# Topological characterization of extensor product on BSO 

By<br>Daisuke Kishimoto

## 1. Introduction

This paper is a serial work from [1] and [2]. In [1] we characterize the map $\hat{\otimes}_{\mathbb{C}}: \mathrm{BU} \wedge \mathrm{BU} \rightarrow \mathrm{BU}$ which is induced from the extensor product of complex bundles. The crucial point of this characterization is that $[\mathrm{BU} \wedge \mathrm{BU}, \mathrm{BU}]_{*}$ is a free $\mathbb{Z}$-module and $\tilde{K}(\mathrm{BU} \wedge \mathrm{BU}) \otimes \mathbb{Q}=[\mathrm{BU} \wedge \mathrm{BU}, \mathrm{BU}]_{*} \otimes \mathbb{Q} \cong H^{*}(\mathrm{BU} \wedge$ $B U ; \mathbb{Q})$. Noticing these facts, $\hat{\otimes}_{\mathbb{C}}: B U \wedge B U \rightarrow B U$ can be characterized by the informations of integral cohomology, so that we can use Chern character.

The case of BSO is a little more complicated than that of BU because $H^{*}(\mathrm{BSO} ; \mathbb{Z})$ has torsion. But this will be overcome by the striking fact that $[\mathrm{BSO} \wedge \mathrm{BSO}, \mathrm{BSO}]_{*}$ is a free $\mathbb{Z}$-module shown in Section 2. Then we can characterize the map $\hat{\otimes}_{\mathbb{R}}: \mathrm{BSO} \wedge \mathrm{BSO} \rightarrow \mathrm{BSO}$, which is induced from the extensor product of oriented real bundles, by the informations of $[\mathrm{BSO} \wedge \mathrm{BSO}, \mathrm{BSO}]_{*} \otimes$ $\mathbb{Q} \cong H^{*}(\mathrm{BSO} \wedge \mathrm{BSO} ; \mathbb{Q})$, which is obtained by the universality of the localization of H-spaces and that $\mathrm{BSO}_{(0)} \simeq \prod_{n} K(\mathbb{Q}, 4 n)$.

Precisely the way of characterization is as follows. We consider a Hopf space $X$ equivalent to BSO and a map $\tilde{\lambda}: X \wedge X \rightarrow X$ which holds some of the cohomological properties of $\hat{\otimes}_{\mathbb{R}}: \mathrm{BSO} \wedge \mathrm{BSO} \rightarrow \mathrm{BSO}$. Then we can construct another Hopf equivalence $g^{\prime}: X \rightarrow \mathrm{BSO}$ which satisfies the following homotopy commutative diagram.


## 2. Main theorem

We need some notations to state the main theorem and related lemmas clearly.

[^0]We denote $H^{*}(\cdot ; \mathbb{Z}) /$ Tor by $h^{*}(\cdot)$. Let $\xi$ be the virtual vector bundle on BSO represented by $[\iota] \in[\mathrm{BSO}, \mathrm{BO}]_{*}=\widetilde{K O}(\mathrm{BSO})$, where $\iota: \mathrm{BSO} \rightarrow \mathrm{BO}$ is the natural inclusion. We know that $h^{*}(\mathrm{BSO})=\mathbb{Z}\left[p_{1}, p_{2}, \ldots\right]$, where $p_{i}$ is the i-th Pontryagin class of $\xi$. Let $t_{n}$ be the $n$-th power sum in $\left\{p_{i}\right\}$.

Now we state the key lemmas.
Lemma 2.1. $\quad[\mathrm{BSO} \wedge \mathrm{BSO}, \mathrm{BSO}]_{*}$ is a free $\mathbb{Z}$-module.
Proof. It is shown in [3] for a compact Lie group G that:

$$
K O(\mathrm{BG}) \cong R O(\mathrm{G})^{\wedge},
$$

where $R O(\mathrm{G})$ is a real representation ring of $\mathrm{G}, R O(\mathrm{G})^{\wedge}$ is $I(\mathrm{G})$-adic completion of $R O(\mathrm{G})$ and $I(\mathrm{G})=\operatorname{ker}\{\operatorname{deg}: R O(\mathrm{G}) \rightarrow \mathbb{Z}\}$.

