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Abstract

We classify binary self-similar sets, which are compact sets deter-
mined by two contractions on the plane, into four classes from the view-
point of functional equations. In this classification, we can not only show
close relationships among functions with self-similarity but also give so-
lutions to a few open problems in other field.

Introduction

In the history of mathematics, we have seen some discoveries of strange
functions, which gave us a strong impact; for examples, the Takagi function [19],
constructed as a simple example of a nowhere differentiable but continuous
function, the Von Koch curve [10], a continuous Jordan curve, which admits
no tangent line anywhere, and the Lévy curve [12], which is a continuous curve
but with positive area, and so on. Each of these curves was discovered inde-
pendently and initially, no relationships between them were known for a long
time.

However in 1984, Hata and Yamaguti showed the following beautiful rela-
tionship between the Takagi function T 1(x) and Lebesgue’s singular function
M1

a (x) (Figure 1), which is a monotone increasing continuous function whose
derivative is zero almost everywhere [22].

2T 1(x) =
∂M1

a (x)
∂a

∣∣∣∣
a=1/2

,(1)

where a is a real parameter with 0 < a < 1.
A generalization of this relation was considered by Sekiguchi-Shiota in

1991. They computed the k-th partial derivative of M1
a (x) with respect to the
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Figure 1. The Takagi function and Lebesgue’s singular function

real parameter a [16], and showed that it has a nice application to an open
problem about digital sums [18].

Also, Tasaki, Antoniou and Suchanecki pointed out Hata-Yamaguti’s result
has some valuable applications in physics [20].

The purpose of this paper is to extend Hata-Yamaguti’s results by finding
close relationships among other strange functions from the viewpoint of the
theory of fractal geometry.

Recall a definition of self-similar sets. We say that a set X is self-similar,
if it is a unique empty compact solution of the set equation X = ψ0(X) ∪
ψ1(X)∪ · · · ∪ψm−1(X) for some finite similarity contractions ψ0, ψ1, . . . , ψm−1

on R
n. In this paper, we define binary self-similar sets as self-similar sets

defined by two similarity contractions on the plane and classify them into four
classes determined by the form of their functional equation. This leads to a
classification of self-similar sets that has not been studied yet. Although many
studies on the classification of self-similar sets have been investigated from
the viewpoint of connectedness (Exercise [5], [1]), it is still very difficult to
determine if a given self-similar set is connected.

Binary self-similar sets are the simplest case of self-similar sets; however,
they include many interesting special cases; for instance, the Lévy curve, the
Von Koch curve (Figure 2) and Pólya’s space filling curve, which is a simiplified
version of the Peano curve. Also, we show that our main theorems have nice
applications to several open problems in other fields.

Section 1 gives a discussion about the classfication of binary self-similar
sets.

First, we introduce the following four functional equations.

G1
α,γ(x) =

{
αG1

α,γ(2x), 0 ≤ x < 1/2,
γG1

α,γ(2x− 1) + (1 − γ), 1/2 ≤ x ≤ 1,
(2)
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G2
α,γ(x) =

{
αG2

α,γ(2x) 0 ≤ x < 1/2,
γG2

α,γ(2x− 1) + (1 − γ), 1/2 ≤ x ≤ 1,
(3)

G3
α,γ(x) =

{
αG3

α,γ(2x), 0 ≤ x < 1/2,
γG3

α,γ(2x− 1) + (1 − γ), 1/2 ≤ x ≤ 1,
(4)

G4
α,γ(x) =

{
αG4

α,γ(2x), 0 ≤ x < 1/2,
γG4

α,γ(2x− 1) + (1 − γ), 1/2 ≤ x ≤ 1,
(5)

where α and γ are complex parameters satisfying |α| < 1, |γ| < 1.

Figure 2. The Von Koch curve

It can be proved that there exists a unique bounded solution Gi
α,γ(x) (i =

1, 2, 3, 4) for each functional equation. These solutions are complex-valued real
functions. The closure of their images are binary self-similar sets, because
each functional equation represents a pair of two similar contractions on the
plane. In addition, we see that any binary self-similar set can be determined
by contractions represented by these four functional equations. In other words,
any binary self-similar set can be expressed as the closure of the image of a
solution of one of these functional equations; therefore, any binary self-similar
set can be classified into one of four classes.

We also obtain explicit formulas for a unique bounded solutionGi
α,γ(x) (i =

1, 2, 3, 4) by a number-theoretical expression. These are our main theorems (See
Theorems 1.2 through 1.6 below). Although Gi

α,γ(x) (i = 1, 2, 3, 4) are discon-
tinuous functions except when γ = 1−α, their differentiability with respect to
the complex parameters α and γ can be proved from main theorems.

In Section 2, as an extension of Hata-Yamaguti’s results, we find a rela-
tionship between G1

α,1−α(x) and the Takagi function, T 1(x), as follows.

Im
∂G1

α,1−α(x)
∂αI

∣∣∣∣∣
α=1/2

= 2T 1(x),(6)
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where αI is the imaginary part of α satisfing |α| < 1.
Furthermore, we prove that the real part of G1

α,1−α(x) can be expressed
in terms of the derivatives of even order of Lebesgue’s singular function, and
the imaginary part is expressed in terms of the derivatives of odd order of
Lebesgue’s singular function.

From (1) and (6), we know that G1
α,1−α(x) has a close relationship with a

nowhere differentiable function, T 1(x), and a singular function, M1
a (x). Then

a question arises: how about G2
α,1−α(x), G3

α,1−α(x) and G4
α,1−α(x)?

To provide an answer for this question, we introduce real-valued functions
T i(x) and M i

a(x) (i = 2, 3, 4) satisfying equations analogous to (1) and (6). We
analyze the behavior of these functions. It is interesting to observe how the
behavior of T i(x) and M i

a(x) (i = 1, 2, 3, 4) depends on the number of complex
conjugate terms of (2)–(5). In other words, these real functions clarify the
essential difference among four classes from the view point of real analysis.

In Section 3, we mention a relationship between the Cantor function and
binary self-similar sets. We define a generalized Cantor function, Fa,b(x), hav-
ing two real parameters a and b satisfying |a| < 1 and |1 − a − b| < 1.
In case a = 1/3, b = 1/3, Fa,b(x) is the Cantor function. Next, we define
Ea,b(x) = sup{y ∈ [0, 1];Fa,b(y) = x}. This function is the generalized in-
verse function of Fa,b(x), and it is known that Ea,0(x) is Lebesgue’s singular
function [8], [9]. From the viewpoint of the functional equations, we have
Ea,b(x) = Gi

a,1−a−b(x), (i = 1, 2, 3, 4).
Section 4 gives some applications of our main theorems.
First, we give a solution to the open problem of exponential sums in number

theory. Explicit formulas of exponential sums have been investigated by many
authors for a long time. In 1998, Muramoto et al. gave a part of this solution
using the representation of Lebesgue’s singular function [15]. We show how
their results can be generalized using a main theorem of Section 1.

