On m-adic higher differentials and regularities of Noetherian complete local rings

By

Mamoru FURUYA and Hiroshi NIITSUMA

1. Introduction

In this paper, we try to construct a regularity criterion for a Noetherian complete local ring in terms of **m**-adic higher differentials defined in [Y].

Let *P* be a ring, *R* a *P*-algebra and **m** an ideal of *R*. Then the **m**-adic higher differential algebra $\widehat{D}_t(R/P, \mathbf{m})$ of *R* over *P* of length *t* is in a natural way a graded algebra, $\widehat{D}_t(R/P, \mathbf{m}) = \bigoplus_{n=0}^{\infty} \widehat{D}_t(R/P, \mathbf{m})_n$, and $\widehat{D}_t(R/P, \mathbf{m})_1$ coincides

with the module $\widehat{D}_P(R)$ of **m**-adic *P*-differentials in *R*, defined in [NS].

In [NS], Y. Nakai and S. Suzuki showed the following theorem.

Let (R, \mathbf{m}, K) be a Noetherian complete local ring with char(K) = p > 0, and let (P, pP, k) be a discrete valuation ring such that R dominates P. Then, under some assumptions of separability on the residue fields K and k, the following conditions are equivalent:

(1) R is a regular local ring and $p \notin \mathbf{m}^2$.

(2) $D_P(R)$ is a free *R*-module.

The main result of this paper is to prove that these conditions (1) and (2) are also equivalent with

(3) $D_t(R/P, \mathbf{m})$ is a polynomial ring over R for every $t (1 \le t < \infty)$ (see Theorem 3.4).

In the equal characteristic case, we shall prove the following result in Theorem 3.1.

Let (R, \mathbf{m}, K) be a Noetherian complete local ring containing a field k, K/k is separably generated, and $\operatorname{Tr.deg}(K/k)$ is finite. Then the following two conditions are equivalent:

(1) R is a regular local ring.

(2) $D_t(R/k, \mathbf{m})$ is a polynomial ring over R for every $t \ (1 \le t < \infty)$.

Under the assumption that R is an essentially of finite type over k and K/k is separable (without the assumption that R is complete), U. Orbanz showed that these two conditions are equivalent [O, (4.2)].

Communicated by Prof. M. Maruyama, May 22, 2000

Revised March 29, 2001

We remark that if one of the above two conditions is satisfied, then the module $\widehat{D}_k(R)$ is a finite free *R*-module. But the converse is not true in general (cf. [NS, Example, p. 473]).

2. Preliminaries

All rings in this paper are commutative rings with identity elements. A ring homomorphism will always mean a ring homomorphism which sends identity element to identity element. Let t be always a natural number.

Let P be a ring, R a P-algebra with a ring homomorphism $\rho: P \longrightarrow R$ and **m** an ideal of R.

(2.1) Let S be an R-algebra with a ring homomorphism $f: R \longrightarrow S$. For an integer n > 0, by a higher P-derivation of length t from R into S, we mean a sequence $\mathbf{D} = (D_0, D_1, \ldots, D_t)$ of mappings $D_i: R \longrightarrow S$ such that

(1) $D_0 = f$,

(2) $D_i(a+b) = D_i(a) + D_i(b), \ D_i(ab) = \sum_{j+k=i} D_j(a)D_k(b)$ for any $a, b \in R$ and $i \ge 0$,

(3) $D_i \rho = 0$ for every $i \ge 1$.

We denote the set of all higher *P*-derivations of length *t* from *R* into *S* by $HDer_{P}^{t}(R, S)$.

(2.2) Let A be an R-algebra and $\mathbf{d} = (d_0, d_1, \dots, d_t) \in HDer_P^t(R, A)$. Then A (together with \mathbf{d}) will called a higher differential algebra of R over P of length t, if the following conditions are satisfied:

(1) As an *R*-algebra, *A* is generated by the elements $\{d_i(a) \mid a \in R, 0 \le i \le t\}$.

(2) For any *R*-algebra *V* and for any $\mathbf{h} = (h_0, h_1, \dots, h_t) \in HDer_P^t(R, V)$, there exists a ring homomorphism $g : A \longrightarrow V$ such that $h_i = gd_i$ for every $i \ge 0$.

It is known that a higher differential algebra of R over P of length t exists and is uniquely determined up to isomorphism (cf. [KY] and [B]). We shall denote by $D_t(R/P)$ the higher differential algebra of R over P of length t, and d is called the associated derivation of $D_t(R/P)$.

