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J-adic filtration of orders with application to
orders of finite representation type

By

Osamu Iyama
∗

For a ring Λ with the Jacobson radical JΛ, we denote by Gr Λ the associated
completely graded ring with respect to the JΛ-adic filtration, namely Gr Λ :=∏

i≥0 J i
Λ/J i+1

Λ . In Section 1, for an order Λ over a complete discrete valuation
ring R, we will study the associated ring Gr Λ, which is not even noetherian in
general (Remark 1.3 (2)). Our main theorem (Theorem 1.2) asserts that Gr Λ
is again an order over some complete discrete valuation ring if and only if Λ
has the filtering overorder Γ (Section 1.1), which is a hereditary overorder of Λ
such that Jn

Λ = Λ ∩ Jn
Γ for any n ≥ 0.

Now, we explain background and application in Section 2. For an additive
category C with the Jacobson radical JC, we denote by Gr C the associated
completely graded category

∏
i≥0 J i

C/J i+1
C . In study of representation theory

of an order ∆ over a complete regular local ring R of dimension d ≤ 2, the
associated category Gr(lat∆) of lat∆ plays an important role. Under the
assumption that ∆ is an isolated singularity, we can define a combinatorial
invariant A(lat∆) called the Auslander-Reiten quiver and its “algebraic real-
ization” Â(lat∆) called the Auslander-Reiten species. It is important that we
can recover Gr(lat∆) from Â(lat∆), namely Gr(lat∆) is equivalent to the mesh
category M̂(Â(lat∆)) of Â(lat∆) ([I2], [IT], [BG]).

When ∆ is of finite representation type, it is convenient to study the en-
domorphism ring Λ := End∆(M) of an additive generator M of lat ∆, which is
called the Auslander order of ∆. The category pr Λ of finitely generated projec-
tive Λ-modules is equivalent to lat∆, and pr(Gr Λ) is equivalent to Gr(lat∆).
For d ≤ 2, it is surprising that we can characterize Auslander orders by some
homological conditions ([ARS], [ARo], [RV] and Definition 2.1). It is also re-
markable that, if R is an algebraically closed field (d = 0) with chr R �= 2,
then Gr Λ is always isomorphic to Λ, so lat∆ is completely recoverd by the
combinatorial data A(lat∆) ([BGRS]).

In Section 2, we will study the associated ring Gr Λ of an Auslander order
Λ over a complete discrete valuation ring R (d = 1). In many important
cases like R = Zp, the ring Gr Λ is not isomorphic to Λ. But, we know by
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430 Osamu Iyama

a result of [I3] that Gr Λ is again an Auslander order over the formal power
series ring (R/JR)[[t]] (Proposition 2.2.1), and consequently, Λ has the filtering
overorder Γ (Section 2.2). This leads us to concept of the filtering functor
F∆ : lat∆ → lat Γ of an order ∆ of finite representation type (Definition 2.3),
where Γ is the filtering overorder of the Auslander order Λ of ∆. We will study
some properties of F∆ in Section 2. We also study the relationship with additive
functions (Section 2.5) and the Grothendieck group of an order (Section 2.6).

0.1 Notations. In the rest of this paper, assume that R is a complete
discrete valuation ring unless explicitly stated otherwise.

(1) For a commutative ring C, we denote by C̃ the total quotient ring
of C. For a ring Λ, we denote by Cen(Λ) the center of Λ, and put Λ̃ :=

C̃en(Λ)⊗Cen(Λ)Λ. We denote by mod Λ the category of finitely generated (left)
Λ-modules, by pr Λ the category of finitely generated projective Λ-modules,
and by lenΛ(X) the length of a Λ-module X. We have a functor (̃ ) := Λ̃⊗Λ :
modΛ → modΛ̃.

(2) Let Λ be an R-order, namely it is an R-algebra that is finitely generated
free as an R-module. A (left) Λ-module L is called a Λ-lattice if it is finitely
generated free as an R-module. We denote by latΛ the category of Λ-lattices.
Notice that Λ̃ = R̃ ⊗R Λ and L̃ = R̃ ⊗R L hold for any L ∈ modΛ by the
following easy fact 0.1.1, which will be used in the proof of 1.2.

0.1.1. Let R be a commutative noetherian domain, Λ an R-algebra, and
C := Cen(Λ). Assume that Λ is a finitely generated torsionfree R-module.
Then R̃ ⊗R Λ = C̃ ⊗C Λ holds.

Proof. Since R̃ ⊗R Λ = (R̃ ⊗R C) ⊗C Λ, we may assume Λ = C. Since
C is a torsionfree R-module, we have an injective map R̃ ⊗R C → C̃. We only
have to show that x−1 ∈ R̃ ⊗R C holds for any non-zerodivisor x in C. Since
C is a finitely generated R-module, there exist n > 0 and ri ∈ R such that
xn + r1x

n−1 + · · ·+ rn−1x + rn = 0 and rn �= 0. Then x−1 = −r−1
n y ∈ R̃⊗R C

holds for y := xn−1 + r1x
n−2 + · · · + rn−1.

1. J-adic filtration of orders

1.1. Let R be a complete discrete valuation ring with a residue field k and
Λ an R-order.

(1) We call an R-order Γ a filtering overorder of Λ if Γ is a hereditary
overorder of Λ such that Jn

Λ = Λ ∩ Jn
Γ holds for any n ≥ 0. For example, any

Bäckström order ([RR]) Λ has a filtering overorder Γ = Ol(JΛ).
(2) Assume that Λ has a filtering overorder Γ. Then Γ is the unique filtering

overorder of Λ. In this case, there exists a subring S of Cen(GrΛ) such that S
is isomorphic to the formal power series ring k[[t]] and Gr Λ is an S-order in a
semisimple S̃-algebra G̃r Λ.

