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Explicit lower bound of the Ricci tensor
on free loop algebras

By

Yuzuru Inahama

1. Introduction

In this article we will give an explicit expression of the Ricci tensors and
their lower bounds associated with the “Levi-Civita connection” on the free loop
group over a compact Lie group. We will equip various H1-Hilbert norms on
the free loop algebra. So various Ricci tensors associated with them are defined.
We will calculate the lower bound of those Ricci tensors quite explicitly in terms
of the Fourier series.

The lower bound of the Ricci tensor is so important that it appears in
the logarithmic Sobolev inequality with respect to the heat kernel measures on
loop groups, i.e.,∫

L(G)

f2 log
f2

‖f‖2
L2(νT )

dνT ≤ 2(eCT − 1)
C

∫
L(G)

‖∇f‖2dνT ,(1.1)

where −C is the lower bound of the Ricci tensor associated with the given H1-
metric and dνT is the heat kernel measure at time T > 0 associated with the
given H1-metric. This kind of logarithmic Sobolev inequality was first proved
by Driver and Lohrenz [3] on pinned loop groups with the usual metric

‖X‖2 =
∫ 1

0

|X ′(t)|2dt =
∑
n∈Z

(2πn)2|X̂(n)|2.(1.2)

The Ricci tensor for the pinned loop algebra case was explicitly obtained by
Freed [5] for the metric

‖X‖2 =
∑
n∈Z

n2|X̂(n)|2.

The lower bound of the Ricci tensor for this metric is 1 if we assume (2.1). (In
fact, the definitions in Freed [5] are slightly different from those in [3], [1] and
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466 Yuzuru Inahama

this paper. See Remark 3.4). The logarithmic Sobolev inequality of type (1.1)
on free loop groups was first proved by Carson [1], [2], in which the norm is
defined by

‖X‖2 =
∫ 1

0

|X(t)|2dt +
∫ 1

0

|X ′(t)|2dt.

After Carson, Inahama [6] did in terms of Fourier series. However, the explicit
expression of the lower bound of the Ricci tensor is not known. We will compute
it in this article.

Let G be a compact Lie group and g be its Lie algebra. We assume that
the AdG-invariant inner product of g is given by minus of the Killing form (see
assumption (2.1)). The Hilbert spaces we use in this article are the Sobolev
space of differential order one whose norms are given by

‖X‖2
Hδ

1
=

∑
n∈Z

(1 + δ2n2)|X̂(n)|2.

Here δ > 0 is a parameter. When δ = 2π, ‖X‖Hδ
1

coincides with the norm in
Carson [1], [2]. and when δ = 1, ‖X‖Hδ

1
coincides with the norm in Inahama

[6].
For each given Hilbert norm, the “Levi-Civita covariant derivative” oper-

ator, the curvature, the Ricci tensor are defined as in (2.3), (2.4) and (2.5). In
Theorem 2.5 we will obtain an explicit expression of the Ricci tensor by means
of the residue theorem. In Theorem 3.1 and Corollary 3.2 we will obtain the
lower bound of the Ricci tensor as explicitly as possible. For example, the lower
bound for the case δ = 1 is −7π coth(π)/80 and that for the case δ = 2π is
−16−1 coth(1/2)(8π2 − 1)(1 + 4π2)−1(1 + π2)−1.

