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Structure of group C∗-algebras of the
generalized Mautner groups

By

Takahiro Sudo∗

Abstract

We construct finite composition series of group C∗-algebras of the
generalized Mautner groups whose subquotients are tensor products of
commutative C∗-algebras, noncommutative tori and the C∗-algebra of
compact operators. As an application, we estimate the stable rank and
connected stable rank of the C∗-algebras of generalized real Mautner
groups.

Introduction

We first define the generalized Mautner groups Mn,m by the semi-direct
products Cn �α Rm where the actions α of Rm on Cn are defined by the
multiplication of the matrices

αt =




z1 0
. . .

0 zn


 , t = (tk) ∈ R

m, zj ∈ T(1 ≤ j ≤ n)

with zj = e2πi
Pm

k=1 cjktk with cjk ∈ R. Then they are simply connected solvable
Lie groups. The Mautner group is a special case of M2,1 such as c11 = 1 and
c21 an irrational number. Note that this definition is different from that of the
extended Mautner groups of [AM, p. 138].

In this paper we will investigate the algebraic structure of the C∗-algebras
of Mn,m. In the cases of either n ≥ 2, m = 1, or n = 1, they are studied in
[Sd2], [Sd4]. In what follows we assume that n, m ≥ 2. We emphasize that it
would be the first step for the cases with m ≥ 2.

Notation. Let C∗(G) be the (full) group C∗-algebra of a Lie group G
(cf. [Dx, Part II]). For a locally compact Hausdorff space X, we denote by C0(X)
the C∗-algebra of all complex-valued continuous functions on X vanishing at
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394 Takahiro Sudo

infinity, and let C(X) = C0(X) when X is compact. Let K = K(H) be the
C∗-algebra of all compact operators on a countably infinite dimensional Hilbert
space H.

1. Structure of the group C∗-algebra of Mn,m

Let C∗(Mn,m) be the group C∗-algebra of Mn,m = Cn �α Rm. Then via
Fourier transform we have that

C∗(Mn,m) ∼= C∗(Cn) �α R
m ∼= C0(Cn) �α̂ R

m,

where the right hand side means the C∗-crossed product of C0(Cn) by Rm with
the action α̂ defined by the complex conjugate action α̂t = α∗

t . If zj = 1 for
some j, then C0(Cn) �α̂ Rm ∼= C0(C)⊗ (C0(Cn−1) �α̂ Rm). So we may assume
that zj �= 1 for all j in the following. If cjk = 0 (1 ≤ j ≤ n) for some 1 ≤ k ≤ m,
then C0(Cn)�α̂ Rm ∼= C0(R)⊗ (C0(Cn)�α̂ Rm−1). So we may also assume that
for any k, cjk �= 0 for some j in our setting.

Since the origin 0n of Cn is fixed under α̂, we have the following exact
sequence:

0 → C0(Cn \ {0n}) �α̂ R
m → C0(Cn) �α̂ R

m → C0(Rm) → 0.

By the assumption of α in the introduction, the above ideal have a finite com-
position series {Lk}n

k=1 whose subquotients are given by

Ln−k+1/Ln−k
∼= ⊕(n

k)C0((C \ {01})k) �α̂ R
m

for 1 ≤ k ≤ n, where ⊕(n
k) is the combination

(
n
k

)
times direct sum, and

Lk = C0(Xk)�α̂ Rm with Xk \Xk−1 the disjoint union 
( n
n+1−k)(C\{01})n+1−k

obtained from considering α̂-invariant direct factors of the form (C\{01})n+1−k

in Xk. Moreover, since α̂ is trivial in the radius direction of each direct factor
C \ {01} of (C \ {01})k, we have the following decomposition:

C0((C \ {01})k) �α̂ R
m ∼= C0(Rk) ⊗ (C(Tk) �α̂ R

m).

By the above argument we obtain that

Proposition 1.1. Let Mn,m (n, m ≥ 2) be the generalized Mautner
groups. Then C∗(Mn,m) has no nontrivial projections.