For an integer $n \ge 0$, we denote by $D_t(R/P)_n$ the *R*-submodule of $D_t(R/P)$ generated by the elements

$$\{d_{n_1}(a_1)\cdots d_{n_s}(a_s) \mid a_i \in R, 0 \le n_i \le t, n_1 + \cdots + n_s = n \text{ for some } s \ge 1\}$$

Then we have $D_t(R/P) = \bigoplus_{n=0}^{\infty} D_t(R/P)_n$ (cf. [KY]).

(2.3) Let **m** be an ideal of *R*. We say that *R* is an **m**-adic ring or *R* has the **m**-adic topology, if *R* has the topology with the fundamental system of neighborhoods of zero { $\mathbf{m}^r \mid r = 1, 2, \cdots$ }. Let *A* be an *R*-algebra or an *R*-module. We say that *A* is an **m**-adic *R*-algebra or an **m**-adic *R*-module (or *A*)

has the **m**-adic topology), if A has the topology with the fundamental system of neighborhoods of zero { $\mathbf{m}^r A \mid r = 1, 2, \cdots$ }. The **m**-adic topology of A is Hausdorff (i.e. the set {0} is closed) if and only if $\bigcap_{r=0}^{\infty} \mathbf{m}^r A = (0)$.

(2.4) An m-adic higher differential algebra of R over P of length t, denoted by $\hat{D}_t(R/P, \mathbf{m})$, is defined as the R-algebra satisfying the following conditions (cf. [Y]):

(1) $\widehat{D}_t(R/P, \mathbf{m})$ is a Hausdorff **m**-adic *R*-algebra.

(2) There exists an element $\hat{\boldsymbol{d}} = (\hat{d}_0, \hat{d}_1, \dots, \hat{d}_t) \in HDer_P^t(R, \widehat{D}_t(R/P, \mathbf{m}))$ $(\hat{\boldsymbol{d}} \text{ is called an associated derivation of } \widehat{D}_t(R/P, \mathbf{m}) \text{ and } \hat{\boldsymbol{d}} \text{ is denoted by } \hat{\boldsymbol{d}}_{R/P} \text{ simply}).$

(3) $\widehat{D}_t(R/P, \mathbf{m})$ is generated over R by $\{\widehat{d}_i(a) \mid a \in R, 0 \le i \le t\}$.

(4) For arbitrary Hausdorff **m**-adic *R*-algebra *V* and $(D_0, D_1, \ldots, D_t) \in HDer_P^t(R, V)$, then there exists a ring homomorphism $g : \hat{D}_t(R/P, \mathbf{m}) \longrightarrow V$ such that $D_i = g\hat{d}_i$ for every $i \ge 0$.

It is known that an **m**-adic higher differential algebra of R/P of length t exists and is uniquely determined up to isomorphism and up to homeomorphism. Moreover $\widehat{D}_t(R/P, \mathbf{m})$ is given by $\widehat{D}_t(R/P, \mathbf{m}) = D_t(R/P) / \bigcap_{r=0}^{\infty} \mathbf{m}^r D_t(R/P)$ (cf. [Y]). If R is a field, then $\widehat{D}_t(R/P, (0)) = D_t(R/P)$.

(2.5)([Y]). Let $\hat{\boldsymbol{d}}_{R/P} = (\hat{d}_0, \hat{d}_1, \dots, \hat{d}_t)$ be the associated derivation of $\widehat{D}_t(R/P, \mathbf{m})$. Then the following conditions hold:

(1) $\widehat{D}_t(R/P, \mathbf{m})$ is a graded *R*-algebra, $\widehat{D}_t(R/P, \mathbf{m}) = \bigoplus_{n=0}^{\infty} \widehat{D}_t(R/P, \mathbf{m})_n$, where $\widehat{D}_t(R/P, \mathbf{m})_n$ is the *R*-submodule of $\widehat{D}_t(R/P, \mathbf{m})$ generated by the homogeneous elements

$$\{\hat{d}_{n_1}(a_1)\cdots\hat{d}_{n_s}(a_s) \mid a_i \in R, 0 \le n_i \le t, n_1 + \dots + n_s = n \text{ for some } s \ge 1\}.$$
(2) $\hat{D}_t(R/P, \mathbf{m})_n = D_t(R/P)_n / \bigcap_{r=0}^\infty \mathbf{m}^r D_t(R/P)_n.$

(2.6)([Y]). Let $\widehat{D}_P(R)$ be the module of **m**-adic *P*-differentials in *R*, defined in [NS]. Then $\widehat{D}_t(R/P, \mathbf{m})_1$ coincides with $\widehat{D}_P(R)$ for every *t*.