Next, we solve an open problem in ergodic theory posed by Mizutani and

Figure 3. The Levy curve and Dragon
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Ito in 1987 [14]. They investigated a set of four Dragons by using the algebraic
methods of Dekking and point out an interesting open problem about the Lévy
curve. We show that our main theorem is powerful for analyzing the Lévy curve,
and a relationship between the Lévy curve and Dragon (Figure 3) is clarified.

Lastly, we study Dragon from the viewpoint of the functional equation
again and compare with the Lévy curve. From Section 3, we recognized the Lévy
curve as the image of a complex-valued continuous function G1

1/2+i/2,1/2−i/2(x)
and characterized it by the Takagi function and Lebesgue’s singular function.
Similarly, Dragon can be viewed as the image of a discontinuous complex-valued
function G1

1/2+i/2,1/2+i/2(x), and we can characterize it in terms of Rademacher
series and self-affine dust.

Throughout this paper “singular function” means a monotone increasing
continuous function whose derivative is zero almost everywhere.

1. Classification of binary self-similar sets

The history of systematic mathematical research on self-similar sets dates
back to 1981, when Hutchinson considered the non-empty compact set X ⊂ Rn

satisfying the following set equation.

X = ψ0(X) ∪ ψ1(X) ∪ · · · ∪ ψm−1(X),(7)

where ψ0, ψ1, . . . , ψm−1 are similarity contractions on Rn.
(Recall that a map ψ : Rn → Rn is a similarity contraction iff there exists a

constant number L(ψ) ∈ (0, 1) so that the equality ‖ψ(x)−ψ(y)‖ = L(ψ)‖x−y‖
holds for any x, y ∈ R

n).
Besides, Hutchinson proved essentially the following important theorem [7].

Theorem 1.1. For any finite family of similarity contractions, there
exists a unique compact solution of (7).

If ψ0, ψ1, . . . , ψm−1 satisfy with the open set condition; (there exists a non-
empty open set U such that ψi(U) ⊂ U and ψi(U) ∪ ψj(U), i �= j), then many
more properties of the set X can be determined. [3], [7].

In this paper, we say that a set X is self-similar, if X is a unique empty
compact solution of (7) and define binary self-similar sets as follows.

Definition 1.1. A set X is binary self-similar, if X is a non-empty
compact set X ⊂ C satisfying

X = ψ1(X) ∪ ψ2(X),

where ψ1, ψ2 are similarity contractions on C.

It is well known that any similarity contraction can be expressed as a com-
position of scaling maps, rotations and reflections. Two similarity contractions
ψ1, ψ2 : C → C can be normalized so that z = 0 is the fixed point of ψ1, and
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z = 1 is the fixed point of ψ2 without loss of generality. This leads to four
different cases: {

ψ1(z) = αz,

ψ2(z) = γz + (1 − γ),
(8)

{
ψ1(z) = αz,

ψ2(z) = γz + (1 − γ),
(9)

{
ψ1(z) = αz,

ψ2(z) = γz + (1 − γ),
(10)

{
ψ1(z) = αz,

ψ2(z) = γz + (1 − γ),
(11)

where α and γ are complex parameters satisfying |α| < 1, |γ| < 1.
In other words, any binary self-similar set is determined by one of these

four pairs of contractions. For instance, the Lévy curve [12], a continuous curve
but with positive area, is obtained by (8), if α = 1/2 + i/2 and γ = 1/2 − i/2.
Also, the von Koch curve [10], a continuous Jordan curve admitting no tangent
line anywhere, and Pólya’s space filling curve are obtained by (9); more exactly,
if α = 1/2 + (

√
3/6)i and γ = 1/2 − (

√
3/6)i, the von Koch curve is given, and

if α = 1/2 + i/2 and γ = 1/2 − i/2, Pólya’s space filling curve is given [23].
Now, we introduce the following four functional equations:

G1
α,γ(x) =

{
αG1

α,γ(2x), 0 ≤ x < 1/2,
γG1

α,γ(2x− 1) + (1 − γ), 1/2 ≤ x ≤ 1,
(12)

G2
α,γ(x) =

{
αG2

α,γ(2x), 0 ≤ x < 1/2,
γG2

α,γ(2x− 1) + (1 − γ), 1/2 ≤ x ≤ 1,
(13)

G3
α,γ(x) =

{
αG3

α,γ(2x), 0 ≤ x < 1/2,
γG3

α,γ(2x− 1) + (1 − γ), 1/2 ≤ x ≤ 1,
(14)

G4
α,γ(x) =

{
αG4

α,γ(2x), 0 ≤ x < 1/2,
γG4

α,γ(2x− 1) + (1 − γ), 1/2 ≤ x ≤ 1,
(15)

where α and γ are complex parameters satisfying |α| < 1, |γ| < 1.
Note that these functional equations resemble the following general func-

tional equations G. de Rham studied in 1957 [4].

f(x) =

{
ψ1(f(2x)), 0 ≤ x ≤ 1/2,
ψ2(f(2x− 1)), 1/2 ≤ x ≤ 1,

(16)

where ψ1, ψ2 are contractions on R
2.

He showed that (16) has a unique continuous solution f(x) if and only if
ψ2(p1) = ψ1(p2), where p1, p2 are the unique fixed points of ψ1 and ψ2, respec-
tively. This result was generalized to the case of finitely many contractions by
M. Hata in 1985 [5].
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If γ = 1 − α, we can see that each functional equation of (12)–(15) has a
unique continuous solution from de Rham’s theorem. It is also clear that the
image of this solution is a compact set and coincides with the corresponding
binary self-similar set. However, what is the situation in the other cases? More
exactly, if γ �= 1 − α, does there exist a solution of (12)–(15)?

Before stating our result about this, some notations need to be introduced.
We let α and γ denote complex parameters satisfying |α| < 1, |γ| < 1.

The real part of α is denoted by αR, and the imaginary part of α is denoted
by αI . Similarly, γR is the real part of γ, and γI is the imaginary part of γ.
Furthermore, the binary expansion of x ∈ [0, 1] and its quaternary expansion
are defined as follows.

Definition 1.2. The binary expansion of x ∈ [0, 1] is denoted by

x =
∞∑

n=1

ωn2−n, ωn = ωn(x) ∈ {0, 1}.

For these x ∈ [0, 1] which have two binary expansions we choose the ex-
pansion which is even tually all zeroes. However, fix ωn = 1 for every n if
x = 1.

Let q(x, n) =
∑n

k=1 ωk; in other words, q(x, n) is the number of 1’s occur-
ring in the first n binary digits of x. By convention, q(x, 0) = 0.

Definition 1.3. The quaternary expansion of x ∈ [0, 1] is denoted by

x =
∞∑

n=1

ξn4−n, ξn = ξn(x) ∈ {0, 1, 2, 3}.

For these x ∈ [0, 1] which have two quaternary expansions we choose the
expansion which is even tually all zeroes. However, fix ξn = 3 for every n if
x = 1.

Let pk (k = 0, 1, 2, 3) be the number of k’s occurring in the first n quater-
nary digits of x.

First, we consider an explicit formula for a solution of (12).

