Topological characterization of extensor product on BSO

By

Daisuke KISHIMOTO

1. Introduction

This paper is a serial work from [1] and [2]. In [1] we characterize the map $\hat{\otimes}_{\mathbb{C}} : \mathrm{BU} \wedge \mathrm{BU} \to \mathrm{BU}$ which is induced from the extensor product of complex bundles. The crucial point of this characterization is that $[\mathrm{BU} \wedge \mathrm{BU}, \mathrm{BU}]_*$ is a free \mathbb{Z} -module and $\tilde{K}(\mathrm{BU} \wedge \mathrm{BU}) \otimes \mathbb{Q} = [\mathrm{BU} \wedge \mathrm{BU}, \mathrm{BU}]_* \otimes \mathbb{Q} \cong H^*(\mathrm{BU} \wedge \mathrm{BU}; \mathbb{Q})$. Noticing these facts, $\hat{\otimes}_{\mathbb{C}} : \mathrm{BU} \wedge \mathrm{BU} \to \mathrm{BU}$ can be characterized by the informations of integral cohomology, so that we can use Chern character.

The case of BSO is a little more complicated than that of BU because $H^*(BSO; \mathbb{Z})$ has torsion. But this will be overcome by the striking fact that $[BSO \wedge BSO, BSO]_*$ is a free \mathbb{Z} -module shown in Section 2. Then we can characterize the map $\hat{\otimes}_{\mathbb{R}} : BSO \wedge BSO \to BSO$, which is induced from the extensor product of oriented real bundles, by the informations of $[BSO \wedge BSO, BSO]_* \otimes \mathbb{Q} \cong H^*(BSO \wedge BSO; \mathbb{Q})$, which is obtained by the universality of the localization of H-spaces and that $BSO_{(0)} \simeq \prod_n K(\mathbb{Q}, 4n)$.

Precisely the way of characterization is as follows. We consider a Hopf space X equivalent to BSO and a map $\tilde{\lambda} : X \wedge X \to X$ which holds some of the cohomological properties of $\hat{\otimes}_{\mathbb{R}} : BSO \wedge BSO \to BSO$. Then we can construct another Hopf equivalence $g' : X \to BSO$ which satisfies the following homotopy commutative diagram.

$$\begin{array}{ccc} X \land X & \xrightarrow{g' \land g'} & \text{BSO} \land \text{BSO} \\ \bar{\lambda} & & & & \downarrow \hat{\otimes}_{\mathbb{R}} \\ X & \xrightarrow{g'} & \text{BSO} \end{array}$$

2. Main theorem

We need some notations to state the main theorem and related lemmas clearly.

Received April 4, 2001 Revised August 2, 2001

We denote $H^*(\cdot;\mathbb{Z})/\text{Tor}$ by $h^*(\cdot)$. Let ξ be the virtual vector bundle on BSO represented by $[\iota] \in [BSO, BO]_* = \widetilde{KO}(BSO)$, where $\iota : BSO \to BO$ is the natural inclusion. We know that $h^*(BSO) = \mathbb{Z}[p_1, p_2, \ldots]$, where p_i is the i-th Pontryagin class of ξ . Let t_n be the *n*-th power sum in $\{p_i\}$.

Now we state the key lemmas.

Lemma 2.1. $[BSO \land BSO, BSO]_*$ is a free \mathbb{Z} -module.

Proof. It is shown in [3] for a compact Lie group G that:

$$KO(BG) \cong RO(G)^{\wedge},$$

where RO(G) is a real representation ring of G, $RO(G)^{\wedge}$ is I(G)-adic completion of RO(G) and $I(G) = \ker\{\deg : RO(G) \to \mathbb{Z}\}.$

It is also shown in [4, p. 94] that $RO(SO(2n + 1)) \cong \mathbb{Z}[\lambda_1, \lambda_2, \dots, \lambda_n]$, where deg $\lambda_i = 0$ and deg 1 = 1. Therefore we have $\widetilde{KO}(BSO \times BSO) = [BSO \times BSO, BO]_*$ is a free \mathbb{Z} -module by the following.

$$KO(BSO \times BSO) = \lim_{\leftarrow} KO(BSO(2n+1) \times BSO(2n+1))$$
$$= \lim_{\leftarrow} RO(SO(2n+1) \times SO(2n+1))^{\wedge}$$

