J-adic filtration of orders with application to orders of finite representation type

By

Osamu Iyama*

For a ring Λ with the Jacobson radical J_{Λ} , we denote by $\operatorname{Gr} \Lambda$ the associated completely graded ring with respect to the J_{Λ} -adic filtration, namely $\operatorname{Gr} \Lambda := \prod_{i \geq 0} J_{\Lambda}^{i}/J_{\Lambda}^{i+1}$. In Section 1, for an order Λ over a complete discrete valuation ring R, we will study the associated ring $\operatorname{Gr} \Lambda$, which is not even noetherian in general (Remark 1.3 (2)). Our main theorem (Theorem 1.2) asserts that $\operatorname{Gr} \Lambda$ is again an order over some complete discrete valuation ring if and only if Λ has the filtering overorder Γ (Section 1.1), which is a hereditary overorder of Λ such that $J_{\Lambda}^{n} = \Lambda \cap J_{\Gamma}^{n}$ for any $n \geq 0$.

Now, we explain background and application in Section 2. For an additive category \mathcal{C} with the Jacobson radical $\mathcal{I}_{\mathcal{C}}$, we denote by $\operatorname{Gr} \mathcal{C}$ the associated completely graded category $\prod_{i\geq 0} \mathcal{J}_{\mathcal{C}}^i/\mathcal{J}_{\mathcal{C}}^{i+1}$. In study of representation theory of an order Δ over a complete regular local ring R of dimension $d\leq 2$, the associated category $\operatorname{Gr}(\operatorname{lat} \Delta)$ of $\operatorname{lat} \Delta$ plays an important role. Under the assumption that Δ is an isolated singularity, we can define a combinatorial invariant $\mathbb{A}(\operatorname{lat} \Delta)$ called the Auslander-Reiten quiver and its "algebraic realization" $\widehat{\mathbb{A}}(\operatorname{lat} \Delta)$ called the Auslander-Reiten species. It is important that we can recover $\operatorname{Gr}(\operatorname{lat} \Delta)$ from $\widehat{\mathbb{A}}(\operatorname{lat} \Delta)$, namely $\operatorname{Gr}(\operatorname{lat} \Delta)$ is equivalent to the mesh category $\widehat{\mathbb{M}}(\widehat{\mathbb{A}}(\operatorname{lat} \Delta))$ of $\widehat{\mathbb{A}}(\operatorname{lat} \Delta)$ ([I2], [IT], [BG]).

When Δ is of finite representation type, it is convenient to study the endomorphism ring $\Lambda := \operatorname{End}_{\Delta}(M)$ of an additive generator M of lat Δ , which is called the Auslander order of Δ . The category pr Λ of finitely generated projective Λ -modules is equivalent to lat Δ , and pr(Gr Λ) is equivalent to Gr(lat Δ). For $d \leq 2$, it is surprising that we can characterize Auslander orders by some homological conditions ([ARS], [ARo], [RV] and Definition 2.1). It is also remarkable that, if R is an algebraically closed field (d = 0) with chr $R \neq 2$, then Gr Λ is always isomorphic to Λ , so lat Δ is completely recoverd by the combinatorial data Λ (lat Δ) ([BGRS]).

In Section 2, we will study the associated ring $\operatorname{Gr} \Lambda$ of an Auslander order Λ over a complete discrete valuation ring R (d=1). In many important cases like $R=\mathbb{Z}_p$, the ring $\operatorname{Gr} \Lambda$ is not isomorphic to Λ . But, we know by

Received April 17, 2001 Revised July 12, 2001

^{*}The author is supported by the JSPS Research Fellowships for Young Scientists.

a result of [I3] that Gr Λ is again an Auslander order over the formal power series ring $(R/J_R)[[t]]$ (Proposition 2.2.1), and consequently, Λ has the filtering overorder Γ (Section 2.2). This leads us to concept of the filtering functor \mathbb{F}_{Δ} : lat $\Delta \to \text{lat } \Gamma$ of an order Δ of finite representation type (Definition 2.3), where Γ is the filtering overorder of the Auslander order Λ of Δ . We will study some properties of \mathbb{F}_{Δ} in Section 2. We also study the relationship with additive functions (Section 2.5) and the Grothendieck group of an order (Section 2.6).

- **0.1 Notations.** In the rest of this paper, assume that R is a complete discrete valuation ring unless explicitly stated otherwise.
- (1) For a commutative ring C, we denote by \widetilde{C} the total quotient ring of C. For a ring Λ , we denote by $\operatorname{Cen}(\Lambda)$ the center of Λ , and put $\widetilde{\Lambda} := \widetilde{\operatorname{Cen}(\Lambda)} \otimes_{\operatorname{Cen}(\Lambda)} \Lambda$. We denote by $\operatorname{mod} \Lambda$ the category of finitely generated (left) Λ -modules, by $\operatorname{pr} \Lambda$ the category of finitely generated projective Λ -modules, and by $\operatorname{len}_{\Lambda}(X)$ the length of a Λ -module X. We have a functor $\widetilde{(\)} := \widetilde{\Lambda} \otimes_{\Lambda} : \operatorname{mod} \Lambda \to \operatorname{mod} \widetilde{\Lambda}$.
- (2) Let Λ be an R-order, namely it is an R-algebra that is finitely generated free as an R-module. A (left) Λ -module L is called a Λ -lattice if it is finitely generated free as an R-module. We denote by lat Λ the category of Λ -lattices. Notice that $\widetilde{\Lambda} = \widetilde{R} \otimes_R \Lambda$ and $\widetilde{L} = \widetilde{R} \otimes_R L$ hold for any $L \in \operatorname{mod}\Lambda$ by the following easy fact 0.1.1, which will be used in the proof of 1.2.
- **0.1.1.** Let R be a commutative noetherian domain, Λ an R-algebra, and $C := \operatorname{Cen}(\Lambda)$. Assume that Λ is a finitely generated torsionfree R-module. Then $\widetilde{R} \otimes_R \Lambda = \widetilde{C} \otimes_C \Lambda$ holds.

Proof. Since $\widetilde{R} \otimes_R \Lambda = (\widetilde{R} \otimes_R C) \otimes_C \Lambda$, we may assume $\Lambda = C$. Since C is a torsionfree R-module, we have an injective map $\widetilde{R} \otimes_R C \to \widetilde{C}$. We only have to show that $x^{-1} \in \widetilde{R} \otimes_R C$ holds for any non-zerodivisor x in C. Since C is a finitely generated R-module, there exist n > 0 and $r_i \in R$ such that $x^n + r_1 x^{n-1} + \cdots + r_{n-1} x + r_n = 0$ and $r_n \neq 0$. Then $x^{-1} = -r_n^{-1} y \in \widetilde{R} \otimes_R C$ holds for $y := x^{n-1} + r_1 x^{n-2} + \cdots + r_{n-1}$.

1. J-adic filtration of orders

- **1.1.** Let R be a complete discrete valuation ring with a residue field k and Λ an R-order.
- (1) We call an R-order Γ a filtering overorder of Λ if Γ is a hereditary overorder of Λ such that $J_{\Lambda}^n = \Lambda \cap J_{\Gamma}^n$ holds for any $n \geq 0$. For example, any Bäckström order ([RR]) Λ has a filtering overorder $\Gamma = O_l(J_{\Lambda})$.
- (2) Assume that Λ has a filtering overorder Γ . Then Γ is the unique filtering overorder of Λ . In this case, there exists a subring S of Cen(Gr Λ) such that S is isomorphic to the formal power series ring k[[t]] and Gr Λ is an S-order in a semisimple \widetilde{S} -algebra $\widetilde{\operatorname{Gr}}\Lambda$.
 - (3) $J_{Gr \Lambda}^n = \prod_{i>n} J_{\Lambda}^i / J_{\Lambda}^{i+1}$ holds for any $n \ge 0$.