Theorem 1.2. There exists a unique bounded solution of (12), and it
has the following expression

G1
α,γ(x) = (1 − γ)

∞∑
n=1

ωnα
n−1−q(x,n−1)γq(x,n−1), 0 ≤ x ≤ 1.(17)

Proof. First, we show that (17) is a solution of (12). Note that ω1 = 0 and
q(2x, n−1) = q(x, n) if 0 ≤ x < 1/2, and ω1 = 1 and q(2x−1, n−1) = q(x, n)−1
if 1/2 ≤ x ≤ 1. It is now an easy exercise to prove that (17) satisfies (12).
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Suppose f is bounded solution of (12). Then by induction of k, we have
the following equation uniquely.

f

( ∞∑
n=1

ωn2−n

)
= αk−1−q(x,k−1)γq(x,k−1)f

( ∞∑
n=k

ωn2−n

)
(18)

+ (1 − γ)
k−1∑
n=1

ωnα
n−1−q(x,n−1)γq(x,n−1)

Since |α| < 1 and |γ| < 1, we can take the limit on both sides of (18) to
obtain f = G1

α,γ .

Example 1.1. In 1934, Z. Lomnicki and S. Ulam showed that Lebesgue’s
singular function M1

a (x) has the following representation [13].

M1
a (x) =

a

1 − a

∞∑
n=1

ωna
n−q(x,n)(1 − a)q(x,n),(19)

where 0 < a < 1 and a �= 1/2.
Since

∞∑
n=1

ωna
n−q(x,n−1)(1 − a)q(x,n−1) =

∞∑
n=1

ωna
n+1−q(x,n)(1 − a)q(x,n)−1,

we have

M1
a (x) = G1

a,1−a(x).

Corollary 1.2.1. If γ �= 1 − α, G1
α,γ(x) is discontiunuous at x = l/2k,

for every 1 ≤ k and 1 ≤ l ≤ 2k − 1.

Proof. If γ = 1−α, it is clear that G1
α,γ(x) is continuous from de Rham’s

results.
From Theorem 1.2, we have

G1
α,γ(1 − 0) = (1 − γ)

∞∑
n=1

γn−1 = 1.

From (12),

G1
α,γ(1/2 − 0) = αG1

α,γ(1 − 0) = α,

G1
α,γ(1/2) = 1 − γ.

Recursively, from (12), G1
α,γ(x) is discontinuous at x ∈ {l/2k}k=1,...,1≤l≤2k−1.

It induces an interesting problem to suppose a solution of (12) is un-
bounded.
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Theorem 1.3. There are 2c unbounded solutions of (12).

Proof. Let

T (x) =

{
2x, 0 ≤ x < 1/2,
2x− 1, 1/2 ≤ x ≤ 1.

A completely invarient set S ⊂ [0, 1] has the property that if x ∈ S, T (x) ∈ S
and T−1(x) ⊂ S. For any x ∈ [0, 1], there is a smallest completely invarient set
containing x.

Let P be the family of smallest completely invarient sets. Each set in P is
countable. Note if S1, S2 ∈ P and S1 ∩ S2 �= φ, then S1 = S2. Therefore, P is
a partition [0, 1].

Since T has only countably many periodic points, only the countably many
elements of P contains a periodic point.

Let c be the cardinal of 2ℵ0 . For each α ≺ c, let Xα ∈ Sα. For each α,
choose a value for f(Xα) if f satisfies the equation (12). This determines the
value of f on Sα. Note that since Sα does not contain a periodic point we
choose any value for f(Xα) that we wish. Also the value of f on Sα has no
influence on the value of f anywhere else.

Thus, there are as many solutions of (12) as there are functions c into R.
(i.e. there are 2c solutions of (12).)

Next, we give an explicit formula for a solution of (20).

Theorem 1.4. There exists a unique bounded solution of (13), and it
has the following expression.

G2
α,γ(x) = c(ξ1) +

∞∑
n=1

c(ξn+1)αp0+p1(α)p0+p2γp2+p3(γ)p1+p3 , 0 ≤ x ≤ 1,

(20)

where

c(ξn) =




0, ξn = 0,
α(α+ β), ξn = 1,
(α+ β), ξn = 2,
(1 − α− β)(α+ β) + (α+ β), ξn = 3.

Proof. Note that (13) is equivalent to the following.

G2
α,γ(x) =



|α|2G2

α,γ(4x), 0 ≤ x < 1/4,
αγG2

α,γ(4x− 1) + α(1 − γ), 1/4 ≤ x < 1/2,
αγG2

α,γ(4x− 2) + (1 − γ), 1/2 ≤ x < 3/4,
|γ|2G2

α,γ(4x− 3) + γ(1 − γ) + (1 − γ), 3/4 ≤ x ≤ 1.

(21)
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It is straighforward that (20) satisfies (21). Therefore, (20) is a solution of
(13).

It can be proved that (20) is a unique bounded soluion in the same way as
the proof of Theorem 1.2.

Third, we derive an explicit formula for a solution of (14): G3
α,γ(x). To

do this, it is helpful to consider the real and imaginary part of G3
α,γ(x). Define

the vector-valued function

Y(x) =
(

ReG3
α,γ(x)

ImG3
α,γ(x)

)
.

Then Y(x) is the unique solution of the following functional equation.

Y(x) =




(
αR −αI

αI αR

)
Y(2x) +

(
0
0

)
, 0 ≤ x < 1/2,(

γR γI

γI −γR

)
Y(2x− 1) +

(
1 − γR

−γI

)
, 1/2 ≤ x ≤ 1.

Hence, we can obtain the following theorem.

Theorem 1.5. There exists a unique bounded solution of (14) and it
has the following expression.

(
ReG3

α,γ(x)
ImG3

α,γ(x)

)

=

( ∞∑
n=1

ωn

(
αR −αI

αI αR

)n−1−q(x,n−1) (
γR γI

γI −γR

)q(x,n−1)
)(

1 − γR

−γI

)
,

where x ∈ [0, 1].

In the same way, we can also obtain an explicit formula for G4
α,γ(x).

Theorem 1.6. There exists a unique bounded solution of (15), and it
has the following expression.

(
ReG4

α,γ(x)
ImG4

α,γ(x)

)

=

( ∞∑
n=1

ωn

(
αR αI

αI −αR

)n−1−q(x,n−1)(
γR −γI

γI γR

)q(x,n−1)
)(

1 − γR

−γI

)
.

For comparision, we give expressions for the real and imaginary part of
G1

α,γ(x) and G2
α,γ(x).
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Remark 1.6.1. G1
α,γ(x) and G2

α,γ(x) also have the following expres-
sions.(

ReG1
α,γ(x)

ImG1
α,γ(x)

)

=

( ∞∑
n=1

ωn

(
αR −αI

αI αR

)n−1−q(x,n−1)(
γR −γI

γI γR

)q(x,n−1)
)(

1 − γR

−γI

)
,

(
ReG2

α,γ(x)
ImG2

α,γ(x)

)

=

( ∞∑
n=1

ωn

(
αR αI

αI −αR

)n−1−q(x,n−1)(
γR γI

γI −γR

)q(x,n−1)
)(

1 − γR

−γI

)
.

