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A certain class of distribution-valued
additive functionals II

—for the case of stable process

By

Tadashi Nakajima

1. Introduction

This paper is a sequel to [7].
Let Bs be a d-dimensional Brownian motion. In the previous paper [7], we

gave a significance to the intuitive expression

AT (a : t, ω) =
∫ t

0

T (Bs − a)ds

for the certain distribution T and studied joint continuity on a and t and the
energy of AT (a : t, ω).

In this paper, we consider the property of AT (a : t, ω) for one-dimensional
stable process with index α or d-dimensional symmetric stable process with
index α. Since we can prove these results in the similar way to the case of
Brownian motion, we will omit the detail of the proof. For further details, refer
to [7].

Furthermore we study some representation theorems. We get a unified
method for the proof of representation theorems of occupation time formula
including the special case of T = v.p.(1/x) by M. Yor ([16]) and T. Yamada
([19]).

Our method is very simple. It is principally based on the Fourier trans-
form theory in distribution sense. The concrete estimate of the characteristic
function of stable process with index α plays an essential role in the proof of
our main result.

The present paper is organized as follows. In Section 2, we define distri-
bution valued additive functionals and prepare some notations.

In Section 3, we discuss the existence, (a, t)-joint continuity and the energy
of AT (a : t, ω) in the sense of M. Fukushima ([4]) for stable process with index
α.

In Section 4, we discuss the representation theorems.
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444 Tadashi Nakajima

2. Definitions and preliminary results

Throughout this paper, we shall use the same notations as those in the
previous paper [7]. But we notice some notations.

We denote that q is Hölder conjugate of p.
We denote the Fourier transform of φ(a) by φ̂(λ) and the Fourier inverse

transform of ψ(λ) by F−1(ψ)(a):

F−1(ψ)(a) =
1

(2π)d

∫
ψ(λ)e−iλ·adλ,

where x · y (x ∈ Rd, y ∈ Rd) denotes the inner product.
Let T ∈ S ′. We denote the Fourier transform of T by T̂ .

Definition 2.1. We say that T is an element of Hβ
p (1 ≤ p ≤ ∞,

−∞ < β < ∞) if and only if T is an element of S ′ and the Fourier transform
of T has a version as a function T̂ (λ) on Rd such that

T̂ (λ)(1 + |λ|2) β
2 ∈ Lp.

Then we set

‖T‖Hβ
p

= ‖T̂ (λ)(1 + |λ|2) β
2 ‖Lp .

We note F−1(T )(λ) = (2π)−dT̂ (−λ) for T ∈ Hβ
p .

Let (Xs) be the standard Brownian motion on Rd or one-dimensional real
valued stable process with index α (0 < α < 2) or d-dimensional real valued
symmetric stable process with index α (0 < α < 2).

We define τx and θt as following:

τx : Xt(τxω) = Xt(ω) + x

and

θt : Xs(θtω) = Xt+s(ω).

We remember preliminary results in [7].

Lemma 2.2. Let T ∈ D′, φ ∈ D and set T ∗ φ(x) = 〈Ty, φ(x − y)〉y.
Then

〈AT (t, ω), φ〉 =
∫ t

0

T ∗ φ(Xs(ω))ds

is well-defined and we have

AT (t, ω) ∈ D′.
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Lemma 2.3.

〈AT (t, τxω), φ〉 = 〈AT (t, ω), φ(· + x)〉,(2.1)
〈AT (s+ t, ω), φ〉 = 〈AT (s, ω), φ〉 + 〈AT (t, θsω), φ〉.(2.2)

Lemma 2.4. Let T be an element of Hβ
p . Then AT (t, ω) is also an

element of Hβ
p .

We remember the important lemma in [7]. In fact, using this lemma, we
will prove the boundedness of certain integrals.

Lemma 2.5. We set

J =
∫

Rd

dµ

(1 + |µ|2)p(1 + |µ+ λ|2)q .

Let 2p+ 2q > d and p ≥ q > 0.
(1) If 2p < d and 2q < d, then

J 	 1

(1 + |λ|2)p+q− d
2
.(2.3)

(2) If 2p = d, then

J 	 1 + log+ |λ|
(1 + |λ|2)q ,(2.4)

where log+ |x| = max(log |x|, 0).
(3) If 2p > d, then

J 	 1
(1 + |λ|2)q .(2.5)

Here we denote that “f 	 g” means k ≤ f/g ≤ K for some positive constants
k and K, where f, g 
≡ 0.

Now let ρε be the molifier. We denote

AεT (t, ω) = 〈AT (t, ω), ρε〉
and

AεT (a : t, ω) = AεT (t, τ−aω).