(3) Jn
GrΛ =

∏
i≥n J i

Λ/J i+1
Λ holds for any n ≥ 0.
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1.1.1. Let R be a complete discrete valuation ring with a residue field k
and a prime element πR.

(1) Let Ω be a local maximal R-order with a residue k-algebra D := Ω/JΩ

and a prime element πΩ. Define σ ∈ Autk(D) by aσ := πΩaπ−1
Ω for a ∈ Ω. Then

Gr Ω is isomorphic to the skew formal power series ring D[[x; σ]] (xd = dσx for
d ∈ D). Take l > 0 such that πR ∈ J l

Ω − J l+1
Ω and put t := πR ∈ J l

Ω/J l+1
Ω ⊂

Gr Ω. Then Gr Ω is a local maximal k[[t]]-order.
(2) Let Λ be a ring indecomposable hereditary R-order. Then Λ is Morita

equivalent to Tn(Ω) for some local maximal R-order Ω ([CR]), where Tn(Ω)

denotes the subring




Ω Ω ··· Ω Ω
JΩ Ω ··· Ω Ω

...
...

. . .
...

...
JΩ JΩ ··· Ω Ω
JΩ JΩ ··· JΩ Ω


 of Mn(Ω). We can easily check that Gr Λ

is Morita equivalent to Tn(GrΩ). Thus Gr Λ is a hereditary k[[t]]-order by (1).

Proof of 1.1. (2) Put Ol(L) := {x ∈ Γ̃ | xL ⊆ L} for L ∈ lat Γ. We can
take sufficiently large n such that Jn

Γ ⊆ Λ. Then Γ = Ol(Jn
Γ ) = Ol(Jn

Λ) holds
since Γ is hereditary ([CR]). Thus the former assertion follows. Since we have
a natural inclusion J i

Λ/J i+1
Λ → J i

Γ/J i+1
Γ for any i ≥ 0, Gr Λ is a subring of Gr Γ

containing
∏

i≥n J i
Γ/J i+1

Γ . Thus the latter assertion follows from 1.1.1 (2).
(3) Put In :=

∏
i≥n J i

Λ/J i+1
Λ . Then I1 = JGrΛ holds since I1 is quasi-

regular ([AF] Section 15) and (GrΛ)/I1 = Λ/JΛ is semisimple. Since In
1 ⊆ In

holds, we only have to show InI1 ⊇ In+1. Take a finite subset {gj}j of JΛ

such that JΛ =
∑

j Λgj . Then J i
Λ =

∑
j J i−1

Λ gj holds hor any i > 0. For
any (xi)i≥n+1 ∈ In+1, take yi−1,j ∈ J i−1

Λ such that xi =
∑

j yi−1,jgj . Put
yj := (yi,j)i≥n ∈ In and regard gj as an element (0, gj , 0, 0, . . . ) of I1. Then
(xi)i≥n+1 =

∑
j yjgj ∈ InI1 holds.

Theorem 1.2. Let R be a complete discrete valuation ring and Λ an
R-order in a semisimple R̃-algebra Λ̃. Then the following conditions are equiv-
alent.

(1) There exists a subring S of Cen(Gr Λ) such that S is a complete discrete
valuation ring and Gr Λ is an S-order in a semisimple S̃-algebra G̃r Λ.

(2) Λ has the filtering overorder Γ (cf. 1.1).

1.2.1. Let C =
∏

i≥0 C(i) be a commutative completely graded ring with-
out nilpotent elements, e an idempotent of C̃ and n ≥ 0. If eC(n) ⊆ C holds,
then eC(n) ⊆ C(n) holds.

Proof. For any x ∈ C, we put x =
∑

i≥m(x) xi (xi ∈ C(i) and xm(x) �= 0),
and put m(0) := ∞. Then m(xy) ≥ m(x) + m(y) and m(xl) = lm(x) hold for
any x, y ∈ C and l > 0 since C has no nilpotent element.

(i) Assume that x ∈ C and an idempotent f ∈ C̃ satisfy fx ∈ C. We
will show that m(fx) ≥ m(x) holds, and the equality holds if fx �= 0 and x is
homogeneous.

The former assertion is immediate from 2m(fx) = m((fx)2) = m((fx)x)
≥ m(fx) + m(x). We will show the latter assertion. Since x is homogeneous,
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(fx2)i+m(x) = (fx)ix and (fx3)i+2m(x) = (fx)ix
2 hold for any i ≥ 0. Since

(fx)ix �= 0 is equivalent to (fx)ix
2 �= 0, we obtain 2m(fx)−m(x) = m(fx2)−

m(x) = m(fx3) − 2m(x) = 3m(fx) − 2m(x). Since m(fx) < ∞ holds, we
obtain m(fx) = m(x).

(ii) For any x ∈ C(n), we will show ex ∈ C(n). We may assume ex �= 0.
Then m(ex) = n holds by (i). Put y := ex − (ex)n and ė := 1 − e. If
ė(ex)n �= 0, then n = m((ex)n) = m(ė(ex)n) = m(ėy) ≥ m(y) > n holds by
ėy = −ė(ex)n ∈ C and (i), a contradiction. Hence we obtain ė(ex)n = 0 and
e(ex)n = (ex)n. If e(x − (ex)n) = ex − (ex)n �= 0, then n = m(x − (ex)n) =
m(ex − (ex)n) > n holds by (i), a contradiction. Thus ex = (ex)n holds.