It is also shown in [4, p. 94] that $R O(\mathrm{SO}(2 n+1)) \cong \mathbb{Z}\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right]$, where $\operatorname{deg} \lambda_{i}=0$ and $\operatorname{deg} 1=1$. Therefore we have $\widetilde{K O}(\mathrm{BSO} \times \mathrm{BSO})=$ $[\mathrm{BSO} \times \mathrm{BSO}, \mathrm{BO}]_{*}$ is a free $\mathbb{Z}$-module by the following.

$$
\begin{aligned}
K O(\mathrm{BSO} \times \mathrm{BSO}) & =\lim _{\leftarrow} K O(\mathrm{BSO}(2 n+1) \times \mathrm{BSO}(2 n+1)) \\
& =\lim _{\leftarrow} R O(\mathrm{SO}(2 n+1) \times \mathrm{SO}(2 n+1))^{\wedge}
\end{aligned}
$$

Since $\mathrm{BO} \simeq \mathrm{BSO} \times \mathbb{R P}^{\infty}$ and $\left[\mathrm{BSO}, \mathbb{R} \mathrm{P}^{\infty}\right]_{*} \cong H^{1}\left(\mathrm{BSO} ; \mathbb{Z}_{2}\right)=0$, we have $[\mathrm{BSO} \times \mathrm{BSO}, \mathrm{BO}]_{*} \cong\left[\mathrm{BSO} \times \mathrm{BSO}, \mathrm{BSO} \times \mathbb{R} \mathrm{P}^{\infty}\right]_{*} \cong[\mathrm{BSO} \times \mathrm{BSO}, \mathrm{BSO}]_{*}$. Hence $[\mathrm{BSO} \times \mathrm{BSO}, \mathrm{BSO}]_{*}$ is a free $\mathbb{Z}$-module. Then $[\mathrm{BSO} \wedge \mathrm{BSO}, \mathrm{BSO}]_{*}$ is submodule of $[\mathrm{BSO} \times \mathrm{BSO}, \mathrm{BSO}]_{*}$, so that we have $[\mathrm{BSO} \wedge \mathrm{BSO}, \mathrm{BSO}]_{*}$ is a free $\mathbb{Z}$-module.

## Lemma 2.2.

$$
\hat{\mathbb{\otimes}}_{\mathbb{R}}^{*}\left(t_{n}\right)=2 \sum_{i=1}^{n-1}\binom{2 n}{2 i} t_{i} \otimes t_{n-i} \in h^{*}(\mathrm{BSO} \wedge \mathrm{BSO})
$$

Proof. We have the following relation for a real vector bundle $\eta$.

$$
\begin{aligned}
\hat{\otimes}_{\mathbb{C}}^{*}\left(\eta \otimes_{\mathbb{R}} \mathbb{C}\right) & =\left(\eta \otimes_{\mathbb{R}} \mathbb{C}\right) \hat{\otimes}_{\mathbb{C}}\left(\eta \otimes_{\mathbb{R}} \mathbb{C}\right) \\
& =\left(\eta \hat{\otimes}_{\mathbb{R}} \eta\right) \otimes_{\mathbb{R}} \mathbb{C} \\
& =\left(\hat{\otimes}_{\mathbb{R}}^{*} \eta\right) \otimes_{\mathbb{R}} \mathbb{C}
\end{aligned}
$$

Let $s_{n}(\zeta)$ be the $n$-th power sum in Chern classes of a complex bundle $\zeta$. By considering the above relation and Chern character, we obtain the below.

$$
s_{n}\left(\left(\hat{\otimes}_{\mathbb{R}}^{*} \eta\right) \otimes_{\mathbb{R}} \mathbb{C}\right)=\sum_{i=1}^{n-1}\binom{n}{i} s_{i}\left(\eta \otimes_{\mathbb{R}} \mathbb{C}\right) \otimes s_{n-i}\left(\eta \otimes_{\mathbb{R}} \mathbb{C}\right)
$$

Since $s_{2 n-1}\left(\eta \otimes_{\mathbb{R}} \mathbb{C}\right)=0$ and $s_{2 n}\left(\eta \otimes_{\mathbb{R}} \mathbb{C}\right)=(-1)^{n} 2 t_{n}$ in $h^{*}(\mathrm{BSO})$, we obtain the equation in the statement.