- **1.1.1.** Let R be a complete discrete valuation ring with a residue field k and a prime element π_R .
- (1) Let Ω be a local maximal R-order with a residue k-algebra $D := \Omega/J_{\Omega}$ and a prime element π_{Ω} . Define $\sigma \in \operatorname{Aut}_k(D)$ by $\overline{a}^{\sigma} := \overline{\pi_{\Omega} a \pi_{\Omega}^{-1}}$ for $a \in \Omega$. Then Gr Ω is isomorphic to the skew formal power series ring $D[[x;\sigma]]$ $(xd=d^{\sigma}x$ for $d\in D)$. Take l>0 such that $\pi_R\in J^l_{\Omega}-J^{l+1}_{\Omega}$ and put $t:=\overline{\pi_R}\in J^l_{\Omega}/J^{l+1}_{\Omega}\subset I$ Gr Ω . Then Gr Ω is a local maximal k[[t]]-order.
- (2) Let Λ be a ring indecomposable hereditary R-order. Then Λ is Morita equivalent to $T_n(\Omega)$ for some local maximal R-order Ω ([CR]), where $T_n(\Omega)$

denotes the subring
$$\begin{pmatrix} \Omega & \Omega & \cdots & \Omega & \Omega \\ J_{\Omega} & \Omega & \cdots & \Omega & \Omega \\ \vdots & \vdots & \ddots & \vdots \\ J_{\Omega} & J_{\Omega} & \cdots & \Omega & \Omega \\ J_{\Omega} & J_{\Omega} & \cdots & J_{\Omega} & \Omega \end{pmatrix}$$
 of $M_n(\Omega)$. We can easily check that $Gr \Lambda$ is Morita equivalent to $T_n(Gr \Omega)$. Thus $Gr \Lambda$ is a hereditary $k[[t]]$ -order by (1).

- *Proof of* 1.1. (2) Put $O_l(L) := \{x \in \widetilde{\Gamma} \mid xL \subseteq L\}$ for $L \in \text{lat }\Gamma$. We can take sufficiently large n such that $J^n_{\Gamma} \subseteq \Lambda$. Then $\Gamma = O_l(J^n_{\Gamma}) = O_l(J^n_{\Lambda})$ holds since Γ is hereditary ([CR]). Thus the former assertion follows. Since we have a natural inclusion $J_{\Lambda}^i/J_{\Lambda}^{i+1} \to J_{\Gamma}^i/J_{\Gamma}^{i+1}$ for any $i \geq 0$, Gr Λ is a subring of Gr Γ containing $\prod_{i\geq n} J_{\Gamma}^i/J_{\Gamma}^{i+1}$. Thus the latter assertion follows from 1.1.1 (2).
- (3) Put $I_n := \prod_{i \geq n} J_{\Lambda}^i / J_{\Lambda}^{i+1}$. Then $I_1 = J_{Gr \Lambda}$ holds since I_1 is quasi-regular ([AF] Section 15) and $(Gr \Lambda) / I_1 = \Lambda / J_{\Lambda}$ is semisimple. Since $I_1^n \subseteq I_n$ holds, we only have to show $I_nI_1\supseteq I_{n+1}$. Take a finite subset $\{g_j\}_j$ of J_Λ such that $J_\Lambda=\sum_j\Lambda g_j$. Then $J_\Lambda^i=\sum_j J_\Lambda^{i-1}g_j$ holds hor any i>0. For any $(x_i)_{i\geq n+1}\in I_{n+1}$, take $y_{i-1,j}\in J_\Lambda^{i-1}$ such that $x_i=\sum_j y_{i-1,j}g_j$. Put $y_j:=(y_{i,j})_{i\geq n}\in I_n$ and regard g_j as an element $(0,g_j,0,0,\dots)$ of I_1 . Then $(x_i)_{i\geq n+1}=\sum_j y_jg_j\in I_nI_1$ holds.
- **Theorem 1.2.** Let R be a complete discrete valuation ring and Λ an R-order in a semisimple R-algebra Λ . Then the following conditions are equivalent.
- (1) There exists a subring S of Cen(Gr Λ) such that S is a complete discrete valuation ring and $\operatorname{Gr}\Lambda$ is an S-order in a semisimple \widetilde{S} -algebra $\widetilde{\operatorname{Gr}}\Lambda$.
 - (2) Λ has the filtering overorder Γ (cf. 1.1).
- **1.2.1.** Let $C = \prod_{i>0} C_{(i)}$ be a commutative completely graded ring without nilpotent elements, e an idempotent of \widetilde{C} and $n \geq 0$. If $eC_{(n)} \subseteq C$ holds, then $eC_{(n)} \subseteq C_{(n)}$ holds.
- *Proof.* For any $x \in C$, we put $x = \sum_{i \geq m(x)} x_i$ $(x_i \in C_{(i)} \text{ and } x_{m(x)} \neq 0)$, and put $m(0) := \infty$. Then $m(xy) \ge m(x) + m(y)$ and $m(x^l) = lm(x)$ hold for any $x, y \in C$ and l > 0 since C has no nilpotent element.
- (i) Assume that $x \in C$ and an idempotent $f \in C$ satisfy $fx \in C$. We will show that $m(fx) \geq m(x)$ holds, and the equality holds if $fx \neq 0$ and x is homogeneous.

The former assertion is immediate from $2m(fx) = m((fx)^2) = m((fx)x)$ $\geq m(fx) + m(x)$. We will show the latter assertion. Since x is homogeneous,

- $(fx^2)_{i+m(x)} = (fx)_i x$ and $(fx^3)_{i+2m(x)} = (fx)_i x^2$ hold for any $i \ge 0$. Since $(fx)_i x \ne 0$ is equivalent to $(fx)_i x^2 \ne 0$, we obtain $2m(fx) m(x) = m(fx^2) m(x) = m(fx^3) 2m(x) = 3m(fx) 2m(x)$. Since $m(fx) < \infty$ holds, we obtain m(fx) = m(x).
- (ii) For any $x \in C_{(n)}$, we will show $ex \in C_{(n)}$. We may assume $ex \neq 0$. Then m(ex) = n holds by (i). Put $y := ex (ex)_n$ and $\dot{e} := 1 e$. If $\dot{e}(ex)_n \neq 0$, then $n = m((ex)_n) = m(\dot{e}(ex)_n) = m(\dot{e}y) \geq m(y) > n$ holds by $\dot{e}y = -\dot{e}(ex)_n \in C$ and (i), a contradiction. Hence we obtain $\dot{e}(ex)_n = 0$ and $e(ex)_n = (ex)_n$. If $e(x (ex)_n) = ex (ex)_n \neq 0$, then $n = m(x (ex)_n) = m(ex (ex)_n) > n$ holds by (i), a contradiction. Thus $ex = (ex)_n$ holds. \square

Proof of Theorem 1.2. (2) implies (1) by 1.1 (2). We will show that (1) implies (2). For simplicity, put $\Lambda_i := J^i_{\Lambda}$ and $\Lambda_{(i)} := J^i_{\Lambda}/J^{i+1}_{\Lambda}$ for any $i \geq 0$.

(I) We will show that there exists l > 0 and $a \in \Lambda_{(l)} \cap \operatorname{Cen}(\operatorname{Gr} \Lambda)$ such that a is an invertible element in $\operatorname{Gr} \Lambda$.

Put $C := \operatorname{Cen}(\operatorname{Gr} \Lambda)$ and $C_{(i)} := C \cap \Lambda_{(i)}$. Then $C = \prod_{i \geq 0} C_{(i)}$ holds. Since $\widetilde{\operatorname{Gr} \Lambda}$ is semisimple, C does not have nilpotent elements. Let \mathbf{E} be a complete set of primitive idempotents of \widetilde{C} . We only have to show that there exists a homogeneous element $a \in C$ such that $ea \neq 0$ for any $e \in \mathbf{E}$.

Since $\prod_{i\geq n} \Lambda_{(i)} = J_{\operatorname{Gr}\Lambda}^n$ holds by 1.1 (3), we can take sufficiently large $n\geq 0$ such that $e\prod_{i\geq n} \Lambda_{(i)}\subseteq \operatorname{Gr}\Lambda$ holds for any $e\in \mathbf{E}$. For any $i\geq n$ and $e\in \mathbf{E}$, since $eC_{(i)}\subseteq \overline{C}$ holds, we obtain $eC_{(i)}\subseteq C_{(i)}$ by 1.2.1. For any $e\in \mathbf{E}$, we can take a non-zero element $a_e\in eC_{(l_e)}\subseteq C_{(l_e)}$ for some $l_e\geq n$. Then $a:=\sum_{e\in \mathbf{E}} a_e^{1/l_e}\in C_{(l)}$ ($l:=\prod_{e\in \mathbf{E}} l_e$) satisfies the desired condition.

 $a := \sum_{e \in \mathbf{E}} a_e^{l/l_e} \in C_{(l)} \ (l := \prod_{e \in \mathbf{E}} l_e)$ satisfies the desired condition. (II) Fix a lift $a \in \Lambda_l$ of $a \in \Lambda_{(l)}$ in (I). We will show that a is an invertible element of $\widetilde{\Lambda}$.

