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Polarization change of moduli of vector bundles
on surfaces with pg > 0
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1. Introduction

Let X be a nonsingular projective surface over the complex number field
C, and H an ample line bundle on X. When we fix a line bundle c1 on X and an
integer c2, there exists a coarse moduli scheme MH(c1, c2) parameterizing all
rank-two H-µ-stable vector bundles E on X with det(E) = c1 and c2(E) = c2.

For two different polarizations H and H ′, several interesting phenomena
are observed about the difference between MH(c1, c2) and MH′(c1, c2) in sev-
eral papers. For example, if c2 is sufficiently large with respect to c1, H, and
H ′, then MH(c1, c2) and MH′(c1, c2) are birationally equivalent ([Q1]). On
the other hand, MH(c1, c2) is naturally embedded in the moduli space SplX of
simple sheaves on X. Now we want to know how moduli schemes MH(c1, c2)
behave in SplX , if H runs over the set of all ample line bundles on X. Closely
related to this problem, we think over the existence problem of trivial polar-
izations. An irreducible component M of MH(c1, c2) is said to be trivial if for
any polarization L on X, some vector bundle E contained in M is also L-µ-
stable. A polarization H is said to be trivial of type (c1, c2) if every irreducible
component of MH(c1, c2) is trivial. In [Q1], Qin conjectured as follows;

if c2 is sufficiently large with respect to X and c1, then trivial
polarizations of type (c1, c2) exist.

In case of some ruled surfaces or surfaces with Kodaira dimension zero, this
conjecture has an affirmative solution ([Q3] and [Q2]). However in general it is
unknown whether this conjecture is valid or not. Now we state the main result
in this paper.

Theorem 1.1. Suppose that the geometric genus pg(X) of X is positive.
Then there exists a constant C = C(X, c1) depending on X and c1 such that
the following holds.

If c2 ≥ C(X, c1), then there exists a polarization L = L(c1, c2) depending
on c1 and c2 such that ML(c1, c2) is irreducible and that MH(c1, c2) ∩ ML(c1,
c2) is nonempty for any polarization H on X.
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This theorem gives a partial, affirmative solution to Qin’s conjecture.
In Section 2 we shall review the wall structure of the ample cone. In

Section 3 we shall prove Theorem 1.1. We note that the conclusion of Theorem
1.1 is valid also when X is a relatively minimal elliptic surface with Kodaira
dimension one, and c1 · f is odd, where f ∈ NS(X) is the fiber class of elliptic
fibration. In this case we will give some comments in Remark 3.7, but we will
not give complete proof.

Acknowledgements. The author expresses sincere gratitude to Prof.
Maruyama for valuable advice and comment, and to Dr. Nakamoto for pointing
out some faults in this paper. The author is also grateful to the referee for
his/her useful comment, especially on Case 3.1.

Notation.
• A scheme is of finite type over C, and a surface is a nonsingular pro-

jective surface over C.
• For a surface X, we shall use ∼ in order to denote numerically equiva-

lence of divisors on X. Num(X) is the quotient of Pic(X) modulo the numerical
equivalence. Amp(X) ⊂ Num(X) ⊗ R is the ample cone of X. An ample line
bundle on X is often called a polarization.

• Two not necessarily integral schemes S1 and S2 are birationally equiv-
alent if there are dense open subsets U1 ⊂ S1 and U2 ⊂ S2 such that U1 is
isomorphic to U2.

• Let X be a surface and H a polarization on X. H-µ-(semi)stability
of a torsion free sheaf E on X is slope-(semi)stability. H-(semi)stability is
Gieseker-Maruyama (semi)stability. E is strictly H-(µ-)semistable if E is H-
(µ-)semistable and not H-(µ-)stable. For a H-semistable sheaf E, grH(E) is
⊕t

i=1Ei/Ei−1, where 0 = E0 ⊂ E1 ⊂ · · ·Et = E is a Jordan-Hölder filtration
of E.

• Let S be a scheme. For a vector bundle V on S and a line bundle L
on S, Exti

S(V, V ⊗ L) 0 is the kernel of trace : Exti
S(V, V ⊗ L) → Hi(S, L).

2. Review of walls in the ample cone

The concept of walls in the ample cone often helps us to study how the
moduli scheme MH(c1, c2) changes as a polarization changes. This concept has
been developed in several papers; here we shall mainly refer to [Q4] and [MW].

