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A certain class of distribution-valued
additive functionals 11
—for the case of stable process

By

Tadashi NAKAJIMA

1. Introduction

This paper is a sequel to [7].
Let B; be a d-dimensional Brownian motion. In the previous paper [7], we
gave a significance to the intuitive expression

Ar(a:t,w) = /0 T(Bs — a)ds

for the certain distribution 7" and studied joint continuity on a and t and the
energy of Ar(a:t,w).

In this paper, we consider the property of Ar(a : t,w) for one-dimensional
stable process with index « or d-dimensional symmetric stable process with
index a. Since we can prove these results in the similar way to the case of
Brownian motion, we will omit the detail of the proof. For further details, refer
to [7].

Furthermore we study some representation theorems. We get a unified
method for the proof of representation theorems of occupation time formula
including the special case of T = v.p.(1/x) by M. Yor ([16]) and T. Yamada
(19).

Our method is very simple. It is principally based on the Fourier trans-
form theory in distribution sense. The concrete estimate of the characteristic
function of stable process with index « plays an essential role in the proof of
our main result.

The present paper is organized as follows. In Section 2, we define distri-
bution valued additive functionals and prepare some notations.

In Section 3, we discuss the existence, (a, t)-joint continuity and the energy
of Ap(a: t,w) in the sense of M. Fukushima ([4]) for stable process with index
a.

In Section 4, we discuss the representation theorems.
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2. Definitions and preliminary results

Throughout this paper, we shall use the same notations as those in the
previous paper [7]. But we notice some notations.

We denote that ¢ is Holder conjugate of p.

We denote the Fourier transform of ¢(a) by ¢(\) and the Fourier inverse
transform of ¥(A\) by F~1(¢)(a):

1 4
f“*(¢xa)==E;5g]/¢bve‘”“dA,

where -y (z € R%, y € R?) denotes the inner product.
Let T € §’. We denote the Fourier transform of T' by 7.

Definition 2.1. We say that T is an element of H[j (1 <p < o0,
—00 < 3 < o0) if and only if 7' is an element of S" and the Fourier transform
of T has a version as a function 7'(\) on R? such that

TO)(1+|A\2)7 € LP.
Then we set
~ 8
Tl gze = 1T+ IXP) 2 o
We note F~1(T)(\) = (21)~4T(=\) for T € HY.

Let (X,) be the standard Brownian motion on R? or one-dimensional real
valued stable process with index o (0 < a < 2) or d-dimensional real valued
symmetric stable process with index a (0 < « < 2).

We define 7, and 6; as following:

7 X (rw) = Xi(w) + o
and
925 : Xs(ﬂtw) = Xt+s(LU).
We remember preliminary results in [7].

Lemma 2.2. LetT € D', ¢ € D and set T * ¢(z) = (Ty, d(x — y))y-
Then

<mmw@=ATwwwwu

is well-defined and we have

AT(t, w) eD.
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Lemma 2.3.
(21) <AT(t’T$w)’¢> - <AT(tvw)v¢(' +$)>a
(22) <AT(S +t, OJ), ¢> = <AT(85 W), ¢> + <AT(t7 osw)v ¢>

Lemma 2.4. Let T be an element of Hg. Then Ar(t,w) is also an
element of Hﬁ.

We remember the important lemma in [7]. In fact, using this lemma, we
will prove the boundedness of certain integrals.

Lemma 2.5. We set

dp
re (L4 [p)P(1+ [+ AP2)e

J:
Let 2p+2q >d andp > g > 0.
(1) If 2p < d and 2q < d, then

1

2.3 J=x — .
2 (1+ ARy

(2) If 2p = d, then

1+log™ |A|
2.4 J = _—
24 A+ )
where log™ |z| = max(log |z, 0).

(3) If 2p > d, then
1

2.5 =< —.
%) T+ PP

Here we denote that “f < g” means k < f/g < K for some positive constants
k and K, where f, g Z 0.

Now let p. be the molifier. We denote
Az (t,w) = (Ar(t,w), pe)
and
AS(a s t,w) = AD(E, T_qw).
We note that
(A7(t,w), @) = (Ar(t,w), pe * §).