2. Ricci tensor expressed in terms of fourier series

Let G be a compact Lie group of dimension d with its Lie algebra g which
is endowed with an AdG-invariant inner product 〈·, ·〉g. Since G is compact,
such an inner product always exists. We will assume for simplicity that minus
of the Killing form is equal to the inner product, i.e.,

〈a, b〉g =
d∑

i=1

〈[ei, a], [ei, b]〉g,(2.1)

where {ei}d
i=1 are an (in fact any) orthonormal basis of g. It is well-known

that if g is semisimple, then the Killing form −K〈a, b〉 = Trace(ad(a)ad(b)) is
strictly negative-definite and K〈a, b〉 becomes an inner product which satisfies
(2.1). We can easily modify our results in this paper for the cases in which
(2.1) is not satisfied (see Remark 3.3). Since we use complex Fourier series we
prepare complexification gC = g⊗R C of g. As usual we define the conjugation
by a + b

√−1 = a − b
√−1 and the Hermitian inner product on gC by 〈a +

b
√−1, a′ + b′

√−1〉gC = 〈a + b
√−1, a′ + b′

√−1〉g, where a, b, a′, b′ ∈ g.
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Let

L(g) = {l : [0, 1] → g| l is continuous and l(0) = l(1)}
be the continuous free loop algebra and let

X̂(n) =
∫ 1

0

X(t)e−2π
√−1ntdt ∈ gC

be the n-th Fourier coefficient of X ∈ L(g). That X is g-valued is equivalent
to X̂(−n) = X̂(n) for all n ∈ Z. We define Hilbert spaces as a linear subspace
of L(g) by

(2.2) Hδ
1 =

{
X ∈ L(g)

∣∣∣∣∣X is g-valued and

‖X‖2
Hδ

1
=

∑
n∈Z

(1 + δ2n2)‖X̂(n)‖2
gC < ∞

}

for δ > 0. Obviously all Hδ
1 -norms are equivalent and all Hδ are the same set. It

is well-known that [X, Y ] ∈ Hδ
1 for X, Y ∈ Hδ

1 , where [X, Y ](t) = [X(t), Y (t)].
If we set δ = 2π, then we can easily see that ‖X‖2

H2π
1

=
∫ 1

0
‖X(t)‖2

gdt +∫ 1

0
‖X ′(t)‖2

gdt and therefore this definition of H2π
1 -norm is the same as that

in Carson [1], [2]. Note also that H1
1 -norm above coincides with the special

case in Malliavin [7] or in Inahama [6] and that a constant multiple of H
1/ε
1 -

norm coincides with the norm in Fang [4].
Let us define D(δ) = D by

DXY =
1
2
(adXY − ad∗

XY − ad∗
Y X)(2.3)

for X, Y ∈ Hδ
1 . Here adXY = [X, Y ] and ad∗

X denotes the adjoint operator of
adX : Hδ

1 → Hδ
1 .

Proposition 2.1. Let D(δ) = D be as above. Then the linear map Y �→
DY is a bounded operator from Hδ

1 to Hδ∗
1 ⊗Hδ

1 . Moreover, D is torsion free in
the sense that DXY −DY X = [X, Y ] for any X, Y ∈ Hδ

1 and metric compatible
in the sense that (DXY, Z)Hδ

1
= −(Y, DXZ)Hδ

1
for any X, Y, Z ∈ Hδ

1 .

Proof. See Inahama [6] for the Hilbert-Schmidt property when δ = 1. See
also Freed [5] and Carson [1]. The modification for general δ > 0 is easy. So
we omit the proof.

As usual the curvature R = R(δ) is defined by

R(X, Y )Z = DXDY Z − DY DXZ − D[X,Y ]Z(2.4)
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for X, Y, Z ∈ Hδ
1 . The Ricci tensor Ric = Ric(δ) is defined by

Ric(X, W ) =
∑

Z:good

(
R(X, Z)Z, W

)
Hδ

1

,(2.5)

where
∑

Z:good denote the sum over “good basis” {Z} of Hδ. Since we cannot
expect that the sum in the right hand side of (2.5) converges for any orthonor-
mal basis of Hδ

1 , we allow only “good basis”. (See Driver and Lorenz [3]).
Though the definitions of “good basis” in [3], [1], [6] are different, the defini-
tions of Ric(X, W ) coincide. Note that the sum in (2.5) does not depend on
the choice of “good basis.” See [3], [1], [6] for proofs.