Definition 2.1. Fix c1 ∈ Pic(X) and c2 ∈ Z with 4c2 − c2
1 > 0. For

ξ ∈ Num(X) \ {0}, we define W ξ to be the set {D ∈ Amp(X)|D · ξ = 0}
in Amp(X). W ξ separates H and H ′ ∈ Amp(X) if H · ξ 	= 0 	= H ′ · ξ and
sgn(H · ξ) 	= sgn(H ′ · ξ). We define W (c1, c2) to be

{
W ξ 	= ∅ ξ ∼ 2D − c1 	∼ 0 for some D ∈ Pic(X)

and − 4c2 + c2
1 ≤ ξ2 < 0.

}
.

A Wall of type (c1, c2) is an element of W (c1, c2).
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Proposition 2.2. The set of walls of type (c1, c2) is locally finite in
Amp(X).

Proof. Refer to [Q4, Proposition 2.1.6] or [MW, Section 1].

Proposition 2.3. Fix c1 ∈ Pic(X) and c2 ∈ Z such that 4c2 − c2
1 > 0.

Suppose that polarizations H and H ′ are not contained in any wall of type
(c1, c2), and that there is the only one wall W0 of type (c1, c2) separating H
and H ′ in Amp(X).

(a) If a rank-two vector bundle V with Chern classes (c1, c2) is H-µ-stable
and not H ′-µ-stable, then V is given by a nontrivial extension

0 −→ OX(F ) −→ V −→ OX(c1 − F ) ⊗ IZ −→ 0,(1)

where OX(F ) is a line bundle with (2F − c1) · H < 0 < (2F − c1) · H ′, and Z
is a codimension-two subscheme in X with l(Z) = c2 + {(2F − c1)2 − c2

1}/4.
(b) Conversely, suppose that V is a rank-two vector bundle given by a

nontrivial extension (1) satisfying the same condition as in (a). Then V is
H-µ-stable and not H ′-µ-semistable.

Proof. (1) is [Q4, p. 400, Proposition 1.2.2]. (2) is [Q4, p. 406, Theorem
1.2.3].

Corollary 2.4. Let c1 ∈ Pic(X), c2 ∈ Z, and H be the same as in
Proposition 2.3. Suppose that an irreducible component M of MH(c1, c2) sat-
isfies that M∩ MH′(c1, c2) is empty in SplX for some polarization H ′. Then
Mred is birationally equivalent to Y × Pl, where l is an integer and Y is a
variety with dim(Y ) < 2c2 − (c2

1/2) + q(X).

Proof. If polarizations H and H ′ are not separated by any wall of type
(c1, c2), then MH(c1, c2) and MH′(c1, c2) are isomorphic. From this and Propo-
sition 2.2, we can suppose that H and H ′ in this corollary satisfy the same
hypothesis as in Proposition 2.3. Because M ∩ MH′(c1, c2) is empty, every
vector bundle V ∈ M is given by a nontrivial extension (1). Now let T be an
open, closed, and reduced subscheme in

∐
a∈N

Pic(X) × Hilba(X) defined as

T =
{

(OX(F ), Z) H · (2F − c1) < 0 < H ′ · (2F − c1) and
l(Z) = c2 + {(2F − c1)2 − c2

1}/4

}
.

Here we can prove that T is contained in
∐

a<c2−(c2
1/4) Pic(X)×Hilba(X) using

the Hodge index theorem, and so

dim T < 2c2 − (c2
1/2) + q(X).(2)

Next, for V ∈ M we define d(V ) as dim Ext1X(OX(c1−F )⊗IZ ,OX(F )), where
OX(F ) and IZ are sheaves given in (1). Remark that d(V ) is well-defined
because of the uniqueness of Harder-Narasimhan filtration. We also define dM
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as min{d(V )|V ∈ M}. For the scheme T defined above, we think of a locally
closed subset

TM = {(OX(F ), Z) ∈ T | dim Ext1(OX(c1 − F ) ⊗ IZ ,OX(F )) = dM}
as a reduced subscheme, and denote by F (resp. IZ) the pull-back of the univer-
sal sheaf of Pic(X)(resp. Hilb(X)) to TM×X. Then A = Ext1TM×X/TM(OX(c1)
⊗F∨⊗IZ ,F) is a locally free sheaf on TM because of base change theorem for
Ext sheaf. On the other hand one can easily prove that HomTM×X/TM(OX(c1)
⊗F∨⊗IZ ,F) = 0 from the definition of T . Hence we have a universal extension