Recall that Gi
α,γ(x) (i = 1, 2, 3, 4) are discontinuous functions except when

γ = 1 − α; therefore, it is clear they are not differentiable if γ �= 1 − α.
However, using Theorems 1.2 through 1.6, we obtain the following result

concering the differentiability with respect to α and γ.

Corollary 1.6.1. For each fixed x ∈ [0, 1], G1
α,γ(x) is an analytic func-

tion with respect to α, γ in a complex domain E = {(α, γ) ∈ C2; |α| < 1, |γ| <
1}, but the other Gi

α,γ(x), (i = 2, 3, 4) are not analytic.

Consider the closure of the image of a unique bounded solutionGi
α,γ(x), (i =

1, 2, 3, 4). It is clearly a binary self-similar set. Furthermore, we can see that
any binary self-similar set can be determined by contractions represented by
four functional equations (12)–(15) and be classified into one of four classes
completely.

2. An extension of Hata and Yamaguti’s result

In 1903, T. Takagi discovered an example of a nowhere differentiable con-
tinuous function that was much simpler than a well-known example discovered
by K. Weierstrass. It is called the Takagi function.

The Takagi function T 1(x) is defined by

T 1(x) =
∞∑

n=1

1
2n
ϕn(x), 0 ≤ x ≤ 1,

where

ϕ(x) =

{
2x, 0 ≤ x ≤ 1/2,
2(1 − x), 1/2 ≤ x ≤ 1,

(22)

and ϕn is the n-fold iteration of ϕ. It is known that ϕ(x) is a typical chaotic
dynamical system.
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On the other hand, G. de Rham studied the following functional equations:

M1
a (x) =

{
aM1

a (2x), 0 ≤ x ≤ 1/2,
(1 − a)M1

a (2x− 1) + a, 1/2 ≤ x ≤ 1,
(23)

where a �= 1/2 and 0 < a < 1. He showed that the unique continuous solu-
tion M1

a (x) of (23) is Lebesgue’s singular function. It is well-known that M1
a (x)

is a strictly increasing function whose derivative is zero almost everywhere.
In 1984, Hata-Yamaguti studied T 1(x) and M1

a (x) and discovered the fol-
lowing interesting connection [22].

2T 1(x) =
∂M1

a (x)
∂a

∣∣∣∣
a= 1

2

.

The functional equation having T 1(x) as a unique continuous solution is
as follows. [22]

T 1(x) =

{
(1/2)T 1(2x) + x, 0 ≤ x ≤ 1/2,
(1/2)T 1(2x− 1) + (1 − x), 1/2 ≤ x ≤ 1.

(24)

This discovery came as a big surprise, because each function had been
discovered independently and initially and no relationships between them were
known for a long time. Furthermore, T. Sekiguchi and Y. Shiota considered a
generalization of this result in 1991. They computed the k-th partial derivative
of Ma(x) with respect to a. More precisely, they defined T 1

a,k(x) by

T 1
a,k(x) =

1
k!
∂kM1

a (x)
∂ak

, (k = 1, 2, . . . ),(25)

where 0 < a < 1 and a �= 1/2 and proved that T 1
a,k(x) is a nowhere differen-

tiable but continuous function [16]. Besides, they found that (25) has a nice
application to an open problem concerning digital sums in number theory [18].

Now, we study the relationship between T 1
a,k(x) and G1

α,1−α(x).

Lemma 2.1. The function G1
α,1−α(x) is related to T 1

αR,k(x) by

∂kG1
α,1−α(x)
∂αk

I

∣∣∣∣∣
α=αR

= ikk!T 1
αR,k(x), (k = 0, 1 . . . ).

Proof. From Corollary 1.6.1,

∂

∂αI
G1

α,1−α(x) = i
∂

∂αR
G1

α,1−α(x) = i
d

dα
G1

α,1−α(x).

Since (dG1
α,1−α(x))/dα is also an analytic function with respect to α, we

have

∂

∂αI

(
∂

∂αI
G1

α,1−α(x)
)

= i
∂

∂αR

(
i
∂

∂αR
G1

α,1−α(x)
)

= i
d

dα

(
i
d

dα
G1

α,1−α(x)
)
.
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Iterating gives

∂kG1
α,1−α(x)
∂αk

I

= ik
∂kG1

α,1−α(x)
∂αk

R

.

If αI = 0, then G1
α,1−α(x) = M1

αR
(x).

Hence, for αR ∈ (0, 1),

∂kG1
α,1−α(x)
∂αk

I

∣∣∣∣∣
α=αR

= ik
∂kG1

α,1−α(x)
∂αk

R

= ikk!T 1
αR,k(x).

Example 2.1. If k = 1,

∂G1
α,1−α(x)
∂αI

∣∣∣∣∣
α=1/2

= 2iT 1(x).

Since T 1(x) is a real valued function, we obtain the following relationship
between the Takagi function and G1

α,1−α(x).

Im
∂G1

α,1−α(x)
∂αI

∣∣∣∣∣
α=1/2

= 2T 1(x).

Furthermore, we can see the difference between the real part and imaginary
part of G1

α,1−α(x) from Lemma 2.1.

Proposition 2.2. We have

ReG1
α,1−α(x) = M1

αR
(x) +

∞∑
n=1

α2n
I (−1)nT 1

αR,2n(x),

ImG1
α,1−α(x) =

∞∑
n=0

α2n+1
I (−1)nT 1

αR,2n+1(x), 0 ≤ x ≤ 1.

Proof. From Corollary 1.6.1, G1
α,1−α(x) is analytic with respect to α ∈

W = {z ∈ C; |z| < 1, |1 − z| < 1}. Therefore, it has the Taylor expansion with
α = αR ∈ (0, 1).

G1
α,1−α(x) = G1

αR,1−αR
(x) + αI

∂G1
α,1−α(x)
∂αI

∣∣∣∣∣
α=αR

+
α2

I

2!
∂2G1

α,1−α(x)
∂α2

I

∣∣∣∣∣
α=αR

+ · · ·

+
αn−1

I

(n− 1)!
∂n−1G1

α,1−α(x)

∂αn−1
I

∣∣∣∣∣
α=αR

+Rn(x).
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From Lemma 2.1,

G1
α,1−α(x) = M1

αR
(x) + iαIT

1
αR,1(x) + (−1)α2

IT
1
αR,2(x) + (−i)α3

IT
1
αR,3(x) + · · ·

= M1
αR

(x) +
∞∑

n=1

α2n
I (−1)nT 1

αR,2n(x)

+ i

∞∑
n=0

α2n+1
I (−1)nT 1

αR,2n+1(x).

Proposition 2.2 shows that the real part of G1
α,1−α(x) can be expressed

in terms of the derivatives of even order of Lebesgue’s singular function, and
the imaginary part is expressed in terms of the derivatives of odd order of
Lebesgue’s singular function.

