\\
& d_{p} \otimes \mathrm{id} \downarrow \\
&\left(U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \Lambda^{p-1}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda) \underset{\Psi_{p-1}^{\prime}}{\longrightarrow}\left(U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \Lambda^{p-1}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda) .
\end{align*}
$$

In addition, by using the explicit form of the isomorphism

$$
\left(U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \bigwedge^{p}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda) \cong U(\mathfrak{g}) \otimes_{U(\mathfrak{b})}\left(\left(\bigwedge^{p}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda)\right)
$$

described in the proof of [GL, Proposition 1.7], we can easily check that the following diagram is commutative:

$$
\begin{gather*}
\left(U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \Lambda^{p}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda) \xrightarrow{\simeq} U(\mathfrak{g}) \otimes_{U(\mathfrak{b})}\left(\left(\bigwedge^{p}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda)\right) \tag{5.3}\\
\Psi_{p}^{\prime} \downarrow \\
\left(U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \Lambda^{p}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda) \longrightarrow U(\mathfrak{g}) \otimes_{U(\mathfrak{b})}\left(\left(\bigwedge^{p}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda)\right) .
\end{gather*}
$$

The lemma now follows from the commutativity of these diagrams (5.2) and (5.3) together with the diagram (5.1).

To explain the definition of $C_{p}(\Lambda)$ for $p \geq 0$, we need some more notation. The (generalized) Casimir operator Ω in [K, Chapter 2] is defined by

$$
\Omega=2 \nu^{-1}(\rho)+\sum_{i=1}^{\operatorname{dim}_{\mathbb{C}} \mathfrak{h}} u^{i} u_{i}+2 \sum_{\alpha \in \Delta_{+}} \sum_{i=1}^{\operatorname{dim}_{\mathbb{C}} \mathfrak{g}_{\alpha}} e_{-\alpha}^{(i)} e_{\alpha}^{(i)},
$$

where $\left\{u^{i}\right\}_{i=1}^{\operatorname{dim}_{\mathfrak{C}} \mathfrak{h}}$ and $\left\{u_{i}\right\}_{i=1}^{\operatorname{dim}_{\mathcal{C}} \mathfrak{h}}$ are dual bases of \mathfrak{h} with respect to the bilinear form $(\cdot \mid \cdot)$, and for each $\alpha \in \Delta_{+},\left\{e_{-\alpha}^{(i)}\right\}_{i=1}^{\operatorname{dim}_{C} \mathfrak{g}_{\alpha}}$ and $\left\{e_{\alpha}^{(i)}\right\}_{i=1}^{\operatorname{dim}_{C} \mathfrak{g}_{\alpha}}$ are bases of $\mathfrak{g}_{-\alpha}$
and \mathfrak{g}_{α} that are dual to each other with respect to $(\cdot \mid \cdot)$. Let V be a \mathfrak{g}-module admitting a weight space decomposition

$$
V=\bigoplus_{\chi \in \mathfrak{h}^{*}} V_{\chi}
$$

such that $\operatorname{dim}_{\mathbb{C}} V_{\chi}<\infty$ for all $\chi \in \mathfrak{h}^{*}$ and such that all weights of V lie in a set $\lambda-Q_{+}$for some $\lambda \in \mathfrak{h}^{*}$. Then we know from [GL, Section 4] that the module V decomposes into a direct sum of \mathfrak{g}-modules

$$
V=\bigoplus_{c \in \Theta(V)} V_{(c)}
$$

where

$$
\Theta(V):=\{c \in \mathbb{C} \mid \Omega(v)=c v \quad \text { for some } 0 \neq v \in V\}
$$

and for $c \in \Theta(V)$,

$$
V_{(c)}:=\left\{v \in V \mid(\Omega-c)^{n}(v)=0 \quad \text { for some } n \in \mathbb{Z}_{\geq 0}\right\} .
$$

Lemma 5.4. Let V be a \mathfrak{g}-module above. We further assume that there exists a linear automorphism $f: V \rightarrow V$ such that