We note that

〈AεT (t, ω), φ〉 = 〈AT (t, ω), ρε ∗ φ〉.
Here we emphasize AεT (a : t, ω) is a usual function of a. We can take ρε such
that ρε → δ0 as ε→ 0 and ρ̂ε uniformly converges to one in wider sense tending
ε to zero and ‖ρ̂ε‖∞ ≤ 1.
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Thus we will study the existence and the continuity of the limit AT (a : t, ω)
of AεT (a : t, ω) as ε to zero.

3. The case of 1-dimensional stable process with index α

3.1. Convergence and continuity theorems
Let Px be the probability measure of the one-dimensional stable process

{Xs} with index α(0 < α < 2) starting from x and we denote the transition
probability density by p(t, y). We notice that the characteristic function of Xs

is

Ex[eiλXs ] = exp{−sψ(λ) + iλx},
where ψ(λ) is given in the following. For some constants c > 0, −1 ≤ γ ≤ 1
and γ0 ∈ R, if α 
= 1 then

ψ(λ) = c|λ|α
(
1 − iγ(sgnλ) tan

π

2
α
)

+ iγ0λ

and if α = 1 then

ψ(λ) = c|λ|
(

1 + iγ
2
π

(sgnλ) log |λ|
)

+ iγ0λ.

We prepare the following lemma to discuss the existence and the continuity of
AT (a : t, ω), which is the limit of AεT (a : t, ω) as ε goes to zero.

Lemma 3.1. Let F = | ∫ t
0
e−ψ(λ)sds|. Then we get

F ≤ C

(1 + |λ|2) η
2
,(3.1)

where we take η = α but if α < 1 and γ0 
= 0 then we take η = 1.

Proof. We can obtain this lemma by the following evaluations of ψ(λ).
(1) α > 1 or α < 1 and γ0 = 0, then

|ψ(λ)| 	 |λ|α.
(2) α < 1 and γ0 
= 0, then

|ψ(λ)| 	 |λ|.
(3) α = 1

|ψ(λ)| ≥ C|λ|| log |λ||
≥ C|λ| if λ is large.
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We get the following in the similar way to the case of Brownian motion
([7]).

First, we prove the convergence theorem.

Theorem 3.2. We suppose that 1 < p ≤ ∞ and q satisfy 1/p+1/q = 1.
Suppose that β > (1 − q)/2q in the case where γ0 
= 0 and α < 1 and that

β > (1 − αq)/q in the case where αq < 1 and that β > (1 − αq)/2q in the case
where αq ≥ 1.

For T ∈ Hβ
p ,

lim
ε→0

AεT (a : t, ω) = AT (a : t, ω) in L2(dPx).

Outline of Proof. We set

ΓN = {(λ1, λ2) : |λ1| ≤ N, |λ2| ≤ N} for any N > 0.

Without loss of generality, we can assume that the stable process starts from
zero.

|I| = |E0[(AεT (a : t, ω))2]|

=
2

(2π)2

∣∣∣∣∫ dλ1

∫
dλ2T̂ (λ1)ρ̂ε(λ1)T̂ (λ2)ρ̂ε(λ2)e−i(λ1+λ2)a

×
∫ t

0

ds

∫ t

s

due−ψ(λ1+λ2)s−ψ(λ2)(u−s)
∣∣∣∣

≤ 2
(2π)2

(
sup

|λ|≤N
|ρ̂ε(λ)|

)2

t2
∫ ∫

ΓN

dλ1dλ2|T̂ (λ1)T̂ (λ2)|

+
2

(2π)2
(‖ρ̂ε‖∞)2

∫ ∫
Γc

N

dλ1dλ2|T̂ (λ1)T̂ (λ2)|

×
∣∣∣∣∫ t

0

ds

∫ t−s

0

due−ψ(λ1+λ2)s−ψ(λ2)u

∣∣∣∣
=

2
(2π)2

(
sup

|λ|≤N
|ρ̂ε(λ)|

)2

t2I1 +
2

(2π)2
(‖ρ̂ε‖∞)2I2(ΓcN ), say.

For the proof of this theorem, we show that I2(Γc0) = I2 is finite. By Hölder’s
inequality we get
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I2 ≤ (‖T‖Hβ
p
)2
(∫

dλ1

∫
dλ2(1 + |λ1|2)−

qβ
2 (1 + |λ2|2)−

qβ
2(3.2)

×
∣∣∣∣∫ t

0

ds

∫ t−s

0

due−ψ(λ1+λ2)s−ψ(λ2)u

∣∣∣∣q
) 1

q

≤ (‖T‖Hβ
p
)2
(∫

dµ1

∫
dµ2(1 + |µ1 − µ2|2)−

qβ
2 (1 + |µ2|2)−

qβ
2(3.3)

×
∣∣∣∣∫ t

0

ds

∫ t−s

0

due−ψ(µ1)s−ψ(µ2)u

∣∣∣∣q
) 1

q

By (3.1) we get

I2 ≤ C2(‖T‖Hβ
p
)2
(∫

dµ1

∫
dµ2(1 + |µ1 − µ2|2)−

qβ
2 (1 + |µ2|2)−

qβ
2 − qη

2

× (1 + |µ1|2)−
qη
2

) 1
q

,

Then we apply (2.5) for the finiteness of this integral. We obtain sufficient
condition:

qβ + qβ + ηq > 1,
ηq + qβ > 1

and

qβ

2
+
qη

2
>
qβ

2
.

