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Spaces of polynomials without 3-fold real roots

By

Koichi Hirata and Kohhei Yamaguchi

Abstract

Let Pd
n(R) denote the space consisiting of all monic polynomials

f(z) ∈ R[z] of degree d which have no real roots of multplicity ≥ n. In
this paper we study the homotopy types of the spaces Pd

n(R) for the case
n = 3.

1. Introduction

Let Pd
n(R) denote the space consisting of all monic real coefficients poly-

nomials

f(z) = zd + a1z
d−1 + a2z

d−2 + · · ·+ ad−1z + ad ∈ R[z],

which have no real roots of multiplicity ≥ n (but may have any complex roots
of any multiplicity).

Let us consider the jet embedding jd
n : Pd

n(R) → Ω[d]2RPn−1 � ΩSn−1

given by

jd
n(f)(t) =

{
[f(t) : f ′(t) : · · · : f (n−1)(t)] if t ∈ R

[1 : 0 : 0 : · · · · · · · · · : 0 : 0] if t =∞ for t ∈ R∪∞ = S1.

(Here [d]2 = 0 or 1 according as d is even or odd.) For a connected CW complex
X, let X∞ denote the free monoid generated by X−{∗} with unit ∗ ∈ X, where
∗ ∈ X is a fixed basepoint. It is well-known [8] that there is a natural homotopy
equivalence X∞ � ΩΣX and it is usually called the reduced product of X. For
example, if X = Sm, the space ΩSm+1 may be identified with (Sm)∞ and it
has the cell structure of the form

ΩSm+1 � (Sm)∞ = Sm ∪ e2m ∪ e3m ∪ e4m ∪ · · · ∪ ekm ∪ e(k+1)m ∪ · · · .
We denote by Jk(ΩSm+1) the James k-th stage filtration of ΩSm+1 � (Sm)∞,

Jk(ΩSm+1) = Sm∪e2m∪e3m∪· · ·∪e(k−1)m∪ekm (km-skelton of ΩSm+1).

We recall the following result.
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Theorem 1.1 ([10], [13], [16]).
(1) If n ≥ 3, the jet embedding jd

n : Pd
n(R)→ ΩSn−1 is N(d, n)-connteced,

where [x] denotes the integer part of a real number x and we take N(d, n) =
([d/n] + 1)(n− 2)− 1.

(2) In particular, when n ≥ 4, there is a homotopy equivalence Pd
n(R) �

J[d/n](ΩSn−1).

Remark. We say that a map f : X → Y is D-connected if the induced
homomorphism f∗ : πj(X) → πj(Y ) is bijective when j < D and surjective
when j = D.

The homotopy type of Pd
n(R) is trivial when n = 2 and is well studied for

the case n ≥ 4. So in this paper we shall consider the case n = 3. Then it
follows from the above theorem that Pd

3(R) and J[d/3](ΩS2) may be homotopy
equivalent and the authors submit the following problem.

Problem A. Does there exists a homotopy equivalence

Pd
3(R) �→ J[d/3](ΩS2)?

Of corse, Problem A clearly holds for d = 1, 2 and the main purpose of
this paper is just to investigate whether such a homotopy equivalence exists or
not if d ≥ 3. The main result of this paper is as follows:

Theorem 1.2. If d ≤ 17, there exists a homotopy equivalence Pd
3(R) �

J[d/3](ΩS2). So Problem A is affirmative when 1 ≤ d ≤ 17.

Although we do not know whether Problem A is true when d ≥ 18, we can
give the partial answer to this problem as follows.

Proposition 1.3. There is a map fd : Pd
3(R) → J[d/3](ΩS2) satisfying

the following two conditions
(i) (fd)∗ : Hj(Pd

3(R), Z)
∼=→ Hj(J[d/3](ΩS2), Z) is an isomorphism for any

integer j.
(ii) fd is [d/3]-connected.

The plan of this paper is as follows. In Section 2, we consider the subspace
Pd

3 ⊂ Pd
3(R) and give the proof of Theorem 1.2 for 3 ≤ d ≤ 8. In Section 3, we

complete the proof of Theorem 1.2, and in Section 4 we prove Proposition 1.3.