Carson [1] is the first paper which contains the explicit expression of the
Ricci tensor on free loop algebra.

Proposition 2.2 (Carson [1]). Let δ = 2π. Then the Ricci tensor is
well-defined and we have

Ric(2π)(X, X) =
∫ 1

0

∫ 1

0

{
5
4
G2(s, t) + F 2(s, t)

}
〈X(s), X(t)〉gdsdt

−
∫ 1

0

G(s, s)〈X(s), X(s)〉gds.

Here

G(s, t) =
1
2

sinh(1/2)−1 cosh(r(s, t)),

F (s, t) =
1
2

sinh(1/2)−1 sinh(r(s, t))

and

r(s, t) =




s − t − 1
2

(if 0 ≤ t < s),

s − t +
1
2

(if s ≤ t ≤ 1).

Proof. See Carson [1], [2].

For general δ > 0, we have the following expression of the Ricci tensor in
terms of the Fourier series.

Lemma 2.3. The Ricci tensors are well-defined and we have

Ric(δ)(X, X)

=
∑
l∈Z

(1 + δ2l2)‖X̂(l)‖2
gC

∑
n∈Z

1 − 4δ2ln

4(1 + δ2l2)(1 + δ2n2)(1 + δ2(n − l)2)
.
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In particular, Ric(δ) is bounded in the sense that there exists a positive constant
cδ such that

|Ric(δ)(X, X)| ≤ cδ‖X‖2
Hδ

1

for any X ∈ Hδ
1 .

Proof. In Inahama [6] it is shown that, for δ = 1,

Ric(1)(X, X) =
∑
l∈Z

(1 + l2)‖X̂(l)‖2
gC

∑
n∈Z

Tl+n,−n − Tl,−nTn,l−n

1 + n2
,

where

Tl,n =
1
2

(
1 +

−(1 + l2) + (1 + n2)
1 + (l + n)2

)
=

1 + 2n(l + n)
2(1 + (l + n)2)

.

Hence we have

Tl+n,−n − Tl,−nTn,l−n

=
1 − 2nl

2(1 + l2)
− 1 − 2n(l − n)

2(1 + (l − n)2)
· 1 + 2(l − n)l

2(1 + l2)

=
(1 − 2nl)2{1 + (l − n)2} − {1 − 2n(l − n)}{1 + 2(l − n)l}

4(1 + l2)(1 + (l − n)2)

=
2 − 4nl + 2(l − n)2 − 4nl(l − n)2 − 1 − 2l(l − n) + 2n(l − n) + 4nl(l − n)2

4(1 + l2)(1 + (l − n)2)

=
1 − 4nl

4(1 + l2)(1 + (l − n)2)
.

The boundedness of the Ricci tensor is easily verified. This proves the lemma
for δ = 1. For general δ > 0, we have only to multiply all the integers by δ.

In order to obtain more explicit expression for the Ricci tensor than in
Lemma 2.3, we need a lemma of the complex function theory. For a meromor-
phic function F , we denote the residue of F at ζ ∈ C by Res(F ; ζ).

Lemma 2.4. Let f(z) and g(z) be polynomials such that deg f + 2 ≤
deg g and let F (z) = f(z)/g(z). Suppose further that none of the poles of F is
an integer. Then we have∑

n∈Z

F (n) = −
∑

ζ

Res(F · w; ζ),

where the sum on the right hand side is taken all over the poles of F and
w(z) = π/ tan(πz).
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Proof. This is a simple application of residue theorem. Note that the
poles of w are Z and they are all the single poles with Res(w; n) = 1 (n ∈
Z). Hence the poles of F · w are disjoint union of the poles of F and Z and
Res(F · w; n) = F (n) (n ∈ Z).