$$
f(x v)=\omega^{-1}(x) f(v) \quad \text { for } x \in \mathfrak{g}, v \in V
$$

Then, as operators on V,

$$
f \circ \Omega=\Omega \circ f
$$

Proof. Let $v \in V$. Then we have

$$
\begin{aligned}
f(\Omega(v))= & 2 f\left(\nu^{-1}(\rho) v\right)+\sum_{i=1}^{\operatorname{dim}_{\mathcal{C}} \mathfrak{h}} f\left(u^{i} u_{i} v\right)+2 \sum_{\alpha \in \Delta_{+}} \sum_{i=1}^{\operatorname{dim}_{\mathbb{C}} \mathfrak{g}_{\alpha}} f\left(e_{-\alpha}^{(i)} e_{\alpha}^{(i)} v\right) \\
= & 2 \omega^{-1}\left(\nu^{-1}(\rho)\right) f(v)+\sum_{i=1}^{\operatorname{dim}_{\mathbb{C}} \mathfrak{h}} \omega^{-1}\left(u^{i}\right) \omega^{-1}\left(u_{i}\right) f(v) \\
& +2 \sum_{\alpha \in \Delta_{+}} \sum_{i=1}^{\operatorname{dim}_{\mathbb{C}} \mathfrak{g}_{\alpha}} \omega^{-1}\left(e_{-\alpha}^{(i)}\right) \omega^{-1}\left(e_{\alpha}^{(i)}\right) f(v) .
\end{aligned}
$$

Recall that $(\omega(x) \mid \omega(y))=(x \mid y)$ for $x, y \in \mathfrak{g}$, and $\omega(\mathfrak{h})=\mathfrak{h}$. So, $\left\{\omega^{-1}\left(u^{i}\right)\right\}_{i=1}^{\text {dimc }} \mathfrak{h}$ and $\left\{\omega^{-1}\left(u_{i}\right)\right\}_{i=1}^{\operatorname{dim}_{\mathrm{C}} \mathfrak{h}}$ are dual bases of \mathfrak{h} with respect to $(\cdot \mid \cdot)$, and for $\alpha \in$ $\Delta_{+},\left\{\omega^{-1}\left(e_{-\alpha}^{(i)}\right)\right\}_{i=1}^{\operatorname{dim}_{\mathbb{C}}} \mathfrak{g}_{\alpha}$ and $\left\{\omega^{-1}\left(e_{\alpha}^{(i)}\right)\right\}_{i=1}^{\operatorname{dim}_{\mathbb{C}} \mathfrak{g}_{\alpha}}$ are bases of $\mathfrak{g}_{-\omega^{*}(\alpha)}$ and $\mathfrak{g}_{\omega^{*}(\alpha)}$ that are dual to each other with respect to $(\cdot \mid \cdot)$ since $\omega^{-1}\left(\mathfrak{g}_{\alpha}\right)=\mathfrak{g}_{\omega^{*}(\alpha)}$. In addition, $\omega^{-1}\left(\nu^{-1}(\rho)\right)=\nu^{-1}\left(\omega^{*}(\rho)\right)=\nu^{-1}(\rho)$. Because the Casimir operator Ω is independent of the choice of dual bases, we conclude that

$$
f(\Omega(v))=\Omega(f(v))
$$

This proves the lemma.

We set for $p \geq 0$,

$$
C_{p}(\Lambda):=\left(B_{p}(\Lambda)\right)_{c_{0}}
$$

where $c_{0}:=(\Lambda+\rho \mid \Lambda+\rho)-(\rho \mid \rho)$. It follows from Lemma 5.4 that for $p \geq 0$,

$$
\Psi_{p} \circ \Omega=\Omega \circ \Psi_{p}
$$

as operators on $B_{p}(\Lambda)$. Hence the linear automorphism $\Psi_{p}: B_{p}(\Lambda) \rightarrow B_{p}(\Lambda)$ stabilizes the \mathfrak{g}-submodule $C_{p}(\Lambda)$ of $B_{p}(\Lambda)$ for $p \geq 0$, that is,

$$
\Psi_{p}\left(C_{p}(\Lambda)\right)=C_{p}(\Lambda)
$$

Thus we obtain the exact sequence of Theorem 5.1. Note that the map ∂_{p} : $C_{p}(\Lambda) \rightarrow C_{p-1}(\Lambda)$ is the restriction of the map $b_{p}: B_{p}(\Lambda) \rightarrow B_{p-1}(\Lambda)$ for $p \geq 0$. In particular, the following diagram commutes for $p \geq 0$:

Therefore we can apply an Euler-Poincaré principle to the exact sequence of Theorem 5.1 to obtain that

$$
\operatorname{ch}^{\omega}(L(\Lambda))=\sum_{p \geq 0}(-1)^{p} \operatorname{ch}^{\omega}\left(C_{p}(\Lambda)\right),
$$

where $\operatorname{ch}^{\omega}\left(C_{p}(\Lambda)\right)$ for $p \geq 0$ is defined by

$$
\operatorname{ch}^{\omega}\left(C_{p}(\Lambda)\right):=\operatorname{Tr}_{C_{p}(\Lambda)} \Psi_{p} \exp
$$