2. The subspace Pd
3

Let Pd
3 denote the subspace of Pd

3(R) consisting of all monic polynomials
of the following form

f(z) = zd + a2z
d−2 + a3z

d−3 + · · ·+ ad−1z + ad ∈ Pd
3(R).

That is, if f(z) ∈ Pd
3(R), f(z) ∈ Pd

3 if and only if its coefficient of zd−1 is zero.
First, we recall the following two results.
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Lemma 2.1 ([13]). There is a deformation retract Pd
3 � Pd

3(R).

Theorem 2.2 ([7], [10], [13]).
(1) If d ≥ 3, the induced homomorphism (jd

3 )∗ : π1(Pd
3(R))

∼=→ π1(ΩS2) = Z

is isomorphic.
(2) The stabilized map limd jd

3 : lim
d→∞

Pd
3(R) �→ ΩS2 is a homotopy equiva-

lence.
(3)

Hj(P d
3 (R), Z) ∼=

{
Z j = 0, 1, 2, 3, . . . , [d/3],
0 otherwise.

Moreover, if ej ∈ Hj(Pd
3(R), Z) ∼= Z denotes the generator for 1 ≤ j ≤ [d/3],{

(e1)2 = 0, e1 · e2i = e2i+1 if 2i + 1 ≤ [d/3],
e2i · e2j =

(
i+j

i

)
e2(i+j) if 2(i + j) ≤ [d/3].

Let Pd denote the space consisting of all monic real coefficients polynomials

f(z) = zd + a2z
d−2 + a3z

d−3 + · · ·+ ad ∈ R[z]

of degree d. So there is a homeomorphism

Pd
∼=−−−−→ R

d−1

f(z) = zd +
∑d

j=2 ajz
d−j −−−−→ (a2, a3, . . . , ad).

We denote by Σd
3 the subspace of Pd consisting of all f(z) ∈ Pd such that f(z)

have at least one real root of multiplicity ≥ n. Then Pd
3 = Pd − Σd

3.

Lemma 2.3. There is a homotopy equivalence Pd
3 � S1 for d = 3, 4, 5.

Proof. Since the proof is similar, we prove the assertion only for the case
d = 4. We note Σ4

3 = {(z + α)3(z + A) : α, A ∈ R} and that

z4 + az2 + bz + c = (z + α)3(z + A)⇔ (A, a, b, c) = (−3α,−6α2,−8α3,−3α4).

Hence Σ4
3 = {z4 − 6α2z2 − 8α3z − 3α4 : α ∈ R} and so

P4
3 = P4 − Σ4

3
∼= R

3 − {(−6α2,−8α3,−3α4) : α ∈ R}
∼= R

3 − R � R
2 − {(0, 0)} � S1.

This completes the proof.

Next, we recall the following result.

Lemma 2.4 (Y. G. Makhlin (1990), [13]). There is a homotopy equiv-
alence Pd

3(R) � S1 ∨ S2 for 6 ≤ d ≤ 8.
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Because ΩS2 � S1 × ΩS3, we may take J1(ΩS2) = S1 and J2(ΩS2) =
S1 ∨ S2. So by Lemmas (2.2) and (2.3), we also obtain the following result.

Corollary 2.5. If 1 ≤ d ≤ 8, there exists a homotopy equivalence
Pd

3(R) � J[d/3](ΩS2).

3. The case 9 ≤ d ≤ 17

First we recall the following two results.

Lemma 3.1 ([16]). Let sd
3 : Pd

3(R) → Pd+1
3 (R) denote the stabilization

map given by adding a point from the edge as in [16]. Then the map sd
3 :

Pd
3(R)→ Pd+1

3 (R) is [d/3]-connected.

Lemma 3.2. The fundamental group action on πk(Pd
3(R)) is trivial for

any k < [d/3].

Proof. This easily follows from (1) of Theorem 1.1.

Proposition 3.3. If 9 ≤ d ≤ 11, there is a homotopy equivalence
Pd

3(R) � S1 × S2.