From Example 2.1, we know that the first class of complex-valued functions
{G1

α,1−α(x)} has a connection with the Takagi function T 1(x).
Next, we investigate the other classes {Gi

α,1−α(x)} (i = 2, 3, 4) in a similar
way. Based on the relationship between T 1(x) and G1

α,1−α(x), we can define
each function T i(x) (i = 2, 3, 4) as follows:

T i(x) =
1
2

Im
∂Gi

α,1−α(x)
∂αI

∣∣∣∣∣
α=1/2

,

since each Gi
α,1−α(x) is differentiable with respect to αI .

First, we analyze T 2(x). T 2(x) is the unique solution of the following
functional equation.

T 2(x) =

{
(−1/2)T 2(2x) + x, 0 ≤ x ≤ 1/2,
(−1/2)T 2(2x− 1) + (1 − x), 1/2 ≤ x ≤ 1.

(26)

Because from (13),

∂G2
α,1−α(x)
∂αI

∣∣∣∣∣
α= 1

2

=




iG2
α,1−α(2x) +

1
2
∂G2

α,1−α(2x)
∂αI

∣∣∣∣∣
α= 1

2

, 0 ≤ x < 1/2,

−iG2
α,1−α(2x− 1) +

1
2
∂G2

α,1−α(2x− 1)
∂αI

∣∣∣∣∣
α= 1

2

+ i, 1/2 ≤ x ≤ 1.
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Figure 4. T 2(x)

Since G2
1/2,0(x) = x,

∂G2
α,1−α(x)
∂αI

∣∣∣∣∣
α= 1

2

=




1
2
∂G2

α,1−α(2x)
∂αI

∣∣∣∣∣
α= 1

2

+ 2ix, 0 ≤ x < 1/2,

1
2
∂G2

α,1−α(2x− 1)
∂αI

∣∣∣∣∣
α= 1

2

+ 2i(1 − x), 1/2 ≤ x ≤ 1.

Therefore, (26) can be obtained.
Recall the following three theorems.

Theorem 2.1 (Yamaguti-Hata [21]). Let (t, x) ∈ (−1, 1) × [0, 1], ψ :
[0, 1] → [0, 1] and g : [0, 1] → R.

The functional equation F (t, x) = tF (t, ψ(x))+g(x) has an unique solution
F (t, x), which is given by F (t, x) =

∑∞
n=0 t

ng(ψn(x)).

Theorem 2.2 (Hata-Yamaguti [22]). The series f(x) =
∑∞

n=0 cnϕ
n(x)

with f(0) = f(1) = 0, is defines a continuous function, if
∑∞

n=0 |cn| <∞.

Theorem 2.3 (Kono [11]). The series f(x) =
∑∞

n=0 cnϕ
n(x) with f(0) =

f(1) = 0, has no finite derivative at any point, if limn→∞ sup 2n|cn| > 0.

Applying the above theorems gives the following proposition.

Proposition 2.3. T 2(x) is a nowhere differentiable but continuous func-
tion having the following expression.

T 2(x) =
∞∑

n=1

(−1)n−1ϕ
n(x)
2n

, x ∈ [0, 1].(27)
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Proof. In Theorem 2.1, let

ψ(x) = ϕ(x) =

{
2x, 0 ≤ x ≤ 1/2,
2(1 − x), 1/2 ≤ x ≤ 1,

g(x) = ϕ(x)/2, and t = −1/2.
We have the following equation which corresponds to (26).

F

(
−1

2
, x

)
= −1

2
F

(
−1

2
, ϕ(x)

)
+
ϕ(x)

2
.

Therefore, we have

T 2(x) = F

(
−1

2
, x

)
=

∞∑
n=0

(
−1

2

)n
ϕn+1(x)

2
.

From Theorems 2.2 and 2.3, it is clear that T 2(x) is a nowhere differentiable
but continuous function.

Figures 1 and 4 show the graphs of T 1(x) and T 2(x). Although both T 1(x)
and T 2(x) are symmetric, continuous and nowhere differentiable, their graphs
are quite different. Observe that the graph of T 2(x) appears to be somewhat
similar to the Von Koch curve, a binary self-similar set, given as the image of
G2

α,1−α(x), (α = 1/2 + (
√

3/6)i).
This is not surprising. Figure 5 shows how the graph of T 2(x) can be

constructed step by step from (27). Figure 6 shows the first five steps of the
construction of the Von Koch curve. The analogy between the two constructions
is evident.

Thus, T 2(x) is a real valued function whose graph has essentially the
same geometric structure as the binary self-similar sets, given as the image
of G2

α,1−α(x).
Notice, however, that the graph of T 2(x) is not itself a binary self-similar

set.
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Figure 5. Construction of T 2(x)
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Figure 6. Construction of the Von Koch curve

Similarly, we study T 3(x).
T 3(x) is the unique solution of the following functional equation.

T 3(x) =

{
(1/2)T 3(2x) + x, 0 ≤ x ≤ 1/2,
(−1/2)T 3(2x− 1) + (1 − x), 1/2 ≤ x ≤ 1.

(28)

Since (28) was not studied in Theorem 2.1, we must consider finding an
expression of T 3(x) directly from (28).

Before stating this result, some notations need to be introduced. The
binary expansion of j ∈ N is denoted by j =

∑∞
n=0 jn2n with jn ∈ {0, 1}, and

[x] denotes the greatest integer less than or equal to x.
Define

sj = (−1)s(j),(29)

where s(j) =
∑∞

n=0 jn.

Lemma 2.4. T 3(x) has the following exact expression.

T 3(x) =
∞∑

n=1

s[2n−1x]
ϕn(x)

2n
, x ∈ [0, 1].(30)

Proof. Note that s[2nx] = −s[2nx−2n−1] if 1/2 ≤ x ≤ 1. It is straightfor-
ward to prove that (30) satisfies (28).

Applying Theorems 2.2 and 2.3 to (30) gives the following theorem.

Theorem 2.4. T 3(x) is a nowhere differentiable but continuous func-
tion.
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Figure 7. T 3(x) and T 4(x)

Figure 7 shows the graph of T 3(x). The graph of T 3(x) is not symmetric,
because the coefficient of T 3(x) depends on not only n but also on x.

Finally, we should mention T 4(x). Since the following relationship between
T 3(x) and T 4(x) holds

T 4(x) = T 3(1 − x),

it follows easily from (30) that

T 4(x) =
∞∑

n=1

(−1)n−1s[2n−1x]
ϕn(x)

2n
, x ∈ [0, 1].

Obviously, T 4(x) is also a nowhere differentiable but continuous function,
and it is a unique continuous solution of the following functional equation.

T 4(x) =

{
(−1/2)T 4(2x) + x, 0 ≤ x ≤ 1/2,
(1/2)T 4(2x− 1) + (1 − x), 1/2 ≤ x ≤ 1.