0 −→ F ⊗OP(1) −→ E −→ OX(c1) ⊗F∨ ⊗ IZ −→ 0

on P(A∨) × X (cf. [La, Section 4]). Let P(A∨)0 be an open subset {x ∈
P(A∨)|E ⊗ k(x) is locally free} in P(A∨). Then, from Proposition 2.3 (b), E
induces a morphism F : P(A∨)0 → MH(c1, c2). From Proposition 2.3 (a)
and the definition of dM one can prove that an open dense subset M0 =
{V ∈ Mred|d(V ) = dM} in Mred is contained in the image scheme Im(F ).
Because M is an irreducible component of MH(c1, c2), there is an irreducible
component P(A∨)1 such that F induces a dominant morphism F : P(A∨)1 →
M0. From the uniqueness of Harder-Narasimhan filtration with respect to
H ′, F is geometrically injective. Because F : P(A∨)1 → M0 is a dominant,
geometrically injective, of finite type morphism between integral schemes over
C, F is birational. From this and (2), one can prove this corollary.

3. Proof of Theorem 1.1

For (c1, c2) ∈ Pic(X) × Z, let MH(c1, c2) be the coarse moduli scheme
parameterizing S-equivalence classes of H-semistable sheaves with fixed Chern
classes (2, c1, c2). Similarly, let MH(c1, c2) (resp. MH(c1, c2)) be the coarse
moduli scheme parameterizing S-equivalence classes of H-semistable sheaves
(resp. H-µ-stable vector bundles) F on X such that

rank(F) = 2, c2(F) = c2 and c1(F) − c1 ∈ Pic0(X).(3)

We shall denote by MH(c1, c2) (resp. MH(c1, c2)) the closure of MH(c1, c2) in
MH(c1, c2) (resp. the closure of MH(c1, c2) in MH(c1, c2)), provided with re-
duced induced subscheme structure. MH(c1, c2) and MH(c1, c2) are projective
over C. We shall assume that pg(X) > 0 to prove Theorem 1.1. Fix a compact
subset K in Amp(X) containing some nonempty open set, and a polarization
H0 contained in K.

Now, in order to prepare a constant C(X, c1) in Theorem 1.1, let us re-
member how to construct MH0(c1, c2), referring to [Gi]. Let E be the set of all
H0-semistable sheaves satisfying (3). Then E is a bounded family of coherent
sheaves on X. In particular there is an integer N = N(c1, c2) such that if n
is greater than N , then any member F ∈ E satisfies that hi(F ⊗ H⊗n

0 ) = 0
for i > 0, and that F ⊗ H⊗n

0 is generated by its global sections. Fix any in-
teger n > N(c1, c2). Let P (m) be the Hilbert polynomial χ(F ⊗ H

⊗(n+m)
0 )
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of any F ∈ E , and R be P (0). Because of the choice of n, any F ∈ E
have a surjection O⊕R

X � F ⊗ H⊗n
0 . Next, we denote the Grothendieck

Quot-scheme parameterizing flat families of quotient sheaves of O⊗R
X satis-

fying (3) by QuotO⊕R
X /X(2, c1, c2). Next, there is an open subscheme Qss

H0
in

QuotO⊕R
X /X(2, c1, c2) such that ϕ ∈ QuotOR

X/X(2, c1, c2)(T ) factors through Qss

if and only if its corresponding quotient sheaf ϕ : OR
XT

� FT satisfies that, for
any closed t ∈ T , H0(ϕ⊗k(t)) : k(t)⊕R → H0(FT ⊗k(t)) is an isomorphism and
FT ⊗ k(t) is H1-semistable. G = PGL(R, C) naturally acts on Qss

H0
. In [Gi],

Gieseker constructed the good quotient Qss
H0

//G of Qss
H0

by G. MH0(c1, c2) is
this quotient scheme.

Proposition 3.1 ([Li]). There is a constant p1 = p1(X, H0, c1) depend-
ing on (X, H0, c1) such that whenever c2 ≥ p1, Qss

H0
is normal.