Proof of Theorem 1.2. (2) implies (1) by 1.1 (2). We will show that (1)
implies (2). For simplicity, put Λi := J i

Λ and Λ(i) := J i
Λ/J i+1

Λ for any i ≥ 0.
(I) We will show that there exists l > 0 and a ∈ Λ(l) ∩ Cen(Gr Λ) such

that a is an invertible element in G̃r Λ.
Put C := Cen(Gr Λ) and C(i) := C ∩ Λ(i). Then C =

∏
i≥0 C(i) holds.

Since G̃r Λ is semisimple, C does not have nilpotent elements. Let E be a
complete set of primitive idempotents of C̃. We only have to show that there
exists a homogeneous element a ∈ C such that ea �= 0 for any e ∈ E.

Since
∏

i≥n Λ(i) = Jn
GrΛ holds by 1.1 (3), we can take sufficiently large

n ≥ 0 such that e
∏

i≥n Λ(i) ⊆ Gr Λ holds for any e ∈ E. For any i ≥ n and
e ∈ E, since eC(i) ⊆ C holds, we obtain eC(i) ⊆ C(i) by 1.2.1. For any e ∈ E,
we can take a non-zero element ae ∈ eC(le) ⊆ C(le) for some le ≥ n. Then
a :=

∑
e∈E a

l/le
e ∈ C(l) (l :=

∏
e∈E le) satisfies the desired condition.

(II) Fix a lift a ∈ Λl of a ∈ Λ(l) in (I). We will show that a is an invertible
element of Λ̃.

Since dim eR Λ̃ < ∞, we only have to show that a is a non-zerodivisor in Λ̃,
or equivalently, a is a non-zerodivisor in Λ. Assume that x ∈ Λi−Λi+1 satisfies
ax = 0. Then x ∈ Λ(i) satisfies ax = 0, a contradiction to (I).

(III) We will show that there exists N ≥ 0 such that aΛi = Λia = Λi+l for
any i > N .

By (I), (a·) and (·a) : Λ(i) → Λ(i+l) are injective for any i ≥ 0. Since
dimR/JR

Λ(i) ≤ rankR Λi = dim eR Λ̃ holds for any i ≥ 0, there exists N ≥ 0
such that (a·) and (·a) : Λ(i) → Λ(i+l) are bijective for any i > N . Hence
aΛi + Λi+l+1 = Λia + Λi+l+1 = Λi+l holds for any i > N . By Nakayama’s
Lemma, we obtain the assertion.

(IV) Put Γi := {x ∈ Λ̃ | anx ∈ Λi+nl for sufficiently large n} for i ∈ Z. We
will show that the following (i)–(v) hold.

(i) If i, n ∈ Z satisfies i + nl > N , then Γi = a−nΛi+nl = Λi+nla
−n

holds.
(ii) ΓiΓj = Γi+j holds for any i, j ∈ Z.
(iii) Γi+1 ∩ Λi = Λi+1 and Γi ∩ Λ = Λi hold for any i ≥ 0.
(iv) Γi = Λi holds for any i > N .
(v) (a·) and (·a) : Γi → Γi+l are bijective for any i ∈ Z.

(i) is immediate since a−nΛi+nl = a−n+1Λi+(n+1)l = · · · holds by (III).
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(ii) Taking n such that i + nl > N and j + nl > N , we obtain ΓiΓj =
a−nΛi+nla

−nΛj+nl = a−2nΛi+nlΛj+nl = a−2nΛi+j+2nl = Γi+j by (III) and (i).
(iii) Taking n such that i + nl > N , we obtain Γi+1 ∩ Λi = a−nΛi+nl+1 ∩ Λi =
Λi+1 since (an·) : Λ(i) → Λ(i+nl) is injective by (I). Inductively, we obtain
Γi ∩ Λ = Γi ∩ (Γi−1 ∩ Λ) = Γi ∩ Λi−1 = Λi. (iv) Put n = 0 in (i). (v) They
are injective by (II) and surjective by (i).

(V) Put Γ(i) := Γi/Γi+1 and G :=
∏

i∈Z
Γ(i). Then G is a completely

graded ring by (ii), and Gr Λ is a subring of G since we have a natural injection
Λ(i) → Γ(i) (i ≥ 0) by (iii).

(vi) Γ(i)Γ(j) = Γ(i+j) (i, j ∈ Z) holds by (ii), Γ(i) = Λ(i) (i > N) holds
by (iv), and (a·) and (·a) : Γ(i) → Γ(i+l) (i ∈ Z) are bijective by (v).

(vii) We will show that G̃r Λ is isomorphic to G.
Regard k := R/JR as a subring of Λ(0) ⊂ Gr Λ and put T := k[[a]] ⊂

Gr Λ. Then T is a complete discrete valuation ring, which is contained in
Cen(Gr Λ). Moreover, Gr Λ is a finitely generated T -module since (III) shows
that Gr Λ is generated by a finite dimensional k-space

∏
0≤i≤N+l Λ(i). Since

Gr Λ is T -torsionfree by (I), G̃r Λ = T̃ ⊗T Gr Λ holds by 0.1.1. We will show
T̃ ⊗T Gr Λ = G. Since a is invertible in G by (vi), any non-zero element of T

is invertible in G. Hence we have an injection T̃ ⊗T Gr Λ → G. It is surjective
since Γ(i) = a−nΓ(i+nl) = a−nΛ(i+nl) holds for sufficiently large n by (vi).