Here we emphasize A% (a : t,w) is a usual function of a. We can take p. such
that p. — dg as € — 0 and p, uniformly converges to one in wider sense tending
€ to zero and ||fe|lo < 1.
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Thus we will study the existence and the continuity of the limit Ar(a : t, w)
of A%(a:t,w) as € to zero.

3. The case of 1-dimensional stable process with index «

3.1. Convergence and continuity theorems

Let P, be the probability measure of the one-dimensional stable process
{X,} with index (0 < a < 2) starting from x and we denote the transition
probability density by p(¢,y). We notice that the characteristic function of X,
is

B[] = exp{—sth(\) + iAz},

where () is given in the following. For some constants ¢ > 0, -1 < v <1
and vg € R, if a # 1 then

PY(A) = ¢|A|” (1 — iy(sgn \) tan ga) + iy

and if & =1 then
2
() = ¢l (1 + iv;(sgn)\) log |/\> + @0

We prepare the following lemma to discuss the existence and the continuity of
Arp(a: t,w), which is the limit of A%.(a : t,w) as € goes to zero.

Lemma 3.1. Let F = |f0t e~*PNsds|. Then we get

C

3.1 F<—oeoro,
) T (LH[AP)?

where we take n = a but if « < 1 and vy # 0 then we take n = 1.
Proof. 'We can obtain this lemma by the following evaluations of 9 ().
(1) a>1ora<1and vy =0, then
[N = A"
(2) a <1 and 7 # 0, then
[N = Al
B)a=1

[ (A)] = C[A[[log [A|
> C|A| if X is large.
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We get the following in the similar way to the case of Brownian motion

([7D)-

First, we prove the convergence theorem.

Theorem 3.2. We suppose that 1 < p < oo and q satisfy 1/p+1/q = 1.

Suppose that B > (1 — q)/2q in the case where vo # 0 and o < 1 and that
B> (1—aq)/q in the case where ag < 1 and that 3 > (1 — aq)/2q in the case
where aqg > 1.

ForT € Hﬁ,

lirr(lJ Af(a:t,w) = Ar(a: t,w) in  L*(dPy).

Outline of Proof. We set
Ty ={(A1,X2) : M| < N, |Xo| < N} for any N > 0.

Without loss of generality, we can assume that the stable process starts from
Zero.

1| = IEo[(Ae a:t,w))’

d\1 dAg )\1 pe )T(AQ)ﬁE(AQ)e_i(A1+A2)a

27r

« / ds / due—?OaHA2)s—b(02) (u—s)
0

2
2 5 2 A N
SNOISE <|§12V|pe(A)l> t //FN d\ido|T(M\)T(No)|

+ﬁ<uf)eum>2 / / dddalT ()T ()

t_
due~PPitA2)s=y(X2)u

ds

2 C
(27r) (Sup |pe (A )|> t2Il+( )2 (HPeHOO) L(TY), say.

[A[<N

For the proof of this theorem, we show that I5(T'§) = I is finite. By Holder’s
inequality we get
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aB

(32)  L< (|T]) ( Jn @ )% o o)

t t—s q %
/ ds/ due—Y O FA2)s—b(Aa)u
0 0

_ 48 _ 48
(33) < (Tl ( [ [+ s = o) % 0 )%
1
t t—s q\ a
/ dS/ due=YH1)s—(p2)u
0 0
By (3.1) we get

= T [ o [ da(a+ i = o)

X

X

a8

2 (14 |p2l?)”

a8 _an
2 2

1
n\ 4
< (1+ u1|2>—%’) ,

Then we apply (2.5) for the finiteness of this integral. We obtain sufficient
condition:

a8+ qB+mng > 1,
ng+qB>1

and

Thus if 3 satisfies

1 —
8> e for the case where ng >1

2q
and
1—
8> i for the case where nq <1,
q
then we can easily see that {A%(a : t,w)} is a Cauchy sequence in L?*(dP;)
when € goes to zero. O

If p = 2 then we can improve Theorem 3.2 as follows:

Theorem 3.3.  Suppose that B > —1/2 in the case where o # 0 and
a < 1 and that 8 > —«a/2 in the case where o > 1 and that § > 1/2 — « in the
case where a < 1.
ForT e Hg,
lim A% (a: t,w) = Ar(a: t,w) in  L*(dPy).

e—0
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Outline of Proof. We set
A
A = {()\1,>\2) : % <M +)\2|}

and

A1

Ao Z{()\l,/\g) : T > |>\1 +)\2|} .