Since $\dim_{\widetilde{R}} \widetilde{\Lambda} < \infty$, we only have to show that a is a non-zerodivisor in $\widetilde{\Lambda}$, or equivalently, a is a non-zerodivisor in Λ . Assume that $x \in \Lambda_i - \Lambda_{i+1}$ satisfies ax = 0. Then $\overline{x} \in \Lambda_{(i)}$ satisfies $a\overline{x} = 0$, a contradiction to (I).

- (III) We will show that there exists $N \geq 0$ such that $a\Lambda_i = \Lambda_i a = \Lambda_{i+l}$ for any i > N.
- By (I), $(a \cdot)$ and $(\cdot a) : \Lambda_{(i)} \to \Lambda_{(i+l)}$ are injective for any $i \geq 0$. Since $\dim_{R/J_R} \Lambda_{(i)} \leq \operatorname{rank}_R \Lambda_i = \dim_{\widetilde{R}} \widetilde{\Lambda}$ holds for any $i \geq 0$, there exists $N \geq 0$ such that $(a \cdot)$ and $(\cdot a) : \Lambda_{(i)} \to \Lambda_{(i+l)}$ are bijective for any i > N. Hence $a\Lambda_i + \Lambda_{i+l+1} = \Lambda_i a + \Lambda_{i+l+1} = \Lambda_{i+l}$ holds for any i > N. By Nakayama's Lemma, we obtain the assertion.
- (IV) Put $\Gamma_i := \{x \in \widetilde{\Lambda} \mid a^n x \in \Lambda_{i+nl} \text{ for sufficiently large } n \}$ for $i \in \mathbb{Z}$. We will show that the following (i)–(v) hold.
 - (i) If $i, n \in \mathbb{Z}$ satisfies i + nl > N, then $\Gamma_i = a^{-n} \Lambda_{i+nl} = \Lambda_{i+nl} a^{-n}$ holds.
 - (ii) $\Gamma_i \Gamma_j = \Gamma_{i+j}$ holds for any $i, j \in \mathbb{Z}$.
 - (iii) $\Gamma_{i+1} \cap \Lambda_i = \Lambda_{i+1}$ and $\Gamma_i \cap \Lambda = \Lambda_i$ hold for any $i \geq 0$.
 - (iv) $\Gamma_i = \Lambda_i$ holds for any i > N.
 - (v) $(a \cdot)$ and $(a \cdot) : \Gamma_i \to \Gamma_{i+l}$ are bijective for any $i \in \mathbb{Z}$.
 - (i) is immediate since $a^{-n}\Lambda_{i+nl} = a^{-n+1}\Lambda_{i+(n+1)l} = \cdots$ holds by (III).

- (ii) Taking n such that i+nl>N and j+nl>N, we obtain $\Gamma_i\Gamma_j=a^{-n}\Lambda_{i+nl}a^{-n}\Lambda_{j+nl}=a^{-2n}\Lambda_{i+nl}\Lambda_{j+nl}=a^{-2n}\Lambda_{i+j+2nl}=\Gamma_{i+j}$ by (III) and (i). (iii) Taking n such that i+nl>N, we obtain $\Gamma_{i+1}\cap\Lambda_i=a^{-n}\Lambda_{i+nl+1}\cap\Lambda_i=\Lambda_{i+1}$ since $(a^n\cdot):\Lambda_{(i)}\to\Lambda_{(i+nl)}$ is injective by (I). Inductively, we obtain $\Gamma_i\cap\Lambda=\Gamma_i\cap(\Gamma_{i-1}\cap\Lambda)=\Gamma_i\cap\Lambda_{i-1}=\Lambda_i$. (iv) Put n=0 in (i). (v) They are injective by (II) and surjective by (i).
- (V) Put $\Gamma_{(i)} := \Gamma_i/\Gamma_{i+1}$ and $G := \prod_{i \in \mathbb{Z}} \Gamma_{(i)}$. Then G is a completely graded ring by (ii), and $Gr \Lambda$ is a subring of G since we have a natural injection $\Lambda_{(i)} \to \Gamma_{(i)}$ $(i \geq 0)$ by (iii).
 - (vi) $\Gamma_{(i)}\Gamma_{(j)} = \Gamma_{(i+j)}$ $(i, j \in \mathbb{Z})$ holds by (ii), $\Gamma_{(i)} = \Lambda_{(i)}$ (i > N) holds by (iv), and $(a \cdot)$ and $(a \cdot) \cdot \Gamma_{(i)} \to \Gamma_{(i+l)}$ $(i \in \mathbb{Z})$ are bijective by (v).
 - (vii) We will show that $Gr \Lambda$ is isomorphic to G.

Regard $k:=R/J_R$ as a subring of $\Lambda_{(0)}\subset\operatorname{Gr}\Lambda$ and put $T:=k[[a]]\subset\operatorname{Gr}\Lambda$. Then T is a complete discrete valuation ring, which is contained in $\operatorname{Cen}(\operatorname{Gr}\Lambda)$. Moreover, $\operatorname{Gr}\Lambda$ is a finitely generated T-module since (III) shows that $\operatorname{Gr}\Lambda$ is generated by a finite dimensional k-space $\prod_{0\leq i\leq N+l}\Lambda_{(i)}$. Since $\operatorname{Gr}\Lambda$ is T-torsionfree by (I), $\widetilde{\operatorname{Gr}\Lambda}=\widetilde{T}\otimes_T\operatorname{Gr}\Lambda$ holds by 0.1.1. We will show $\widetilde{T}\otimes_T\operatorname{Gr}\Lambda=G$. Since a is invertible in G by (vi), any non-zero element of T is invertible in G. Hence we have an injection $\widetilde{T}\otimes_T\operatorname{Gr}\Lambda\to G$. It is surjective since $\Gamma_{(i)}=a^{-n}\Gamma_{(i+nl)}=a^{-n}\Lambda_{(i+nl)}$ holds for sufficiently large n by (vi).

(VI) We will show that $\Gamma_{(0)}$ is a semisimple k-algebra.

Assume $J:=J_{\Gamma_{(0)}}\neq 0$. Since $G=\widetilde{\operatorname{Gr}\Lambda}$ is semisimple, we obtain G=GJG. Comparing degree 0 part, we obtain $\Gamma_{(0)}=\sum_{i\in\mathbb{Z}}\Gamma_{(i)}J\Gamma_{(-i)}$. By (vi), we obtain $\Gamma_{(0)}=\sum_{0\leq i< l}\Gamma_{(i)}J\Gamma_{(-i)}$. Then Nakayama's Lemma shows $\Gamma_{(0)}=\sum_{1\leq i< l}\Gamma_{(i)}J\Gamma_{(-i)}$. Hence $\Gamma_{(0)}=\Gamma_{(-1)}\Gamma_{(0)}\Gamma_{(1)}=\sum_{1\leq i< l}\Gamma_{(-1)}\Gamma_{(i)}J\Gamma_{(-i)}\Gamma_{(1)}=\sum_{0\leq i< l-1}\Gamma_{(i)}J\Gamma_{(-i)}$ holds by (vi). Repeating similar argument, we obtain $J=\Gamma_{(0)}$, a contradiction.

(VII) We will show the theorem. By (i), $\Gamma := \Gamma_0$ is an R-order. By (VI), $J_{\Gamma} \subseteq \Gamma_1$ holds. Since Γ_1 is a topologically nilpotent ideal of Γ by (ii)(iv), we obtain $J_{\Gamma} = \Gamma_1$. Since $\Gamma_1^l = \Gamma_l = \Gamma_l$ holds by (ii)(v), we obtain $O_l(J_{\Gamma}) \subseteq O_l(\Gamma_1^l) = \Gamma$. Hence Γ is hereditary by [CR]. Morever, $J_{\Lambda}^i = \Lambda_i = \Gamma_i \cap \Lambda = J_{\Gamma}^i \cap \Lambda$ holds by (iii).

Remark 1.3. Let Λ be an R-order.