5.2. New proof.

Now we compute the twining characters $\operatorname{ch}^{\omega}\left(C_{p}(\Lambda)\right), p \geq 0$. For this purpose, we have to modify the original construction of the \mathfrak{g}-module filtration of $C_{p}(\Lambda)$ for $p \geq 0$. By carefully reading the proof of [GL, Propositions 5.5 and 6.4], we see that for each $p \geq 0$, there exists a \mathfrak{b}-module filtration of $\left(\bigwedge^{p}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda)$

$$
0=N_{0} \subset N_{1} \subset N_{2} \subset \cdots \subset\left(\bigwedge^{p}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda)
$$

such that:

- $\left(\left(\bigwedge^{p} \bar{\omega}^{-1}\right) \otimes \tau_{\omega}\right)\left(N_{i}\right) \subset N_{i}$ for $i \geq 0 ;$
- $\mathfrak{n}_{+} \cdot N_{i} \subset N_{i-1}$ for $i \geq 1$;
- $\operatorname{dim}_{\mathbb{C}}\left(N_{i} / N_{i-1}\right)<\infty$ for $i \geq 1$;
- $\left(\bigwedge^{p}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda)=\bigcup_{i \geq 0} N_{i} ;$
- $\bigoplus_{i \geq 1}\left(N_{i} / N_{i-1}\right) \cong\left(\bigwedge^{p} \mathfrak{n}_{-}\right) \otimes_{\mathbb{C}} L(\Lambda)$ as \mathfrak{h}-modules.
(Notice that the N_{i} 's are defined as in the proof of [GL, Proposition 5.5].)
We write for $i \geq 1$,

$$
N_{i} / N_{i-1}=\bigoplus_{k=1}^{l_{i}} \mathbb{C} \bar{v}_{k}
$$

where $v_{k} \in N_{i}$ is a weight vector of $\left(\bigwedge^{p}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda)$ of weight λ_{k}, and \bar{v}_{k} is its image by the natural quotient map ${ }^{-}: N_{i} \rightarrow N_{i} / N_{i-1}$. We set

$$
L_{i}:=U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} N_{i}
$$

for $i \geq 0$. Then, by [GL, Proposition 1.10], we obtain a \mathfrak{g}-module filtration of $B_{p}(\Lambda)=U(\mathfrak{g}) \otimes_{U(\mathfrak{b})}\left(\left(\bigwedge^{p}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda)\right)$

$$
0=L_{0} \subset L_{1} \subset L_{2} \subset \cdots \subset B_{p}(\Lambda)
$$

such that:

- $\Psi_{p}\left(L_{i}\right) \subset L_{i}$ for $i \geq 0$;
- $L_{i} / L_{i-1} \cong U(\mathfrak{g}) \otimes_{U(\mathfrak{b})}\left(N_{i} / N_{i-1}\right)$ as \mathfrak{g}-modules for $i \geq 1$;
- $B_{p}(\Lambda)=\bigcup_{i \geq 0} L_{i}$.

Here we note that because N_{i} / N_{i-1} is a trivial \mathfrak{n}_{+}-module, the quotient \mathfrak{g} module L_{i} / L_{i-1} is isomorphic to a direct sum of finitely many Verma modules $M\left(\lambda_{k}\right), 1 \leq k \leq l_{i}$.

We set for $p \geq 0$,

$$
V_{i}^{\prime}:=\left(L_{i}\right)_{c_{0}},
$$

where $c_{0}=(\Lambda+\rho \mid \Lambda+\rho)-(\rho \mid \rho)$. Then, in the same way as [GL, Proposition 4.7], we get a \mathfrak{g}-module filtration of $C_{p}(\Lambda)$

$$
\begin{equation*}
0=V_{0}^{\prime} \subset V_{1}^{\prime} \subset V_{2}^{\prime} \subset \cdots \subset C_{p}(\Lambda) \tag{5.4}
\end{equation*}
$$

such that:

- $C_{p}(\Lambda)=\bigcup_{i \geq 0} V_{i}^{\prime} ;$
- the quotient \mathfrak{g}-module $V_{i}^{\prime} / V_{i-1}^{\prime}$ for $i \geq 1$ is isomorphic to the direct sum of Verma modules $M\left(\lambda_{k}\right)$ with $1 \leq k \leq l_{i}$ for which $\left(\lambda_{k}+\rho \mid \lambda_{k}+\rho\right)=$ $(\Lambda+\rho \mid \Lambda+\rho)$.
Here, by Lemma 5.4,