For the proof, it is sufficient to show that the following integral I is finite.

t t—s
I :/d)\l/d)\2|T()\1)||T()\2)| ’/ ds/ due~¥P1tA2)s—v(A2)u)
0 0

Then by (3.1) we get

L<C? / / M| T O[T A1+ A+ Aof?) (1 + [Mof2)~2
Aq

+C2// dA1dAo| T TA2)[(1 + A1 + X272 (1 + [Ao>) 72
Ag

= Jp, +Jn,, say.

First, we estimate Jj,. By the definition of A;, we immediately have
In < CulITlgg) [ AP)-2an
Second, we estimate Jy,.

Jp, = C? / Aada| TN (14 M) 2 [T (1 + X)) 2
As

g _8
2 2

X (14 M) 72 (14 [A)

< Call[7]? [ a1+ |y 2,

Thus, for the finiteness of I, we have

1-29
2

3

8> and (B> ——.

\]

If p = 1 we have the following theorem.
Theorem 3.4. ForT € Hlﬁ,

liII(l) Af(a:t,w) = Ar(a: t,w) in L*(dP,),

where we take 8 > —a/2 but if « < 1 and y9 # 0 we take B > —1/2.
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Outline of Proof. To prove this result, it is sufficient to show (3.2) is
finite. By Holder’s inequality and (3.1) we have

52
2

_B _B_mn _n
I < C*(IITl )11+ A )72 (X + A2) 7272 (14 (A1 + o) 72 |oo,

If B > 0, then clearly I < co. We consider the case § < 0. We set

B n_2»g
2 2 2

L= (14 )72 (14 Do) 7272 (L4 A+ 2ef?) 7,

ar={ ey s il < B

A2 = {()\1,)\2) N ‘)\1 +>\2‘ S )\22|},

Az = {(A1, A2) M| < 2[A0} — Ar — Ao,
and
Ay = (A1 UAUA3)“.

We will consider each case. First, we consider the case such that (A1, A2) belongs
to Ay. We have

B_m

(3.4) L= (L+ M) 3 31+ o) 35,

Second, we consider the case such that (A1, A2) belongs to Az. We have
(3.5) L (14 M3

Third, we consider the case such that (A1, A2) belongs to Ay. We have
(3.6) L=+ M) 20+ A+ > 2.

Last, we consider the case such that (A;, A2) belongs to A;. We have
(3.7) L<Coo(l+ o) P2 (14 M+ X)) %,

for some positive constant C.
Therefore using from (3.4) to (3.7), for the finiteness of I we take 8 >
—n/2. O

Next we discuss the (a, t)-joint continuity of Ar(a : t,w).

Theorem 3.5.  Let T € Hf (1 < p < o0), where we take 3 as Theorem
3.2 and q satisfy 1/p+1/qg=1.

Suppose that

(1) (in the case where o > 1)

2q0 — 1
60 = min (Lqﬁ2+04q> if 1<agq.
q



Distribution-valued additive functionals 451

(2) (in the case where o < 1)

-1
6 =min (a, u) if 1> agq,
q

2q0 — 1
0 =min <1, qﬂ2+aq) if 1<aq.
q

(3) (in the case where o < 1 and vy # 0)

§ = min (1, M) )
2q

Then Ar(a w) has (a,t)-jointly continuous modification, which is locally
Holder-continuous with exponent v, where 0 < vy < 4.

Outline of Proof. Without loss of generality, we suppose that ¢ > s and
the stable process starts from zero and b = 0.
We set

Fo[(A%(a: t,w) — AS(0 : 5,w))*"]
< 22"|Eo[(A7(a s t,w) — (AT(0 : t,w))*"]]
2 By [(A5(0 : 1, w) — (A5(0 : 5,))%"]
= 2771, | + 22| I,|.