Since BO \simeq BSO $\times \mathbb{R}P^{\infty}$ and $[BSO, \mathbb{R}P^{\infty}]_* \cong H^1(BSO; \mathbb{Z}_2) = 0$, we have $[BSO \times BSO, BO]_* \cong [BSO \times BSO, BSO, BSO \times \mathbb{R}P^{\infty}]_* \cong [BSO \times BSO, BSO]_*$. Hence $[BSO \times BSO, BSO]_*$ is a free \mathbb{Z} -module. Then $[BSO \wedge BSO, BSO]_*$ is submodule of $[BSO \times BSO, BSO]_*$, so that we have $[BSO \wedge BSO, BSO]_*$ is a free \mathbb{Z} -module.

Lemma 2.2.

$$\hat{\otimes}_{\mathbb{R}}^{*}(t_{n}) = 2\sum_{i=1}^{n-1} \binom{2n}{2i} t_{i} \otimes t_{n-i} \in h^{*}(BSO \land BSO)$$

Proof. We have the following relation for a real vector bundle η .

$$\hat{\otimes}^*_{\mathbb{C}}(\eta \otimes_{\mathbb{R}} \mathbb{C}) = (\eta \otimes_{\mathbb{R}} \mathbb{C}) \hat{\otimes}_{\mathbb{C}}(\eta \otimes_{\mathbb{R}} \mathbb{C})$$
$$= (\eta \hat{\otimes}_{\mathbb{R}} \eta) \otimes_{\mathbb{R}} \mathbb{C}$$
$$= (\hat{\otimes}^*_{\mathbb{R}} \eta) \otimes_{\mathbb{R}} \mathbb{C}$$

Let $s_n(\zeta)$ be the *n*-th power sum in Chern classes of a complex bundle ζ . By considering the above relation and Chern character, we obtain the below.

$$s_n((\hat{\otimes}_{\mathbb{R}}^* \eta) \otimes_{\mathbb{R}} \mathbb{C}) = \sum_{i=1}^{n-1} \binom{n}{i} s_i(\eta \otimes_{\mathbb{R}} \mathbb{C}) \otimes s_{n-i}(\eta \otimes_{\mathbb{R}} \mathbb{C})$$

Since $s_{2n-1}(\eta \otimes_{\mathbb{R}} \mathbb{C}) = 0$ and $s_{2n}(\eta \otimes_{\mathbb{R}} \mathbb{C}) = (-1)^n 2t_n$ in $h^*(BSO)$, we obtain the equation in the statement.

Now we come to state the main theorem.

Theorem 2.1. Let $\mu : X \times X \to X$ be a Hopf space which is of finite type CW-complex and has a Hopf equivalence $g : X \to BSO$. Suppose there exists a map $\lambda : X \wedge X \to X$ holding the following properties.

(1) $\lambda^* : Qh^n(X) \to h^n(X^{(4)} \wedge X)$ is split monic (n > 4), where $X^{(4)}$ is 4-skeleton of X and λ is the restriction of $\tilde{\lambda}$ to $X^{(4)} \wedge X$.

(2) The torsion part of coker $\{\lambda^* : Qh^{4n}(X) \to h^{4n}(X^{(4)} \land X)\}$ is isomorphic to \mathbb{Z}_{2n-1} (n > 1).

(3) $\tilde{\lambda} \circ T \simeq \tilde{\lambda}$, where $T: X \wedge X \to X \wedge X$ is the twisting map.

(4) $\tilde{\lambda} \circ (1 \wedge \tilde{\lambda}) \simeq \tilde{\lambda} \circ (\tilde{\lambda} \wedge 1)$

(5) The following diagram is homotopy commutative, where \triangle is the diagonal map.

Then there exists another Hopf equivalence $g' : X \to BSO$ which satisfies the following homotopy commutative diagram.

$$\begin{array}{ccc} X \land X & \xrightarrow{g' \land g'} & \text{BSO} \land \text{BSO} \\ \tilde{\lambda} & & & & \downarrow \hat{\otimes}_{\mathbb{R}} \\ X & \xrightarrow{g'} & \text{BSO} \end{array}$$

Proof. By Lemma 2.1 we only need to construct a Hopf equivalence $g' : X \to BSO$ which satisfies the following.

$$[\hat{\otimes}_{\mathbb{R}} \circ (g' \wedge g')] = [g' \circ \tilde{\lambda}] \in [X \wedge X, BSO]_* \otimes \mathbb{Q}$$