(2.7) Let $\hat{\boldsymbol{d}}_{R/P} = (\hat{d}_0, \hat{d}_1, \dots, \hat{d}_t)$ be the associated derivation of $\widehat{D}_t(R/P, \mathbf{m})$. **m**). For an ideal \boldsymbol{a} of R, let $J_t(\boldsymbol{a})$ be the ideal of $\widehat{D}_t(R/P, \mathbf{m})$ generated by the elements $\{\hat{d}_i(a) \mid a \in \boldsymbol{a}, 0 \leq i \leq t\}$ and $\overline{J_t(\boldsymbol{a})}$ the closure of $J_t(\boldsymbol{a})$ in the **m**-adic R-algebra $\widehat{D}_t(R/P, \mathbf{m})$. Put $\overline{R} = R/\boldsymbol{a}$. Then we have

$$\widehat{D}_t(\overline{R}/P, \mathbf{m}\overline{R}) = \widehat{D}_t(R/P, \mathbf{m})/\overline{J_t(\boldsymbol{a})}.$$

Furthermore, we put $J_t(\boldsymbol{a})_n = \widehat{D}_t(R/P, \mathbf{m})_n \bigcap J_t(\boldsymbol{a})$. Then, for any integer $n \geq 0$, we have $\widehat{D}_t(\overline{R}/P, \mathbf{m}\overline{R})_n = \widehat{D}_t(R/P, \mathbf{m})_n/\overline{J_t(\boldsymbol{a})_n}$, where $\overline{J_t(\boldsymbol{a})_n}$ is the closure of $J_t(\boldsymbol{a})_n$ in the **m**-adic *R*-module $\widehat{D}_t(R/P, \mathbf{m})_n$.

(2.8) Suppose that R is a Noetherian local ring with the maximal ideal **m**. Assume that R is complete and there are finite elements $\{\bar{z}_1, \ldots, \bar{z}_s\}$ $(\bar{z}_i =$ $z_i + \mathbf{m}$) of $K := R/\mathbf{m}$ such that $D_t(K/P)$ is generated by the elements $\{D_i(\bar{z}_1), \ldots, D_i(\bar{z}_s) \mid 1 \leq i \leq t\}$ as a K-algebra, where (D_0, D_1, \ldots, D_t) is the associated derivation of $D_t(K/P)$. Then $\widehat{D}_t(R/P, \mathbf{m})$ is the finitely generated R-algebra generated by the elements

$$\{\hat{d}_i(x_1),\ldots,\hat{d}_i(x_n),\hat{d}_i(z_1),\ldots,\hat{d}_i(z_s) \mid 1 \le i \le t\},\$$

where $\mathbf{m} = (x_1, ..., x_n)$ and $d_{R/P} := (\hat{d}_0, \hat{d}_1, ..., \hat{d}_t)$.

The proof is obtained from (2.7) and [M, Theorem 8.4] inductively.

(2.9) In (2.8), let us remove the condition that R is complete, instead, let us assume that $\widehat{D}_t(R/P, \mathbf{m})_i$ is a finitely generated R-module for every $i \ge 0$. In this case, we have the same conclusion as in (2.8).

The proof is obtained from (2.7) and Nakayama's lemma, inductively.

(2.10) Let S be an R-algebra with a ring homomorphism $f: R \longrightarrow S$ and \boldsymbol{n} an ideal of S such that $\mathbf{m}S \subset \boldsymbol{n}$. Then there exists the ring homomorphism $g_0: \hat{D}_t(R/P, \mathbf{m}) \longrightarrow \hat{D}_t(S/P, \boldsymbol{n})$ such that $g_0 \hat{d}_i = \hat{h}_i f$, where $\hat{\boldsymbol{d}}_{R/P} :=$ $(\hat{d}_0, \hat{d}_1, \ldots, \hat{d}_t)$ and $\hat{\boldsymbol{d}}_{S/P} := (\hat{h}_0, \hat{h}_1, \ldots, \hat{h}_t)$. Thus there exists the ring homomorphism $g_1: S \otimes_R \hat{D}_t(R/P, \mathbf{m}) \longrightarrow \hat{D}_t(S/P, \boldsymbol{n})$ such that $g_1(s \otimes x) = s \cdot g_0(x)$ for any $s \in S$ and $x \in \hat{D}_t(R/P, \mathbf{m})$. Furthermore, g_1 induces the ring homomorphism