First we estimate I,. By the similar calculation of the case of Brownian motion
([7]) we obtain

1] < S (T Ul

(/dAl /dxzn T+ )% (L4 Do)~ %
d’u,g/ d’u,gn
Uy U2mn —1

X e_w(AQn)(UQn—u2n—1)_w(A27l+A2n—l)(u2n—1—u2n—2)_"'_w(>\2n+"'+)\1)u1

du1

q

1
q
% |€—M2n¢l _ 1|q|6_7;(A2n+>\2n—1)a _ 1|q . ‘e_i()\2n+'“+)‘1)a _ 1|q ) .
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By the change of variables we have
(2n)!
(2m)2n

_aB _
: </d“1"'/d/‘2n(1+,u1ﬂ2|2) 2 (14 |pon—1 — p2nl?)

(ol < T gz )" (el o)™

a8
2

(1+\M2n| )%
d’LL1 dUQ / dusp,
U2n—1
q
w e~ ¥ (pan)(uan—uan—1) == (p2) (ua—u1) = (p1)us

Q=

> |e—iuzna _ 1“1‘6_1-(#2",—1_#2%)& _ 1‘11 . ‘e—i(m—#z)a _ 1|q )

Now we notice that for any 1 >, >0
le™#e 1| < Kglal'* (1 + |p|?)te/? for some positive constant K, > 0.
Then we apply this inequality and (3.1) to I,:
ol < CallTl 15)*" (1elloo) > laf*"

x</du1.../du2n

_aB | ala _aB | ala
X (1 [ — o) ™F 5 (L a1 — pian )™

1

X (L |paf?) 727 (1 + [pron—1 [*) 721+ |pagg |?) 72 (e )

Now we apply (2.5) to the integral with respect to dug ...dusa, of the above
inequality. Then for the finiteness of I,, we have

qn—1la+0)+q(B—1)>1
qn—1,+0)> 1

Thus we get
1-— lo, 1-— 2ql,
(3.8) 5>max( matale 1-na+20 )
q 2q
(3.9) [al < Colal®™ = (Il )" 156112

where C! is a positive constant and only depends on n.
Next we estimate I; in a similar way of I,. But we notice that for any
l; > 0 and fixed t > 0, there exists a positive constant K; such that

s gl Te+1
/ e P Wugyl < K, (7I> for se€[0,t].
0 (14 [u?)2
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Then we have

on ~
1] < Cult = s (T y0)*" (1 5elloo)*"

a8

_aB _aB
) (/dm-“/dugnuwl—u2|2> Y (L4 [pan — pian|?) "%

1
r u B 7 q
X (1 + ‘,u1|2)—2(lt7?+1) (1 + |ﬂ2n71|2)_%(1 + ‘M2n|2)_%_2(l13’1) )

We apply (2.5) to the integral with respect to du . .. dpuay, of the above inequal-
ity. Then we have

Lt 1
3.10 [ > max £ L
(3.10) . 2
and
on Lt .
(3.11) 1] <Cylt = sI™" T (1T )| 1y8) 2" (11 5ell o) "

where C} is a positive constant and only depends on n and t.
Therefore by (3.8) and (3.10) we make [, and [; satisfy the following equal-
ities:

nq

- =1- 2.,
li+1 M+
g

- =1- lo.
i1 nq + qla

That is, l; = 2l,/(n — 2l,) and I; = 1,/(n — l,). Since I, is positive, 3 satisfies
the condition in Theorem 3.2 and then we get

|Eo[(AS(a : t,w) — AS(0 = 5,w)?"]|

(3.12) " " S "
< Cual[a?™ + [t = s ) (1T )2 (l5ell) "
where we denote [, by § and Cy; = max(C, C}).
Therefore we get the condition in the theorem.
Then tending € to zero, we get (a,t)-jointly continuity of Ar(a :t,w) by
Kolmogorov-Centsov theorem. O

But we cannot still get the result corresponding to Theorems 3.3 and 3.4.

By Theorem 3.5, we can take the (a,t)-jointly continuous modification of
Ar(a: t,w).

Now we discuss the existence and (a, t)-jointly continuity of Ar(a : t,w) in
the case of p = oo and p = 2.