Proof. The statement follows from that the above subquotients of
C∗(Mn,m) have no nontrivial projections.

Remark. The above proposition is also true in the cases of either m = 1
or n = 1. The first case is implicitly obtained in [Sd2], and the second one in
[Sd4]. However, it is not true in general cases for n = 1 if actions are not
multi-rotations. See [Sd1], [Sd3] for other results on the projection problem.
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By the above reduction, it suffices to analyze the crossed product C(Tk)�α̂

Rm.
We now suppose that the action α̂ is transitive on Tk. In this case we have

k ≤ m. Then we obtain by [Gr, Corollary 2.10] that

C(Tk) �α̂ R
m ∼= C(Rm/R

m
1k

) � R
m ∼= C∗(Rm

1k
) ⊗ K(L2(Tk)),

where Rm
1k

is the stabilizer of 1k = (1, . . . , 1) ∈ Tk. Since Rm
1k

is a closed
subgroup of R

m and R
m/R

m
1k

∼= T
k, it is isomorphic to R

m−k ×Z
k. In fact, by

Pontryagin duality we have an exact sequence 1 → Zk → Rm → (Rm
1k

)∧ → 1 of
abelian groups of characters so that (Rm

1k
)∧ ∼= Rm−k × Tk. Hence

C∗(Rm
1k

) ∼= C∗(Rm−k × Z
k) ∼= C0(Rm−k × T

k).

Next suppose that the action α̂ is not transitive on Tk, which occurs for
either any k > m or some k ≤ m. We note that the crossed product C(Tk) �α̂

R
m can be decomposed into the successive crossed products

(· · · ((C(Tk) �α̂1 R) �α̂2 R) · · · ) �α̂m R,

where α̂t = (α̂1
t1 , . . . , α̂m

tm
) for t = (tj) ∈ Rm. Then we deduce that

C(Tk) �α̂1 R ∼=
{

C(Tk−1) ⊗ (C(T) �α̂1 R), or
C(Tk−k1) ⊗ (C(Tk1) �α̂1 R), 2 ≤ k1 ≤ k,

where the stabilizers of α̂1 on either T or each direct factor of Tk1 are not R.
Moreover, in the first case, we obtain by [Gr, Corollary 2.10] that

C(T) �α̂1 R ∼= C(R/Z) �α̂1 R ∼= C(T1) ⊗ K,

where C(T1) ∼= C∗(Z), T1 = T and Z is the stabilizer of α̂1. In the second case
we note that the stabilizers of α̂1 on Tk1 are {0} or Z, hence discrete, so that
C(Tk1)�α̂1 R is regarded as a foliation C∗-algebra C∗(Tk1, F) with the foliation
F consisting of all orbits in Tk1 by α̂1. Since (Tk1, F) is a foliated Tk1−1-bundle
over T with F transversal to each fibers T

k1−1, we obtain that (cf. [Cn, II.8],
[MS])

C(Tk1) �α̂1 R ∼= C∗(Tk1 , F) ∼= (C(Tk1−1) �α̂1 Z) ⊗ K

where the action α̂1 of Z is a suitable restriction to the transversal Tk1−1, and
the crossed product C(Tk1−1) �α̂1 Z is a special case of noncommutative tori,
say T

k1
Θ1

with Θ1 = (cj11, . . . , cjk1−11) and 1 ≤ j1 < · · · < jk1−1 ≤ n. (Note
that the similar argument as above was first shown in [Sd2].)

Therefore, we have that

Lemma 1.2. Let C(Tk) �α̂1 R be the subalgebra of C(Tk) �α̂ R
m as

above. Then

C(Tk) �α̂1 R ∼=
{

C(Tk−1 × T1) ⊗ K, or
C(Tk−k1) ⊗ (C(Tk1−1) �α̂1 Z) ⊗ K

∼=
{

C(Tk) ⊗ K, or
C(Tk−k1) ⊗ T

k1
Θ1

⊗ K, for 2 ≤ k1 ≤ k.
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Remark. If the stabilizers of α̂1 on each direct factor of Tk is not R,
we deduce that

C(Tk) �α̂1 R ∼=
{

C(T) ⊗ K if k = 1,
Tk

Θ1
⊗ K if k ≥ 2.