$$
\Psi_{p}\left(V_{i}^{\prime}\right) \subset V_{i}^{\prime}
$$

for $i \geq 0$. Moreover, we know from [N2, Section 3.2] that

$$
\begin{equation*}
\bigoplus_{i \geq 0} \bigoplus_{\substack{1 \leq k \leq l_{i} \\\left(\lambda_{k}+\rho \mid \lambda_{k}+\rho\right)=(\Lambda+\rho \mid \Lambda+\rho)}} \mathbb{C}\left(\lambda_{k}\right) \cong \bigoplus_{\substack{(w, \beta) \in W \times \mathcal{S}(\Lambda) \\ \ell(w)+\operatorname{ht}(\beta)=p}} \mathbb{C}((w, \beta) \circ \Lambda) \tag{5.5}
\end{equation*}
$$

since $\left(\bigwedge^{p}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda) \cong\left(\bigwedge^{p} \mathfrak{n}_{-}\right) \otimes_{\mathbb{C}} L(\Lambda)$ as \mathfrak{h}-modules. Now a suitable refinement of the sequence of the V_{i}^{\prime} 's gives the filtration of $C_{p}(\Lambda)$ for $p \geq 0$ in Theorem 5.1. From the Ψ_{p}-stable filtration (5.4), we immediately get that for $p \geq 0$,

$$
\operatorname{ch}^{\omega}\left(C_{p}(\Lambda)\right)=\sum_{i \geq 1} \operatorname{ch}^{\omega}\left(V_{i}^{\prime} / V_{i-1}^{\prime}\right)
$$

Furthermore, it follows from the exactness of the functor $V \mapsto V_{(c)}$ for all $c \in \mathbb{C}$ that for $i \geq 1$,

$$
\begin{aligned}
\operatorname{ch}^{\omega}\left(V_{i}^{\prime} / V_{i-1}^{\prime}\right) & =\operatorname{ch}^{\omega}\left(\left(L_{i}\right)_{c_{0}} /\left(L_{i-1}\right)_{c_{0}}\right) \\
& =\operatorname{ch}^{\omega}\left(\left(L_{i} / L_{i-1}\right)_{c_{0}}\right),
\end{aligned}
$$

where $c_{0}=(\Lambda+\rho \mid \Lambda+\rho)-(\rho \mid \rho)$. Notice that the following diagram is commutative for $i \geq 1$:

$$
\begin{align*}
& L_{i} / L_{i-1} \xrightarrow{\simeq} U(\mathfrak{g}) \otimes_{U(\mathfrak{b})}\left(N_{i} / N_{i-1}\right) \\
& \bar{\Psi}_{p} \downarrow \tag{5.6}\\
& L_{i} / L_{i-1} \xrightarrow{\simeq} U(\mathfrak{g}) \otimes_{U(\mathfrak{b})}\left(N_{i} / N_{i-1}\right),
\end{align*}
$$

where

$$
\bar{\Psi}_{p}: L_{i} / L_{i-1} \rightarrow L_{i} / L_{i-1}
$$

is induced from $\Psi_{p}: L_{i} \rightarrow L_{i}$, and

$$
\overline{\left(\bigwedge^{p} \bar{\omega}^{-1}\right) \otimes \tau_{\omega}}: N_{i} / N_{i-1} \rightarrow N_{i} / N_{i-1}
$$

is induced from $\left(\bigwedge^{p} \bar{\omega}^{-1}\right) \otimes \tau_{\omega}: N_{i} \rightarrow N_{i}$. For simplicity of notation, we set for $i \geq 1$,

$$
\begin{aligned}
& X_{i}:=U(\mathfrak{g}) \otimes_{U(\mathfrak{b})}\left(N_{i} / N_{i-1}\right), \\
& \Xi_{p}:=\omega^{-1} \otimes\left(\overline{\left(\bigwedge^{p} \bar{\omega}^{-1}\right) \otimes \tau_{\omega}}\right): X_{i} \rightarrow X_{i} .
\end{aligned}
$$

Because the linear automorphism $\Xi_{p}: X_{i} \rightarrow X_{i}$ commutes with the action of the Casimir operator Ω by Lemma 5.4, we deduce from the commutative diagram (5.6) that for $i \geq 1$,

$$
\operatorname{ch}^{\omega}\left(\left(L_{i} / L_{i-1}\right)_{c_{0}}\right)=\operatorname{ch}^{\omega}\left(\left(X_{i}\right)_{c_{0}}\right)
$$

where

$$
\operatorname{ch}^{\omega}\left(\left(X_{i}\right)_{c_{0}}\right):=\operatorname{Tr}_{\left(X_{i}\right)_{c_{0}}} \Xi_{p} \exp
$$