Example 3.6. Let 7' = §;. Then T belongs to H, N H;l/%e, where
e > 0. Ar(a : t,w) is the local time. Ar(a : t,w) has (a,t)-jointly continuous
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modification which is locally Holder continuous with exponent 0 < v < (a0 —
1)/2, where a > 1 applying the fact of T = §y € HO, and exponent 0 < v <
(2a—3)/4, where a > 3/2 applying the fact of T = ¢ € H;lﬂ_e, where € > 0.

Therefore we conclude that the local time for stable process with index a >
1 exists, which agrees to the result in E. S. Boylan ([2]) and it has (a, t)-jointly
continuous modification which is locally Holder continuous with exponent (o —

1)/2 —e.
Example 3.7. Let T = v.p.(1/z). Then T also belongs to HZ N
H2_1/2_5, where € > 0. Thus Ar(a : t,w) has (a,t)-jointly continuous mod-

ification which has the same exponent in the case of T' = &y.

3.2. The energy of Ar(a:t,w)
In this section we will discuss the energy of Ar(a : t,w). First we define
the energy of additive functionals in M. Fukushima, Y. Oshima and M. Takeda

([4])-

Definition 3.8.  For any additive functional Ar(a : t,w), we set
1
Ar) =lim —E;,[(Ar(a : t,w))?
e(Ar) = lim = En[(Ar(a: t,w))’]

whenever the limit exits. We call e(Ar) the energy of Ap(a : t,w).

For the stable processes, we take m = dx.
First, we show that the convergence of A%.(a : t,w) in L*(dP, x dx).

Theorem 3.9.  We suppose that 2 < p < 0o and q satisfy 1/p+1/q = 1.
ForT € Hf,

liII(l) AZ(a:t,w) = Ar(a: t,w) in L*(dP, x dz),

where we take 8 > (1 — aq)/2q but if o # 0 then for a < 1 we take § >
(1-4q)/2q.

Proof. 'We proceed on the similar way of Brownian motion ([7]).

I = Eg[(A7(a: t,w))?]
:/deO [Q/Otds/stduT*pﬁ(Xs—a—x)T*pe(Xu_a_x)}

(3.13)  <2(2m)" <t sup [pe(N))? dAT(N)[?
AN AN

~ 1
a2 / TP —
IA|>N (14 [A[2)2

= 2(2m) "'t <t|sup peMP 11 + Cllpel 5 I (1A > N)) ,  say.
<N
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By Holder’s inequality we get

ns<|7uﬂg>2</ﬂ<ﬁvdx<1+|xﬁ>qﬁ)

Therefore I; is finite for any .
Now we estimate I5(|]A\| > N). First we consider I5(|]A\|] > 0) = I,. By
Hoélder’s inequality we get

1
q

< (71" ([ ara ey )’

For the finiteness of this integral we get ng + 2¢5 > 1.

Thus if 3 satisfies 8 > (1 — ng)/2q, then we can easily see that tending e
to zero, {AS%(a : t,w)} is Cauchy’s sequence in L*(dP, x dx) and AS(a : t,w)
converges Ar(a:t,w) in L?(dP, x dx). O

If p = 2, then we can easily obtain
I < 1pelZ (TN gz PN+ 1AP) 72 .
Thus we have
Corollary 3.10. ForT € Hg,
liil(l) AZ(a: t,w) = Ar(a: t,w) in L*(dP, x dz),

where we take f > —a/2 but if v # 0 then for a < 1 we take § > —1/2.

These results guarantee the existence Ar(a : t,w) for T € Hg wider than
Theorems 3.2 and 3.3. Then we denote by A% (a : t,w) in this sense.
Now we show that A% (a : t,w) has O-energy.

Theorem 3.11. For T € Hf, e(A%) = 0, where we take 3 satisfying

the condition in Theorem 3.9 or Corollary 3.10.
Proof. By (3.13) we know
| Baz[Af(a: t,w)?]]