Next we consider the crossed product (C(Tk) �α̂1 R) �α̂2 R. By using
Lemma 1.2 we obtain that

(C(Tk)�α̂1 R)�α̂2 R ∼=
{

(C(Tk−1 × T1) ⊗ K) �α̂2 R, (I) or
(C(Tk−k1) ⊗ (C(Tk1−1) �α̂1 Z) ⊗ K) �α̂2 R, (II).

In the case (I) we have that

(C(Tk−1 × T1)⊗ K) �α̂2 R ∼=
{

(C(Tk−1) ⊗ C(T1) ⊗ K ⊗ C0(R2), (I1) or
(C(Tk−1) �α̂2 R) ⊗ C(T1) ⊗ K (I2)

since α̂2 is trivial on C(T1) ⊗ K in the case (I2), and for the case (I1) we note
that

C(T1) ⊗ K ⊗ C0(R2) ∼= C(T) �(α̂1,α̂2) R
2,

where R2 = R. By the same observation with the case for α̂1, and since
K⊗K ∼= K, we deduce that (C(Tk−1) �α̂2 R)⊗C(T1)⊗K is isomorphic to one
of the following:


C(Tk−2 × T2) ⊗ C(T1) ⊗ K, or
C(Tk−1−k2) ⊗ (C(Tk2−1) �α̂2 Z) ⊗ C(T1) ⊗ K, or
C(Tk−k2) ⊗ (C(Tk2−2) �α̂2 Z) ⊗ C(T1) ⊗ K.

for 2 ≤ k2 ≤ k−1, where T2 = T as T1, and the stabilizers of α̂2 on each direct
factor of Tk2 are not R, and for the third case, we obtain that

(C(Tk−1) �α̂2 R) ⊗ C(T1) ⊗ K ∼= (C(Tk−k2 × T
k2−1 × T) �α̂1 R) �α̂2 R

∼= (C(Tk−k2 × T
k2−1 × T1) ⊗ K) �α̂2 R

∼= C(Tk−k2) ⊗ (C(Tk2−2) �α̂2 Z) ⊗ C(T1) ⊗ K

because the stabilizers of α̂2 on each direct factor of Tk2−1 are discrete.
In the case (II) we conclude that

(C(Tk−k1) ⊗ (C(Tk1−1) �α̂1 Z) ⊗ K) �α̂2 R

∼=
{

(C(Tk−k1 × Tk1−2) �α̂1 Z) ⊗ K ⊗ C(T2), (II1) or
((C(Tk−k1 × Tk1−1) �α̂2 R) �α̂1 Z) ⊗ K (II2)

since the actions α̂1 and α̂2 commute in the case (II2), and for the case (II1),

(C(Tk1−1) �α̂1 Z) ⊗ K) �α̂2 R ∼= (C(Tk1) �α̂1 R) �α̂2 R

∼= (C(Tk1−1 × T) �α̂2 R) �α̂1 R

∼= (C(Tk1−1) ⊗ C(T2) ⊗ K) �α̂1 R

∼= (C(Tk1−1) �α̂1 R) ⊗ C(T2) ⊗ K
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where the stabilizers of α̂2 on T of Tk1−1 ×T = Tk1 are Z and R on elsewhere.
Moreover, using Lemma 1.2 for α̂2 we have that