Thus if β satisfies

β >
1 − ηq

2q
for the case where ηq ≥ 1

and

β >
1 − ηq

q
for the case where ηq < 1,

then we can easily see that {AεT (a : t, ω)} is a Cauchy sequence in L2(dPx)
when ε goes to zero.

If p = 2 then we can improve Theorem 3.2 as follows:

Theorem 3.3. Suppose that β > −1/2 in the case where γ0 
= 0 and
α < 1 and that β ≥ −α/2 in the case where α > 1 and that β > 1/2−α in the
case where α ≤ 1.

For T ∈ Hβ
2 ,

lim
ε→0

AεT (a : t, ω) = AT (a : t, ω) in L2(dPx).
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Outline of Proof. We set

Λ1 =
{

(λ1, λ2) :
|λ1|
2

≤ |λ1 + λ2|
}

and

Λ2 =
{

(λ1, λ2) :
|λ1|
2

≥ |λ1 + λ2|
}
.

For the proof, it is sufficient to show that the following integral I2 is finite.

I2 =
∫
dλ1

∫
dλ2|T̂ (λ1)||T̂ (λ2)|

∣∣∣∣∫ t

0

ds

∫ t−s

0

due−ψ(λ1+λ2)s−ψ(λ2)u

∣∣∣∣ .
Then by (3.1) we get

I2 ≤ C2

∫ ∫
Λ1

dλ1dλ2|T̂ (λ1)||T̂ (λ2)|(1 + |λ1 + λ2|2)−
η
2 (1 + |λ2|2)−

η
2

+ C2

∫ ∫
Λ2

dλ1dλ2|T̂ (λ1)||T̂ (λ2)|(1 + |λ1 + λ2|2)−
η
2 (1 + |λ2|2)−

η
2

= JΛ1 + JΛ2 , say.

First, we estimate JΛ1 . By the definition of Λ1, we immediately have

JΛ1 ≤ C1(‖T‖Hβ
2
)2
∫

(1 + |λ|2)−η−βdλ.

Second, we estimate JΛ2 .

JΛ2 = C2

∫ ∫
Λ2

dλ1dλ2|T̂ (λ1)|(1 + |λ1|2)
β
2 |T̂ (λ2)|(1 + |λ2|2)

β
2

× (1 + |λ1|2)−
β
2 (1 + |λ2|2)−

β
2 (1 + |λ1 + λ2|2)−

η
2 (1 + |λ2|2)−

η
2

≤ C2(‖T‖Hβ
2
)2
∫
dµ(1 + |µ|2)−η−β.

Thus, for the finiteness of I2, we have

β >
1 − 2η

2
and β ≥ −η

2
.

If p = 1 we have the following theorem.

Theorem 3.4. For T ∈ Hβ
1 ,

lim
ε→0

AεT (a : t, ω) = AT (a : t, ω) in L2(dPx),

where we take β ≥ −α/2 but if α < 1 and γ0 
= 0 we take β ≥ −1/2.
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Outline of Proof. To prove this result, it is sufficient to show (3.2) is
finite. By Hölder’s inequality and (3.1) we have

I2 ≤ C2(‖T‖Hβ
1
)2‖(1 + |λ1|2)−

β
2 (1 + |λ2|2)−

β
2 − η

2 (1 + |λ1 + λ2|2)−
η
2 ‖∞,

If β ≥ 0, then clearly I2 <∞. We consider the case β < 0. We set

L = (1 + |λ1|2)−
β
2 (1 + |λ2|2)−

η
2 − β

2 (1 + |λ1 + λ2|2)−
η
2 ,

Λ1 =
{

(λ1, λ2) : |λ1| ≤ |λ2|
2

}
,

Λ2 =
{

(λ1, λ2) : |λ1 + λ2| ≤ |λ2|
2

}
,

Λ3 = {(λ1, λ2) : |λ1| ≤ 2|λ2|} − Λ1 − Λ2,

and

Λ4 = (Λ1 ∪ Λ2 ∪ Λ3)c.