(VI) We will show that Γ(0) is a semisimple k-algebra.
Assume J := JΓ(0) �= 0. Since G = G̃r Λ is semisimple, we obtain G =

GJG. Comparing degree 0 part, we obtain Γ(0) =
∑

i∈Z
Γ(i)JΓ(−i). By (vi),

we obtain Γ(0) =
∑

0≤i<l Γ(i)JΓ(−i). Then Nakayama’s Lemma shows Γ(0) =∑
1≤i<l Γ(i)JΓ(−i). Hence Γ(0) = Γ(−1)Γ(0)Γ(1) =

∑
1≤i<l Γ(−1)Γ(i)JΓ(−i)Γ(1)

=
∑

0≤i<l−1 Γ(i)JΓ(−i) holds by (vi). Repeating similar argument, we obtain
J = Γ(0), a contradiction.

(VII) We will show the theorem. By (i), Γ := Γ0 is an R-order. By (VI), JΓ ⊆
Γ1 holds. Since Γ1 is a topologically nilpotent ideal of Γ by (ii)(iv), we obtain
JΓ = Γ1. Since Γl

1 = Γl = Γa holds by (ii)(v), we obtain Ol(JΓ) ⊆ Ol(Γl
1) = Γ.

Hence Γ is hereditary by [CR]. Morever, J i
Λ = Λi = Γi ∩ Λ = J i

Γ ∩ Λ holds by
(iii).

Remark 1.3. Let Λ be an R-order.
(1) Although R′ :=

∏
i≥0(R ∩ J i

Γ/R ∩ J i+1
Γ ) is a subring of Cen(Gr Λ),

an R′-module Gr Λ is not necessarily finitely generated even if Λ has the fil-
tering overorder. For example, put R := k[[t]] ⊂ Λ := k[[t]] × k[[t]], f(t) �→
(f(t), f(t2)). Then R′ = k[[t]] ⊂ Gr Λ = k[[t]] × k[[t]], f(t) �→ (f(t), f(0)).

(2) In general, Gr Λ is neither noetherian nor a finitely generated Cen(GrΛ)-
module. For example, put R := k[[t2]] ⊂ Ω := k[[t]], ∆ := k + t2Ω ⊂ Ω and

Λ :=
(

Ω Ω
J3
Ω ∆

)
. Then Jn

Λ =
(

Jn
Ω Jn−1

Ω

Jn+2
Ω Jn+1

Ω

)
holds for any n > 0. Put K := Ω̃ and

I := ( Kε Kε
0 0 ) ⊂ A :=

(
K[ε] K[ε]
Kε K[ε]

)
⊂ M2(K[ε]) (ε2 = 0). It is easily checked that

Gr Λ is isomorphic to a subring
(

Ω Ω
JΩε k+Ωε

)
of A/I, and Cen(GrΛ) = k+( 0 0

0 Ωε ).
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2. Filtering functors of orders of finite representation type

For an R-order ∆, we denote by ind ∆ the set of isomorphism classes of
indecomposable ∆-lattices. We call ∆ of finite representation type if ind ∆ is a
finite set. Let F(∆) (resp. Fn(∆), Fp(∆)) be the free aberian group generated
by the base set ind ∆ (resp. ind ∆ − pr ∆, ind ∆ ∩ pr ∆).

Assume that R̃-algebra ∆̃ is semisimple. Then lat∆ has almost split se-
quences, and we denote by 0 → τ+L → θ+L → L → 0 (resp. 0 → L →
θ−L → τ−L → 0) the complex of the sink map (resp. source map) of L
([ARS]). Define maps φ+, φ− ∈ EndZ(F(∆)) by φ+X := X − θ+X + τ+X and
φ−X := X − θ−X + τ−X.

Definition 2.1. Let R be a complete discrete valuation ring. An R-order
Λ is called an Auslander order if gl. dim Λ ≤ 2 and a minimal relative-injective

resolution 0 → Λ
f0

→ I0 f1

→ I1 → 0 of Λ satisfies I0 ∈ pr Λ.
A main result of [ARo] shows that there exists a bijection between Morita

equivalence classes of R-orders of finite representation type and Morita equiv-
alence classes of Auslander R-orders in semisimple algebras. It is given by
∆ �→ End∆(M), where M is an additive generator of an R-order ∆ of finite
representation type. In this case, Λ := End∆(M) is called the Auslander order
of ∆, and we have a natural equivalence G∆ := Hom∆(M, ) : lat∆ → pr Λ.

2.2. The following theorem follows immediately from 1.2 and 2.2.1.

Theorem. Let R be a complete discrete valuation ring and Λ an Auslander
R-order in a semisimple R̃-algebra Λ̃. Then Λ has the filtering overorder (1.1).

Proposition 2.2.1. ([I3, 3.3]) Let R be a complete discrete valuation ring
with a residue field k, k[[t]] the formal power series ring and Λ an Auslander
R-order in a semisimple R̃-algebra Λ̃. Then Gr Λ is an Auslander k[[t]]-order
in a semisimple k((t))-algebra G̃r Λ.

Definition 2.3. (1) Let ∆ be an R-order of finite representation type
with its Auslander order Λ and Γ the filtering overorder of Λ (1.1). Then the
filtering functor F∆ : lat ∆ → lat Γ of ∆ is defined as a composition of the
natural equivalence lat ∆ G∆→ pr Λ and the functor prΛ → lat Γ, P �→ ΓP . We
denote by F∆ ∈ HomZ(F(∆), F(Γ)) the homomorphism induced by F∆.

(2) Let Z〈x, y〉 be a non-commutative polynomial ring. Put x0 := 1,
x1 := x and xn := xxn−1 − yxn−2 for n ≥ 2, or equivalently,

(
0 −y
1 x

)n =(−yxn−2 −yxn−1
xn−1 xn

)
. Define a ring morphism γ : Z〈x, y〉 → EndZ(F(∆)) by

γ(x) := θ+ and γ(y) := τ+. Put θ+
n := γ(xn).