((C(Tk−k1 × T
k1−1) �α̂2 R) �α̂1 Z) ⊗ K

∼=
{

((C(Tk−k1−1 × Tk1−1) ⊗ C(T2) ⊗ K) �α̂1 Z) ⊗ K, or
([C(Tk−k1−l21 × T

k1−1−l22) ⊗ (C(Tk2−1) �α̂2 Z)] �α̂1 Z) ⊗ K,

where 2 ≤ k2 = l21 + l22 ≤ k − 1. Summing up the above argument we obtain
that

Lemma 1.3. Let (C(Tk)�α̂1 R)�α̂2 R be the subalgebra of C(Tk)�α̂Rm

as above. Then it is isomorphic to one of the following types:



C(Tk−1) ⊗ C0(T1 × R2) ⊗ K,

C(Tk−2) ⊗ C(T1 × T2) ⊗ K,

C(Tk−1−k2) ⊗ (C(Tk2−1) �α̂2 Z) ⊗ C(T1) ⊗ K,

C(Tk−k2) ⊗ (C(Tk2−2) �α̂2 Z) ⊗ C(T1) ⊗ K,

C(Tk−k1) ⊗ (C(Tk1−2) �α̂1 Z) ⊗ C0(T2) ⊗ K,

C(Tk−k1−1) ⊗ (C(Tk1−1) �α̂1 Z) ⊗ C(T2) ⊗ K,

C(Tk−k1−l21) ⊗ ([C(Tk1−1−l22) ⊗ (C(Tk2−1) �α̂2 Z)] �α̂1 Z) ⊗ K

for 2 ≤ k2 = l21 + l22 ≤ k − 1. These cases can be rewritten by

(C(Tk) �α̂1 R) �α̂2 R ∼=




C0(Tk × R) ⊗ K,

C(Tk) ⊗ K,

C(Tk−k2) ⊗ T
k2
Θ2

⊗ K,

C(Tk−k2+1) ⊗ T
k2−1
Θ2

⊗ K,

C(Tk−k1+1) ⊗ T
k1−1
Θ1

⊗ K,

C(Tk−k1) ⊗ T
k1
Θ1

⊗ K,

C(Tk−k1−l21) ⊗ T
k1+l21
(Θ1,Θ2)

⊗ K,

where T
k1+l21
(Θ1,Θ2) = C(Tk1+l21−2) �(α̂1,α̂2) Z

2 is a noncommutative torus.

Remark. If the stabilizers of α̂ = (α̂1, α̂2) on each direct factor of Tk

are not R2, and kj ≥ 1 for (j = 1, 2), then we have that

(C(Tk) �α̂1 R) �α̂2 R ∼=




C0(T × R) ⊗ K, k = 1,
C(T1 × T2) ⊗ K, k = 2,
T

k−1
Θ2

⊗ C(T1) ⊗ K,

T
k−1
Θ1

⊗ C(T2) ⊗ K,

T
k
(Θ1,Θ2)

⊗ K,

where α̂ is transitive in the above cases for k = 1, 2.
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In the general case, we obtain by the similar computation that

Theorem 1.4. Let C(Tk)�α̂R
m be the crossed product cited above with

the stabilizers of α̂ on each direct factor of Tk not equal to Rm, and kj ≥ 1 for
any 1 ≤ j ≤ m as in the above remark. If α̂ is transitive on Tk, then we deduce
that

C(Tk) �α̂ R
m ∼= C0(Rm−k × T

k) ⊗ K, k ≤ m,

and in other cases, we obtain that

C(Tk) �α̂ R
m ∼=




C0(Tk × Rh1) ⊗ K,

C0(Tk−lj × R
h2) ⊗ T

lj
Θj

⊗ K,

C0(Tk−lj12 × R
h3) ⊗ T

lj12
(Θj1 ,Θj2 ) ⊗ K,

· · · · · · · · · · · · · · · · · · · · · · · ·
C0(T

k−lj1···(m−2) × Rhm−1) ⊗ T
lj1···(m−2)

(Θ1,... ,Θm−2)
⊗ K,

C(T) ⊗ T
k−1
(Θ1,... ,Θm−1)