Proposition 5.5. Let $i \geq 1$. Then

$$
\operatorname{ch}^{\omega}\left(\left(X_{i}\right)_{c_{0}}\right)=\sum_{\substack{1 \leq k \leq l_{i} \\\left(\lambda_{k}+\rho \mid \lambda_{i}+\rho\right)=(\Lambda+\rho \mid \Lambda+\rho) \\ \omega^{*}\left(\lambda_{k}\right)=\lambda_{k}}} c_{k} \operatorname{ch}^{\omega}\left(M\left(\lambda_{k}\right)\right),
$$

where the scalar $c_{k} \in \mathbb{C}$ is determined by

$$
c_{k}:=\operatorname{Tr}\left(\left.\left(\left(\bigwedge^{p} \bar{\omega}^{-1}\right) \otimes \tau_{\omega}\right)\right|_{\left(\left(\bigwedge^{p}(\mathfrak{g} / \mathfrak{b})\right) \otimes \mathbb{C} L(\Lambda)\right)_{\lambda_{k}}}\right) .
$$

Proof. Since $N_{i} / N_{i-1}=\bigoplus_{k=1}^{l_{i}} \mathbb{C} \bar{v}_{k}$ is a trivial \mathfrak{n}_{+}-module for $i \geq 1$, it can be shown by using the Poincaré-Birkhoff-Witt theorem that

$$
\begin{equation*}
X_{i}=U(\mathfrak{g}) \otimes_{U(\mathfrak{b})}\left(N_{i} / N_{i-1}\right)=\bigoplus_{k=1}^{l_{i}} U(\mathfrak{g})\left(1 \otimes \bar{v}_{k}\right) \tag{5.7}
\end{equation*}
$$

where the \mathfrak{g}-submodule $U(\mathfrak{g})\left(1 \otimes \bar{v}_{k}\right)$ is isomorphic to the Verma module $M\left(\lambda_{k}\right)$ $=U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}\left(\lambda_{k}\right)$ of highest weight λ_{k}. Because the Casimir operator Ω acts on the Verma module $M\left(\lambda_{k}\right)$ as the scalar $\left(\lambda_{k}+\rho \mid \lambda_{k}+\rho\right)-(\rho \mid \rho)$, we deduce from (5.7) that for $i \geq 1$,

$$
\left(X_{i}\right)_{c_{0}}=\bigoplus_{\substack{1 \leq k \leq l_{i} \\\left(\lambda_{k}+\rho \mid \lambda_{k}+\rho\right)=(\Lambda+\rho \mid \Lambda+\rho)}} U(\mathfrak{g})\left(1 \otimes \bar{v}_{k}\right)
$$

Let $1 \leq k \leq l_{i}$ be such that $\left(\lambda_{k}+\rho \mid \lambda_{k}+\rho\right)=(\Lambda+\rho \mid \Lambda+\rho)$. Then we have for $x \in U(\mathfrak{g})$,

$$
\begin{align*}
\Xi_{p}\left(x\left(1 \otimes \bar{v}_{k}\right)\right) & =\omega^{-1}(x) \Xi_{p}\left(1 \otimes \bar{v}_{k}\right) \tag{5.8}\\
& =\omega^{-1}(x)\left(1 \otimes\left(\overline{\left(\bigwedge^{p} \bar{\omega}^{-1}\right) \otimes \tau_{\omega}}\right)\left(\bar{v}_{k}\right)\right) \\
& =\omega^{-1}(x)\left(1 \otimes \overline{\left.\left(\bigwedge^{p} \bar{\omega}^{-1}\right) \otimes \tau_{\omega}\right)\left(v_{k}\right)}\right)
\end{align*}
$$

where $\left(\left(\bigwedge^{p} \bar{\omega}^{-1}\right) \otimes \tau_{\omega}\right)\left(v_{k}\right) \in\left(N_{i}\right)_{\omega^{*}\left(\lambda_{k}\right)}$. Here we recall from (5.5) that the weight λ_{k} of $\left(\bigwedge^{p}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda)$ with $1 \leq k \leq l_{i}$ such that $\left(\lambda_{k}+\rho \mid \lambda_{k}+\right.$ $\rho)=(\Lambda+\rho \mid \Lambda+\rho)$ can be written in the form $\lambda_{k}=(w, \beta) \circ \Lambda$ for a unique $(w, \beta) \in W \times \mathcal{S}(\Lambda)$, and that the multiplicity of the weight $\lambda_{k}=(w, \beta) \circ \Lambda$ in $\left(\bigwedge^{p}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda)$ is equal to one. Hence we deduce that

$$
\operatorname{dim}_{\mathbb{C}}\left(N_{i} / N_{i-1}\right)_{\omega^{*}\left(\lambda_{k}\right)}=1=\operatorname{dim}_{\mathbb{C}}\left(N_{i} / N_{i-1}\right)_{\lambda_{k}}
$$

since $\omega^{*}\left(\lambda_{k}\right)$ is also a weight of $N_{i} \subset\left(\bigwedge^{p}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda)$ such that

$$
\begin{aligned}
\left(\omega^{*}\left(\lambda_{k}\right)+\rho \mid \omega^{*}\left(\lambda_{k}\right)+\rho\right) & =\left(\omega^{*}\left(\lambda_{k}+\rho\right) \mid \omega^{*}\left(\lambda_{k}+\rho\right)\right) \\
& =\left(\lambda_{k}+\rho \mid \lambda_{k}+\rho\right) \\
& =(\Lambda+\rho \mid \Lambda+\rho) .
\end{aligned}
$$