2.3.1. (1) We have the following exact sequence for any L ∈ lat∆, n > 0
and i ≥ 0, which gives a minimal projective resolution of J n

lat∆( , L) for i = 0.

0 → J i−1
lat∆( , τ+θ+

n−1L) → J i
lat∆( , θ+

n L) → J n+i
lat∆( , L) → 0
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(2) Let A be an abelian group, f ∈ HomZ(F(∆), A) and a ∈ EndZ(A). If
f −afθ++a2fτ+ = 0, then f−anfθ+

n +an+1fτ+θ+
n−1 = 0 holds for any n > 0.

Proof. (1) By [I2, 4.2 and 7.1.]
(2) Immediate from f−anfθ+

n +an+1fτ+θ+
n−1 = f−an(afθ+−a2fτ+)θ+

n +
an+1fτ+θ+

n−1 = f − an+1f(θ+θ+
n − τ+θ+

n−1) + an+2fτ+θ+
n = f − an+1fθ+

n+1 +
an+2fτ+θ+

n .

Theorem 2.4. Let ∆ be an R-order of finite representation type with
its Auslander order Λ and filtering functor F∆ : lat∆ → lat Γ. We denote by
l∆ ≥ 0 the minimal integer such that J l∆

Γ ⊆ Λ. Take any L, L′ ∈ lat∆.
(1) By F∆, Hom∆(L, L′) is a full sub R-lattice of HomΓ(F∆(L), F∆(L′)).

Thus F∆ induces an equivalence mod∆̃ → modΓ̃.
(2) J i

lat∆(L, L′) = Hom∆(L, L′) ∩ HomΓ(F∆(L), J i
ΓF∆(L′)) holds for any

i ≥ 0, and J i
lat∆(L, L′) = HomΓ(F∆(L), J i

ΓF∆(L′)) holds for any i ≥ l∆,
(3) Let {Lj}1≤j≤c be a finite subset of ind ∆ such that {L̃j}1≤j≤c gives the

set of isomorphism classes of simple ∆̃-modules. For any j, denote by pj > 0
the minimal integer such that J

pj

Γ F∆(Lj) is isomorphic to F∆(Lj). Then Γ is
Morita equivalent to

∏
1≤j≤c Tpj

(Ωj) (1.1.1 (2)) for some local maximal order
Ωj, and ind Γ = {J i

ΓF∆(Lj) | 1 ≤ j ≤ c, 0 ≤ i < pj} holds.
(4)(Periodicity) Let p∆ be the least common multiple of pj (1 ≤ j ≤ c).

Then θ+
i+p∆

= θ+
i holds for any i ≥ l∆.

(5) 0 → J i
lat∆( , τ+L) → J i+1

lat∆( , θ+L) → J i+2
lat∆( , L) → 0 is a split exact

sequence for any i ≥ l∆.
(6) F∆(L) ⊕ J−n−1

Γ F∆(τ+θ+
n−1L) is isomorphic to J−n

Γ F∆(θ+
n L) for any

n > 0.
(7) Take Xi ∈ F(∆). Then

∑
0≤i<p∆

J−i
Γ F∆(Xi) = 0 holds if and only if∑

0≤i<p∆
θ+

n−iXi = 0 holds for any n ≥ l∆ + p∆ − 1.

Proof. (1) Since Hom∆(L, L′) = HomΛ(G∆(L), G∆(L′)) is a full sub R-
lattice of HomΛ(ΓG∆(L), ΓG∆(L′)) = HomΓ(F∆(L), F∆(L′)), the first asser-
tion follows. Since G∆ induces an equivalence mod∆̃ → pr Λ̃ = modΛ̃, the
second assertion follows.

(2) Since Γ is the filtering overorder of Λ, we obtain J i
pr Λ = pr Λ∩J i

pr Γ =
pr Λ ∩ J i

lat Γ for any i ≥ 0. Since the equivalence G∆ : lat∆ → pr Λ induces an
isomorphism J i

lat∆ → J i
prΛ, we obtain J i

lat∆ = lat∆ ∩ J i
lat Γ.

(3) {F̃∆(Lj)}1≤j≤c gives the set of isomorphism classes of simple Γ̃-modules
by (1). Since Γ is hereditary, we obtain the assertion.

(4) Since J i+p∆
lat∆ ( , L) = HomΓ(F∆( ), J i+p∆

∆ F∆(L)) � HomΓ(F∆( ),
J i

∆F∆(L)) = J i
lat∆( , L) holds by (2), we obtain the assertion by 2.3.1 (1).

(5) It is exact for any i ≥ 0 by 2.3.1 (1). On lat ∆, it is isomorphic
to an sequence X : 0 → HomΓ( , J i

ΓF∆(τ+L)) → HomΓ( , J i+1
Γ F∆(θ+L)) →

HomΓ( , J i+2
Γ F∆(L)) → 0 by (2). By (3), X is exact on lat Γ. Since the functor

HomΓ( , J i+2
Γ F∆(L)) is projective, X splits. Thus the assertion follows.