(31)

The graph of T i(x) (i = 1, 2, 3, 4) can be expressed as a compact set Y
satisfying the set equation Y = ψ1(Y ) ∪ ψ2(Y ), where{

ψ1(z) = λ1z + λ2z,

ψ2(z) = λ1z + λ2z + (1 − λ1 − λ2),
if i = 1,

{
ψ1(z) = λ2z + λ1z,

ψ2(z) = λ2z + λ1z + (1 − λ1 − λ2),
if i = 2,

{
ψ1(z) = λ1z + λ2z,

ψ2(z) = λ2z + λ1z + (1 − λ1 − λ2),
if i = 3,

{
ψ1(z) = λ2z + λ1z,

ψ2(z) = λ1z + λ2z + (1 − λ1 − λ2),
if i = 4,
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with λ1 = 1/2 + i/4, λ2 = i/4.
Note that ψ1 and ψ2 are contractions but not similar maps.
Next, based on the relationship between T 1(x) and M1

a (x), given by Hata-
Yamaguti, we find singular functions M i

a(x) such that

2T i(x) =
∂M i

a(x)
∂a

∣∣∣∣
a=1/2

, (i = 2, 3, 4).

We let a denote a real parameter satisying 0 < a < 1 and a �= 1/2.
First, we define a real function M2

a (x) as follows.

Definition 2.1. M2
a (x) is the unique continuous solution of the follow-

ing infinitely many difference equations.

M2
a

(
2j + 1
2k+1

)
=
{

1
2
− (−1)k

(
a− 1

2

)}
M2

a

(
j

2k

)

+
{

1
2

+ (−1)k

(
a− 1

2

)}
M2

a

(
j + 1
2k

)
,

where 0 ≤ j ≤ 2k − 1, (k = 0, 1, 2, . . . ).
The boundary conditions are M2

a (0) = 0 and M2
a (1) = 1.

Note that Lebesgue’s singular function M1
a (x) also can be expressed as the

unique continuous solution of the following difference equations.

M1
a

(
2j + 1
2k+1

)
= (1 − a)M1

a

(
j

2k

)
+ aM1

a

(
j + 1
2k

)
,

where 0 ≤ j ≤ 2k−1, (k = 0, 1, 2, . . . ). The boundary conditions areM1
a (0) = 0

and M1
a (1) = 1.

It may be interesting to compare the difference between M1
a (x) and M2

a (x).
From this definition, an exact expression of M2

a (x) is given by the same
idea as in Theorem 1.4.

Lemma 2.5. M2
a (x) can be expressed in terms of the quaternary expan-

sion of x as follows.

M2
a (x) = c(ω1) +

∞∑
n=1

c(ωn+1)ap0+2p1+p3(1 − a)p0+2p2+p3 , 0 ≤ x ≤ 1,

where

c(ωn) =




0, ωn = 0,
a(1 − a), ωn = 1,
a, ωn = 2,
1 − a(1 − a), ωn = 3.
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Recall Definition 1.3. From this lemma, it can be proved that M2
a (x) is a

singular function. Moreover, for fixed x, M2
a (x) is differentiable with respect

to a.
On the other hand, for T 2(x), the corresponding difference equations are

obtained from (26).

Lemma 2.6. T 2(x) is the unique solution of the following infinitely
many difference equations.

T 2

(
2j + 1
2k+1

)
=

1
2

{
T 2

(
j

2k

)
+ T 2

(
j + 1
2k

)}
+

(−1)k

2k+1
,(32)

where 0 ≤ j ≤ 2k − 1, (k = 0, 1, 2, . . . ). The boundary condition is T 2(0) =
T 2(1) = 0.

Proof. We can prove that T 2(x) satisfies (32) by (26) and the mathemat-
ical induction.

Theorem 2.5. We have

2T 2(x) =
∂M2

a (x)
∂a

∣∣∣∣
a=1/2

.

Proof. From Definition 2.1, we see M2
1/2(x) = x. Therefore,

∂M2
a

∂a

(
2j + 1
2k+1

)∣∣∣∣
a=1/2

=
1
2
∂M2

a

∂a

(
j

2k

)∣∣∣∣
a=1/2

+
1
2
∂M2

a

∂a

(
j + 1
2k

)∣∣∣∣
a=1/2

+
(−1)k

2k
,

where

∂M2
a (0)
∂a

∣∣∣∣
a=1/2

=
∂M2

a (1)
∂a

∣∣∣∣
a=1/2

= 0.

Applying Lemma 2.6 completes the proof.

In the same way, we study M3
a (x).

Definition 2.2. M3
a (x) is the unique solution of the following infinitely

many difference equations.

M3
a

(
4j + 1
2k+2

)
=
{

1
2
− sj

(
a− 1

2

)}
M3

a

(
j

2k

)

+
{

1
2

+ sj

(
a− 1

2

)}
M3

a

(
2j + 1
2k+1

)
.

M3
a

(
4j + 3
2k+2

)
=
{

1
2

+ sj

(
a− 1

2

)}
M3

a

(
2j + 1
2k+1

)

+
{

1
2
− sj

(
a− 1

2

)}
M3

a

(
j + 1
2k

)
,
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where 0 ≤ j ≤ 2k − 1, (k = 0, 1, 2, . . . ) and sj is given by (29). The boundary
conditions are M3

a (0) = 0,M3
a (1) = 1 and M3

a (1/2) = a.

Lemma 2.7. M3
a (x) can be expressed in terms of the binary expansion

of x as follows.

M3
a (x) =

∞∑
n=1

ωna
α(x,n)(1 − a)β(x,n), 0 ≤ x ≤ 1.

Here, α(x, n) and β(x, n) are defined by
(1) α(x, 1) = 1, β(x, 1) = 0.
(2) For n ≥ 2,

α(x, n) = p
′
(x, 1) +

(n− 1) +
∑n−1

k=1 s[2kx]

2
,

β(x, n) = q
′
(x, 1) +

(n− 1) −∑n−1
k=1 s[2kx]

2
,

where

p
′
(x, 1) =

{
1, 0 ≤ x < 1/2,
0, 1/2 ≤ x ≤ 1.

q
′
(x, 1) =

{
0, 0 ≤ x < 1/2,
1, 1/2 ≤ x ≤ 1.

From this Lemma, we see that M3
a (x) is also singular. Also, for fixed x,

M3
a (x) is differentiable with respect to a.

From (28), the following difference equations can be derived.

Lemma 2.8. T 3(x) is the unique continuous solution of the following
infinitely many difference equations.

T 3

(
4j + 1
2k+2

)
=

1
2

{
T 3

(
j

2k

)
+ T 3

(
2j + 1
2k+1

)}
+

sj

2k+2
,

T 3

(
4j + 3
2k+2

)
=

1
2

{
T 3

(
2j + 1
2k+1

)
+ T 3

(
j + 1
2k

)}
− sj

2k+2
.

where 0 ≤ j ≤ 2k − 1, (k = 0, 1, 2, . . . ).
The boundary conditions are T 3(0) = T 3(1) = 0 and T 3(1/2) = 1/2.

Proof. Note sj = −sj−2n if 2n ≤ j ≤ 2n+1 − 1. Use (28) and induction.