We will consider each case. First, we consider the case such that (λ1, λ2) belongs
to Λ4. We have

L 	 (1 + |λ1|2)−
β
2 − η

2 (1 + |λ2|2)−
η
2− β

2 .(3.4)

Second, we consider the case such that (λ1, λ2) belongs to Λ3. We have

L 	 (1 + |λ1|2)−β−η.(3.5)

Third, we consider the case such that (λ1, λ2) belongs to Λ2. We have

L 	 (1 + |λ1|2)−β−
η
2 (1 + |λ1 + λ2|2)−

η
2 .(3.6)

Last, we consider the case such that (λ1, λ2) belongs to Λ1. We have

L ≤ C∞(1 + |λ2|2)−β−
η
2 (1 + |λ1 + λ2|2)−

η
2 ,(3.7)

for some positive constant C∞.
Therefore using from (3.4) to (3.7), for the finiteness of I2 we take β ≥

−η/2.

Next we discuss the (a, t)-joint continuity of AT (a : t, ω).

Theorem 3.5. Let T ∈ Hβ
p (1 < p ≤ ∞), where we take β as Theorem

3.2 and q satisfy 1/p+ 1/q = 1.
Suppose that
(1) (in the case where α > 1)

δ = min
(

1,
2qβ − 1 + αq

2q

)
if 1 ≤ αq.
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(2) (in the case where α ≤ 1)

δ =min
(
α,
qβ − 1 + αq

q

)
if 1 > αq,

δ =min
(

1,
2qβ − 1 + αq

2q

)
if 1 ≤ αq.

(3) (in the case where α < 1 and γ0 
= 0)

δ = min
(

1,
2qβ − 1 + q

2q

)
.

Then AT (a : t, ω) has (a, t)-jointly continuous modification, which is locally
Hölder-continuous with exponent γ, where 0 < γ < δ.

Outline of Proof. Without loss of generality, we suppose that t > s and
the stable process starts from zero and b = 0.

We set

E0[(AεT (a : t, ω) −AεT (0 : s, ω))2n]

≤ 22n|E0[(AεT (a : t, ω) − (AεT (0 : t, ω))2n]|
+ 22n|E0[(AεT (0 : t, ω) − (AεT (0 : s, ω))2n]|

= 22n|Ia| + 22n|It|.

First we estimate Ia. By the similar calculation of the case of Brownian motion
([7]) we obtain

|Ia| ≤ (2n)!
(2π)2n

(‖T‖Hβ
p
)2n(‖ρ̂ε‖∞)2n

×
(∫

dλ1 · · ·
∫
dλ2n(1 + |λ1|2)−

qβ
2 · · · (1 + |λ2n|2)−

qβ
2

×
∣∣∣∣∣
∫ t

0

du1

∫ t

u1

du2 · · ·
∫ t

u2n−1

du2n

× e−ψ(λ2n)(u2n−u2n−1)−ψ(λ2n+λ2n−1)(u2n−1−u2n−2)−···−ψ(λ2n+···+λ1)u1

∣∣∣∣q

× |e−iλ2na − 1|q|e−i(λ2n+λ2n−1)a − 1|q · · · |e−i(λ2n+···+λ1)a − 1|q
) 1

q

.
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By the change of variables we have

|Ia| ≤ (2n)!
(2π)2n

(‖T‖Hβ
p
)2n(‖ρ̂ε‖∞)2n

×
(∫

dµ1 · · ·
∫
dµ2n(1 + |µ1 − µ2|2)−

qβ
2 · · · (1 + |µ2n−1 − µ2n|2)−

qβ
2

× (1 + |µ2n|2)−
qβ
2

×
∣∣∣∣∣
∫ t

0

du1

∫ t

u1

du2 · · ·
∫ t

u2n−1

du2n

× e−ψ(µ2n)(u2n−u2n−1)−···−ψ(µ2)(u2−u1)−ψ(µ1)u1

∣∣∣∣q

× |e−iµ2na − 1|q|e−i(µ2n−1−µ2n)a − 1|q · · · |e−i(µ1−µ2)a − 1|q
) 1

q

.

Now we notice that for any 1 ≥ la > 0

|e−iµ·a − 1| ≤ Ka|a|la(1 + |µ|2)la/2 for some positive constant Ka > 0.

Then we apply this inequality and (3.1) to Ia:

|Ia| ≤ Ca(‖T‖Hβ
p
)2n(‖ρ̂ε‖∞)2n|a|2nla

×
(∫

dµ1 · · ·
∫
dµ2n

× (1 + |µ1 − µ2|2)−
qβ
2 + qla

2 · · · (1 + |µ2n−1 − µ2n|2)−
qβ
2 + qla

2

× (1 + |µ1|2)−
q
2η · · · (1 + |µ2n−1|2)−

q
2η(1 + |µ2n|2)−

q
2 (η−la+β)

) 1
q

.

Now we apply (2.5) to the integral with respect to dµ1 . . . dµ2n of the above
inequality. Then for the finiteness of Ia, we have

q(η − la + β) + q(β − la) > 1,
q(η − la + β) > 1.