Now we come to state the main theorem.
Theorem 2.1. Let $\mu: X \times X \rightarrow X$ be a Hopf space which is of finite type $C W$-complex and has a Hopf equivalence $g: X \rightarrow$ BSO. Suppose there exists a map $\tilde{\lambda}: X \wedge X \rightarrow X$ holding the following properties.
(1) $\lambda^{*}: Q h^{n}(X) \rightarrow h^{n}\left(X^{(4)} \wedge X\right)$ is split monic $(n>4)$, where $X^{(4)}$ is 4-skeleton of $X$ and $\lambda$ is the restriction of $\tilde{\lambda}$ to $X^{(4)} \wedge X$.
(2) The torsion part of $\operatorname{coker}\left\{\lambda^{*}: Q h^{4 n}(X) \rightarrow h^{4 n}\left(X^{(4)} \wedge X\right)\right\}$ is isomorphic to $\mathbb{Z}_{2 n-1}\left(n_{\sim}>1\right)$.
(3) $\tilde{\lambda} \circ T \simeq \tilde{\lambda}$, where $T: X \wedge X \rightarrow X \wedge X$ is the twisting map.
(4) $\tilde{\lambda} \circ(1 \wedge \tilde{\lambda}) \simeq \tilde{\lambda} \circ(\tilde{\lambda} \wedge 1)$
(5) The following diagram is homotopy commutative, where $\triangle$ is the diagonal map.


Then there exists another Hopf equivalence $g^{\prime}: X \rightarrow \mathrm{BSO}$ which satisfies the following homotopy commutative diagram.


Proof. By Lemma 2.1 we only need to construct a Hopf equivalence $g^{\prime}$ : $X \rightarrow$ BSO which satisfies the following.

$$
\left[\hat{\mathbb{Q}}_{\mathbb{R}} \circ\left(g^{\prime} \wedge g^{\prime}\right)\right]=\left[g^{\prime} \circ \tilde{\lambda}\right] \in[X \wedge X, \mathrm{BSO}]_{*} \otimes \mathbb{Q}
$$

This is equal to saying the following for all $n$.

$$
\left(\hat{\otimes}_{\mathbb{R}} \circ\left(g^{\prime} \wedge g^{\prime}\right)\right)^{*}\left(p_{n}\right)=\left(g^{\prime} \circ \tilde{\lambda}\right)^{*}\left(p_{n}\right) \in H^{4 n}(X \wedge X ; \mathbb{Q})
$$

Therefore we will construct another Hopf equivalence $g^{\prime}: X \rightarrow$ BSO which satisfies the following for all $n$.

$$
\left(\hat{\otimes}_{\mathbb{R}} \circ\left(g^{\prime} \wedge g^{\prime}\right)\right)^{*}\left(p_{n}\right)=\left(g^{\prime} \circ \tilde{\lambda}\right)^{*}\left(p_{n}\right) \in h^{4 n}(X \wedge X)
$$

Let $x_{n}$ and $u_{n}$ be $g^{*}\left(p_{n}\right)$ and $g^{*}\left(t_{n}\right)$. We know that $t_{n}$ is a generator of $P h^{4 n}(X)$.
First of all we calculate $\lambda^{*}\left(t_{n}\right) \in h^{4 n}\left(X^{(4)} \wedge X\right)$. Since $h^{4}\left(X^{(4)}\right)$ is a free $\mathbb{Z}$-module generated by $u_{1}$ and $h^{n}\left(X^{(4)}\right)=0(n \neq 0,4)$, there exists a unique
element $v_{n-1} \in h^{4 n-4}(X)$ such that $\lambda^{*}\left(u_{n}\right)=u_{1} \otimes v_{n-1} \in h^{4 n}\left(X^{(4)} \wedge X\right)$. By property 5 we can calculate $\lambda^{*}\left(u_{n}\right) \in h^{4 n}\left(X^{(4)} \wedge X\right)$ as follows.

$$
\begin{aligned}
& \begin{array}{c}
u_{1} \otimes\left(v_{n-1} \otimes 1+1 \otimes v_{n-1}\right) \longleftarrow \\
u_{1} \otimes 1 \otimes v_{n-1} \otimes 1 \\
+1 \otimes u_{1} \otimes 1 \otimes v_{n-1}
\end{array} \longleftarrow \begin{array}{c}
u_{1} \otimes v_{n-1} \otimes 1 \otimes 1 \\
+1 \otimes 1 \otimes u_{1} \otimes v_{n-1}
\end{array} \\
& 1 \otimes \mu^{*} \uparrow \\
& u_{1} \otimes v_{n-1} \quad u_{n} \quad \longrightarrow u_{n} \otimes 1+1 \otimes u_{n}
\end{aligned}
$$