From Lemma 2.8 and Definition 2.2, then we obtain the following theorem.
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M1
a (x) M2

a (x) M3
a (x) M4

a (x)

Four singular functions

� � � �

2T i(x) =
∂Mi

a(x)

∂a

˛
˛
˛
a=1/2

, (i = 1, 2, 3, 4)

� � � �

T 1(x) T 2(x) T 3(x) T 4(x)

Four nowhere differential continuous functions

� � � �

Im
∂Gi

α,1−α(x)

∂αI

˛
˛
˛
˛
α=1/2

= 2T i(x), (i = 1, 2, 3, 4)

� � � �

G1
α,γ(x) G2

α,γ(x) G3
α,γ(x) G4

α,γ(x)

Four complex valued functions whose images are binary self-similar sets
� � � �

Extend a, b ∈ R to α, γ ∈ C

�

A class of discontinuous singular functions

Ea,b(x)

�

Ea,b(x) = sup{y ∈ [0, 1];Fa,b(y) = x}
�

A class of Cantor’s type singular functions

{Fa,b(x)}

Figure 8. Relationships between functions in this paper
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Theorem 2.6. We have

2T 3(x) =
∂M3

a (x)
∂a

∣∣∣∣
a=1/2

.

Proof. Analogous to the proof of Theorem 2.5.

Lastly, we define M4
a (x) as the unique continuous solution of the following

difference equations.

M4
a

(
4j + 1
2k+2

)
=
{

1
2

+ (−1)ksj

(
a− 1

2

)}
M4

a

(
j

2k

)

+
{

1
2
− (−1)ksj

(
a− 1

2

)}
M4

a

(
2j + 1
2k+1

)
.

M4
a

(
4j + 3
2k+2

)
=
{

1
2
− (−1)ksj

(
a− 1

2

)}
M4

a

(
2j + 1
2k+1

)

+
{

1
2

+ (−1)ksj

(
a− 1

2

)}
M4

a

(
j + 1
2k

)
.

where 0 ≤ j ≤ 2k−1 (k = 0, 1, . . . ), and the boundary condition areM4
a (0) = 0,

M4
a (1) = 1 and M4

a (1/2) = a.
Since T 4(x) = T 3(1− x), it is clear from Theorem 2.6 that M4

a (x) has the
following relationship with T 4(x).

2T 4(x) =
∂M4

a (x)
∂a

∣∣∣∣
a=1/2

.

3. Relationship between Cantor’s function and binary self-similar
sets

In this section, we mention a close relationship between the Cantor function
C(x) and binary self-similar sets.

First, we introduce a function Fa,b(x) with two real parameters a and b as
the unique solution of the following functional equation. (See Figure 9)

Fa,b(x) =




1
2
Fa,b

(x
a

)
, 0 ≤ x ≤ a,

1
2
, a ≤ x ≤ a+ b,

1
2
Fa,b

(
x− a− b

1 − a− b

)
+

1
2
, a+ b ≤ x ≤ 1,

where 0 < a < 1, 0 ≤ b < 1 and 0 ≤ a+ b < 1.
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Figure 9. Fa,b(x)

This function was studied in [8] and [9]. In these papers, it was proved
that Fa,b(x) is singular, and the following relationships were obtained:

F−1
a,0 (x) = M1

a (x), 0 ≤ x ≤ 1,

where a �= 1/2, and

F1/3,1/3(x) = C(x), 0 ≤ x ≤ 1.

Next, define Ea,b(x) as the generalized inverse function of Fa,b(x).

Ea,b(x) := sup{y ∈ [0, 1];Fa,b(y) = x}.
Since Ea,b(x) satisfies the functional equation:

Ea,b(x) =

{
aEa,b(2x), 0 ≤ x < 1/2,
(1 − a− b)Ea,b(2x− 1) + (a+ b), 1/2 ≤ x ≤ 1,

(33)

it follows that Ea,b(x) = Gi
a,1−a−b(x), (i = 1, 2, 3, 4).

Theorem 3.1. Ea,b(x) is singular function. If b > 0, Ea,b(x) is dis-
continuous at x = l/2k, for every 1 ≤ k and 1 ≤ l ≤ 2k − 1.

Proof. From Corollary 1.2.1, the discontinuity of Ea,b(x) is clear.
We prove the singularity of Ea,b(x). If b = 0, Ea,b(x) is Lebesgue’s singular

function. Since Fa,b(x) is a monotone increasing function, it follows that Ea,b(x)
is a strictly increasing function. Therefore, Ea,b(x) is of bounded variation.
In short, Ea,b(x) is differentiable at almost everywhere. We show that its
derivative is zero.

Suppose that Ea,b(x), (b �= 0), is differentiable at a point x0 in interval
[0, 1].
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Then, for each k, there exists lk satisfying

lk
2k

< x0 <
lk + 1

2k

and

Ea,b( lk+1
2k ) − Ea,b( lk

2k )
2−k

<∞.

Since Ea,b(x) = Gi
a,1−a−b(x), (i = 1, 2, 3, 4), from Theorem 1.2, we have

Ea,b( lk+1
2k ) − Ea,b( lk

2k )
2−k

≤ Ea,0( lk+1
2k ) − Ea,0( lk

2k )
2−k

.

Since Ea,0(x) is Lebesgue’s singular function,

lim
k→∞

Ea,0( lk+1
2k ) − Ea,0( lk

2k )
2−k

= 0.

From the above inequality, we see that its derivative is zero almost every-
where. This completes the proof.

4. Applications

In this section, we give three applications of our main theorems.
The first application is to solve an open problem of an exponential sum in

number theory. An exponential sum is defined by

F (ξ,N) =
N−1∑
j=0

eξs(j), N ∈ N, ξ ∈ C,

where j =
∑∞

n=0 jn2n, jn ∈ {0, 1}, and s(j) =
∑∞

n=0 jn.
The explicit formula of exponential sum gives several applications to other

fields. For instance,

F (log 2, N) =
N−1∑
j=0

2s(j),

represents the number of odd numbers appearing in the first N lines of Pascal’s
triangle. It has been applied in computer science.

Although many authors tried to find simpler representations of F (ξ,N),
this problem remained open for about 60 years. Finally, in 1998, Muramoto
et al. found the following direct relationship with Lebesgue’s singular function
M1

a (x) (See Example 1.1).

Theorem 4.1 (Muramoto-Okada-Sekiguchi-Shiota [15]). Let t = log2N .
Let [t] and {t} denote the integer and decimal part of t, respectively. Evidently
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2[t] < N < 2[t]+1 and 1/2 ≤ N/2[t]+1 = 1/21−{t} < 1. For every real number
ξ �= 0,

F (ξ,N) =
1

a[t]+1
M1

a

(
1

21−{t}

)
, N ∈ N,

where a = 1/(1 + eξ).

Note M1
a (x) = G1

a,1−a(x). It follows that Theorem 4.1 can be generalized
by using Theorem 1.2.

Theorem 4.2. Let ξ be a complex number, and let α = 1/(1 + eξ). If
|α| < 1 and |1 − α| < 1, then

F (ξ,N) =
1

α[t]+1
G1

α,1−α

(
1

21−{t}

)
, N ∈ N.

Proof. From Theorem 1.2, we have

G1
α,1−α

(
1

21−{t}

)
= G1

α,1−α

(
N

2[t]+1

)

=
N−1∑
n=0

{
G1

α,1−α

(
n+ 1
2[t]+1

)
−G1

α,1−α

( n

2[t]+1

)}

=
N−1∑
n=0

α[t]+1−s(n)(1 − α)s(n)

= α[t]+1
N−1∑
n=0

eξs(n)

= α[t]+1F (ξ,N).