Thus we get

β > max
(

1 − ηq + qla
q

,
1 − ηq + 2qla

2q

)
,(3.8)

|Ia| ≤ C ′
a|a|2nla(‖T‖Hβ

p
)2n‖ρ̂ε‖2n

∞ ,(3.9)

where C ′
a is a positive constant and only depends on n.

Next we estimate It in a similar way of Ia. But we notice that for any
lt > 0 and fixed t > 0, there exists a positive constant Kt such that∣∣∣∣∫ s

0

e−ψ(µ)udu

∣∣∣∣ ≤ Kt

(
slt

(1 + |µ|2) η
2

) 1
lt+1

for s ∈ [0, t].
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Then we have

|It| ≤ Ct|t− s|2n lt
lt+1 (‖T‖Hβ

p
)2n(‖ρ̂ε‖∞)2n

×
(∫

dµ1 · · ·
∫
dµ2n(1 + |µ1 − µ2|2)−

qβ
2 · · · (1 + |µ2n−1 − µ2n|2)−

qβ
2

× (1 + |µ1|2)−
ηq

2(lt+1) · · · (1 + |µ2n−1|2)−
ηq

2(lt+1) (1 + |µ2n|2)−
qβ
2 − ηq

2(lt+1)

) 1
q

.

We apply (2.5) to the integral with respect to dµ1 . . . dµ2n of the above inequal-
ity. Then we have

β >max

(
1 − ηq

lt+1

q
,
1 − ηq

lt+1

2q

)
(3.10)

and

|It| ≤C ′
t|t− s|2n lt

lt+1 (‖T‖Hβ
p
)2n(‖ρ̂ε‖∞)2n,(3.11)

where C ′
t is a positive constant and only depends on n and t.

Therefore by (3.8) and (3.10) we make la and lt satisfy the following equal-
ities:

1 − ηq

lt + 1
= 1 − ηq + 2qla,

1 − ηq

lt + 1
= 1 − ηq + qla.

That is, lt = 2la/(η − 2la) and lt = la/(η − la). Since la is positive, β satisfies
the condition in Theorem 3.2 and then we get

|E0[(AεT (a : t, ω) −AεT (0 : s, ω)2n]|
≤ Cst(|a|2nδ + |t− s|2nδ)(‖T‖Hβ

p
)2n(‖ρ̂ε‖∞)2n,

(3.12)

where we denote la by δ and Cst = max(C ′
a, C

′
t).

Therefore we get the condition in the theorem.
Then tending ε to zero, we get (a, t)-jointly continuity of AT (a : t, ω) by

Kolmogorov-Čentsov theorem.

But we cannot still get the result corresponding to Theorems 3.3 and 3.4.
By Theorem 3.5, we can take the (a, t)-jointly continuous modification of

AT (a : t, ω).
Now we discuss the existence and (a, t)-jointly continuity of AT (a : t, ω) in

the case of p = ∞ and p = 2.

Example 3.6. Let T = δ0. Then T belongs to H0
∞ ∩H−1/2−ε

2 , where
ε > 0. AT (a : t, ω) is the local time. AT (a : t, ω) has (a, t)-jointly continuous
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modification which is locally Hölder continuous with exponent 0 < γ < (α −
1)/2, where α > 1 applying the fact of T = δ0 ∈ H0

∞ and exponent 0 < γ <

(2α−3)/4, where α > 3/2 applying the fact of T = δ0 ∈ H
−1/2−ε
2 , where ε > 0.

Therefore we conclude that the local time for stable process with index α >
1 exists, which agrees to the result in E. S. Boylan ([2]) and it has (a, t)-jointly
continuous modification which is locally Hölder continuous with exponent (α−
1)/2 − ε.

Example 3.7. Let T = v.p.(1/x). Then T also belongs to H0
∞ ∩

H
−1/2−ε
2 , where ε > 0. Thus AT (a : t, ω) has (a, t)-jointly continuous mod-

ification which has the same exponent in the case of T = δ0.

3.2. The energy of AT (a : t, ω)
In this section we will discuss the energy of AT (a : t, ω). First we define

the energy of additive functionals in M. Fukushima, Y. Oshima and M. Takeda
([4]).

Definition 3.8. For any additive functional AT (a : t, ω), we set

e(AT ) = lim
t↓0

1
2t
Em[(AT (a : t, ω))2]

whenever the limit exits. We call e(AT ) the energy of AT (a : t, ω).

For the stable processes, we take m = dx.
First, we show that the convergence of AεT (a : t, ω) in L2(dPx × dx).

Theorem 3.9. We suppose that 2 < p ≤ ∞ and q satisfy 1/p+1/q = 1.
For T ∈ Hβ

p ,

lim
ε→0

AεT (a : t, ω) = AT (a : t, ω) in L2(dPx × dx),

where we take β > (1 − αq)/2q but if γ0 
= 0 then for α < 1 we take β >
(1 − q)/2q.

Proof. We proceed on the similar way of Brownian motion ([7]).