- (1) Although $R' := \prod_{i \geq 0} (R \cap J_{\Gamma}^i/R \cap J_{\Gamma}^{i+1})$ is a subring of Cen(Gr Λ), an R'-module Gr Λ is not necessarily finitely generated even if Λ has the filtering overorder. For example, put $R := k[[t]] \subset \Lambda := k[[t]] \times k[[t]]$, $f(t) \mapsto (f(t), f(t^2))$. Then $R' = k[[t]] \subset \operatorname{Gr} \Lambda = k[[t]] \times k[[t]]$, $f(t) \mapsto (f(t), f(0))$.
- (2) In general, Gr Λ is neither noetherian nor a finitely generated Cen(Gr Λ)-module. For example, put $R:=k[[t^2]]\subset \Omega:=k[[t]],\ \Delta:=k+t^2\Omega\subset \Omega$ and $\Lambda:=\begin{pmatrix}\Omega&\Omega\\J^3_\Omega&\Delta\end{pmatrix}$. Then $J^n_\Lambda=\begin{pmatrix}J^n_\Omega&J^{n-1}_\Omega\\J^{n+1}_\Omega&J^{n+1}_\Omega\end{pmatrix}$ holds for any n>0. Put $K:=\widetilde{\Omega}$ and $I:=\begin{pmatrix}K\epsilon&K\epsilon\\0&0\end{pmatrix}\subset A:=\begin{pmatrix}K[\epsilon]&K[\epsilon]\\K\epsilon&K[\epsilon]\end{pmatrix}\subset M_2(K[\epsilon])\ (\epsilon^2=0)$. It is easily checked that Gr Λ is isomorphic to a subring $\begin{pmatrix}\Omega&\Omega\\J_\Omega\epsilon&k+\Omega\epsilon\end{pmatrix}$ of A/I, and Cen(Gr Λ) = $k+\begin{pmatrix}0&0\\0&\Omega\epsilon\end{pmatrix}$.

2. Filtering functors of orders of finite representation type

For an R-order Δ , we denote by ind Δ the set of isomorphism classes of indecomposable Δ -lattices. We call Δ of finite representation type if ind Δ is a finite set. Let $F(\Delta)$ (resp. $F_n(\Delta)$, $F_p(\Delta)$) be the free aberian group generated by the base set ind Δ (resp. ind $\Delta - \operatorname{pr} \Delta$, ind $\Delta \cap \operatorname{pr} \Delta$).

Assume that \widetilde{R} -algebra $\widetilde{\Delta}$ is semisimple. Then lat Δ has almost split sequences, and we denote by $0 \to \tau^+ L \to \theta^+ L \to L \to 0$ (resp. $0 \to L \to \theta^- L \to \tau^- L \to 0$) the complex of the *sink map* (resp. *source map*) of L ([ARS]). Define maps $\phi^+, \phi^- \in \operatorname{End}_{\mathbb{Z}}(F(\Delta))$ by $\phi^+ X := X - \theta^+ X + \tau^+ X$ and $\phi^- X := X - \theta^- X + \tau^- X$.

Definition 2.1. Let R be a complete discrete valuation ring. An R-order Λ is called an *Auslander order* if gl. dim $\Lambda \leq 2$ and a minimal relative-injective resolution $0 \to \Lambda \xrightarrow{f^0} I^0 \xrightarrow{f^1} I^1 \to 0$ of Λ satisfies $I^0 \in \operatorname{pr} \Lambda$.

A main result of [ARo] shows that there exists a bijection between Morita equivalence classes of R-orders of finite representation type and Morita equivalence classes of Auslander R-orders in semisimple algebras. It is given by $\Delta \mapsto \operatorname{End}_{\Delta}(M)$, where M is an additive generator of an R-order Δ of finite representation type. In this case, $\Lambda := \operatorname{End}_{\Delta}(M)$ is called the Auslander order of Δ , and we have a natural equivalence $\mathbb{G}_{\Delta} := \operatorname{Hom}_{\Delta}(M,): \operatorname{lat} \Delta \to \operatorname{pr} \Lambda$.

2.2. The following theorem follows immediately from 1.2 and 2.2.1.

Theorem. Let R be a complete discrete valuation ring and Λ an Auslander R-order in a semisimple \widetilde{R} -algebra $\widetilde{\Lambda}$. Then Λ has the filtering overorder (1.1).

Proposition 2.2.1. ([I3, 3.3]) Let R be a complete discrete valuation ring with a residue field k, k[[t]] the formal power series ring and Λ an Auslander R-order in a semisimple \widetilde{R} -algebra $\widetilde{\Lambda}$. Then $\operatorname{Gr} \Lambda$ is an Auslander k[[t]]-order in a semisimple k((t))-algebra $\widetilde{\operatorname{Gr}} \Lambda$.

Definition 2.3. (1) Let Δ be an R-order of finite representation type with its Auslander order Λ and Γ the filtering overorder of Λ (1.1). Then the filtering functor \mathbb{F}_{Δ} : lat $\Delta \to \operatorname{lat} \Gamma$ of Δ is defined as a composition of the natural equivalence lat $\Delta \xrightarrow{\mathbb{G}_{\Delta}} \operatorname{pr} \Lambda$ and the functor $\operatorname{pr} \Lambda \to \operatorname{lat} \Gamma$, $P \mapsto \Gamma P$. We denote by $\mathbb{F}_{\Delta} \in \operatorname{Hom}_{\mathbb{Z}}(F(\Delta), F(\Gamma))$ the homomorphism induced by \mathbb{F}_{Δ} .

- (2) Let $\mathbb{Z}\langle x,y\rangle$ be a non-commutative polynomial ring. Put $x_0:=1$, $x_1:=x$ and $x_n:=xx_{n-1}-yx_{n-2}$ for $n\geq 2$, or equivalently, $\begin{pmatrix} 0&-y\\1&x\end{pmatrix}^n=\begin{pmatrix} -yx_{n-2}&-yx_{n-1}\\x_{n-1}&x_n\end{pmatrix}$. Define a ring morphism $\gamma:\mathbb{Z}\langle x,y\rangle\to \operatorname{End}_{\mathbb{Z}}(\operatorname{F}(\Delta))$ by $\gamma(x):=\theta^+$ and $\gamma(y):=\tau^+$. Put $\theta_n^+:=\gamma(x_n)$.
- **2.3.1.** (1) We have the following exact sequence for any $L \in \text{lat } \Delta$, n > 0 and $i \geq 0$, which gives a minimal projective resolution of $\mathcal{J}_{\text{lat }\Delta}^n(\ ,L)$ for i=0.

$$0 \to \mathcal{J}_{\mathrm{lat}\,\Delta}^{i-1}(\ , \tau^{+}\theta_{n-1}^{+}L) \to \mathcal{J}_{\mathrm{lat}\,\Delta}^{i}(\ , \theta_{n}^{+}L) \to \mathcal{J}_{\mathrm{lat}\,\Delta}^{n+i}(\ , L) \to 0$$