So $\left(\overline{\left(\bigwedge^{p} \bar{\omega}^{-1}\right) \otimes \tau_{\omega}}\right)\left(\bar{v}_{k}\right) \in\left(N_{i} / N_{i-1}\right)_{\omega^{*}\left(\lambda_{k}\right)}$ implies that $\left(\overline{\left(\bigwedge^{p} \bar{\omega}^{-1}\right) \otimes \tau_{\omega}}\right)\left(\bar{v}_{k}\right) \in$ $\mathbb{C} \bar{v}_{m}$ for a unique m with $1 \leq m \leq l_{i}$ such that $\lambda_{m}=\omega^{*}\left(\lambda_{k}\right)$. Thus we conclude that $\Xi_{p}\left(U(\mathfrak{g})\left(1 \otimes \bar{v}_{k}\right)\right)=U(\mathfrak{g})\left(1 \otimes \bar{v}_{m}\right)$ for a unique m with $1 \leq m \leq l_{i}$. Therefore, for $i \geq 1$,

$$
\begin{equation*}
\operatorname{ch}^{\omega}\left(\left(X_{i}\right)_{c_{0}}\right)=\sum_{\substack{1 \leq k \leq l_{i} \\\left(\lambda_{k}+\rho \mid \lambda_{k^{\prime}}+\rho\right)=(\Lambda+\rho \mid \Lambda+\rho) \\ \omega^{*}\left(\lambda_{k}\right)=\lambda_{k}}} \operatorname{ch}^{\omega}\left(U(\mathfrak{g})\left(1 \otimes \bar{v}_{k}\right)\right), \tag{5.9}
\end{equation*}
$$

where

$$
\operatorname{ch}^{\omega}\left(U(\mathfrak{g})\left(1 \otimes \bar{v}_{k}\right)\right):=\operatorname{Tr}_{U(\mathfrak{g})\left(1 \otimes \bar{v}_{k}\right)} \Xi_{p} \text { exp. }
$$

Let $1 \leq k \leq l_{i}$ be such that $\left(\lambda_{k}+\rho \mid \lambda_{k}+\rho\right)=(\Lambda+\rho \mid \Lambda+\rho)$ and $\omega^{*}\left(\lambda_{k}\right)=\lambda_{k}$. We set

$$
c_{k}:=\operatorname{Tr}\left(\left.\left(\left(\bigwedge^{p} \bar{\omega}^{-1}\right) \otimes \tau_{\omega}\right)\right|_{\left(\left(\bigwedge^{p}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda)\right)_{\lambda_{k}}}\right)
$$

Then we have the following commutative diagram from Equation (5.8):

$$
\begin{aligned}
& U(\mathfrak{g})\left(1 \otimes \bar{v}_{k}\right) \xrightarrow{\simeq} U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}\left(\lambda_{k}\right) \\
& \quad \Xi_{p} \downarrow \\
& U(\mathfrak{g})\left(1 \otimes \bar{v}_{k}\right) \xrightarrow{ } \begin{array}{l}
c_{k}\left(\omega^{-1} \otimes \mathrm{id}\right) \\
\simeq
\end{array}(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}\left(\lambda_{k}\right)
\end{aligned}
$$

since $\left(\left(\bigwedge^{p}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda)\right)_{\lambda_{k}}=\mathbb{C} v_{k}$ implies

$$
\left(\left(\bigwedge^{p} \bar{\omega}^{-1}\right) \otimes \tau_{\omega}\right)\left(v_{k}\right)=c_{k} v_{k}
$$

Thus it follows from Remark 3.1 that

$$
\operatorname{ch}^{\omega}\left(U(\mathfrak{g})\left(1 \otimes \bar{v}_{k}\right)\right)=c_{k} \operatorname{ch}^{\omega}\left(M\left(\lambda_{k}\right)\right)
$$

This together with (5.9) proves the proposition.