I = Edx[(AεT (a : t, ω))2]

=
∫
dxE0

[
2
∫ t

0

ds

∫ t

s

duT ∗ ρε(Xs − a− x)T ∗ ρε(Xu − a− x)
]

≤ 2(2π)−1t

(
t sup
|λ|≤N

|ρ̂ε(λ)|2
∫
|λ|≤N

dλ|T̂ (λ)|2(3.13)

+ C‖ρ̂ε‖2
∞

∫
|λ|>N

dλ|T̂ (λ)|2 1
(1 + |λ|2) η

2

)

= 2(2π)−1t

(
t sup
|λ|≤N

|ρ̂ε(λ)|2I1 + C‖ρ̂ε‖2
∞I2(|λ| > N)

)
, say.
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By Hölder’s inequality we get

I1 ≤ (‖T‖Hβ
p
)2
(∫

|λ|≤N
dλ(1 + |λ|2)−qβ

) 1
q

.

Therefore I1 is finite for any β.
Now we estimate I2(|λ| ≥ N). First we consider I2(|λ| ≥ 0) = I2. By

Hölder’s inequality we get

I2 ≤ (‖T‖Hβ
p
)2
(∫

dλ(1 + |λ|2)−qβ− ηq
2

) 1
q

.

For the finiteness of this integral we get ηq + 2qβ > 1.
Thus if β satisfies β > (1 − ηq)/2q, then we can easily see that tending ε

to zero, {AεT (a : t, ω)} is Cauchy’s sequence in L2(dPx × dx) and AεT (a : t, ω)
converges AT (a : t, ω) in L2(dPx × dx).

If p = 2, then we can easily obtain

I2 ≤ ‖ρ̂ε‖2
∞(‖T‖Hβ

2
)2‖(1 + |λ|2)− η

2 −β‖∞.
Thus we have

Corollary 3.10. For T ∈ Hβ
2 ,

lim
ε→0

AεT (a : t, ω) = AT (a : t, ω) in L2(dPx × dx),

where we take β ≥ −α/2 but if γ0 
= 0 then for α < 1 we take β ≥ −1/2.

These results guarantee the existence AT (a : t, ω) for T ∈ Hβ
p wider than

Theorems 3.2 and 3.3. Then we denote by AdxT (a : t, ω) in this sense.
Now we show that AdxT (a : t, ω) has 0-energy.

Theorem 3.11. For T ∈ Hβ
p , e(AdxT ) = 0, where we take β satisfying

the condition in Theorem 3.9 or Corollary 3.10.

Proof. By (3.13) we know

|Edx[AεT (a : t, ω)2]|

≤ 2(2π)−1t

(
t sup
|λ|≤N

|ρ̂ε(λ)|2
∫
|λ|≤N

dλ|T̂ (λ)|2

+ C‖ρ̂ε‖2
∞

∫
|λ|>N

dλ
|T̂ (λ)|2

(1 + |λ|2) η
2

)
.

Since ‖ρ̂ε‖2
∞ ≤ 1, letting ε to zero, we get

|Edx[AεT (a : t, ω)2]|

≤ 2(2π)−1t

(
t

∫
|λ|≤N

dλ|T̂ (λ)|2 + C

∫
|λ|>N

dλ
|T̂ (λ)|2

(1 + |λ|2) η
2

)
.
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Thus we get

e(AdxT ) = 0.

3.3. The case of d-dimensional symmetric stable process with index
α

We can apply the above method the d-dimensional symmetric stable pro-
cess.

Let {Xs} be the d-dimensional symmetric stable process with index α.
That is,

Ex[eiλ·Xs ] = exp{−c|λ|αs+ iλ · x},
where c is positive constant and x · y(x ∈ R, y ∈ R) denotes the inner product.

Noting ∫ t

0

e−c|λ|
αsds ≤ C

(1 + |λ|2)α
2
,(3.14)

we get the following Theorems.

Theorem 3.12. We suppose that 1 ≤ p ≤ ∞.
Suppose that
(1) p > 1

β >
d− αq

q
if αq < d,

β >
d− αq

2q
if αq ≥ d.

(2) p = 1

β > −α/2.
For T ∈ Hβ

p ,

lim
ε→0

AεT (a : t, ω) = AT (a : t, ω) in L2(dPx).

If p = 2 then we can improve above Theorem as follows:

Theorem 3.13. Suppose that β > −α/2 in the case where d < α and
that β > (d− 2α)/2 in the case where d ≥ α.

For T ∈ Hβ
2 ,

lim
ε→0

AεT (a : t, ω) = AT (a : t, ω) in L2(dPx).