Next, from [GL] and [LQ], there is a constant p2 = p2(X, H0, c1) depending
on (X, H0, c1) such that whenever c2 ≥ p2, MH0(c1, c2) is irreducible and non-
empty. Third, from [Q1, Theorem 2.3], there is a constant p3 = p3(X,K, c1)
such that whenever c2 ≥ p3, then moduli schemes MH(c1, c2) are birationally
equivalent to each other for all polarizations H such that some rational mul-
tiple rH (r ∈ Q) is contained in K. Last, from [Do], there is a constant
p4(X, H0,K, c1) ≥ max(p1, p2, p3) such that whenever c2 ≥ p4 the open subset

MH0(c1, c2) ⊃ UH0 = {F |F is H0-µ-stable and Ext2(F, F )0 = 0}(4)

is non-empty. From now on, we shall assume that c2 ≥ p4(X, H0,K, c1), and
take a polarization H1 = H1(c1, c2) depending on (c1, c2) such that some ratio-
nal multiple rH1 is contained in any wall of type (c1, c2). Because of Proposition
2.2, such a polarization H1 does exist. Remark that MH1(c1, c2) is irreducible,
non-empty, and the set UH1 defined similarly as UH0 in (4) is non-empty be-
cause of the choice of c2, and H1. Now we prove Theorem 1.1. The proof is
divided in two cases.

Case 3.1. Some point MH1(c1, c2) represents the S-equivalence classes
of a strictly H1-semistable sheaf F .

Claim 3.2. The sheaf F in Case 3.1 is L-semistable for any ample line
bundle L.

Proof. Because F is strictly H1-semistable, F is an extension of torsion
free coherent sheaves with rank one

0 → F → F → G → 0

such that χ(F ⊗H⊗n
1 ) = χ(G⊗H⊗n

1 ) for any n ∈ Z. From the Riemann-Roch
theorem χ(F ⊗ H⊗n

1 ) = n2H2
1 + n(2c1(F ) − KX) · H1 + χ(F ), and hence we

have

χ(F ) = χ(G) and c1(F ) · H1 = c1(G) · H1.(5)
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Fix any ample line bundle L. If c1(F ) · L 	= c1(G) · L, then one can show that
W c1(F )−c1(G) is a wall of type (c1, c2) containing H1 from (5). This contradicts
the choice of H1. Hence c1(F ) · L = c1(G) · L for any ample line bundle L.
Because χ(F ) = χ(G) from (5), one can show that χ(F ⊗ L⊗n) = χ(G⊗ L⊗n)
for any n, and so F is L-semistable.

Claim 3.3. For any ample line bundle L, MH0(c1, c2) ∩ ML(c1, c2) is
non-empty.

Proof. First, we assume that L is not contained in any wall of type (c1, c2).
Let π : Qss

H0
→ MH0(c1, c2) be the G.I.T. quotient map, and π : Qµ−s

H0
:=

π−1(MH0(c1, c2)) → MH0(c1, c2) be its restriction. Qss
H0

is irreducible by the
property of p1(X, H0, c1). Qµ-s

H0
is its non-empty open subscheme by the prop-

erty of p2(X, H0, c1), and hence, dense open subscheme. On the other hand,
from Claim 3.2, the open subscheme

Qss
H0

⊃ Uss
L = {O⊗R

X � F|F is L-semistable}
is non-empty, and so dense open subscheme. Therefore we have Qµ-s

H0
∩Uss

L 	= ∅
in Qss

H0
. From this, there is a sheaf G ∈ MH0(c1, c2) that is L-semistable. If this

G is not L-µ-stable, then G is H0-µ-stable and strictly L-µ-semistable, and so
G has a rank-one quotient sheaf G with (2c1(G)−c1(G)) ·L = 0. One can prove
W 2c1(G)−c1(G) is a wall of type (c1, c2) containing L. This is contradiction. So
G ∈ MH0(c1, c2) is L-µ-stable, and especially MH0(c1, c2) ∩ ML(c1, c2) 	= ∅.
From this, one can easily prove that

MH0(c1, c2) ∩ ML(c1, c2) 	= ∅.(6)

In case where L belongs to some wall of type (c1, c2), one can prove (6) paying
attention to [Q4, p. 406, Theorem 1.2.3] and the irreducibility of MH0(c1, c2),
that is proved from the irreducibility of Qss

H0
.