Let r > 0 be a positive number such that all the poles of F are included
by the quadrangle Dr = {z = x + y

√−1 ∈ C||x| ≤ r, |y| ≤ r}. We denote the
boundary of Dr by C(r). Then by the residue theorem we have, for N ≥ r,

1
2π

√−1

∮
C(N+1/2)

F (z)w(z)dz =
∑

ζ

Res(F · w; ζ) +
∑

|n|≤N

F (n),

where the line integral in the left hand side is counter-clockwise.
On the other hand, by the condition of the degrees of f and g, there exists

a constant r′ > 0 and c > 0 such that |F (z)| ≤ c|z|−2 for any z /∈ Dr′ . Note
also that |w(z)| ≤ 2π for z ∈ C(N + 1/2). Therefore,

∣∣∣∮
C(N+1/2)

F (z)w(z)dz
∣∣∣ ≤ ∮

C(N+1/2)

|F (z)||w(z)||dz|

≤ c|N + 1/2|−2 · 2π · 8(N + 1/2) → 0

as N → ∞. This proves the lemma.

Using Lemmas 2.3 and 2.4, we will prove the following theorem.

Theorem 2.5. The Ricci tensor on the loop group is written more ex-
plicitly as follows;

Ric(δ)(X, X) = ‖X̂(0)‖2
g ·

(π coth(π/δ)
8δ

+
π2

8δ2 sinh2(π/δ)

)

+
∑
l �=0

(1 + δ2l2)‖X̂(l)‖2
gC · 1 − 2δ2l2

2δ(1 + δ2l2)(4 + δ2l2)
π coth(π/δ).

Hence, though the Ricci tensor is not negative definite, it is “negative definite
except finite dimensional directions”.

Proof. For l = 0, we set

F (z) =
1 − 4δ2lz

(1 + δ2z2)(1 + δ2(z − l)2)
.

Then poles of F are ±δ−1
√−1, l±δ−1

√−1 and they are all single. The residue
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of F · w at z = δ−1
√−1 is easily calculated as follows;

Res(F · w|δ−1
√−1) = F (z)w(z)(z − δ−1

√−1)
∣∣∣
z=δ−1

√−1

=
1 − 4δl

√−1
2δ
√−1{1 + δ2(δ−1

√−1 − l)2}w(δ−1
√−1)

=
1 − 4δl

√−1
2δ
√−1(−2δl

√−1 + δ2l2)
w(δ−1

√−1)

=
(1 − 4δl

√−1)(2
√−1 + δl)

2
√−1δ2l(δ2l2 + 4)

w(δ−1
√−1)

=
9δl + (2 − 4δ2l2)

√−1
2
√−1δ2l(δ2l2 + 4)

× {−√−1π coth(π/δ)}

= −9π coth(π/δ)
2δ(δ2l2 + 4)

+
(4δ2l2 − 2)π coth(π/δ)

2δ2l(δ2l2 + 4)
√−1.

(2.6)

Similarly we have

Res(F · w| − δ−1
√−1) = −9π coth(π/δ)

2δ(δ2l2 + 4)
− (4δ2l2 − 2)π coth(π/δ)

2δ2l(δ2l2 + 4)
√−1.

(2.7)

We obtain the residue of F · w at z = l + δ−1
√−1 as follows;

Res(F · w|l + δ−1
√−1)

= F (z)w(z)(z − l − δ−1
√−1)

∣∣∣
z=l+δ−1

√−1

=
1 − 4δ2l(l + δ−1

√−1)
{1 + δ2(l + δ−1

√−1)2}2δ−1
√−1

w(l + δ−1
√−1)

=
1 − 4δ2l2 − 4δl

√−1
2
√−1δ2l(δl + 2

√−1)
w(l + δ−1

√−1)

=
(1 − 4δ2l2 − 4δl

√−1)(δl − 2
√−1)

2
√−1δ2l(δ2l2 + 4)

w(l + δ−1
√−1)

=
−δl(4δ2l2 + 7) + (4δ2l2 − 2)

√−1
2
√−1δ2l(δ2l2 + 4)

× {−√−1π coth(π/δ)}

=
(4δ2l2 + 7)π coth(π/δ)

2δ(δ2l2 + 4)
− (2δ2l2 − 1)π coth(π/δ)

δ2l(δ2l2 + 4)
√−1.