Remark 4.2.1. If ξ = πi,

F (πi,N) =
N−1∑
j=0

(−1)s(j).(34)

We observe that (34) seems to be similar to the explicit expresion (30) for
T 3(x).

Next, as the second application of our main theorem, we give a solution to
an open problem raised by Mizutani and Ito in 1987.

Before stating this problem, their results need to be introduced.
Mizutani-Ito showed the following [14]. They defined

W = {(δ1, δ2, δ3, . . . ) ∈ {0, 1,−1, i,−i}N},
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as the set of sequences satisfying the revolving condition: For all k, δk+1 = 0,
or δk+1 = (−i)δj0 , where j0 = max{j ∈ N ; δj �= 0, j ≤ k}.

A set X was defined as follows.

X =

{ ∞∑
k=1

δk(1 + i)−k; (δ1, δ2, δ3, . . . ) ∈W

}
.

Recall that Dragon is a binary self-similar set, constructed by the pair of
similar contractions (8) if α = 1/2 + i/2 and γ = 1/2 + i/2. The Hausdorff
dimension is 2, and its parallel translations fill the plane. Dragon was regarded
as completely unrelated things with the Lévy curve.

In their paper, Mizutani and Ito showed that the set X is a union of four
Dragon Xi (i = 0, 1, 2, 3) by using the algebraic method of Dekking [2]. In
addition, they pointed out the following interesting problem.

Define a set X∗ as follows.

X∗ =

{ ∞∑
k=1

δk(1 + i)−k; (δ1, δ2, δ3, . . . ) ∈W

}
.

Obviously, the set {(δ1, δ2, δ3, . . . ); (δ1, δ2, δ3, . . . ) ∈ W} satisfies the inverse
revolving condition. Figure 10 shows a computer simulation of X∗. The shape
of this figure led Mizutani and Ito to conjecture that X∗ is a collection of the
Lévy curves.

We give a proof of their conjecture. It can be obtained from our main
theorem.

Let X∗ be the complex conjugate of the set X∗. Then we have

X∗ =

{ ∞∑
k=1

δk(1 + i)−kik; (δ1, δ2, δ3, . . . ) ∈W

}
.

Figure 10. X∗
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Also, we define

Lk = {ikG1
1/2+i/2,1/2−i/2(x);x ∈ [0, 1]}, (k = 0, 1, 2, 3).

Recall that the image of G1
1/2+i/2,1/2−i/2(x) is the Lévy curve.

Theorem 4.3.

X∗ = ∪k=0,1,2,3Lk,(35)

where each Lk(k = 0, 1, 2, 3) denotes the Lévy curve.

Proof. By Theorem 1.2, we have

G1
1/2+i/2,1/2−i/2(x) = i

∞∑
n=1

ωn

(
1
2

)n

(1 + i)n−q(x,n)(1 − i)q(x,n)

= i
∞∑

n=1

ωn

(
1
2

)n

(1 + i)n−q(x,n)(−i(1 + i))q(x,n)

= i
∞∑

n=1

ωn

(
1
2

)n

(1 + i)2n(1 + i)−n(−i)q(x,n)

= i

∞∑
n=1

ωn(−i)q(x,n)(1 + i)−nin.

Here, we put ξn = iωn(−i)q(x,n). Then we see that ξn ∈ {0, 1,−1, i,−i}
satisfies the revolving condition.

Hence, this completes the proof.

Lastly, as the third application, we study a discontinuous complex-valued
function G1

α,α(x) and compare with G1
α,1−α(x). Note that Dragon can be given

as the image of G1
α,α(x), (α = 1/2 + i/2), and the Lev́y curve is given as the

image of G1
α,1−α(x), (α = 1/2 + i/2).

First, recall the property of G1
α,1−α(x). It is a continuous complex-valued

function having the following relationship with the the Takagi function T 1(x)
and Lebesgue’s singular function M1

a (x).

Im
∂G1

α,1−α(x)
∂αI

∣∣∣∣∣
α=1/2

= 2T 1(x) =
∂M1

a (x)
∂a

∣∣∣∣
a=1/2

.(36)

Then a question arises: how about G1
α,α(x)?

Although G1
α,α(x) is a discontinuous complex-valued function, it is analytic

with respect to α ∈ D = {z ∈ C; |z| < 1}.
Define a real-valued function K1(x) by

K1(x) :=
1
2

Im
∂G1

α,α(x)
∂αI

∣∣∣∣∣
α=1/2

=
1
2
∂G1

αR,αR
(x)

∂αR

∣∣∣∣∣
αR=1/2

.(37)
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It is surprising that self-affine dust, which is a well-known self-similar set,
appears as the graph of K1(x) (See Figure 11), and also the Rademacher series
appear as the graph of G1

αR,αR
(x). More exactly,

G1
αR,αR

(x) =
1 − αR

αR

∞∑
n=1

ωnα
n
R

=
1
2
− 1 − αR

2αR

∞∑
n=1

αn
Rφn(x), αR ∈ (−1, 1),

where φn(x) is a Rademacher function and φn(x) = (−1)ωn = 1 − 2ωn.
Next, compare T 1(x) and K1(x). Although T 1(x) is continuous and K1(x)

is not, both functions have the following similar representations.

Proposition 4.1. T 1(x) and K1(x) can be expressed by

T 1(x) =
∞∑

n=1

ωn
p(x, n) − {q(x, n) − 2}

2n
, 0 ≤ x ≤ 1,

K1(x) =
∞∑

n=1

ωn
p(x, n) + {q(x, n) − 2}

2n
, 0 ≤ x ≤ 1,

where p(x, n) = n− q(x, n).

Figure 11. K1(x)
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Proof. From Example 1.1 and Theorem 1.2, we have

M1
a (x) =

a

1 − a

∞∑
n=1

ωna
n−q(x,n)(1 − a)q(x,n),

G1
αR,αR

(x) =
∞∑

n=1

ωn(1 − αR)αn−1
R .

From (36) and (37), it follows

∂M1
a (x)
∂a

∣∣∣∣
a=1/2

=
∞∑

n=1

ωn

{
(p(x, n) + 1)

(
1
2

)n−1

+ (1 − q(x, n))
(

1
2

)n−1
}

=
∞∑

n=1

ωn
p(x, n) − q(x, n) + 2

2n−1
,

∂G1
αR,αR

(x)
∂αR

∣∣∣∣∣
αR=1/2

=
∞∑

n=1

ωn

{
−
(

1
2

)n−1

+ (n− 1)
(

1
2

)n−1
}

=
∞∑

n=1

ωn
p(x, n) + q(x, n) − 2

2n−1
.

This completes the proof.

Note thatK1(x) is the unique solution of the following functional equation.

K1(x) =

{
(1/2)K1(2x) + x, 0 ≤ x ≤ 1/2,
(1/2)K1(2x− 1) − (1 − x), 1/2 ≤ x ≤ 1.

We observe that this functional equation is similar to (24), (26), (28) and
(31).
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