< 2(2m) 7't <t sup |pe(M)[? AT\
AN <N

X ()2
+ C|[pe c2x:/ AA—57 | -
17l asN o (T [AP)?

|2, <1, letting € to zero, we get

Since || p.

| Eaz[AT(a: t,w)?]]

o A2 TN
< 2(2m) t(t/MSNdMT()\) +C |A>Nd)\(1+|/\2)%>.
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Thus we get
e(A%) = 0.
O

3.3. The case of d-dimensional symmetric stable process with index
@

We can apply the above method the d-dimensional symmetric stable pro-
cess.

Let {X;} be the d-dimensional symmetric stable process with index «a.
That is,

B [e™ %] = exp{—c|\|%s + i\ -z},

where c is positive constant and x - y(z € R, y € R) denotes the inner product.
Noting

e ¢
3.14 e Tsge < 2
(3:14) / S EDBE

we get the following Theorems.

Theorem 3.12. We suppose that 1 < p < co.
Suppose that

(Hp>1
d—
6 > a4 if agq<d,
d—
6 > aq if agq>d.
2q
2)p=1
B> —a/2.
FOTTEHI?,

lirr(lJ AZ(a:t,w) = Ar(a: t,w) in  L*(dP,).
If p = 2 then we can improve above Theorem as follows:

Theorem 3.13.  Suppose that § > —«a/2 in the case where d < a and
that 8 > (d — 2a)/2 in the case where d > «.
ForT € HQ’B,

hII(l) Af(a: t,w) = Ar(a:t,w) in L*(dP,).

The results of the (a,t)-joint continuity of Ar(a :t,w) are the following:
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Theorem 3.14. LetT € Hf (1 < p < o0), where we take 3 as Theorem
3.12 and q satisfy 1/p+1/q=1.

Suppose that 6 = min(a/2, (g8 —d+ aq)/2q) in the case where d > aq and
that 6 = min(«/2, (298 — d + aq)/2q) in the case where d < aq.

Then Ar(a: t,w) has (a,t)-jointly continuous modification, which is locally
Hoélder-continuous with exponent ~y, where 0 < vy < 4.

Noting (3.14), we get the following Theorem in the similar way to Theorems
3.9, 3.11 and Corollary 3.10.

Theorem 3.15.  We suppose that 2 < p < oo and q satisfy 1/p+1/q =
Suppose that 3 > (d — aq)/2q in the case where p > 2 and that § > —a/2
in the case where p = 2.
ForT € Hf,
hH(lJ As(a:t,w) = A% (a: t,w) in L*(dP, x dx)
€e—
and e(A%) = 0.
4. Representation theorems
We describe the occupation time formula and a representation theorem by
T. Yamada ([17]) with respect to one-dimensional Brownian motion and one-
dimensional stable process with index «, but with a little modification in our
views.
Throughout this section, we suppose the following assumption.
Assumption 4.1.
(1)d=1.
(2) (X¢) stands for Brownian motion or stable process with index a(a > 1).

Let Lq(t,w) = As,(a;t,w) and Cy(t,w) = A, , 1 (a;t,w).

Theorem 4.2. Let f € S. Then for a.e.-w,

t

(4.1) / f(Xs)ds :/f(a)La(t,w)da,
0
¢ 1

(4.2) / f(Xs)ds :—/Hf(a)Ca(t,w)da.
0 Vs

Here H is the Hilbert transform, that is,

Ho(t) = (iv.p.i ) ¢) ®).
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Proof. First we show the equation (4.1). We denote Af (a

L¢ (t,w). We notice
LE(t,w)(\) = A5, (- tw)

t
_ / MY 5 (—\)ds.
0

By the Parseval’s equality, letting € — 0,

/f VLG (t,w)d /d)\f /dsei Xspe(N)
— %/d)\/o dsf(N)e e
:/Otf(X )ds

On the other hand, tending € to zero, we get

/f twda%/f

by Theorem 3.2 and [7, Theorem 3.1].

Next, we show (4.2). We denote Af}.p'l(a s t,w) by C&(t,w). We notice

Hf(X) = isgn(\)f(\)
and

Ce(t,w) = 14/2;(' S tw)
t
:/ dse™ X (i sgn(X\)) pe(—N).
0

Since Hf € S, letting € to zero, we get

/Hf(a)Oa(t w)da
_ % / DHFNCE (L, w)
:%/M@MWMK@WWPMWWWW
- 217T7r/d)\/0tdsf()\)e
o /O (X0
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On the other hand, tending € to zero uniformly in wider sense, we get
/Hf(a)(];(t,w)da R /Hf(a)(]a(t,w)da
by Theorem 3.2 and [7, Theorem 3.1]. O
Corollary 4.3.
Ca(t,w) = H(L.(t,w))(a).