This is equal to saying the following for all n.

$$(\hat{\otimes}_{\mathbb{R}} \circ (g' \wedge g'))^*(p_n) = (g' \circ \hat{\lambda})^*(p_n) \in H^{4n}(X \wedge X; \mathbb{Q})$$

Therefore we will construct another Hopf equivalence $g': X \to BSO$ which satisfies the following for all n.

$$(\hat{\otimes}_{\mathbb{R}} \circ (g' \wedge g'))^*(p_n) = (g' \circ \tilde{\lambda})^*(p_n) \in h^{4n}(X \wedge X)$$

Let x_n and u_n be $g^*(p_n)$ and $g^*(t_n)$. We know that t_n is a generator of $Ph^{4n}(X)$.

First of all we calculate $\lambda^*(t_n) \in h^{4n}(X^{(4)} \wedge X)$. Since $h^4(X^{(4)})$ is a free \mathbb{Z} -module generated by u_1 and $h^n(X^{(4)}) = 0$ $(n \neq 0, 4)$, there exists a unique

element $v_{n-1} \in h^{4n-4}(X)$ such that $\lambda^*(u_n) = u_1 \otimes v_{n-1} \in h^{4n}(X^{(4)} \wedge X)$. By property 5 we can calculate $\lambda^*(u_n) \in h^{4n}(X^{(4)} \wedge X)$ as follows.

Then we see that v_{n-1} is primitive. Since u_{n-1} is a generator of $Ph^{4n-4}(X)$ and $\lambda^*(u_n) = \pm 2n\lambda^*(x_n)$, we obtain the following by properties 1 and 2.

$$\lambda^*(u_n) = \epsilon_n 2n(2n-1)u_1 \otimes u_{n-1} \in h^{4n}(X^{(4)} \wedge X),$$

where $\epsilon_n = \pm 1$.

Note that $\wp^1 s_{2n} \equiv 2ns_{2n+p-1} \mod p$. Then we obtain the following by naturality of \wp^1 .

$$\wp^1 u_n \equiv 2nu_{n+(p-1)/2} \mod p$$

$$\epsilon_n 2n(2n-1)(2n-2)u_1 \otimes u_{n-1+(p-1)/2}$$

$$\equiv \wp^1(\epsilon_n 2n(2n-1)u_1 \otimes u_{n-1})$$

$$\equiv \wp^1 \lambda^*(u_n)$$

$$\equiv \lambda^*(\wp^1 u_n)$$

$$\equiv \lambda^*(2nu_{n+(p-1)/2})$$

$$\equiv \epsilon_{n+(p-1)/2} 2n(2n+p-1)(2n+p-2)u_1 \otimes u_{n-1+(p-1)/2} \mod p$$

Then we obtain the following relations.

$$n(n-1)(2n-1)\epsilon_n \equiv n(n-1)(2n-1)\epsilon_{n+(p-1)/2} \mod p$$

$$n(2n-1)(2n+1)\epsilon_n \equiv n(2n-1)(2n+1)\epsilon_{n-(p-1)/2} \mod p$$

When n is even, there exists an odd prime p greater than 3 which divides either n-1 or n+1. Note that $3\epsilon_2 \equiv 3\epsilon_4 \pmod{5}$, that is $\epsilon_2 = \epsilon_4$. Then we obtain $\epsilon_2 = \epsilon_4 = \epsilon_6 = \cdots$ by induction using the following.

$$3\epsilon_n \equiv 3\epsilon_{n-(p-1)/2} \mod p$$
 if $p|n-1$ or $p|n+1$

When n is odd, we can choose prime p greater than 2n-1 and equal to 4N-1for some N. Then we have the following.

$$\epsilon_n \equiv \epsilon_{n+(p-1)/2} \equiv \epsilon_{n+2N-1} \mod p$$

Therefore we obtain $\epsilon_2 = \epsilon_3 = \epsilon_4 = \epsilon_5 = \cdots$.