(6) F∆(L) ⊕ J−2
Γ F∆(τ+L) is isomorphic to J−1

Γ F∆(θ+L) by the proof of
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(5). Applying 2.3.1 (2) to F∆ ∈ HomZ(F(∆), F(Γ)) and J−1 ∈ EndZ(F(Γ))
(L �→ J−1

Γ L), we obtain the assertion.
(7) “if” part follows from (6) since

∑
i J−i

Γ F∆(Xi) =
∑

i(J
−n
Γ F∆(θ+

n−iXi)−
J−n−1

Γ F∆(τ+θ+
n−i−1Xi)) = 0. Conversely, put Xi = Li − L′

i (Li, L
′
i ∈ lat∆)

and assume
⊕

i J−i
Γ F∆(Li) �

⊕
i J−i

Γ F∆(L′
i). Then, for any n ≥ l∆ + p∆ − 1,

we obtain
⊕

i J n−i
lat∆( , Li) =

⊕
i J n

lat Γ(F∆( ), J−i
Γ F∆(Li)) � ⊕

i J n
lat Γ(F∆( ),

J−i
Γ F∆(L′

i)) =
⊕

i J n−i
lat∆( , L′

i) by (2). Thus
⊕

i θ+
n−iLi =

⊕
i θ+

n−iL
′
i holds by

2.3.1 (1).

2.5. Additive functions
We call f ∈ HomZ(F(∆), Z) a right additive function (resp. left additive

function) if fφ+ = 0 (resp. fφ− = 0) holds.

Corollary 2.5.1. Let ∆ be an R-order of finite representation type with its
filtering functor F∆ : lat ∆ → lat Γ. Define J−1 ∈ EndZ(F(Γ)) by L �→ J−1

Γ L.
(1) Let A be an abelian group, f ∈ HomZ(F(∆), A) and a ∈ EndZ(A).

If f − afθ+ + a2fτ+ = 0 holds, then there exists a unique element g ∈
HomZ(F(Γ), A) such that f = gF∆ and gJ−1 = ag.

(2)([I1, 4.1.1]) Let {ej}1≤j≤c be the complete set of central irreducible idem-
potents of ∆̃. Then f ∈ HomZ(F(∆), Z) is a right additive function if and only
if f(L) =

∑
1≤j≤c lj lene∆(L̃ej) for some lj ∈ Z if and only if f is a left additive

function.

Proof. (1) Take Xi ∈ F(∆). If
∑

0≤i<p∆
J−i

Γ F∆(Xi) = 0 holds, then∑
0≤i<p∆

aif(Xi) =
∑

0≤i<p∆
(anfθ+

n−iXi − an+1fτ+θ+
n−i−1Xi) = 0 holds by

2.3.1 (2) and 2.4 (7). Hence, by 2.4 (3), g ∈ HomZ(F(Γ), A) is well defined
by g(

∑
0≤i<p∆

J−i
Γ F∆(Xi)) :=

∑
0≤i<p∆

aif(Xi). Then g is a unique element
which satisfies the desired properties.

(2) We only have to show the “only if” part of the first equivalence. By
(1), there exists g ∈ HomZ(F(Γ), Z) such that f = gF∆ and gJ−1 = g. Take
Lj ∈ ind(Γej) and put lj := f(Lj). Then gJ−1 = g implies that g(L) =∑

1≤j≤c lj leneΓ(L̃ej) holds for any L ∈ lat Γ. By 2.4 (1), f has the desired
form.

Remark 2.5.2. Above (2) shows that the triple (F∆, F(Γ), J−1) gives
an initial object of the category C(F(∆); 1,−θ+, τ+), which is defined by (1)
below. In particular, we can construct the triple (F∆, F(Γ), J−1) by the manner
in (2) below.

(1) Let F be an abelian group and ηi ∈ EndZ(F ) (0 ≤ i ≤ n). Define a
category C = C(F ; η0, . . . , ηn) as follows. An object is (f, A, a), where A is an
abelian group, f ∈ HomZ(F, A), a ∈ EndZ(A) such that

∑
0≤i≤n aifηi = 0.

Put Hom((f, A, a), (f ′, A′, a′)) := {g ∈ HomZ(A, A′) | f ′ = gf, ga = a′g}.
(2) C has an initial object (fF , F̂ , aF ) defined as follows.
Define aF ∈ EndZ(

⊕
i≥0 F ) and a subgroup G of

⊕
i≥0 F by aF (x0, x1, . . . )

:= (0, x0, x1, . . . ) and G :=
∑

x∈F,i≥0 ai
F (η0(x), η1(x), . . . , ηn(x), 0, 0, . . . ). Put

F̂ := (
⊕

i≥0 F )/G and fF (x) := (x, 0, 0, . . . ). Then, for any (f, A, a) ∈ C, it is
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easy to show that Hom((fF , F̂ , aF ), (f, A, a)) is a singleton set {g}, where g is
defined by g(x0, x1, . . . ) :=

∑
i≥0 aif(xi).

2.6. Appendix: Grothendieck groups
We denote by K0(C) the Grothendieck group of an abelian category C, and

by fl mod∆ the category of finite length ∆-modules. It was well known (eg.

[AR]) that there exists an exact sequence (∗) : K0(fl mod∆)
K0(I)−→ K0(mod∆) →

K0(mod∆̃) → 0 of Grothendieck groups. When ∆ is of finite representation
type, a main result of [W] gave an explicit description of the kernel of K0(I).
The following 2.6.1 shows that his result holds for any order ∆.

On the other hand, when ∆ is of finite representation type, 2.6.2 gives a
connection between each terms in (∗) and F(∆), φ+ etc. In particular, it gives
another proof of 2.5.1 (2).

2.6.1. A bounded complex X : · · · → Xi−1
di−1→ Xi

di→ Xi+1 → · · · on

lat ∆ is called rationally exact if the induced complex X̃ : · · · → X̃i−1

edi−1→ X̃i

edi→
X̃i+1 → · · · is exact. Then put H(X) :=

∑
i∈Z

(−1)iHi(X) ∈ K0(fl mod∆). Let
Z be the subgroup of K0(fl mod∆) generated by [H(X)] for any rationally exact
bounded complex X on lat ∆ such that

⊕
i∈Z

X2i is isomorphic to
⊕

i∈Z
X2i−1.