The results of the (a, t)-joint continuity of AT (a : t, ω) are the following:
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Theorem 3.14. Let T ∈ Hβ
p (1 < p ≤ ∞), where we take β as Theorem

3.12 and q satisfy 1/p+ 1/q = 1.
Suppose that δ = min(α/2, (qβ−d+αq)/2q) in the case where d > αq and

that δ = min(α/2, (2qβ − d+ αq)/2q) in the case where d ≤ αq.
Then AT (a : t, ω) has (a, t)-jointly continuous modification, which is locally

Hölder-continuous with exponent γ, where 0 < γ < δ.

Noting (3.14), we get the following Theorem in the similar way to Theorems
3.9, 3.11 and Corollary 3.10.

Theorem 3.15. We suppose that 2 < p ≤ ∞ and q satisfy 1/p+ 1/q =
1.

Suppose that β > (d− αq)/2q in the case where p > 2 and that β > −α/2
in the case where p = 2.

For T ∈ Hβ
p ,

lim
ε→0

AεT (a : t, ω) = AdxT (a : t, ω) in L2(dPx × dx)

and e(AdxT ) = 0.

4. Representation theorems

We describe the occupation time formula and a representation theorem by
T. Yamada ([17]) with respect to one-dimensional Brownian motion and one-
dimensional stable process with index α, but with a little modification in our
views.

Throughout this section, we suppose the following assumption.

Assumption 4.1.
(1) d = 1.
(2) (Xt) stands for Brownian motion or stable process with index α(α > 1).

Let La(t, ω) = Aδ0(a; t, ω) and Ca(t, ω) = Av.p. 1x (a; t, ω).

Theorem 4.2. Let f ∈ S. Then for a.e.-ω,∫ t

0

f(Xs)ds =
∫
f(a)La(t, ω)da,(4.1) ∫ t

0

f(Xs)ds =
1
π

∫
Hf(a)Ca(t, ω)da.(4.2)

Here H is the Hilbert transform, that is,

Hφ(t) =
(

1
π
v.p.

1
x
∗ φ
)

(t).
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Proof. First we show the equation (4.1). We denote Aεδ0(a : t, ω) by
Lεa(t, ω). We notice

L̂ε· (t, ω)(λ) = Âεδ0(· : t, ω)

=
∫ t

0

eiλXs ρ̂ε(−λ)ds.

By the Parseval’s equality, letting ε→ 0,∫
f(a)Lεa(t, ω)da =

1
2π

∫
dλf̂(λ)

∫ t

0

dse−iλXs ρ̂ε(λ)

→ 1
2π

∫
dλ

∫ t

0

dsf̂(λ)e−iλXs

=
∫ t

0

f(Xs)ds.

On the other hand, tending ε to zero, we get∫
f(a)Lεa(t, ω)da→

∫
f(a)La(t, ω)da

by Theorem 3.2 and [7, Theorem 3.1].
Next, we show (4.2). We denote Aε

v.p. 1x
(a : t, ω) by Cεa(t, ω). We notice

Ĥf(λ) = i sgn(λ)f̂(λ)

and

Ĉε· (t, ω) = Âε
v.p. 1x

(· : t, ω)

=
∫ t

0

dseiλXs(iπ sgn(λ))ρ̂ε(−λ).

Since Hf ∈ S, letting ε to zero, we get∫
Hf(a)Cεa(t, ω)da

=
1
2π

∫
dλĤf(λ)Ĉε· (t, ω)

=
1
2π

∫
dλi sgn(λ)f̂(λ)

∫ t

0

dse−iλXs(−πi sgn(λ))ρ̂ε(λ)

→ 1
2π
π

∫
dλ

∫ t

0

dsf̂(λ)e−iλXs

= π

∫ t

0

f(Xs)ds.
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On the other hand, tending ε to zero uniformly in wider sense, we get∫
Hf(a)Cεa(t, ω)da→

∫
Hf(a)Ca(t, ω)da

by Theorem 3.2 and [7, Theorem 3.1].

Corollary 4.3.

Ca(t, ω) = H(L·(t, ω))(a).

Here H is the Hilbert transform.

Proof. By Theorem 4.2 we have

π

∫
Hf(a)La(t, ω) = π

∫ t

0

Hf(Xs)ds

= π

∫
H(Hf)(a)Ca(t, ω)da

= −π
∫
f(a)Ca(t, ω)da.

On the other hand for any f, g ∈ L2(da)∫
Hf(a)g(a)da = −

∫
f(a)Hg(a)da.

Since L·(t, ω) ∈ L2(da) by proof of [7, Theorem 4.2], [7, Corollary 4.3], Theorem
3.9 and Corollary 3.10, we have

π

∫
Hf(a)La(t, ω)da = −π

∫
f(a)H(L·(t, ω))(a)da.

Thus we have for any f ∈ S(R)∫
f(a)Ca(t, ω)da =

∫
f(a)H(L·(t, ω))da.

Therefore we get

Ca(t, ω) = H(L·(t, ω))(a).

Remark 4.4. This Corollary is proved by M. Yor ([16]).