- (2) Let A be an abelian group, $f \in \text{Hom}_{\mathbb{Z}}(F(\Delta), A)$ and $a \in \text{End}_{\mathbb{Z}}(A)$. If $f - af\theta^{+} + a^{2}f\tau^{+} = 0$, then $f - a^{n}f\theta^{+}_{n} + a^{n+1}f\tau^{+}\theta^{+}_{n-1} = 0$ holds for any n > 0.
 - *Proof.* (1) By [I2, 4.2 and 7.1.]
- $(2) \text{ Immediate from } f a^n f \theta_n^+ + a^{n+1} f \tau^+ \theta_{n-1}^+ = f a^n (a f \theta^+ a^2 f \tau^+) \theta_n^+ + a^{n+1} f \tau^+ \theta_{n-1}^+ = f a^{n+1} f (\theta^+ \theta_n^+ \tau^+ \theta_{n-1}^+) + a^{n+2} f \tau^+ \theta_n^+ = f a^{n+1} f \theta_{n+1}^+ + a^{n+2} f \tau^+ \theta_n^+.$
- **Theorem 2.4.** Let Δ be an R-order of finite representation type with its Auslander order Λ and filtering functor \mathbb{F}_{Δ} : lat $\Delta \to \text{lat } \Gamma$. We denote by $l_{\Delta} \geq 0$ the minimal integer such that $J_{\Gamma}^{l_{\Delta}} \subseteq \Lambda$. Take any $L, L' \in \text{lat } \Delta$.
- (1) By \mathbb{F}_{Δ} , $\operatorname{Hom}_{\Delta}(L, L')$ is a full sub R-lattice of $\operatorname{Hom}_{\Gamma}(\mathbb{F}_{\Delta}(L), \mathbb{F}_{\Delta}(L'))$. Thus \mathbb{F}_{Δ} induces an equivalence $\operatorname{mod}\widetilde{\Delta} \to \operatorname{mod}\widetilde{\Gamma}$.
- (2) $\mathcal{J}^i_{\text{lat }\Delta}(L,L') = \text{Hom}_{\Delta}(L,L') \cap \text{Hom}_{\Gamma}(\mathbb{F}_{\Delta}(L),J^i_{\Gamma}\mathbb{F}_{\Delta}(L'))$ holds for any $i \geq 0$, and $\mathcal{J}_{\text{lat }\Delta}^{i}(L, L') = \text{Hom}_{\Gamma}(\mathbb{F}_{\Delta}(L), J_{\Gamma}^{i}\mathbb{F}_{\Delta}(L'))$ holds for any $i \geq l_{\Delta}$,
- (3) Let $\{L_j\}_{1\leq j\leq c}$ be a finite subset of ind Δ such that $\{L_j\}_{1\leq j\leq c}$ gives the set of isomorphism classes of simple Δ -modules. For any j, denote by $p_i > 0$ the minimal integer such that $J^{p_j}_{\Gamma}\mathbb{F}_{\Delta}(L_j)$ is isomorphic to $\mathbb{F}_{\Delta}(L_j)$. Then Γ is Morita equivalent to $\prod_{1 < j < c} T_{p_j}(\Omega_j)$ (1.1.1 (2)) for some local maximal order Ω_j , and ind $\Gamma = \{J_{\Gamma}^i \mathbb{F}_{\Delta}(\overline{L_j}) \mid 1 \leq j \leq c, \ 0 \leq i < p_j\}$ holds.
- (4)(Periodicity) Let p_{Δ} be the least common multiple of p_j ($1 \leq j \leq c$).
- Then $\theta_{i+p_{\Delta}}^{+} = \theta_{i}^{+}$ holds for any $i \geq l_{\Delta}$. (5) $0 \to \mathcal{J}_{\text{lat }\Delta}^{i}(\ , \tau^{+}L) \to \mathcal{J}_{\text{lat }\Delta}^{i+1}(\ , \theta^{+}L) \to \mathcal{J}_{\text{lat }\Delta}^{i+2}(\ , L) \to 0$ is a split exact
- sequence for any $i \geq l_{\Delta}$. (6) $\mathbb{F}_{\Delta}(L) \oplus J_{\Gamma}^{-n-1} \mathbb{F}_{\Delta}(\tau^{+}\theta_{n-1}^{+}L)$ is isomorphic to $J_{\Gamma}^{-n} \mathbb{F}_{\Delta}(\theta_{n}^{+}L)$ for any n > 0.
- (7) Take $X_i \in F(\Delta)$. Then $\sum_{0 \le i \le p_{\Delta}} J_{\Gamma}^{-i} \mathbb{F}_{\Delta}(X_i) = 0$ holds if and only if $\sum_{0 \le i \le n_{\Delta}} \theta_{n-i}^{+} X_{i} = 0 \text{ holds for any } n \ge l_{\Delta} + p_{\Delta} - 1.$
- *Proof.* (1) Since $\operatorname{Hom}_{\Delta}(L, L') = \operatorname{Hom}_{\Lambda}(\mathbb{G}_{\Delta}(L), \mathbb{G}_{\Delta}(L'))$ is a full sub Rlattice of $\operatorname{Hom}_{\Lambda}(\Gamma \mathbb{G}_{\Delta}(L), \Gamma \mathbb{G}_{\Delta}(L')) = \operatorname{Hom}_{\Gamma}(\mathbb{F}_{\Delta}(L), \mathbb{F}_{\Delta}(L'))$, the first assertion follows. Since \mathbb{G}_{Δ} induces an equivalence $\operatorname{mod} \widetilde{\Delta} \to \operatorname{pr} \widetilde{\Lambda} = \operatorname{mod} \widetilde{\Lambda}$, the second assertion follows.
- (2) Since Γ is the filtering overorder of Λ , we obtain $\mathcal{J}_{\mathrm{pr}\,\Lambda}^i = \mathrm{pr}\,\Lambda \cap \mathcal{J}_{\mathrm{pr}\,\Gamma}^i =$ $\operatorname{pr}\Lambda \cap \mathcal{J}_{\operatorname{lat}\Gamma}^{i}$ for any $i \geq 0$. Since the equivalence $\mathbb{G}_{\Delta} : \operatorname{lat}\Delta \to \operatorname{pr}\Lambda$ induces an isomorphism $\mathcal{J}_{\operatorname{lat}\Delta}^{i} \to \mathcal{J}_{\operatorname{pr}\Lambda}^{i}$, we obtain $\mathcal{J}_{\operatorname{lat}\Delta}^{i} = \operatorname{lat}\Delta \cap \mathcal{J}_{\operatorname{lat}\Gamma}^{i}$.
- (3) $\{\mathbb{F}_{\Delta}(L_j)\}_{1\leq j\leq c}$ gives the set of isomorphism classes of simple $\widetilde{\Gamma}$ -modules by (1). Since Γ is hereditary, we obtain the assertion.
- (4) Since $\mathcal{J}_{\mathrm{lat}\,\Delta}^{i+p_{\Delta}}(\ ,L) = \mathrm{Hom}_{\Gamma}(\mathbb{F}_{\Delta}(\),J_{\Delta}^{i+p_{\Delta}}\mathbb{F}_{\Delta}(L)) \simeq \mathrm{Hom}_{\Gamma}(\mathbb{F}_{\Delta}(\),J_{\Delta}^{i+p_{\Delta}}\mathbb{F}_{\Delta}(L))$ $J_{\Delta}^{i}\mathbb{F}_{\Delta}(L)) = \mathcal{J}_{\text{lat}\,\Delta}^{i}(\cdot,L)$ holds by (2), we obtain the assertion by 2.3.1 (1). (5) It is exact for any $i \geq 0$ by 2.3.1 (1). On lat Δ , it is isomorphic
- to an sequence $\mathbf{X}: 0 \to \operatorname{Hom}_{\Gamma}(\cdot, J_{\Gamma}^{i} \mathbb{F}_{\Delta}(\tau^{+}L)) \to \operatorname{Hom}_{\Gamma}(\cdot, J_{\Gamma}^{i+1} \mathbb{F}_{\Delta}(\theta^{+}L)) \to$ Hom_{Γ} $(,J_{\Gamma}^{i+2}\mathbb{F}_{\Delta}(L)) \to 0$ by (2). By (3), **X** is exact on lat Γ . Since the functor $\operatorname{Hom}_{\Gamma}(,J_{\Gamma}^{i+2}\mathbb{F}_{\Delta}(L))$ is projective, **X** splits. Thus the assertion follows.

 (6) $\mathbb{F}_{\Delta}(L) \oplus J_{\Gamma}^{-2}\mathbb{F}_{\Delta}(\tau^{+}L)$ is isomorphic to $J_{\Gamma}^{-1}\mathbb{F}_{\Delta}(\theta^{+}L)$ by the proof of

- (5). Applying 2.3.1 (2) to $\mathbb{F}_{\Delta} \in \operatorname{Hom}_{\mathbb{Z}}(F(\Delta), F(\Gamma))$ and $J^{-1} \in \operatorname{End}_{\mathbb{Z}}(F(\Gamma))$ $(L \mapsto J_{\Gamma}^{-1}L)$, we obtain the assertion.
- (7) "if" part follows from (6) since $\sum_{i} J_{\Gamma}^{-i} \mathbb{F}_{\Delta}(X_{i}) = \sum_{i} (J_{\Gamma}^{-n} \mathbb{F}_{\Delta}(\theta_{n-i}^{+} X_{i}) J_{\Gamma}^{-n-1} \mathbb{F}_{\Delta}(\tau^{+} \theta_{n-i-1}^{+} X_{i})) = 0$. Conversely, put $X_{i} = L_{i} L'_{i} (L_{i}, L'_{i} \in \text{lat } \Delta)$ and assume $\bigoplus_{i} J_{\Gamma}^{-i} \mathbb{F}_{\Delta}(L_{i}) \simeq \bigoplus_{i} J_{\Gamma}^{-i} \mathbb{F}_{\Delta}(L'_{i})$. Then, for any $n \geq l_{\Delta} + p_{\Delta} 1$, we obtain $\bigoplus_{i} \mathcal{J}_{\text{lat } \Delta}^{n-i} (, L_{i}) = \bigoplus_{i} \mathcal{J}_{\text{lat } \Gamma}^{n} (\mathbb{F}_{\Delta}(), J_{\Gamma}^{-i} \mathbb{F}_{\Delta}(L_{i})) \simeq \bigoplus_{i} \mathcal{J}_{\text{lat } \Gamma}^{n} (\mathbb{F}_{\Delta}(), J_{\Gamma}^{-i} \mathbb{F}_{\Delta}(L_{i})) = \bigoplus_{i} \mathcal{J}_{\text{lat } \Delta}^{n-i} (, L'_{i}) \text{ by (2)}$. Thus $\bigoplus_{i} \theta_{n-i}^{+} L_{i} = \bigoplus_{i} \theta_{n-i}^{+} L'_{i} \text{ holds by } 2.3.1 (1)$.