Let $1 \leq k \leq l_{i}$ be such that $\left(\lambda_{k}+\rho \mid \lambda_{k}+\rho\right)=(\Lambda+\rho \mid \Lambda+\rho)$ and $\omega^{*}\left(\lambda_{k}\right)=\lambda_{k}$, and then write it in the form

$$
\lambda_{k}=(w, \beta) \circ \Lambda
$$

for a unique $(w, \beta) \in W \times \mathcal{S}(\Lambda)$ such that $\ell(w)+\operatorname{ht}(\beta)=p$. Then, as in the proof of [N5, Proposition 3.2.1], $\omega^{*}\left(\lambda_{k}\right)=\lambda_{k}$ if and only if $w \in \widetilde{W}$ and $\beta \in \mathcal{S}(\Lambda) \cap\left(\mathfrak{h}^{*}\right)^{0}$. Therefore, from the obvious commuting diagram:

$$
\begin{aligned}
& \left(\bigwedge^{p}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda) \simeq\left(\bigwedge^{p} \mathfrak{n}_{-}\right) \otimes_{\mathbb{C}} L(\Lambda) \\
& \left(\bigwedge^{p} \bar{\omega}^{-1}\right) \otimes \tau_{\omega} \downarrow \\
& \left(\bigwedge^{p}(\mathfrak{g} / \mathfrak{b})\right) \otimes_{\mathbb{C}} L(\Lambda) \xrightarrow{\simeq}\left(\bigwedge^{p} \mathfrak{n}_{-}\right) \otimes_{\mathbb{C}} L(\Lambda),
\end{aligned}
$$

we see that the scalar c_{k} is equal to the scalar $c_{(w, \beta)}$ in Theorem 4.1, which equals $(-1)^{(\ell(w)+\mathrm{ht}(\beta))-(\widehat{\ell}(w)+\widehat{h t}(\beta))}$.

Summarizing all the arguments above, we see that

$$
\begin{align*}
& \operatorname{ch}^{\omega}(L(\Lambda))=\sum_{p \geq 0}(-1)^{p} \operatorname{ch}^{\omega}\left(C_{p}(\Lambda)\right) \tag{5.10}\\
& =\sum_{p \geq 0}(-1)^{p} \sum_{i \geq 1} \operatorname{ch}^{\omega}\left(V_{i}^{\prime} / V_{i-1}^{\prime}\right) \\
& =\sum_{p \geq 0}(-1)^{p} \sum_{i \geq 1} \operatorname{ch}^{\omega}\left(\left(U(\mathfrak{g}) \otimes_{U(\mathfrak{b})}\left(N_{i} / N_{i-1}\right)\right)_{c_{0}}\right) \\
& =\sum_{p \geq 0}(-1)^{p} \sum_{i \geq 1} \sum_{\substack{1 \leq k \leq l_{i} \\
\left(\lambda_{k}+\rho \mid \lambda_{k}+\rho=(\Lambda+\rho \mid \Lambda+\rho) \\
\omega^{*}\left(\lambda_{k}\right)=\lambda_{k}\right.}} \operatorname{ch}^{\omega}\left(U(\mathfrak{g})\left(1 \otimes \bar{v}_{k}\right)\right) \\
& =\sum_{p \geq 0}(-1)^{p} \sum_{\substack{w \in \widetilde{W} \\
\beta \in \mathcal{S}(\Lambda) \cap\left(h^{*}\right)^{0} \\
\ell(w)+\mathrm{ht}(\beta)=p}}(-1)^{(\ell(w)+\mathrm{ht}(\beta))-(\widehat{\ell}(w)+\widehat{\mathrm{ht}}(\beta))} \operatorname{ch}^{\omega}(M((w, \beta) \circ \Lambda)) \\
& =\sum_{\substack{w \in \widehat{W} \\
\beta \in \mathcal{S}(\Lambda) \cap\left(\mathfrak{h}^{*}\right)^{0}}}(-1)^{\widehat{\ell}(w)+\widehat{h t}(\beta)} \operatorname{ch}^{\omega}(M((w, \beta) \circ \Lambda)) .
\end{align*}
$$

Here we note that for a symmetric weight $\lambda \in\left(\mathfrak{h}^{*}\right)^{0}$, the Verma module $M(\lambda)=U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}(\lambda)$ is isomorphic to $U\left(\mathfrak{n}_{-}\right) \otimes_{\mathbb{C}} \mathbb{C}(\lambda)$ as an \mathfrak{h}-module. Moreover, by Remark 3.1, we can apply [N5, Lemma 3.1.3] to deduce that

$$
\operatorname{ch}^{\omega}(M(\lambda))=e(\lambda) \cdot \operatorname{ch}^{\omega}\left(U\left(\mathfrak{n}_{-}\right)\right),
$$

where

$$
\operatorname{ch}^{\omega}\left(U\left(\mathfrak{n}_{-}\right)\right):=\operatorname{Tr}_{U\left(\mathfrak{n}_{-}\right)} \omega^{-1} \exp
$$