Proof. First consider the case d = 9. We note that{
H∗(P9

3(R); Z) = E[e1, e2] (exterior algebra),
where deg(ei) = i (i = 1, 2) and π1(P9

3(R)) = Z.

Since S1 ∨ S2 � P8
3(R)

s8
3→ P9

3(R) is 2-connected, it follows from Lemma
3.2 that there is a homotopy equivalence P9

3(R) � S1 ∨S2 ∪f e3 = Cf for some

f ∈ π2(S1 ∨ S2) = Z[t, t−1], where S1 j1→ S1 ∨ S2 j2← S2 denote the inclusion
maps and [j1, j2] = t− 1 ([14]).

Without loss of generalities, we may identify P9
3(R) = Cf = S1 ∨S2 ∪f e3.

We denote by the map j : S1 ∨ S2 → Pd
3(R) the natural inclusion. Consider

the homotopy exact sequence

π3(P9
3(R), S1 ∨ S2) ∂−−−−→ π2(S1 ∨ S2)

j∗−−−−→ π2(P9
3(R)) −−−−→ 0,

∼=
� ∼=

� ∼=
�

Z[t, t−1] · α3 Z[t, t−1] Z[t, t−1]/(f)

where α3 : (D3, S2) → (P9
3(R), S1 ∨ S2) denotes the characteristic map of the

top cell and ∂ is a Z[t, t−1]-module homomorphism.
Since ∂(α3) = f , π2(P6

3(R)) = Z[t, t−1]/(f), where (f) denotes the ideal of
Z[t, t−1] generated by f . Moreover, because (j9

3)∗; π2(P9
3(R))

∼=→ π2(ΩS2) is an
isomorphism, π1 acts on π2(P6

3(R)) trivially. Hence j∗(t− 1) = 0 ∈ π2(P9
3(R)).
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So [j1, j2] = t− 1 ∈ (f). Since clearly f �= 0, f = ±tm(t− 1) = ±tm[j1, j2] for
some integer m ∈ Z.

We note that E(S1 ∨ S2) ∼= {±1} × {±tk : k ∈ Z}, where E(X) denotes
the group consisting of all homotopy classes of self-homotopy equivalences of a
connected space X.

Then there is a homotopy equivalence θ ∈ E(S1∨S2) such that θ◦(t−1) =
±tm(t− 1) = f . Hence P9

3(R) = Cf � S1 ∨ S2 ∪t−1 e3 = S1 ∨ S2 ∪[j1,j2] e3 =
S1 × S2. Hence the case d = 9 is proved. A similar method also proves the
case d = 10 or d = 11, and this completes the proof.

Proposition 3.4. If 12 ≤ d ≤ 14, there exists a homotopy equivalence
Pd

3(R) � J[d/3](ΩS2).

Proof. Since the proof is almost same, we give the proof for the case
d = 12. We note that s11

3 : P11
3 (R)→ P12

3 (R) is 3-connected and that P11
3 (R) �

S1×S2. Hence it follows from the cohomology structure of H∗(P12
3 (R); Z) and

Lemma 3.2 that there is a homotopy equivalecnce

P12
3 (R) � (S1 × S2) ∪g e4 = (S1 ∨ S2 ∪[j1,j2] e3) ∪g e4

for some g ∈ π3(S1 × S2) ∼= π3(S2) = Z · η, where η ∈ π3(S2) ∼= Z denotes the
Hopf map.

We recall the multiplicative stucture of H∗(P12
3 (R); Z). Since e1 · e4 = e5

and e3 · e2 = 2e5, it follows from the Hopf invariant problem that there is a
homotopy euivalence

P12
3 (R) � (S1 × S2) ∪ {∗} × (S2 ∪2η e4) ⊂ S1 × (S2 ∪2η e4).

However, since there is a homotopy equivalence ΩS2 � S1 × ΩS3, we may
identify J4(ΩS2) � (S1 × S2) ∪ ({∗} × (S2 ∪2η e4)). Hence there exists a
homotopy equivalence P12

3 (R) � J4(ΩS2).