$$g: S \otimes_R \widehat{D}_t(R/P, \mathbf{m}) / \bigcap_{r=0}^{\infty} \boldsymbol{n}^r \big(S \otimes_R \widehat{D}_t(R/P, \mathbf{m}) \big) \longrightarrow \widehat{D}_t(S/P, \boldsymbol{n}).$$

If S is 0-etale over R in the sense of [M] (i.e. S is both 0-smooth and 0-unramified over R), then g is an isomorphism.

Proof. Put $V = S \otimes_R \widehat{D}_t(R/P, \mathbf{m})$ and $\overline{V} = V/\bigcap_{r=0}^{\infty} \mathbf{m}^r V$. Let $f_1 : \widehat{D}_t(R/P, \mathbf{m}) \longrightarrow V$ be the ring homomorphism defined by $f_1(x) = 1 \otimes x$ ($x \in \widehat{D}_t(R/P, \mathbf{m})$) and $f_2 : V \longrightarrow \overline{V}$ the canonical mapping. Then we have $(f_2 f_1 \widehat{d}_1, \ldots, f_2 f_1 \widehat{d}_t) \in HDer_P^t(R, \overline{V})$. Since S is 0-etale over R, there exists an element $(D_0, D_1, \ldots, D_t) \in HDer_P^t(S, \overline{V})$ such that $f_2 f_1 \widehat{d}_i = D_i f$ for every $i(0 \le i \le t)$. It follows that there is the ring homomorphism $f^* : \widehat{D}_t(S/P, \mathbf{n}) \longrightarrow \overline{V}$ such that $D_i = f^* \widehat{d}_i$ for every i. Then it is easily verified that $f^*g = 1$ and $gf^* = 1$. Therefore g is an isomorphism.

3. Regularity criteria

In this section, we shall show some regularity criteria of Noetherian complete local rings. In the proofs of our results we shall use similar techniques as in [NS] and [O] but with some modifications.

3.1. Equal characteristic case

Theorem 3.1. Let (R, \mathbf{m}, K) be a Noethrian complete local ring containing a field k. Assume that K is separably generated over k and $\operatorname{Tr.deg}(K/k)$ is finite. Then the following conditions are equivalent:

- (1) R is a regular local ring.
- (2) $\widehat{D}_t(R/k, \mathbf{m})$ is a polynomial ring over R for every $t(1 \le t < \infty)$.

Under these conditions, let $\{x_1, \ldots, x_n\}$ be a regular system of parameters of R and let $\{z_1 + \mathbf{m}, \ldots, z_s + \mathbf{m}\}$ $(z_i \in R)$ be a separating transcendence basis of K over k. Then $\hat{D}_t(R/k, \mathbf{m})$ is the polynomial ring over R with variables $\{\hat{d}_i(x_1), \ldots, \hat{d}_i(x_n), \hat{d}_i(z_1), \ldots, \hat{d}_i(z_s) \mid 1 \leq i \leq t\}$, where $\hat{d}_{R/k} :=$ $(\hat{d}_0, \hat{d}_1, \ldots, \hat{d}_t)$.