Remark 4.5. In the case of the symmetric stable process with index
α(1 < α < 2) or Brownian motion, Theorem 4.2 holds for f ∈ L2.
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Proof. By scaling property, we have

E0

[{∫ t

0

F (Xs)ds
}2
]

= t2E0

[{∫ 1

0

F (Xut)du
}2
]

≤ t2E0

[∫ 1

0

(F (Xut))2du
]

= t2
∫
dy

∫ 1

0

duF 2(y)p(ut, y)

= t2
∫
dy

∫ 1

0

du(tu)−
1
αF 2(y)p

(
1, y(tu)−1/α

)
.

Noting |p(1, y(tu)−1/α)| ≤ C for some positive constant C, we get

E0

[{∫ t

0

F (Xs)ds
}2
]

≤ t2C

∫ 1

0

du(tu)−1/α

∫
dyF 2(y)

= t2C‖F‖2
L2

∫ 1

0

du(tu)−1/α.

For f ∈ L2, we can take fn → f in L2 with {fn} ⊂ S.
We set F = fn − f and by taking a subsequence, we get

∫ t
0
fn′(Xs)ds →∫ t

0
f(Xs)ds in L2(dP ) and almost surely.

On the other hand, since we can easily see that Ca(t, ω) and La(t, ω) belong
to L2(da), the right hand sides of (4.1) and (4.2) converge also.

Lemma 4.6. For T ∈ Hβ
p ,∫

AT (a : t, ω)φ(a)da =
∫ t

0

T ∗̌φ(Xs)ds.

Here

φ∗̌ψ(x) =
∫
φ(u− x)ψ(u)du

and

T ∗̌φ(x) = 〈Ty, φ(y − x)〉y,
where φ and ψ belong to S(R) and T , β are same in [7, Theorem 3.1] and
Theorem 3.2.



�

�

�

�

�

�

�

�

Distribution-valued additive functionals 461

Proof.∫
AεT (a : t, ω)φ(a)da =

1
2π

∫ ∫ t

0

T̂ (λ)ρ̂ε(λ)eiλXs φ̂(λ)dsdλ

=
1
2π

∫ ∫ t

0

T̂ (λ)φ̂(−λ)eiλXs ρ̂ε(λ)dsdλ

→ 1
2π

∫ t

0

∫
T̂ (λ)φ̂(−λ)eiλXsdλds, ε→ 0

=
∫ t

0

T ∗̌φ(Xs)ds.

On the other hand, tending ε to zero, we get∫
AεT (a : t, ω)φ(a)da→

∫
AT (a : t, ω)φ(a)da

by Theorem 3.2 and [7, Theorem 3.1].

Remark 4.7. This lemma holds for the d-dimensional Brownian motion
and the d-dimensional symmetric stable process with index α(1 < α < 2).

For T satisfying a certain assumption, this lemma is proved by T. Yamada
([19]) in the case of d-dimensional Brownian motion.

Theorem 4.8. For any T ∈ Hβ
p ,

AT (a : t, ω) = (T ∗ L·(t, ω))(a),

where β are same in Theorem 3.2 and [7, Theorem 3.1].

Proof.∫
AT (a− x : t, ω)ρε(x)dx =

∫ t

0

T ∗̌ρε(Xs − a)ds

=
∫
Lx(t, ω)(T ∗̌ρε)(x− a)dx

=
1
2π

∫
L̂·(t, ω)(λ)T̂ (−λ)ρ̂ε(λ)eiλadλ

=
1
2π

∫
L̂·(t, ω)(λ)T̂ (λ)ρ̂ε(−λ)e−iλadλ.

Since L·(t, ω) has compact support by [7, Lemma 2.1], we have |L̂·(t, ω)(λ)| ≤
tK, where K is constant, Then we get

L̂·(t, ω)e−iλaT̂ (λ)(1 + |λ|2)β/2 ∈ Lp

and

(1 + |λ|2)−β/2ρ̂ε(λ) ∈ Lq.
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Thus tending ε to zero, we get

AT (a : t, ω) = (T ∗ L·(t, ω))(a).

Remark 4.9. For T satisfying a certain assumption, this theorem is
proved by T. Yamada ([19]) in the case of one-dimensional Brownian motion
and in the distribution sense.
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extension de la formule d’Ito, Séminarie de Probabilités 16, 1982, pp. 238–
247.

[17] T. Yamada, On some representations concerning the stochastic integrals,
Prob. Math. Statist., 4-2 (1984), 155–166.

[18] T. Yamada, On the fractional derivative of Brownian local time, J. Math.
Kyoto Univ., 25 (1985), 49–58.

[19] T. Yamada, Representations of continuous additive functionals of zero
energy via convolution type transforms of Brownian local times and the
Radon transform, Stochastics and Stoch. Rep., 46-1 (1994), 1–15.