We set a new Hopf equivalence $g': X \to BSO$ as follows, where $I : BSO \to BSO$ is the homotopy inverse map.

$$g' = \begin{cases} g, & \epsilon_n = 1\\ I \circ g, & \epsilon_n = -1 \end{cases}$$

Let x'_n and u'_n be ${g'}^*(p_n)$ and ${g'}^*(t_n)$. It is easily verified the below.

$$\lambda^*(u'_n) = 2n(2n-1)u'_1 \otimes u'_{n-1} \in h^{4n}(X^{(4)} \wedge X)$$

Next we calculate the $h^{4j}(X) \otimes h^{4n-4j}(X)$ -part of $\tilde{\lambda}^*(u'_n) \in h^{4n}(X \wedge X)$. Let $\alpha_1, \ldots, \alpha_l$ be basis of $h^{4j}(X)$ and the $h^{4j}(X) \otimes h^{4n-4j}(X)$ -part of $\tilde{\lambda}^*(u'_n)$ be $\sum_{k=1}^{l} \alpha_k \otimes w_{k,n}$, where $w_{k,n} \in h^{4n-4j}(X)$. Similar to the case of $\lambda^*(u_n) \in h^{4n}(X^{(4)} \wedge X)$, we see that $w_{k,n}$ is primitive, that is $w_{k,n} = \delta_k u'_{n-j}$ for some $\delta_k \in \mathbb{Z}$. Therefore we obtain the $h^{4j}(X) \otimes h^{4n-4j}(X)$ -part of $\tilde{\lambda}^*(u'_n) \in h^{4n}(X \wedge X)$ is $(\sum_{k=1}^{l} \delta_k \alpha_k) \otimes u'_{n-j}$.

By property 3 we see that $\sum_{k=1}^{l} \delta_k \alpha_k$ is also primitive. Therefore we obtain the following.

$$\tilde{\lambda}^*(u'_n) = \sum_{j=1}^{n-1} \delta_{n,j} u'_j \otimes u'_{n-j} \in h^{4n}(X \wedge X),$$

where $\delta_{n,j} \in \mathbb{Z}$ and $\delta_{n,1} = \delta_{1,n} = 2n(2n-1)$.

By property 4 we have the equations below.

coefficient of $u'_1 \otimes u'_1 \otimes u'_{n-2} = \delta_{n,1}\delta_{n-1,1} = \delta_{n,2}\delta_{2,1}$ coefficient of $u'_1 \otimes u'_2 \otimes u'_{n-3} = \delta_{n,1}\delta_{n-1,2} = \delta_{n,3}\delta_{3,1}$ \vdots \vdots coefficient of $u'_1 \otimes u'_{i-1} \otimes u'_{n-i} = \delta_{n,1}\delta_{n-1,i-1} = \delta_{n,j}\delta_{j,1}$

 $\begin{array}{c} \text{coefficient of } u_1 \otimes u_{j-1} \otimes u_{n-j} &= o_{n,1} o_{n-1,j-1} &= o_{n,j} o_{j,1} \\ \\ \vdots & \vdots \\ \end{array}$

coefficient of $u'_1 \otimes u'_{n-2} \otimes u'_1 = \delta_{n,1}\delta_{n-1,n-2} = \delta_{n,n-1}\delta_{n-1,1}$ Therefore we obtain the below.

$$\delta_{n,j} = \frac{2n(2n-1)}{2j(2j-1)} \delta_{n-1,j-1} = \dots = 2 \cdot \frac{(2n)!}{(2j)!(2n-2j)!} = 2\binom{2n}{2j}$$

By Lemma 2.2, we have the following for all n.

$$(\hat{\otimes}_{\mathbb{R}} \circ (g' \wedge g'))^*(t_n) = (g' \circ \tilde{\lambda})^*(t_n) \in h^{4n}(X \wedge X)$$

By Newton's formula $t_n = \sum_{i=1}^{n-1} (-1)^{i-1} p_i t_{n-i} + (-1)^{n-1} n p_n$, the proof is completed.

Daisuke Kishimoto

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY KITASHIRAKAWA-OIWAKECHO, SAKYOKU, KYOTO, JAPAN e-mail: kishi@kusm.kyoto-u.ac.jp

References

- [1] A. Kono and D. Kishimoto, Topological Characterization of Extensor Product on BU, to appear in J. Math. Kyoto Univ.
- [2] D. Kishimoto, Topological Characterization of Bott map on BU, to appear in J. Math. Kyoto Univ.
- [3] M. F. Atiyah and G. B. Segal, Equivariant K-theory and completion, J. Differential Geom., 3 (1969).
- [4] Ib. Madsen and R. J. Milgram, The classifying spaces for surgery and cobordism of manifolds, Ann. of Math. Stud. 92.