Then we see that $v_{n-1}$ is primitive. Since $u_{n-1}$ is a generator of $P h^{4 n-4}(X)$ and $\lambda^{*}\left(u_{n}\right)= \pm 2 n \lambda^{*}\left(x_{n}\right)$, we obtain the following by properties 1 and 2 .

$$
\lambda^{*}\left(u_{n}\right)=\epsilon_{n} 2 n(2 n-1) u_{1} \otimes u_{n-1} \in h^{4 n}\left(X^{(4)} \wedge X\right),
$$

where $\epsilon_{n}= \pm 1$.
Note that $\wp^{1} s_{2 n} \equiv 2 n s_{2 n+p-1} \bmod p$. Then we obtain the following by naturality of $\wp^{1}$.

$$
\begin{aligned}
& \quad \wp^{1} u_{n} \equiv 2 n u_{n+(p-1) / 2} \quad \bmod p \\
& \epsilon_{n} 2 n(2 n-1)(2 n-2) u_{1} \otimes u_{n-1+(p-1) / 2} \\
& \equiv \\
& \equiv \wp^{1}\left(\epsilon_{n} 2 n(2 n-1) u_{1} \otimes u_{n-1}\right) \\
& \equiv \\
& \equiv \wp^{1} \lambda^{*}\left(u_{n}\right) \\
& \equiv \lambda^{*}\left(\wp^{1} u_{n}\right) \\
& \equiv \lambda^{*}\left(2 n u_{n+(p-1) / 2}\right) \\
& \equiv \epsilon_{n+(p-1) / 2} 2 n(2 n+p-1)(2 n+p-2) u_{1} \otimes u_{n-1+(p-1) / 2} \bmod p
\end{aligned}
$$

Then we obtain the following relations.

$$
\begin{aligned}
n(n-1)(2 n-1) \epsilon_{n} & \equiv n(n-1)(2 n-1) \epsilon_{n+(p-1) / 2} & & \bmod p \\
n(2 n-1)(2 n+1) \epsilon_{n} & \equiv n(2 n-1)(2 n+1) \epsilon_{n-(p-1) / 2} & & \bmod p
\end{aligned}
$$

When $n$ is even, there exists an odd prime $p$ greater than 3 which divides either $n-1$ or $n+1$. Note that $3 \epsilon_{2} \equiv 3 \epsilon_{4}(\bmod 5)$, that is $\epsilon_{2}=\epsilon_{4}$. Then we obtain $\epsilon_{2}=\epsilon_{4}=\epsilon_{6}=\cdots$ by induction using the following.

$$
3 \epsilon_{n} \equiv 3 \epsilon_{n-(p-1) / 2} \quad \bmod p \quad \text { if } \quad p \mid n-1 \quad \text { or } \quad p \mid n+1
$$

When $n$ is odd, we can choose prime $p$ greater than $2 n-1$ and equal to $4 N-1$ for some $N$. Then we have the following.

$$
\epsilon_{n} \equiv \epsilon_{n+(p-1) / 2} \equiv \epsilon_{n+2 N-1} \quad \bmod p
$$

Therefore we obtain $\epsilon_{2}=\epsilon_{3}=\epsilon_{4}=\epsilon_{5}=\cdots$.
We set a new Hopf equivalence $g^{\prime}: X \rightarrow \mathrm{BSO}$ as follows, where $I: \mathrm{BSO} \rightarrow$ BSO is the homotopy inverse map.

$$
g^{\prime}= \begin{cases}g, & \epsilon_{n}=1 \\ I \circ g, & \epsilon_{n}=-1\end{cases}
$$

Let $x_{n}^{\prime}$ and $u_{n}^{\prime}$ be $g^{\prime *}\left(p_{n}\right)$ and $g^{\prime *}\left(t_{n}\right)$. It is easily verified the below.

$$
\lambda^{*}\left(u_{n}^{\prime}\right)=2 n(2 n-1) u_{1}^{\prime} \otimes u_{n-1}^{\prime} \in h^{4 n}\left(X^{(4)} \wedge X\right)
$$