⊗ K,

T
k
(Θ1,... ,Θm) ⊗ K,

where Rhj (0 ≤ hj ≤ m − j) are subspaces of R̂m, and

T
lj
Θj

, . . . , Tk
(Θ1,... ,Θm) = C(Tk−m) �(α̂1,... ,α̂m) Z

m

are noncommutative tori, and if 1 ≤ s ≤ m−1, then 1 ≤ j1 < j2 < · · · < js ≤ m
for Tl

(Θj1 ,Θj2 ,... ,Θjs ), where Θjp
= (cq1p, . . . , cql−sp) with 1 ≤ q1 < · · · < ql−s ≤

n for 1 ≤ p ≤ s.

Proof. We have shown the transitive case after Proposition 1.1. In other
cases, by induction on m we deduce that

C(Tk) �α̂ R
m ∼= C0(Tk−l × R

h) ⊗ T
l
(Θj1 ,... ,Θjs ) ⊗ K

for some 0 ≤ l ≤ k and 0 ≤ h ≤ m − s − 1. Then (C(Tk) �α̂ Rm) �α̂m+1 R is
isomorphic to one of the following types:


((C(Tk−l−k′

) ⊗ T
l
(Θj1 ,... ,Θjs )) ⊗ K ⊗ C0(Rh−h′

)
⊗ (C(Tk′

) �(α̂,α̂m+1) R
h′+k′ × R),

((C(Tk−l) ⊗ T
l
(Θj1 ,... ,Θjs )) �α̂m+1 R) ⊗ K ⊗ C0(Rh),

where C(Tk′
)�α̂ Rh′+k′ ∼= C0(Tk′ ×Rh′

)⊗K. For the first case, we obtain that

C(Tk′
) �(α̂,α̂m+1) R

h′+k′ × R ∼= C0(Tk′ × R
h′+1) ⊗ K.

For the second case, we note that

T
l
(Θj1 ,... ,Θjs ) �α̂m+1 R ∼= (C(Tl−s) �α̂ Z

s) �α̂m+1 R

∼= (C(Tl−s) �α̂m+1 R) �α̂ Z
s.
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Therefore we have that

(C(Tk−l) ⊗ T
l
(Θj1 ,... ,Θjs )) �α̂m+1 R ∼= (C(Tk−l × T

l−s) �α̂m+1 R) �α̂ Z
s.

By assumption of α̂, if k − l ≥ 1, then the stabilizers of α̂m+1 on each direct
factor of Tk−l are not R. Then

C(Tk−s) �α̂m+1 R ∼=
{

C(Tm+1) ⊗ K if k − s = 1,
(C(Tk−s−1) �α̂m+1 Z) ⊗ K if k − s ≥ 2,

where Tm+1 = T. In particular, if k − l = 1 and α̂m+1 trivial on Tl−s, then
the crossed product in the left hand side is isomorphic to C(T × Tl−s) ⊗ K.
Finally, note that

(C(Tk−s−1) �α̂m+1 Z) �α̂ Z
s ∼= T

k
(Θj1 ,... ,Θjs ,Θjs+1 ),

where Θjs+1 corresponds to α̂m+1 on Tk−s−1.

Summing up the arrangement discussed above we obtain that

Theorem 1.5. Let Mn,m = Cn �α Rm be the generalized Mautner
group. Then there exists a finite composition series {Ij}K

j=1 of C∗(Mn,m) whose
subquotients are given by

Ij/Ij−1
∼=

{
C0(Cl × R

m) j = K,

C0(Cl × Rkj ) ⊗ (C(Tkj ) �α̂ Rm) 1 ≤ j ≤ K − 1,

for some 0 ≤ l ≤ n and 1 ≤ kj ≤ kj−1 ≤ n, and the crossed product C(Tkj ) �α̂

Rm is isomorphic to one of the C∗-tensor products appeared in Theorem 1.4.