Proof. (1) \Rightarrow (2). Let $\{x_1, \ldots, x_n\}$ be a regular system of parameters of Rand $\{z_1 + \mathbf{m}, \ldots, z_s + \mathbf{m}\}$ ($z_i \in R$) a separating transcendence basis of K over k. Then $\{z_1, \ldots, z_s\}$ is algebraically independent over k, and $k[z_1, \ldots, z_s] \cap \mathbf{m} =$ (0). Hence R contains the field $k(z_1, \ldots, z_s) := k_0$. It follows that there exists a coefficient field L of R such that $R \supset L \supset k_0$, and hence we have that $R = L[[x_1, \ldots, x_n]]$. Put $S = L[x_1, \ldots, x_n]$ and $\mathbf{n} = (x_1, \ldots, x_n)S$. Then Ris the \mathbf{n} -adic completion of S and $\mathbf{m} = \mathbf{n}R$. In the similar way as the proof of (4.1) in [O], we have that $\hat{D}_t(S/k, \mathbf{n})$ is the polynomial ring over S with variables $\{\hat{h}_i(x_1), \ldots, \hat{h}_i(x_n), \hat{h}_i(z_1), \ldots, \hat{h}_i(z_s) \mid 1 \leq i \leq t\}$, where $\hat{d}_{S/k} :=$ $(\hat{h}_0, \hat{h}_1, \ldots, \hat{h}_t)$. Therefore $R \otimes_S \hat{D}_t(S/k, \mathbf{n})$ is a polynomial ring over R. Since it is Hausdorff with respect to the \mathbf{m} -adic topology, we have $\hat{D}_t(R/k, \mathbf{m}) =$ $R \otimes_S \hat{D}_t(S/k, \mathbf{n})$ from (2.10). Thus $\hat{D}_t(R/k, \mathbf{m})$ is the polynomial ring over R with variables $\{\hat{d}_i(x_1), \ldots, \hat{d}_i(x_n), \hat{d}_i(z_1), \ldots, \hat{d}_i(z_s) \mid 1 \leq i \leq t\}$, where $\hat{d}_{R/k} := (\hat{d}_0, \hat{d}_1, \ldots, \hat{d}_t)$.

 $(2) \Rightarrow (1)$. We can obtain the proof in almost the same way as the proof of [O, (4.2)]. Therefore we omit the proof.

Corollary 3.2. In Theorem 3.1, let us remove the condition that R is complete, instead, let us assume that $\widehat{D}_t(R/k, \mathbf{m})_i$ is a finitely generated R-module for every $i \geq 0$ and $t (1 \leq t < \infty)$. In this case, we have the same conclusion as in Theorem 3.1.

Proof. (1) \Rightarrow (2). Let $\{x_1, \ldots, x_n\}$ be a regular system of parameters of R and $\{\bar{z}_1, \ldots, \bar{z}_s\}$ $(\bar{z}_i = z_i + \mathbf{m})$ a separating transcendence basis of K over k. Then we have

$$\widehat{D}_t(R/k,\mathbf{m}) = R[\widehat{d}_i(x_1),\ldots,\widehat{d}_i(x_n),\widehat{d}_i(z_1),\ldots,\widehat{d}_i(z_s)],$$

by (2.9), where $\hat{\boldsymbol{d}}_{R/k} := (\hat{d}_0, \hat{d}_1, \dots, \hat{d}_t)$. Let R^* be the completion of R and we put $\mathbf{m}^* = \mathbf{m}R^*$. Then the assertion is obtained from the fact $\hat{D}_t(R/k, \mathbf{m}) \subset \hat{D}_t(R^*/k, \mathbf{m}^*)$.

 $(2) \Rightarrow (1)$. The proof follows from Theorem 3.1.

3.2. Unequal characteristic case

In this paragraph, we shall treat exclusively the local rings of characteristic 0 with the residue field of prime characteristic p. For the sake of the proof of Theorem 3.4, we need the following lemma.

Lemma 3.3. Let (R, \mathbf{m}, K) be a complete local ring with $\operatorname{char}(K) = p > 0$, and let (B, pB, k) be a discrete valuation ring (DVR). Assume that $R \succ B$ (i.e. R dominates B), $p \notin \mathbf{m}^2$, and K is finite separably algebraic over k. Let $b \in K$ with K = k(b). Then there are $a \in R$ and $f(X) \in B[X]$ which satisfy the following conditions (1) $a + \mathbf{m} = b, (2)B[a] := C$ is a DVR with the same prime element p as B, (3) $R \succ C \succ B$, (4) K = C/pC, (5) f(X) is monic and irreducible, (6) f(a) = 0, and (7) f'(a) is a unit in C.

Proof. There exists a monic, irreducible polynomial $f(X) \in B[X]$ such that the polynomial $\overline{f}(X)$ is the minimal polynomial of b, where $\overline{f}(X) \in k[X]$ is obtained from f(X) by reducing the coefficients modulo pB. By Hensel's lemma, there are X - a and $f_1(X)$ in R[X] such that $f(X) = (X - a)f_1(X)$ and $a + \mathbf{m} = b$. We put C = B[a], then (C, pC) is a DVR and C/pC = K. Since $\overline{f}(X)$ is separable, $\overline{f}'(b) \neq 0$. It follows that $f'(a) + \mathbf{m} = \overline{f}'(b) \neq 0$. Therefore we have $f'(a) \notin \mathbf{m}$, and hence $f'(a) \notin \mathbf{m} \cap C = pC$. Thus f'(a) is a unit in C.