(2.8)

Similarly we have

Res(F · w|l − δ−1
√−1)

=
(4δ2l2 + 7)π coth(π/δ)

2δ(δ2l2 + 4)
+

(2δ2l2 − 1)π coth(π/δ)
δ2l(δ2l2 + 4)

√−1.
(2.9)
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By (2.6), (2.7), (2.8), (2.9) and Lemma 2.4 we have

∑
n∈Z

1 − 4δ2ln

(1 + δ2n2)(1 + δ2(n − l)2)
= −Res(F · w|δ−1) − Res(F · w| − δ−1)

− Res(F · w|l + δ−1) − Res(F · w|l − δ−1)

=
2(1 − 2δ2l2)
δ(δ2l2 + 4)

π coth(π/δ).

(2.10)

Thus we have checked the second term in the right hand side of the equation
in the theorem.

Next we will compute the first term. Set G(z) = (1 + δ2z2)−2. It is easy
to see that G has two double poles at z = ±δ−1. Noting that

w′(
√−1/δ) = −π2 1

sin2(π
√−1/δ)

= −π2
( 2

√−1
e
√−1π

√−1/δ − e−
√−1π

√−1/δ

)2

= π2
( 2

eπ/δ − e−π/δ

)2

=
π2

sinh2(π/δ)
,

we obtain

Res(G · w|δ−1
√−1) =

d

dz

∣∣∣∣∣
z=δ−1

√−1

{G(z)w(z)(z − δ−1
√−1)2}

=
1
δ4

d

dz

∣∣∣∣∣
z=δ−1

√−1

{
w(z)

(z + δ−1
√−1)2

}

=
1
δ4

(−2w(δ−1
√−1)

(2δ−1
√−1)3

+
w′(δ−1

√−1)
(2δ−1

√−1)2

)

= −π coth(π/δ)
4δ

− π2

4δ2 sinh2(π/δ)
.

(2.11)

Similarly we have

Res(G · w| − δ−1
√−1) = −π coth(π/δ)

4δ
− π2

4δ2 sinh2(π/δ)
.(2.12)

By (2.11), (2.12) and Lemma 2.4 we have

∑
n∈Z

1
(1 + δ2n2)2

=
π coth(π/δ)

2δ
+

π2

2δ2 sinh2(π/δ)
.
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Thus we have proved Theorem 2.5.

3. Lower bound of the Ricci tensor

In this section we will compute explicitly the lower bound of the Ricci
tensor from Theorem 2.5. In order to do so, it is sufficient to consider the
maximum of

2δ2l2 − 1
(1 + δ2l2)(4 + δ2l2)

as a function of l = 1, 2, . . . for exch fixed δ > 0. Let us define

h(x) =
2x − 1

(1 + x)(4 + x)
=

3
4 + x

− 1
1 + x

,

for x ≥ 0. We can easily see that

h′(x) = − 3
(4 + x)2

+
1

(1 + x)2

=
−2x2 + 2x + 13
(4 + x)2(1 + x)2

.

Hence h(x) increases if x ∈ (0, (1 + 3
√

3)/2) and decreases if x ∈ ((1 +
3
√

3)/2,∞). We set

�x� = max{n ∈ Z|n ≤ x}
for x ∈ R and

l0 =

δ−1

√
1 + 3

√
3

2

 .(3.1)

Hence we have

max
l=1,2,...

2δ2l2 − 1
(1 + δ2l2)(4 + δ2l2)

= h(δ2l20) ∨ h(δ2(l0 + 1)2).(3.2)

This is also valid when l0 = 0 because h(0) < 0 and h(δ2) > 0.
From Theorem 2.5 and (3.2), we have the next theorem.