Next we calculate the $h^{4 j}(X) \otimes h^{4 n-4 j}(X)$-part of $\tilde{\lambda}^{*}\left(u_{n}^{\prime}\right) \in h^{4 n}(X \wedge X)$. Let $\alpha_{1}, \ldots, \alpha_{l}$ be basis of $h^{4 j}(X)$ and the $h^{4 j}(X) \otimes h^{4 n-4 j}(X)$-part of $\tilde{\lambda}^{*}\left(u_{n}^{\prime}\right)$ be $\sum_{k=1}^{l} \alpha_{k} \otimes w_{k, n}$, where $w_{k, n} \in h^{4 n-4 j}(X)$. Similar to the case of $\lambda^{*}\left(u_{n}\right) \in$ $h^{4 n}\left(X^{(4)} \wedge X\right)$, we see that $w_{k, n}$ is primitive, that is $w_{k, n}=\delta_{k} u_{n-j}^{\prime}$ for some $\delta_{k} \in$ $\mathbb{Z}$. Therefore we obtain the $h^{4 j}(X) \otimes h^{4 n-4 j}(X)$-part of $\tilde{\lambda}^{*}\left(u_{n}^{\prime}\right) \in h^{4 n}(X \wedge X)$ is $\left(\sum_{k=1}^{l} \delta_{k} \alpha_{k}\right) \otimes u_{n-j}^{\prime}$.

By property 3 we see that $\sum_{k=1}^{l} \delta_{k} \alpha_{k}$ is also primitive. Therefore we obtain the following.

$$
\tilde{\lambda}^{*}\left(u_{n}^{\prime}\right)=\sum_{j=1}^{n-1} \delta_{n, j} u_{j}^{\prime} \otimes u_{n-j}^{\prime} \in h^{4 n}(X \wedge X)
$$

where $\delta_{n, j} \in \mathbb{Z}$ and $\delta_{n, 1}=\delta_{1, n}=2 n(2 n-1)$.
By property 4 we have the equations below.

$$
\begin{aligned}
& \text { coefficient of } u_{1}^{\prime} \otimes u_{1}^{\prime} \otimes u_{n-2}^{\prime}=\delta_{n, 1} \delta_{n-1,1}=\delta_{n, 2} \delta_{2,1} \\
& \text { coefficient of } u_{1}^{\prime} \otimes u_{2}^{\prime} \otimes u_{n-3}^{\prime}=\delta_{n, 1} \delta_{n-1,2}=\delta_{n, 3} \delta_{3,1}
\end{aligned}
$$

coefficient of $u_{1}^{\prime} \otimes u_{j-1}^{\prime} \otimes u_{n-j}^{\prime}=\delta_{n, 1} \delta_{n-1, j-1}=\delta_{n, j} \delta_{j, 1}$

$$
\text { coefficient of } u_{1}^{\prime} \otimes u_{n-2}^{\prime} \otimes u_{1}^{\prime}=\delta_{n, 1} \delta_{n-1, n-2}=\delta_{n, n-1} \delta_{n-1,1}
$$

Therefore we obtain the below.

$$
\delta_{n, j}=\frac{2 n(2 n-1)}{2 j(2 j-1)} \delta_{n-1, j-1}=\cdots=2 \cdot \frac{(2 n)!}{(2 j)!(2 n-2 j)!}=2\binom{2 n}{2 j}
$$

By Lemma 2.2, we have the following for all $n$.

$$
\left(\hat{\otimes}_{\mathbb{R}} \circ\left(g^{\prime} \wedge g^{\prime}\right)\right)^{*}\left(t_{n}\right)=\left(g^{\prime} \circ \tilde{\lambda}\right)^{*}\left(t_{n}\right) \in h^{4 n}(X \wedge X)
$$

By Newton's formula $t_{n}=\sum_{i=1}^{n-1}(-1)^{i-1} p_{i} t_{n-i}+(-1)^{n-1} n p_{n}$, the proof is completed.

Department of Mathematics
Kyoto University
Kitashirakawa-Oiwakecho, Sakyoku, Kyoto, Japan
e-mail: kishi@kusm.kyoto-u.ac.jp

## References

[1] A. Kono and D. Kishimoto, Topological Characterization of Extensor Product on BU, to appear in J. Math. Kyoto Univ.
[2] D. Kishimoto, Topological Characterization of Bott map on BU, to appear in J. Math. Kyoto Univ.
[3] M. F. Atiyah and G. B. Segal, Equivariant K-theory and completion, J. Differential Geom., 3 (1969).
[4] Ib. Madsen and R. J. Milgram, The classifying spaces for surgery and cobordism of manifolds, Ann. of Math. Stud. 92.


[^0]:    Received April 4, 2001
    Revised August 2, 2001