We are now ready to prove the main result.

Theorem 3.4. Let (R, \mathbf{m}, K) be a Noethrian complete local ring with $\operatorname{char}(K) = p > 0$, and let (P, pP, k) be a discrete valuation ring. Assume that R dominates P, K is separably generated over k, and $\operatorname{Tr.deg}(K/k)$ is finite. Then the following conditions are equivalent:

- (1) R is a regular local ring and $p \notin \mathbf{m}^2$.
- (2) $\widehat{D}_t(R/P, \mathbf{m})$ is a polynomial ring over R for every $t \ (1 \le t < \infty)$.
- (3) $\widehat{D}_P(R)$ is a free *R*-module.

Under these conditions, let $\{x_2, \ldots, x_n\}$ be a subset of \mathbf{m} such that $\{p, x_2, \ldots, x_n\}$ is a regular system of parameters of R and let $\{z_1 + \mathbf{m}, \ldots, z_s + \mathbf{m}\}$ $(z_i \in R)$ be a separating transcendence basis of K/k. Then $\hat{D}_t(R/P, \mathbf{m})$ is the polynomial ring over R with variables $\{\hat{d}_i(x_2), \ldots, \hat{d}_i(x_n), \hat{d}_i(z_1), \ldots, \hat{d}_i(z_s) \mid 1 \leq i \leq t\}$, where $\hat{d}_{R/P} := (\hat{d}_0, \hat{d}_1, \ldots, \hat{d}_t)$ is the associated derivation of $\hat{D}_t(R/P, \mathbf{m})$.

Proof. (1) \Rightarrow (2). Let $\{z_1 + \mathbf{m}, \ldots, z_s + \mathbf{m}\}$ be a separating transcendence basis of K/k. Then $\{z_1, \ldots, z_s\}$ is algebraically independent over P. Put $S = P[z_1, \ldots, z_s]_{(p)} (\subset R)$, then we have $\mathbf{m} \cap S = pS$, (S, pS) is a DVR and $S/pS = k(\bar{z}_1, \ldots, \bar{z}_s)$ ($\bar{z}_i := z_i + \mathbf{m}$). Thus S is a quasi-coefficient ring of R. Furthermore we can see that $\hat{D}_t(S/P, pS)$ is the polynomial ring over Swith variables $\{\hat{h}_i(z_1), \ldots, \hat{h}_i(z_s) \mid 1 \leq i \leq t\}$, where $\hat{\mathbf{d}}_{S/P} := (\hat{h}_0, \hat{h}_1, \ldots, \hat{h}_t)$. We consider the set Ω of all DVR (B, pB) which satisfy $R \succ B \succ S$ and $\hat{D}_t(B/P, pB)$ is the polynomial ring over B with variables $\{\hat{q}_i(z_1), \ldots, \hat{q}_i(z_s) \mid$ $1 \leq i \leq t$, where $\hat{\boldsymbol{d}}_{B/P} := (\hat{q}_0, \hat{q}_1, \dots, \hat{q}_t)$. It is easy to see that Ω is an inductive set with respect to set theoretic inclusion. By Zorn's lemma, there exists a maximal element B of Ω . We put L = B/pB.

We shall show that L = K. If $L \neq K$, then there exists an element $b \in K - L$. Then the field L(b) is separably algebraic over L. Under the same notations as in Lemma 3.3, there are $a \in R$ and $f(X) \in B[X]$ which satisfy conditions in Lemma 3.3. Then, since f'(a) is a unit in C = B[a], C is 0-etale over B. It follows from (2.10) that

$$C \otimes_B \widehat{D}_t(B/P, pB) / \bigcap_{r=0}^{\infty} (pC)^r (C \otimes_B \widehat{D}_t(B/P, pB)) = \widehat{D}_t(C/P, pC).$$

Since $\widehat{D}_t(B/P, pB)$ is a polynomial ring over B, we see that $C \in \Omega$ and $C \supseteq B$. This is a contradiction. Therefore we have L = K. Let B^* be the pB-adic completion of B. Then we have that $B^* \in \Omega$, and thus B is complete. Therefore B is a coefficient ring of R.