Theorem 3.1. Let δ > 0 and l0 be as in (3.1). Let us denote the lower
bound of the Ricci tensor by −C(δ), i.e.,

−C(δ) = inf
X �=0

Ric(δ)(X, X)
‖X‖2

Hδ
1

.

(We easily see from Theorem 2.3 that −C(δ) > −∞ for any δ > 0). Then we
have

C(δ) =
π coth(π/δ)

2δ
{h(δ2l20) ∨ h(δ2(l0 + 1)2)}.
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Corollary 3.2. We have

C(1) =
7π coth(π)

80
,

C(2π) =
coth(1/2)(8π2 − 1)
16(1 + 4π2)(1 + π2)

.

Proof. When δ = 1, we can easily see that l0 = �{(1 + 33/2)/2}1/2� = 1.
We have h(1) = 1/10 and h(22) = 7/40. Hence we have C(1) = 7π coth(π)/80
by Theorem 3.1. When δ = 2π, l0 = �(2π)−1{(1 + 33/2)/2}1/2� = 0 and

h((2π)2 · 1) =
8π2 − 1

4(1 + 4π2)(1 + π2)
.

Hence

C(2π) =
coth(1/2)(8π2 − 1)
16(1 + 4π2)(1 + π2)

.

Thus we have proved Corollary 3.2.

Remark 3.3. In this paper we assumed equation (2.1). However, the
modification to the general case is easy. If we do not assume (2.1), then Theo-
rem 2.5, for example, is modified as follows:

Ricδ(X, X) = KC〈X̂(0), X̂(0)〉
(

π coth(π/δ)
8δ

+
π2

8δ2 sinh2(π/δ)

)

+
∑
l �=0

(1 + δ2l2)KC(X̂(l), X̂(l))

· 1 − 2δ2l2

2δ(1 + δ2l2)(4 + δ2l2)
π coth(π/δ).

Here −KC is the Hermitian form which is obtained as the natural extension of
the Killing form. Similarly Theorem 3.1 is modified as follows:

C(δ) = ‖K‖π coth(π/δ)
2δ

{h(δ2l20) ∨ h(δ2(l0 + 1)2)}.

Here −K is the Killing form of g and

‖K‖ = sup{K〈a, a〉|a ∈ g, ‖a‖g = 1}.
Remark 3.4. Let us consider the following metrics

‖X‖2
δ−1Hδ

1
=

∑
n∈Z

(δ−2 + n2)‖X̂(n)‖2

as in Fang [4]. As δ → ∞, ‖X‖δ−1Hδ
1

goes to the usual H1-norm for the pinned
loop algebra by (1.2) (at least formally). We will consider the Ricci tensor for
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δ−1Hδ-metric. By direct calculation the operator D defined as in (2.3) remains
invariant under the multiplication of constant δ−1 and so does the Ricci tensor
defined as in (2.5). Since the lower bound of the Ricci is defined as in Theorem
3.1, we can easily see that the new lower bound is δ2-times the original one.
For sufficiently large δ, l0 in equation (3.1) is zero. Hence by Theorem 3.1 the
new lower bound −C̃δ of the Ricci tensor is written as

C̃δ = δ2Cδ =
π

δ
coth(π/δ) · δ2(2δ2 − 1)

2(1 + δ2)(4 + δ2)
.

We can easily see that −C̃δ goes to 1 as δ → ∞, which in a sense coincides with
the result in Freed [5]. Freed showed that the lower bound of the Ricci tensor
on the pinned loop algebra for H1

1 -norm given by ‖X‖2 =
∑

n�=0 n2‖X̂(n)‖2 is
−1. (Note that the definition of the Ricci tensor in [5] is different from ours by
multiplication of −1 and that time interval in [5] is [0, 2π]. However, it does
not matter and modification is easy).
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