2.5. Additive functions

We call $f \in \operatorname{Hom}_{\mathbb{Z}}(F(\Delta), \mathbb{Z})$ a right additive function (resp. left additive function) if $f\phi^+ = 0$ (resp. $f\phi^- = 0$) holds.

Corollary 2.5.1. Let Δ be an R-order of finite representation type with its filtering functor \mathbb{F}_{Δ} : lat $\Delta \to \operatorname{lat} \Gamma$. Define $J^{-1} \in \operatorname{End}_{\mathbb{Z}}(F(\Gamma))$ by $L \mapsto J_{\Gamma}^{-1}L$.

- (1) Let A be an abelian group, $f \in \operatorname{Hom}_{\mathbb{Z}}(F(\Delta), A)$ and $a \in \operatorname{End}_{\mathbb{Z}}(A)$. If $f af\theta^+ + a^2f\tau^+ = 0$ holds, then there exists a unique element $g \in \operatorname{Hom}_{\mathbb{Z}}(F(\Gamma), A)$ such that $f = g\mathbb{F}_{\Delta}$ and $gJ^{-1} = ag$.
- $(2)([\mathrm{II},4.1.1])$ Let $\{e_j\}_{1\leq j\leq c}$ be the complete set of central irreducible idempotents of $\widetilde{\Delta}$. Then $f\in\mathrm{Hom}_{\mathbb{Z}}(\mathrm{F}(\Delta),\mathbb{Z})$ is a right additive function if and only if $f(L)=\sum_{1\leq j\leq c}l_j\ln_{\widetilde{\Delta}}(\widetilde{L}e_j)$ for some $l_j\in\mathbb{Z}$ if and only if f is a left additive function.
- *Proof.* (1) Take $X_i \in \mathcal{F}(\Delta)$. If $\sum_{0 \leq i < p_{\Delta}} J_{\Gamma}^{-i} \mathbb{F}_{\Delta}(X_i) = 0$ holds, then $\sum_{0 \leq i < p_{\Delta}} a^i f(X_i) = \sum_{0 \leq i < p_{\Delta}} (a^n f \theta_{n-i}^+ X_i a^{n+1} f \tau^+ \theta_{n-i-1}^+ X_i) = 0$ holds by 2.3.1 (2) and 2.4 (7). Hence, by 2.4 (3), $g \in \operatorname{Hom}_{\mathbb{Z}}(\mathcal{F}(\Gamma), A)$ is well defined by $g(\sum_{0 \leq i < p_{\Delta}} J_{\Gamma}^{-i} \mathbb{F}_{\Delta}(X_i)) := \sum_{0 \leq i < p_{\Delta}} a^i f(X_i)$. Then g is a unique element which satisfies the desired properties.
- (2) We only have to show the "only if" part of the first equivalence. By (1), there exists $g \in \operatorname{Hom}_{\mathbb{Z}}(\mathcal{F}(\Gamma), \mathbb{Z})$ such that $f = g\mathbb{F}_{\Delta}$ and $gJ^{-1} = g$. Take $L_j \in \operatorname{ind}(\Gamma e_j)$ and put $l_j := f(L_j)$. Then $gJ^{-1} = g$ implies that $g(L) = \sum_{1 \leq j \leq c} l_j \operatorname{len}_{\widetilde{\Gamma}}(\widetilde{L}e_j)$ holds for any $L \in \operatorname{lat}\Gamma$. By 2.4 (1), f has the desired form.
- **Remark 2.5.2.** Above (2) shows that the triple $(\mathbb{F}_{\Delta}, F(\Gamma), J^{-1})$ gives an initial object of the category $\mathcal{C}(F(\Delta); 1, -\theta^+, \tau^+)$, which is defined by (1) below. In particular, we can construct the triple $(\mathbb{F}_{\Delta}, F(\Gamma), J^{-1})$ by the manner in (2) below.
- (1) Let F be an abelian group and $\eta_i \in \operatorname{End}_{\mathbb{Z}}(F)$ $(0 \leq i \leq n)$. Define a category $C = C(F; \eta_0, \dots, \eta_n)$ as follows. An object is (f, A, a), where A is an abelian group, $f \in \operatorname{Hom}_{\mathbb{Z}}(F, A)$, $a \in \operatorname{End}_{\mathbb{Z}}(A)$ such that $\sum_{0 \leq i \leq n} a^i f \eta_i = 0$. Put $\operatorname{Hom}((f, A, a), (f', A', a')) := \{g \in \operatorname{Hom}_{\mathbb{Z}}(A, A') \mid f' = gf, \ ga = a'g\}$.
 - (2) \mathcal{C} has an initial object (f_F, \widehat{F}, a_F) defined as follows.

Define $a_F \in \operatorname{End}_{\mathbb{Z}}(\bigoplus_{i \geq 0} F)$ and a subgroup G of $\bigoplus_{i \geq 0} F$ by $a_F(x_0, x_1, \dots)$:= $(0, x_0, x_1, \dots)$ and $G := \sum_{x \in F, i \geq 0} a_F^i(\eta_0(x), \eta_1(x), \dots, \eta_n(x), 0, 0, \dots)$. Put $\widehat{F} := (\bigoplus_{i \geq 0} F)/G$ and $f_F(x) := (x, 0, 0, \dots)$. Then, for any $(f, A, a) \in \mathcal{C}$, it is easy to show that $\operatorname{Hom}((f_F, \widehat{F}, a_F), (f, A, a))$ is a singleton set $\{g\}$, where g is defined by $g(x_0, x_1, \ldots) := \sum_{i>0} a^i f(x_i)$.

2.6. Appendix: Grothendieck groups

We denote by $K_0(\mathcal{C})$ the Grothendieck group of an abelian category \mathcal{C} , and by $\operatorname{fl} \operatorname{mod} \Delta$ the category of finite length Δ -modules. It was well known (eg. [AR]) that there exists an exact sequence $(*): K_0(\operatorname{fl} \operatorname{mod} \Delta) \xrightarrow{K_0(\mathbb{I})} K_0(\operatorname{mod} \Delta) \to K_0(\operatorname{mod} \widetilde{\Delta}) \to 0$ of Grothendieck groups. When Δ is of finite representation type, a main result of [W] gave an explicit description of the kernel of $K_0(\mathbb{I})$. The following 2.6.1 shows that his result holds for any order Δ .

On the other hand, when Δ is of finite representation type, 2.6.2 gives a connection between each terms in (*) and $F(\Delta)$, ϕ^+ etc. In particular, it gives another proof of 2.5.1 (2).

2.6.1. A bounded complex $\mathbf{X}: \cdots \to X_{i-1} \stackrel{d_{i-1}}{\to} X_i \stackrel{d_i}{\to} X_{i+1} \to \cdots$ on lat Δ is called *rationally exact* if the induced complex $\widetilde{\mathbf{X}}: \cdots \to \widetilde{X}_{i-1} \stackrel{\widetilde{d}_{i-1}}{\to} \widetilde{X}_i \stackrel{\widetilde{d}_i}{\to} \widetilde{X}_i \stackrel{\widetilde{d}$

Proposition. Let Δ be an R-order in a semisimple \widetilde{R} -algebra $\widetilde{\Lambda}$. Then the natural inclusion $\mathbb{I}: \operatorname{fl} \operatorname{mod} \Delta \to \operatorname{mod} \Delta$ and $\mathbb{J}:= \widetilde{(\)}: \operatorname{mod} \Delta \to \operatorname{mod} \widetilde{\Delta}$ induce the following exact sequence.

$$0 \to Z \to K_0(\operatorname{fl} \operatorname{mod} \Delta) \xrightarrow{K_0(\mathbb{I})} K_0(\operatorname{mod} \Delta) \xrightarrow{K_0(\mathbb{J})} K_0(\operatorname{mod} \widetilde{\Delta}) \to 0$$

Thus $K_0(\text{mod}\Delta)$ is isomorphic to $K_0(\text{mod}\widetilde{\Delta}) \oplus K_0(\text{fl mod}\Delta)/Z$. Moreover, $Z = \langle [M] \rangle_{M \in \text{fl mod}\Omega}$ holds for any maximal overorder Ω of Δ .