Proposition. Let ∆ be an R-order in a semisimple R̃-algebra Λ̃. Then
the natural inclusion I : flmod∆ → mod∆ and J := (̃ ) : mod∆ → mod∆̃
induce the following exact sequence.

0 → Z → K0(fl mod∆)
K0(I)−−−→ K0(mod∆)

K0(J)−−−→ K0(mod∆̃) → 0

Thus K0(mod∆) is isomorphic to K0(mod∆̃)⊕K0(fl mod∆) /Z. More-
over, Z = 〈[M ]〉M∈fl modΩ holds for any maximal overorder Ω of ∆.

Proof. (i) Assume that [M ]−[M ′] ∈ Ker K0(J) holds for M, M ′ ∈ mod ∆.
Then M̃ is isomorphic to M̃ ′ since ∆̃ is semisimple. Hence there exists an
exact sequence 0 → M ′ → M → M ′′ → 0 such that M ′′ ∈ flmod∆. Thus
[M ] − [M ′] = [M ′′] ∈ Im K0(I). Moreover, 〈[M ]〉M∈fl modΩ ⊆ Ker K0(I) holds
since the Ω-projective resolution of M has the form 0 → P → P → M → 0.
Now, we will show Ker K0(I) ⊆ Z.

Assume [M ]−[M ′] ∈ Ker K0(I) holds for M, M ′ ∈ fl mod ∆. By definition,
we can easily obtain an exact sequence X : 0 → X1 → X2 → X3 → X4 → 0 in
mod ∆ such that X1⊕X3⊕M is isomorphic to X2⊕X4⊕M ′. Let T : mod ∆ →
fl mod∆ be the functor such that T(X) is the torsion submodule of X ∈ mod
∆, and L : mod∆ → lat ∆ the functor defined by L(X) := X/T(X). Since
T(X1)⊕T(X3)⊕M is isomorphic to T(X2)⊕T(X4)⊕M ′, we obtain H(T(X)) =
[M ] − [M ′]. Since we have an exact sequence 0 → T(X) → X → L(X) →
0 of complexes, we obtain [M ] − [M ′] = H(T(X)) − H(X) = −H(L(X)).
Thus the assertion follows since L(X) is a rationally exact complex satisfying
L(X1) ⊕ L(X3) � L(X2) ⊕ L(X4).
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(ii) We will show Z ⊆ 〈[M ]〉M∈fl modΩ for any maximal overorder Ω of ∆.
Let X be a rationally exact bounded complex on lat∆ such that

⊕
i∈Z

X2i

is isomorphic to
⊕

i∈Z
X2i−1. Let ΩX be the complex · · · → ΩXi

di→ ΩXi+1 →
· · · , and Y the complex · · · → ΩXi/Xi

di→ ΩXi+1/Xi+1 → · · · . Since⊕
i∈Z

ΩX2i/X2i is isomorphic to
⊕

i∈Z
ΩX2i−1/X2i−1, we obtain H(Y) = 0.

Since we have an exact sequence 0 → X → ΩX → Y → 0 of complexes, we
obtain H(X) = H(ΩX) − H(Y) = H(ΩX) ∈ 〈[M ]〉M∈fl modΩ.

Proposition 2.6.2. Let ∆ be an R-order of finite representation type.
Then we have the following commutative diagram of exact sequences whose
vertical maps are isomorphisms.

Fp(∆)
φ+

−−−−→ F(∆) /φ+(Fn(∆)) −−−−→ F(∆) /φ+(F(∆)) −−−−→ 0�f2

�f1

�f0

K0(fl mod∆)
K0(I)−−−−→ K0(mod∆)

K0(J)−−−−→ K0(mod∆̃) −−−−→ 0

Proof. Define fi (i = 0, 1, 2) by f2(L) := [L/J∆L], f1(L) := [L] and
f0(L) := [L̃]. Clearly f2 is an isomorphism, and f1 is an isomorphism by [AR,
1.1 Chapter 2]. Thus f0 is also an isomorphism.

2.7. We state a result concerning structure of orders of finite represen-
tation type (cf. [I3, 3.3]). We call a filtration (Ω = I0 ⊇ I−1 ⊇ I−2 ⊇ · · · ) of
a hereditary order Ω almost J-adic if there exists another hereditary order Γ,
an idempotent e of Γ and an R-algebra isomorphism f : eΓe → Ω such that
Ii = f(eJ−i

Γ e) holds for any i ≤ 0.

Corollary. Let R be a complete discrete valuation ring with a residue field
k, k[[t]] the formal power series ring and ∆ an R-order of finite representation
type. Then there exists a hereditary overorder Ω of ∆ and an almost J-adic
filtration {Ii}i≤0 of Ω such that ∆′ :=

∏
i≤0(∆ ∩ Ii/∆ ∩ Ii−1) is a k[[t]]-order

whose Auslander-Reiten quiver coincides with that of ∆.

Proof. Let Λ be the Auslander order of ∆ and Γ the filtering overorder
of Λ. Then there exists an idempotent e of Λ such that eΛe = ∆. Putting
Ω := eΓe and Ii := eJ−i

Γ e, we obtain the assertion by 2.2.1.

Examples 2.8. (1) Let ∆ :=
(

Ω Ω
Jn Ω

)
(n = 2m − 1 > 0), where Ω is a

local maximal order with the radical J . Then ind ∆ = {( Ω
Jj

)}0≤j≤n holds. The
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Auslander order Λ of ∆ and the filtering overorder Γ of Λ are the following.

Λ


Ω Ω Ω · · · Ω Ω Ω
J Ω Ω · · · Ω Ω Ω
J2 J Ω · · · Ω Ω Ω
...