Proposition 3.5. If 15 ≤ d ≤ 17, there exists a homotopy equivalence
Pd

3(R) � J5(ΩS2).

Proof. Because the proof is similar, it is sufficient to prove the case d =
15. Since ΩS2 � S1 × ΩS3, we may identify J5(ΩS2) = S1 × J2(ΩS3) =
S1 × (S2 ∪2η e4). So it suffces to show that there is a homotopy equivalence
P15

3 (R) � S1 × (S2 ∪2η e4).
First, we note that s14

3 : P14
3 (R)→ P15

3 (R) is 4-connected. Hence it follows
from the cohomology structure of H∗(P15

3 (R), Z) and Lemma 3.2 that there
exists a homotopy equivalence

P15
3 (R) � J4(ΩS2) ∪h e5 = {(S1 × S2) ∪ ({∗} × (S2 ∪2η e4))} ∪h e5

for some h ∈ π4(J4(ΩS2)). Then because e1 · e4 = e5 and e2 · e3 = 2e5, using
the solution of Hopf invariant one problem, there is a homotopy equivalence
P15

3 (R) � S1 × (S2 ∪2η e4) and this completes the proof.
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Proof of Theorem 1.2. The assertion easily follows from (2.5), (3.2), (3.3)
and (3.4).

Remark. We note that

Jm(ΩS2) =

{
S1 × Jk(ΩS3) if m = 2k + 1,

(S1 × Jk−1(ΩS3)) ∪ ({∗} × Jk(ΩS3)) if m = 2k,

and it has the cell-decomposition Jk(ΩS3) = S2 ∪2η ∪e4 ∪φ e6 ∪ e8 ∪ · · · ∪ e2k

(up to homotopy). For example, the attaching map φ ∈ π5(S2 ∪2η e4) of the
cell e6 cannot be detected by the structure of the cohomology ring and primary
operations. So the similar proof of Theorem 1.2 does not work for the space
Jm(ΩS2) if m ≥ 6 and Problem A is still open if d ≥ 18.

4. Proof of Proposition 1.3

In this section we give the proof of Proposition 1.3.

Proof of Proposition 1.3. First, we note that π1-action on πk(Pd
3(R)) is

trivial for each k < [d/3] and that jd
3 : Pd

3(R) → ΩS2 is [d/3]-connected.
Hence it follows from the structure of H∗(Pd

3(R); Z) that Pd
3(R) has the cell-

decomposition Pd
3(R) � F d = S1 ∪ e2 ∪ e3 ∪ · · · ∪ e[d/3]−1 ∪ e[d/3] (up to homo-

topy). Let ud : F d �→ Pd
3(R) be the corresponding homotopy equivalence. Now

consider the composite of maps

jd
3 ◦ ud : F d ud−−−−→

�
Pd

3(R)
jd
3−−−−→ ΩS2.

Using the cellular approximation theorem, there exists a cellular map hd : F d →
ΩS2 such that hd is homotopic to the map jd

3 ◦ ud. Because hd is a cellular
map, we may identify it with the map hd : F d → J[d/3](ΩS2).

Let fd : Pd
3(R)→ J[d/3](ΩS2) be the map of composite

fd = hd ◦ vd : Pd
3(R) vd

−−−−→
�

F d hd−−−−→ J[d/3](ΩS2),

where vd denotes the homotopy inverse of ud.
An easy diagram chasing shows that fd satisfies the following two condi-

tions
(i) fd is [d/3]-connected, and
(ii) (fd)∗ : Hj(Pd

3(R); Z) → Hj(J[d/3](ΩS2); Z) is bijective when j < [d/3]
and surjective when j = [d/3].

However, since H[d/3](Pd
3(R); Z) = H[d/3](J[d/3](ΩS2); Z) = Z, (fd)∗ is

bijective when j = [d/3], too. Moreover, Hj(Pd
3(R); Z) = Hj(J[d/3](ΩS2); Z) =

0 for any j > [d/3]. Hence (fd)∗ is bijective for any j.
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