Now in Case 3.1, Theorem 1.1 holds good provided L(c1, c2) = H0 because
of Lemma 3.3.

Remark 3.4. Let E and E′ be torsion free sheaves having the same
S-equivalence class with respect to H0. Then, for a polarization L, E need not
to be L-stable even if E′ is L-stable. So we made the proof not in MH0(c1, c2)
but in the Quot-scheme. Remark also that in Case 3.1, Theorem 1.1 is valid
whether pg(X) is positive or not.

Case 3.2. Every (C-valued) point in MH1(c1, c2) represents a H1-stable
sheaf on X.

Now there is a non-zero section θ ∈ H0(KX) since pg 	= 0. Let S be a
scheme over C, and FS a S-flat coherent sheaf on XS . Then one can construct
a two-form ΘFS ,θ ∈ H0(∧2 ΩS) using θ and FS from [Mk] or [Ty]. Now we shall
think over moduli schemes. As reviewed in Case 3.1, MH1(c1, c2) is the quotient
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scheme of some subscheme Qss in QuotOR
X/X(2, c1, c2) by G = PGL(R, C). Let

π : Qss → MH1(c1, c2) be the quotient map. Then, π : π−1(MH1(c1, c2)) →
MH1(c1, c2) is a principal G-bundle, from the assumption in Case 3.2 and
[Ma, Proposition 6.4]. Let U be (the restriction of) an universal sheaf of
π−1(MH1(c1, c2)), and we get a two-form ΘU,θ on π−1(MH1(c1, c2)). Then
we can get a two-form Θθ on MH1(c1, c2) using faithfully-flat quasi-compact
descent theory. For a smooth point x ∈ UH1 ⊂ MH1 (UH1 is defined at (4)),
Θθ induces Θθ ⊗ k(x) : TxMH1(c1, c2) → (TxMH1(c1, c2))∨. One can see that
this homomorphism is equal to ⊗ θ : Ext1X(Ex, Ex) 0 → Ext1X(Ex, Ex(KX)) 0.
Next, denote by D ⊂ X the effective divisor given by θ ∈ H0(KX) \ {0}. From
the exact sequence

0 −→ Ex
⊗θ−→ Ex ⊗ KX −→ Ex ⊗ KX |D −→ 0,

we have an exact sequence

HomD(Ex|D, Ex(KX)|D) −→ Ext1X(Ex, Ex) ⊗θ−→ Ext1X(Ex, Ex(KX)).(7)

Lemma 3.5. There are constants p5(X, H0,K, c1, θ) ≥ p4 and l0(X,K,
c1, θ) depending only on X, K, c1, and θ as follows. If

c2 ≥ p5(X, H0,K, c1, θ)(8)

then, for any polarization H such that some rational multiple rH is contained in
K, general point x of UH ⊂ MH(c1, c2) satisfies that dim HomD(Ex|D, Ex(KX)|
D)0 ≤ l0.

Proof. Fix c1 and H satisfying hypothesis in this lemma. If c2 is suffi-
ciently large with respect to (X, H, c1), then there is a rank-two H-µ-stable
vector bundle V with Chern classes (c1, c2) and dim Ext2(V, V )0 = 0. For
codimension-two subscheme Z such that Z ∩ D = ∅, V ⊗ IZ is H-µ-stable,
c2(V ⊗ IZ) = c2(V ) + 2l(Z), and

dim Hom(V ⊗ IZ |D, V ⊗ IZ(KX)|D) = dim HomD(V |D, V (KX)|D).

Though dim Ext2(V ⊗ IZ , V ⊗ IZ)0 might be nonzero, we can use the upper
semicontinuity theorem for the function x �→ dim HomD(Ex|D, Ex(KX)|D)
near V ⊗ IZ , because Z ∩ D = ∅. In result, we can prove that