Here H is the Hilbert transform.

Proof. By Theorem 4.2 we have

w [ Hf@Ltw) =7 [ 1 (X,)ds
—n [ HHP@Cu(t.)do
- / F(@)Ca(t, w)da.
On the other hand for any f, g € L?(da)
[ Hi@g(ayda =~ [ f@)Hg(a)da

Since L.(t,w) € L?(da) by proof of [7, Theorem 4.2], [7, Corollary 4.3], Theorem
3.9 and Corollary 3.10, we have

W/Hf(a)La(t,w)da = fﬂ/f(a)H(L.(t,w))(a)da.
Thus we have for any f € S(R)
/f(a)Ca(t,w)da = /f(a)H(L.(Lw))da.

Therefore we get

Colt,w) = H(L.(t,w))(a).

Remark 4.4.  This Corollary is proved by M. Yor ([16]).

Remark 4.5. In the case of the symmetric stable process with index
a(1l < a < 2) or Brownian motion, Theorem 4.2 holds for f € L?.
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Proof. By scaling property, we have

fonnf]
{/01 F(Xut)du} ]

< t?Ey UOI(F(XM))%U}

=t / dy /0 dur *(y)p(ut, y)
= 7f2/cly/01 du(tu)_éFQ(y)p (1,y(tu)_1/°‘) .

Noting [p(1, y(tu)~ )| < C for some positive constant C, we get

{/OtF(XS)ds}T
< t20/01 du(tu)_l/a/dsz(y)

1
:t20||F||2Lz/ du(tu) =,
0

Ey

=t?E,

Ey

For f € L? we can take f, — f in L? with {f,} C S.
We set F' = f, — f and by taking a subsequence, we get fot for(Xs)ds —

fo ds in L?(dP) and almost surely.
On the other hand, since we can easily see that C,, (t,w) and L, (¢, w) belong
to L?(da), the right hand sides of (4.1) and (4.2) converge also. O

Lemma 4.6. ForT ¢ Hg,

/AT a:t,w) )da—/ Tip(X,)ds
0
Here

o) = [ olu— )i
and

Trg(z) = (Ty, p(y — )y,

where ¢ and ¢ belong to S(R) and T, B are same in [7, Theorem 3.1] and
Theorem 3.2.
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Proof.

—//ﬂ%@ )¢, () dsd
L[ fwicon o
- /0 Ti6(X,)ds

On the other hand, tending € to zero, we get

/AGT(a (tw)p(a)da — /AT(a (t,w)o(a)da
by Theorem 3.2 and [7, Theorem 3.1]. O

Remark 4.7.  This lemma holds for the d-dimensional Brownian motion
and the d-dimensional symmetric stable process with index a(l < a < 2).

For T satisfying a certain assumption, this lemma is proved by T. Yamada
([19]) in the case of d-dimensional Brownian motion.

Theorem 4.8. ForanyT € Hf,
Ar(a:t,w) = (T * L.(t,w))(a),
where 3 are same in Theorem 3.2 and [7, Theorem 3.1].

Proof.

/AT(a C ot w)p(@)da /Ot Tipe(X. — a)ds
— [ Latt.)Tip0 @ - a)da

— [ L.(t,w)(N)T (=) pe(N)eirad

_ % £ (1 ) VP pe(—A)e— P,

Since L.(t,w) has compact support by [7, Lemma 2.1], we have |L.(t,w)(\)| <
tK, where K is constant, Then we get

L.(t,w)e” 2T\ (1 + |N*)?2 e LP
and

(14 AH)7P2p.(N) € L.
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Thus tending € to zero, we get

Ar(a:t,w) = (T x L.(t,w))(a).

O

Remark 4.9. For T satisfying a certain assumption, this theorem is

proved by T. Yamada ([19]) in the case of one-dimensional Brownian motion
and in the distribution sense.
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