Since $p \notin \mathbf{m}^2$, there exists a subset $\{x_2, \ldots, x_n\}$ of \mathbf{m} such that $\mathbf{m} = (p, x_2, \ldots, x_n) (n = \dim(R))$. Then we have $R = B[[x_2, \ldots, x_n]] (\simeq B[[X_2, \ldots, X_n]])$. We put $A = B[x_2, \ldots, x_n]$, $\mathbf{a} = (p, x_2, \ldots, x_n)A$, $Q = P[x_2, \ldots, x_n]$ and $\mathbf{q} = (p, x_2, \ldots, x_n)Q$. Then we have $A = B \otimes_P Q$ and $\hat{D}_t(Q/P, \mathbf{q})$ is the polynomial ring over Q with variables $\{\hat{r}_i(x_2), \ldots, \hat{r}_i(x_n) \mid 1 \leq i \leq t\}$, where $\hat{d}_{Q/P} := (\hat{r}_0, \hat{r}_1, \ldots, \hat{r}_t)$. Since $\hat{D}_t(B/P, pB) \otimes_P \hat{D}_t(Q/P, \mathbf{q})$ is a polynomial ring over B, we see that $\hat{D}_t(A/P, \mathbf{a}) = \hat{D}_t(B/P, pB) \otimes_P \hat{D}_t(Q/P, \mathbf{q})$ (cf. [KY, Proposition 5]) and thus $\hat{D}_t(A/P, \mathbf{a})$ is a polynomial ring over A. Let A^* be the \mathbf{a} -adic completion of A. Then we see that $R = A^* \supset A$ and hence $\hat{D}_t(R/P, \mathbf{m}) = A^* \otimes_A \hat{D}_t(A/P, \mathbf{a})$. Cosequently, $\hat{D}_t(R/P, \mathbf{m})$ is the polynomial ring over R with variables $\{\hat{d}_i(x_2), \ldots, \hat{d}_i(x_n), \hat{d}_i(z_1), \ldots, \hat{d}_i(z_s) \mid 1 \leq i \leq t\}$, where $\hat{d}_{R/P} := (\hat{d}_0, \ldots, \hat{d}_t)$.

 $(2) \Rightarrow (3)$. We consider the case of t = 1. By (2.8), $\widehat{D}_1(R/P, \mathbf{m})$ is a polynomial ring over R with finite variables. Therefore we see that $\widehat{D}_1(R/P, \mathbf{m})_1 (= \widehat{D}_P(R))$ is a finite free R-module.

(3) \Rightarrow (1). Since *R* is complete, $D_P(R)$ is finitely generated. Thus the assertion follows from Theorem 9 in [NS].

Corollary 3.5. In Theorem 3.4, let us remove the condition that R is complete, instead, let us assume that $\widehat{D}_t(R/P, \mathbf{m})_i$ is a finitely generated R-module for every $i \geq 0$ and $t (1 \leq t < \infty)$. In this case, we have the same conclusion as in Theorem 3.4.

Proof is obtained in almost the same way as the proof of (3.4) but with some modifications.

Acknowledgement. We thank the referee for the very useful comments and suggestions that helped us to improve the main theorem.

DEPARTMENT OF MATHEMATICS MEIJO UNIVERSITY NAGOYA 468-8502, JAPAN e-mail: furuya@meijo-u.ac.jp

FACULTY OF SCIENCE SCIENCE UNIVERSITY OF TOKYO TOKYO 162-8601, JAPAN e-mail: niitsuma@rs.kagu.sut.ac.jp

References

- [B] R. Berger, Differentiale höherer Ordnung und Körpererweiterungen bei Primzahlcharakteristik, Sitzungsber. Math.-Naturwiss. Kl., Abh. (1966), 143–202.
- [KY] Y. Kawahara and Y. Yokoyama, On higher differentials in commutative rings, TRU Math., 2 (1966), 12–30.
- [M] H. Matsumura, Commutative ring theory, Cambridge Univ. Press, Cambridge, UK, 1986.
- [NS] Y. Nakai and S. Suzuki, On m-adic differentials, J. Sci. Hiroshima Univ. Ser. A, 4 (1960), 459–476.
- [O] U. Orbanz, Höhere Derivationen und Regularität, J. Reine. Angew. Math., 262/263 (1973), 194–204.
- [Y] Y. Yabu, On m-adic higher differentials in commutative rings, Studies in Liberal Arts and Sciences, Science Univ. Tokyo, 25 (1992), 275–282.