{x ∈ MH(c1, c2 + 2n)| dim Hom(Ex|D, Ex(KX)|D)
≤ dim Hom(V |D, V (KX)|D)}

contains some non-empty open subset in MH(c1, c2 + 2n) (n ∈ Z>0). Though
we omit its proof here, we can prove similar result also for MH(c1, c2 + 2n− 1)
(n ∈ Z>0). Now, by the choice of p2, p3 and p4, we can prove this lemma if we
set l0 = dim HomD(V |D, V (KX)|D).
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Now, suppose that c2 satisfies (8). Let M̃H1(c1, c2) → MH1(c1, c2) be a
desingularization of the normalization of MH1(c1, c2). We get a two-form Θ̃θ

on M̃H1 , pulling back the two-form Θθ on MH1(c1, c2) mentioned above. (We
sometimes abbreviate MH1(c1, c2) to MH1 for the sake of simplicity.) From the
exact sequence (7) and Lemma 3.5, some x ∈ M̃H1 satisfies that

dim ker(Θ̃θ ⊗ k(x) : TxM̃H1 → (TxM̃H1)
∨) ≤ l0(X,K, c1, θ).(9)

Because the right side of (9) is independent of c2, we can easily prove the
following.

Lemma 3.6. There is a constant l1 = l1(X,K, c1, θ) not depending on
c2 as follows. When the condition (8) is valid, the two-form Θ̃θ on M̃H1 =
M̃H1(c1, c2) constructed just now satisfies that, for N = [dim M̃H1(c1, c2)/2] −
l1, ∧N Θ̃θ 	= 0 in H0(∧2N , ΩM̃H1

). Here [λ] is the largest integer not greater
than λ.

Now we shall prove that MH(c1, c2)∩MH1(c1, c2) 	= ∅ for any polarization
H, if c2 satisfies (8) and the hypothesis (12) mentioned later. Note that if we
prove this then we conclude the proof of Theorem 1.1. Indeed, from this and
Claim 3.3 in Case 3.1, Theorem 1.1 holds good if

C = max( p5(X, H0,K, c1, θ),

[(c2
1/2) + 3χ(OX) + q(X) + 2l1(X,K, c1, θ)/2] ).

Now we suppose c2 satisfies (8), and MH(c1, c2)∩MH1(c1, c2) is empty for some
polarization H. Because MH1(c1, c2) is irreducible, M̃H1(c1, c2) is birationally
equivalent to Y × Pl, where Y is a nonsingular variety whose Krull dimension
is less than 2c2 − (c2

1/2) + q(X), from Corollary 2.4. Because h0(∧N ΩY ×Pl) =
h0(∧N ΩY ), and because dim H0(∧NΩZ) is birationally invariant for nonsingu-
lar complete varieties Z over C, we see that

h0(∧N ΩM̃H1 (c1,c2)) = 0 if N ≥ 2c2 − (c2
1/2) + q(X).(10)

From (10) and Lemma 3.6, we see that

dim M̃H1(c1, c2) − 2l1 ≤ 2c2 − (c2
1/2) + q(X).

From deformation theory, it holds that

dim M̃H1(c1, c2) ≥ 4c2 − c2
1 − 3χ(OX).

Summing up, we see that

2c2 ≤ (c2
1/2) + 3χ(OX) + q(X) + 2l1,(11)

where l1 is a constant independent of c2 in Lemma 3.6. Hence, if c2 satisfies
(8) and

2c2 > (c2
1/2) + 3χ(OX) + q(X) + 2l1,(12)

then MH(c1, c2)∩MH1(c1, c2) must be nonempty for any polarization H. Now
we conclude the proof of Theorem 1.1.
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Remark 3.7. As noted in Introduction, the conclusion of Theorem 1.1
is valid also when X is a relatively minimal elliptic surface with Kodaira di-
mension one, and c1 · f is odd, where f ∈ NS(X) is the fiber class of elliptic
fibration. To prove Theorem 1.1 in this case, we refer to [Br, Theorem 1.1],
where the birational structure of the moduli MHf

(c1, c2) of µ-stable vector
bundles with respect to (c1, c2)-suitable polarization Hf is studied. Using this
result, we can prove that κ(M̃Hf

(c1, c2)) is not −∞. In a similar fashion in
case where pg > 0, we can show that MHf

(c1, c2) ∩ MH(c1, c2) 	= ∅ for any
polarization H.

Remark 3.8. There are a surface X with κ(X) = 2 and pg(X) > 0,
and c1 ∈ Pic(X), as follows: for any large number N , there is c2 ≥ N such that

sup
H: ample

dim MH(c1, c2) = +∞

([Ya]). Hence in general, for some polarization H, MH(c1, c2) has an irre-
ducible component M such that M∩ML(c1, c2) is empty, where L is a trivial
polarization in Theorem 1.1.
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