...
...

. . .
...

...
...

Jn−2 Jn−3 Jn−4 · · · Ω Ω Ω
Jn−1 Jn−2 Jn−3 · · · J Ω Ω
Jn Jn−1 Jn−2 · · · J2 J Ω




⊂

Γ


Ω Ω J−1 · · · J2−m J1−m J1−m

J Ω Ω · · · J2−m J2−m J1−m

J J Ω · · · J3−m J2−m J2−m

...
...

...
. . .

...
...

...
Jm−1 Jm−2 Jm−2 · · · Ω Ω J−1

Jm−1 Jm−1 Jm−2 · · · J Ω Ω
Jm Jm−1 Jm−1 · · · J J Ω




Thus Γ is Morita equivalent to ( Ω Ω
J Ω ). Put Leven :=

⊕
0≤j<m

(
Ω

J2j

)
and

Lodd :=
⊕

0<j≤m

(
Ω

J2j−1

)
. Then, for sufficiently large i, it can be checked that

θ+
i

(
Ω
Jj

)
= Leven (resp. Lodd) holds if i + j is even (resp. odd).

(2) Let {Ξj}0≤j≤n be a local Bass chain of type(IVa) ([HN1]) and ∆ := Ξn

(n = 2m − 1 > 0). Then ind ∆ = {Ξj}0≤j≤n holds. The Auslander order Λ of
∆ is the following order (JΞn

= Ξn−1x = xΞn−1), and the filtering order Γ of
Λ is the same order as in (1) above (Ω := Ξ0).

Λ =




Ξn Ξn−1 Ξn−2 · · · Ξ2 Ξ1 Ξ0

Ξn−1x Ξn−1 Ξn−2 · · · Ξ2 Ξ1 Ξ0

Ξn−2x
2 Ξn−2x Ξn−2 · · · Ξ2 Ξ1 Ξ0

...
...

...
. . .

...
...

...
Ξ2x

n−2 Ξ2x
n−3 Ξ2x

n−4 · · · Ξ2 Ξ1 Ξ0

Ξ1x
n−1 Ξ1x

n−2 Ξ1x
n−3 · · · Ξ1x Ξ1 Ξ0

Ξ0x
n Ξ0x

n−1 Ξ0x
n−2 · · · Ξ0x

2 Ξ0x Ξ0




Put Leven := Ξ0 ⊕ (
⊕

0<j<m Ξ2
2j) and Lodd :=

⊕
0<j≤m Ξ2

2j−1. Then, for
sufficiently large i, it can be checked that θ+

i Ξj = Leven (resp. Lodd) holds if
i + j is even (resp. odd).

(3) In this example, we will compute the filtering functor F∆ : lat ∆ →
lat Γ without considering the Auslander order. Let {Ξj}0≤j≤n be a local Bass
chain of type(IVa) again, Ω a local maximal order and f : Ω/JΩ → Ξn/JΞn

an R-algebra isomorphism. Put ∆ = ∆n := {(x, y) ∈ Ω × Ξn | f(x) = y}
(n = 2m − 1 > 0). Then ∆ is an order of finite representation type with the
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following Auslander-Reiten quiver ([HN2]).

(1 2)

(1 2)

(2 1)

(2 1)

Ξ0

L0

Ξ0

L1

Ξ1

L1

Ξ2

L2

Ξ2

L3

Ξ3

L3

Ξ4

L4

Ξ4

Ln−2

Ξn−2

Ln−2

Ξn−1

Ln−1

Ξn−1

Ω

Ξn

Ω

��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ���

∆1

∆∗
1

∆∗
2

∆2

∆3

∆∗
3

∆∗
4

∆4

∆∗
n−1

∆n−1

∆n

∆∗
n

��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ���

· · ·

· · ·

It is easily checked that (θ+
i Ω)i≥0 has the following period (1) of length

4n, and (θ+
i Ξn)i≥0 has the following period (2) of length 4 for sufficiently large

i. Hence Γ is Morita equivalent to T4n(Ω) × T4(Ξ0) (1.1.1 (2)) by 2.4 (3).

(θ+
i Ω)0≤i<4n

= (Ω, ∆∗
n, Ln−1, ∆∗

n−1, . . . , L1, ∆∗
1, L0, ∆1, L1, . . . , Ln−2, ∆n−1, Ln−1, ∆n)

(1)

i (mod 4) θ+
i Ξn

0 (⊕0≤j<mΞ2
n−2j) ⊕ (⊕0<j<mL2

n−2j+1) ⊕ L0

1 (⊕0≤j<m∆2
n−2j) ⊕ (⊕0<j<m∆∗2

n−2j+1)
2 (⊕0<j<mL2

n−2j) ⊕ (⊕0<j<mΞ2
n−2j+1) ⊕ Ξ0

3 (⊕0≤j<m∆∗2
n−2j) ⊕ (⊕0<j<m∆2

n−2j+1)

(2)

Putting P := F∆(Ω) and Q := F∆(Ξn), we can obtain the following list of
F∆ by using F∆(L) ⊕ J−2

Γ F∆(τ+L) � J−1
Γ F∆(θ+L) (2.4 (6)) repeatedly.

F∆(Ξn−i) F∆(∆n−i) F∆(∆∗
n−i) F∆(Ln−i)

J2i
Γ Q J−2i−1

Γ P ⊕ J2i+1
Γ Q J2i+1

Γ P ⊕ J−2i−1
Γ Q J2i

Γ P ⊕ J−2i
Γ P ⊕ J2i+2

Γ Q

Added in proof: Professor W. Rump kindly informed the author that 2.6.1 was
given in his paper [R, Proposition 10.2].
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