Remark. We note that the product space Cl × Rm is homeomorphic
to the space of all 1-dimensional representations of Mn,m. The composition
series {Ij}K

j=1 is a refinement of {Lk}n
k=1 constructed before Proposition 1.1.

The algebraic structure of group C∗-algebras of simply connected, solvable Lie
groups in more general cases would be examined in another paper elsewhere.

2. Application

As an application of Theorem 1.5, we obtain that

Theorem 2.1. Let H = Rn �β Rm be the subgroup of the generalized
Mautner group G = C

n
�α R

m with α = β + iβ. Then C∗(H) has a finite
composition series {Dj}L

j=1 whose subquotients are given by

Dj/Dj−1
∼=




C0(Rd+m) j = L,{
C0(Xj) ⊗ K, or

C0(Yj) ⊗ Bj ⊗ K
1 ≤ j ≤ L − 1
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for some 0 ≤ d ≤ n, where Bj is isomorphic to either a suitable T
lj
(Θj1 ,... ,Θjs )

or its quotient, and Xj, Yj are suitable quotient spaces of the product spaces
Cl × Rkj+hj × Tkj−lj as in Theorems 1.4 and 1.5.

Proof. Note that C∗(H) is a quotient of C∗(G) by assumption. Then we
can construct a finite composition series of C∗(H) by taking quotients of the
composition series of C∗(G) in Theorem 1.5. Also note that the noncommuta-
tive tori T

lj
(Θj1 ,... ,Θjs ) are simple or not according to whether the action on the

corresponding restriction is free.

We now denote by Ĝ1 the space of all 1-dimensional representations of a
Lie group G. As a corollary of Theorems 1.5 and 2.1, using some formulas of
the stable rank and connected stable rank for C∗-algebras we obtain that

Corollary 2.2. Let G be the generalized Mautner group. Then we have
that 


{

sr(C∗(G)) = 2 ∨ dimC Ĝ1, if dim Ĝ1 is even,
2 ∨ dimC Ĝ1 ≤ sr(C∗(G)) ≤ dimC Ĝ1 + 1, if dim Ĝ1 is odd,

csr(C∗(G)) ≤ 2 ∨ csr(C0(Ĝ1)) = [(dim Ĝ1 + 1)/2] + 1,

where sr(·), csr(·) respectively mean the stable rank and connected stable rank
of C∗-algebras, dimC = [dim(·)/2] + 1, and ∨ is the maximum.

Proof. We apply the following formulas by [Rf, Theorems 3.6, 4.3, 4.4,
4.11 and 6.4] and [Sh, Theorems 3.9 and 3.10] to the composition series obtained
in Theorem 1.5 (or Theorem 2.1 for C∗(H)) inductively:

sr(I)∨sr(A/I) ≤ sr(A) ≤ sr(I)∨sr(A/I)∨csr(A/I), csr(A) ≤ csr(I)∨csr(A/I)

for an exact sequence 0 → I → A → A/I → 0 of C∗-algebras, and

sr(A ⊗ K) ≤ 2, csr(A ⊗ K) ≤ 2.

By [Rf, Proposition 1.7] and [Sh, p. 381] (cf. [Ns]), we know that{
sr(C0(X)) = dimC X+, csr(C0(R)) = 2,

csr(C0(R2)) = 1, csr(C0(Rd)) = [(d + 1)/2] + 1 for d ≥ 3,

where X+ means the one-point compactification of a locally compact T 2-space
X. Moreover, we note that sr(C∗(G)) ≥ 2 by [ST2, Lemma 3.7]. These imply
the conclusion.

Remark. The above corollary partially answers Rieffel’s question [Rf,
p. 313] describing the stable rank of group C∗-algebras in terms of groups. See
[Sd2], [Sd3], [ST1], [ST2] for some results related to this question. If K1-group
of C∗(G) is nontrivial, in other words, if dimG is odd (cf. [Cn, II.C]), then we
obtain that csr(C∗(G)) ≥ 2 by [Eh, Corollary 1.6].
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