Proof. (i) Assume that $[M]-[M'] \in \operatorname{Ker} K_0(\mathbb{J})$ holds for $M, M' \in \operatorname{mod} \Delta$. Then \widetilde{M} is isomorphic to \widetilde{M}' since $\widetilde{\Delta}$ is semisimple. Hence there exists an exact sequence $0 \to M' \to M \to M'' \to 0$ such that $M'' \in \operatorname{fl} \operatorname{mod} \Delta$. Thus $[M]-[M']=[M'']\in \operatorname{Im} K_0(\mathbb{I})$. Moreover, $\langle [M]\rangle_{M\in\operatorname{fl} \operatorname{mod} \Omega}\subseteq \operatorname{Ker} K_0(\mathbb{I})$ holds since the Ω -projective resolution of M has the form $0 \to P \to P \to M \to 0$. Now, we will show $\operatorname{Ker} K_0(\mathbb{I}) \subset Z$.

Assume $[M]-[M'] \in \operatorname{Ker} K_0(\mathbb{I})$ holds for $M, M' \in \operatorname{fl} \mod \Delta$. By definition, we can easily obtain an exact sequence $\mathbf{X}: 0 \to X_1 \to X_2 \to X_3 \to X_4 \to 0$ in $\operatorname{mod} \Delta$ such that $X_1 \oplus X_3 \oplus M$ is isomorphic to $X_2 \oplus X_4 \oplus M'$. Let $\mathbb{T}: \operatorname{mod} \Delta \to \operatorname{fl} \operatorname{mod} \Delta$ be the functor such that $\mathbb{T}(X)$ is the torsion submodule of $X \in \operatorname{mod} \Delta$, and $\mathbb{L}: \operatorname{mod} \Delta \to \operatorname{lat} \Delta$ the functor defined by $\mathbb{L}(X) := X/\mathbb{T}(X)$. Since $\mathbb{T}(X_1) \oplus \mathbb{T}(X_3) \oplus M$ is isomorphic to $\mathbb{T}(X_2) \oplus \mathbb{T}(X_4) \oplus M'$, we obtain $H(\mathbb{T}(\mathbf{X})) = [M] - [M']$. Since we have an exact sequence $0 \to \mathbb{T}(\mathbf{X}) \to \mathbf{X} \to \mathbb{L}(\mathbf{X}) \to 0$ of complexes, we obtain $[M] - [M'] = H(\mathbb{T}(\mathbf{X})) - H(\mathbf{X}) = -H(\mathbb{L}(\mathbf{X}))$. Thus the assertion follows since $\mathbb{L}(\mathbf{X})$ is a rationally exact complex satisfying $\mathbb{L}(X_1) \oplus \mathbb{L}(X_3) \simeq \mathbb{L}(X_2) \oplus \mathbb{L}(X_4)$.

(ii) We will show $Z \subseteq \langle [M] \rangle_{M \in \mathrm{fl} \bmod \Omega}$ for any maximal overorder Ω of Δ . Let \mathbf{X} be a rationally exact bounded complex on lat Δ such that $\bigoplus_{i \in \mathbb{Z}} X_{2i}$ is isomorphic to $\bigoplus_{i \in \mathbb{Z}} X_{2i-1}$. Let $\Omega \mathbf{X}$ be the complex $\cdots \to \Omega X_i \stackrel{d_i}{\to} \Omega X_{i+1} \to \cdots$, and \mathbf{Y} the complex $\cdots \to \Omega X_i/X_i \stackrel{d_i}{\to} \Omega X_{i+1}/X_{i+1} \to \cdots$. Since $\bigoplus_{i \in \mathbb{Z}} \Omega X_{2i}/X_{2i}$ is isomorphic to $\bigoplus_{i \in \mathbb{Z}} \Omega X_{2i-1}/X_{2i-1}$, we obtain $H(\mathbf{Y}) = 0$. Since we have an exact sequence $0 \to \mathbf{X} \to \Omega \mathbf{X} \to \mathbf{Y} \to 0$ of complexes, we obtain $H(\mathbf{X}) = H(\Omega \mathbf{X}) - H(\mathbf{Y}) = H(\Omega \mathbf{X}) \in \langle [M] \rangle_{M \in \mathrm{fl} \bmod \Omega}$.

Proposition 2.6.2. Let Δ be an R-order of finite representation type. Then we have the following commutative diagram of exact sequences whose vertical maps are isomorphisms.

Proof. Define f_i (i = 0, 1, 2) by $f_2(L) := [L/J_{\Delta}L]$, $f_1(L) := [L]$ and $f_0(L) := [\widetilde{L}]$. Clearly f_2 is an isomorphism, and f_1 is an isomorphism by [AR, 1.1 Chapter 2]. Thus f_0 is also an isomorphism.

2.7. We state a result concerning structure of orders of finite representation type (cf. [I3, 3.3]). We call a filtration ($\Omega = I_0 \supseteq I_{-1} \supseteq I_{-2} \supseteq \cdots$) of a hereditary order Ω almost J-adic if there exists another hereditary order Γ , an idempotent e of Γ and an R-algebra isomorphism $f: e\Gamma e \to \Omega$ such that $I_i = f(eJ_{\Gamma}^{-i}e)$ holds for any $i \leq 0$.

Corollary. Let R be a complete discrete valuation ring with a residue field k, k[[t]] the formal power series ring and Δ an R-order of finite representation type. Then there exists a hereditary overorder Ω of Δ and an almost J-adic filtration $\{I_i\}_{i\leq 0}$ of Ω such that $\Delta' := \prod_{i\leq 0} (\Delta \cap I_i/\Delta \cap I_{i-1})$ is a k[[t]]-order whose Auslander-Reiten quiver coincides with that of Δ .

Proof. Let Λ be the Auslander order of Δ and Γ the filtering overorder of Λ . Then there exists an idempotent e of Λ such that $e\Lambda e = \Delta$. Putting $\Omega := e\Gamma e$ and $I_i := eJ_{\Gamma}^{-i}e$, we obtain the assertion by 2.2.1.

Examples 2.8. (1) Let $\Delta := \begin{pmatrix} \Omega & \Omega \\ J^n & \Omega \end{pmatrix}$ (n = 2m - 1 > 0), where Ω is a local maximal order with the radical J. Then ind $\Delta = \{\begin{pmatrix} \Omega \\ J^j \end{pmatrix}\}_{0 \leq j \leq n}$ holds. The

Auslander order Λ of Δ and the filtering overorder Γ of Λ are the following.

$$\begin{pmatrix}
\Omega & \Omega & \Omega & \cdots & \Omega & \Omega & \Omega \\
J & \Omega & \Omega & \cdots & \Omega & \Omega & \Omega \\
J^2 & J & \Omega & \cdots & \Omega & \Omega & \Omega \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
J^{n-2} & J^{n-3} & J^{n-4} & \cdots & \Omega & \Omega & \Omega \\
J^{n-1} & J^{n-2} & J^{n-3} & \cdots & J & \Omega & \Omega \\
J^n & J^{n-1} & J^{n-2} & \cdots & J^2 & J & \Omega
\end{pmatrix}$$

$$\subset \begin{pmatrix} \Omega & \Omega & J^{-1} & \cdots & J^{2-m} & J^{1-m} & J^{1-m} \\ J & \Omega & \Omega & \cdots & J^{2-m} & J^{2-m} & J^{1-m} \\ J & J & \Omega & \cdots & J^{3-m} & J^{2-m} & J^{2-m} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ J^{m-1} & J^{m-2} & J^{m-2} & \cdots & \Omega & \Omega & J^{-1} \\ J^{m-1} & J^{m-1} & J^{m-2} & \cdots & J & \Omega & \Omega \\ J^{m} & J^{m-1} & J^{m-1} & \cdots & J & J & \Omega \end{pmatrix}$$

Thus Γ is Morita equivalent to $\begin{pmatrix} \Omega & \Omega \\ J & \Omega \end{pmatrix}$. Put $L_{even} := \bigoplus_{0 \leq j < m} \begin{pmatrix} \Omega \\ J^{2j} \end{pmatrix}$ and $L_{odd} := \bigoplus_{0 < j \leq m} \begin{pmatrix} \Omega \\ J^{2j-1} \end{pmatrix}$. Then, for sufficiently large i, it can be checked that $\theta_i^+ \begin{pmatrix} \Omega \\ J^i \end{pmatrix} = L_{even}$ (resp. L_{odd}) holds if i + j is even (resp. odd).