Therefore, by putting $\Lambda=0$ in Equation (5.10), we get that

$$
1=e(0)=\operatorname{ch}^{\omega}\left(U\left(\mathfrak{n}_{-}\right)\right) \cdot\left(\sum_{\substack{w \in \widetilde{W} \\ \beta \in \mathcal{S}(0) \cap\left(\mathfrak{h}^{*}\right)^{0}}}(-1)^{\widehat{\ell}(w)+\widehat{\mathrm{ht}}(\beta)} e((w, \beta) \circ 0)\right),
$$

and hence that for $\lambda \in\left(\mathfrak{h}^{*}\right)^{0}$,

$$
\begin{align*}
\operatorname{ch}^{\omega}(M(\lambda)) & =e(\lambda) \cdot \operatorname{ch}^{\omega}\left(U\left(\mathfrak{n}_{-}\right)\right) \tag{5.11}\\
& =e(\lambda) \cdot\left(\sum_{\substack{w \in \widetilde{W} \\
\beta \in \mathcal{S}(0) \cap\left(\mathfrak{h}^{*}\right)^{0}}}(-1)^{\widehat{\ell}(w)+\widehat{h t}(\beta)} e((w, \beta) \circ 0)\right)^{-1} .
\end{align*}
$$

We finally obtain from Equations (5.10) and (5.11) that

$$
\operatorname{ch}^{\omega}(L(\Lambda))=\frac{\sum_{\substack{w \in \widetilde{W} \\ \beta \in \mathcal{S}(\Lambda) \cap\left(\mathfrak{h}^{*}\right)^{0}}}(-1)^{\widehat{\ell}(w)+\hat{\mathrm{ht}}(\beta)} e((w, \beta) \circ \Lambda)}{\sum_{\substack{w \in \widetilde{W} \\ \beta \in \mathcal{S}(0) \cap\left(\mathfrak{h}^{*}\right)^{0}}}(-1)^{\hat{\ell}(w)++\hat{h t}(\beta)} e((w, \beta) \circ 0)} .
$$

Thus we have given a new proof of Theorems 3.3 and 3.4.

> Institute of Mathematics
> University of Tsukuba
> Tsukuba 305-8571, Japan
> e-mail: naito@math.tsukuba.ac.jp

References

[BGG] I. N. Bernstein, I. M. Gelfand and S. I. Gelfand, Differential Operators on the Base Affine Space and a Study of \mathfrak{g}-modules, "Lie Groups and Their Representations", Summer School of the Bolyai János Math. Soc. (I. M. Gelfand, ed.), pp. 21-64, Hilger, London, 1975.
[B] R. E. Borcherds, Generalized Kac-Moody algebras, J. Algebra, 115 (1988), 501-512.
[FRS] J. Fuchs, U. Ray and C. Schweigert, Some automorphisms of generalized Kac-Moody algebras, J. Algebra, 191 (1997), 518-540.
[FSS] J. Fuchs, B. Schellekens and C. Schweigert, From Dynkin diagram symmetries to fixed point structures, Comm. Math. Phys., 180 (1996), 39-97.
[GL] H. Garland and J. Lepowsky, Lie algebra homology and the MacdonaldKac formulas, Invent. Math., 34 (1976), 37-76.
[K] V. G. Kac, Infinite Dimensional Lie Algebras (3rd edition), Cambridge Univ. Press, Cambridge, 1990.
[KK] S.-J. Kang and J.-H. Kwon, Graded Lie superalgebras, supertrace formula, and orbit Lie superalgebras, Proc. London Math. Soc., 81 (2000), 675-724.
[N1] S. Naito, Kostant's formula for a certain class of generalized Kac-Moody algebras, Tôhoku Math. J., 44 (1992), 567-580.
[N2] S. Naito, The strong Bernstein-Gelfand-Gelfand resolution for generalized Kac-Moody algebras. I-The existence of the resolution-, Publ. Res. Inst. Math. Sci., 29 (1993), 709-730.
[N3] S. Naito, The strong Bernstein-Gelfand-Gelfand resolution for generalized Kac-Moody algebras. II-An explicit construction of the resolution, J. Algebra, 167 (1994), 778-802.
[N4] S. Naito, Twining character formula of Kac-Wakimoto type for affine Lie algebras, preprint.
[N5] S. Naito, Twining characters and Kostant's homology formula, preprint.

[^0]: 2000 Mathematics Subject Classification(s). Primary 17B67; Secondary 17B10, 17B55
 Communicated by Prof. T. Miwa, December 26, 2000