(2) Let $\{\Xi_j\}_{0\leq j\leq n}$ be a local Bass chain of type(IVa) ([HN1]) and $\Delta:=\Xi_n$ (n=2m-1>0). Then ind $\Delta=\{\Xi_j\}_{0\leq j\leq n}$ holds. The Auslander order Λ of Δ is the following order $(J_{\Xi_n}=\Xi_{n-1}x=x\Xi_{n-1})$, and the filtering order Γ of Λ is the same order as in (1) above $(\Omega:=\Xi_0)$.

$$\Lambda = \begin{pmatrix} \Xi_n & \Xi_{n-1} & \Xi_{n-2} & \cdots & \Xi_2 & \Xi_1 & \Xi_0 \\ \Xi_{n-1}x & \Xi_{n-1} & \Xi_{n-2} & \cdots & \Xi_2 & \Xi_1 & \Xi_0 \\ \Xi_{n-2}x^2 & \Xi_{n-2}x & \Xi_{n-2} & \cdots & \Xi_2 & \Xi_1 & \Xi_0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \Xi_2x^{n-2} & \Xi_2x^{n-3} & \Xi_2x^{n-4} & \cdots & \Xi_2 & \Xi_1 & \Xi_0 \\ \Xi_1x^{n-1} & \Xi_1x^{n-2} & \Xi_1x^{n-3} & \cdots & \Xi_1x & \Xi_1 & \Xi_0 \\ \Xi_0x^n & \Xi_0x^{n-1} & \Xi_0x^{n-2} & \cdots & \Xi_0x^2 & \Xi_0x & \Xi_0 \end{pmatrix}$$

Put $L_{even} := \Xi_0 \oplus (\bigoplus_{0 < j < m} \Xi_{2j}^2)$ and $L_{odd} := \bigoplus_{0 < j \le m} \Xi_{2j-1}^2$. Then, for sufficiently large i, it can be checked that $\theta_i^+ \Xi_j = L_{even}$ (resp. L_{odd}) holds if i + j is even (resp. odd).

(3) In this example, we will compute the filtering functor \mathbb{F}_{Δ} : lat $\Delta \to \text{lat }\Gamma$ without considering the Auslander order. Let $\{\Xi_j\}_{0 \le j \le n}$ be a local Bass chain of type(IVa) again, Ω a local maximal order and $f: \Omega/J_{\Omega} \to \Xi_n/J_{\Xi_n}$ an R-algebra isomorphism. Put $\Delta = \Delta_n := \{(x,y) \in \Omega \times \Xi_n \mid f(\overline{x}) = \overline{y}\}$ (n = 2m - 1 > 0). Then Δ is an order of finite representation type with the

following Auslander-Reiten quiver ([HN2]).

It is easily checked that $(\theta_i^+\Omega)_{i\geq 0}$ has the following period (1) of length 4n, and $(\theta_i^+\Xi_n)_{i\geq 0}$ has the following period (2) of length 4 for sufficiently large i. Hence Γ is Morita equivalent to $T_{4n}(\Omega) \times T_4(\Xi_0)$ (1.1.1 (2)) by 2.4 (3).

$$(1) \begin{array}{l} (\theta_i^+\Omega)_{0 \le i < 4n} \\ = (\Omega, \Delta_n^*, L_{n-1}, \Delta_{n-1}^*, \dots, L_1, \Delta_1^*, L_0, \Delta_1, L_1, \dots, L_{n-2}, \Delta_{n-1}, L_{n-1}, \Delta_n) \end{array}$$

(2)
$$\begin{array}{|c|c|c|c|c|}\hline i \pmod 4 & \theta_i^+\Xi_n \\\hline 0 & (\oplus_{0\leq j< m}\Xi_{n-2j}^2) \oplus (\oplus_{0< j< m}L_{n-2j+1}^2) \oplus L_0 \\ 1 & (\oplus_{0\leq j< m}\Delta_{n-2j}^2) \oplus (\oplus_{0< j< m}\Delta_{n-2j+1}^{*2}) \\ 2 & (\oplus_{0< j< m}L_{n-2j}^2) \oplus (\oplus_{0< j< m}\Xi_{n-2j+1}^2) \oplus \Xi_0 \\ 3 & (\oplus_{0\leq j< m}\Delta_{n-2j}^{*2}) \oplus (\oplus_{0< j< m}\Delta_{n-2j+1}^2) \end{array}$$

Putting $P:=\mathbb{F}_{\Delta}(\Omega)$ and $Q:=\mathbb{F}_{\Delta}(\Xi_n)$, we can obtain the following list of \mathbb{F}_{Δ} by using $\mathbb{F}_{\Delta}(L) \oplus J_{\Gamma}^{-2}\mathbb{F}_{\Delta}(\tau^+L) \simeq J_{\Gamma}^{-1}\mathbb{F}_{\Delta}(\theta^+L)$ (2.4 (6)) repeatedly.

$\mathbb{F}_{\Delta}(\Xi_{n-i})$	$\mathbb{F}_{\Delta}(\Delta_{n-i})$	$\mathbb{F}_{\Delta}(\Delta_{n-i}^*)$	$\mathbb{F}_{\Delta}(L_{n-i})$
$J_{\Gamma}^{2i}Q$	$J_{\Gamma}^{-2i-1}P \oplus J_{\Gamma}^{2i+1}Q$	$J_{\Gamma}^{2i+1}P\oplus J_{\Gamma}^{-2i-1}Q$	$J_{\Gamma}^{2i}P \oplus J_{\Gamma}^{-2i}P \oplus J_{\Gamma}^{2i+2}Q$

Added in proof: Professor W. Rump kindly informed the author that 2.6.1 was given in his paper [R, Proposition 10.2].

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY KYOTO 606-8502, JAPAN e-mail: iyama@kusm.kyoto-u.ac.jp

CURRENT ADDRESS:

DEPARTMENT OF MATHEMATICS HIMEJI INSTITUTE OF TECHNOLOGY HIMEJI, 671-2201, JAPAN e-mail: iyama@sci.himeji-tech.ac.jp

References

[AF] F. W. Anderson and K. R. Fuller, Rings and categories of modules, Graduate text in mathematics 13, Springer-Verlag.

- [AR] M. Auslander and I. Reiten, Grothendieck groups of algebras and orders, J. Pure Appl. Algebra, **39**-1, 2 (1986), 1–51.
- [ARS] M. Auslander, I. Reiten and S. Smalo, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics 36, Cambridge University Press, 1995.
- [ARo] M. Auslander and K. W. Roggenkamp, A characterization of orders of finite lattice type, Invent. Math., 17 (1972), 79–84.
- [BG] K. Bongartz and P. Gabriel, Covering spaces in representation-theory. Invent. Math., **65**-3 (1981/82), 331–378.
- [BGRS] R. Bautista, P. Gabriel, A. V. Roĭter and L. Salmerón, L, Representation-finite algebras and multiplicative bases, Invent. Math., 81-2 (1985), 217–285.
- [CR] C. W. Curtis and I. Reiner, Methods of representation theory. Vol. I. With applications to finite groups and orders, Reprint of the 1981 original, Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1990.
- [HN1] H. Hijikata and K. Nishida, Classification of Bass orders, J. Reine Angew. Math., 431 (1992), 191–220.
- [HN2] H. Hijikata and K. Nishida, Primary orders of finite representation type, J. Algebra, **192**-2 (1997), 592–640.
- [I1] O. Iyama, Some categories of lattices associated to a central idempotent, J. Math. Kyoto Univ., **38**-3 (1998), 487–501.
- [I2] O. Iyama, τ -categories I: Ladders, to appear in Algebras and Representation theory.
- [I3] O. Iyama, τ -categories III: Auslander orders and Auslander-Reiten quivers, to appear in Algebras and Representation theory.
- [IT] K. Igusa and G. Todorov, A characterization of finite Auslander-Reiten quivers, J. Algebra, 89-1 (1984), 148–177.
- [R] W. Rump, Irreduzible und unzerlegbare Darstellungen Klassischer Ordnungen, Bayreuther Math. Schr., **32** (1990), 1–405.
- [RR] C. M. Ringel and K. W. Roggenkamp, Diagrammatic methods in the representation theory of orders, J. Algebra, **60**-1 (1979), 11–42.
- [RV] I. Reiten and M. Van den Bergh, Two-dimensional tame and maximal orders of finite representation type, Mem. Amer. Math. Soc. 80, 1989.
- [W] A. Wiedemann, The Grothendieck group of a classical order of finite lattice type, Illinois J. Math., **31**-2 (1987), 208–217.