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Some notes on Teichmüller shift mappings and
the Teichmüller density

By

Shen Yu-Liang∗

Abstract

Kra [Kr] introduced a distance dK on every hyperbolic Riemann sur-
face R by means of Teichmüller shift mappings. Recently Gardiner and
Lakic [GL2] defined a metric density λ, the Teichmüller density, on such
a surface. The paper deals with some basic properties of the Teichmüller
density λ and the distance dK , giving some close relation between them.
Particularly, it is shown that the distance function dK : R × R → R is
continuously differentiable off the diagonal, and the Teichmüller density
λ is precisely the metric density of the infinitesimal form of the distance
dK and it is continuous on the whole surface R. Some related topics will
also be discussed.

1. Introduction

When studying the self-maps of Riemann surfaces and the geometry of
Teichmüller spaces, Kra [Kr] introduced a distance dK on every hyperbolic
Riemann surface R by means of Teichmüller shift mappings. It is known that
the distance dK has some close relation with the hyperbolic distance on R (see
[EKK], [EL1], [EL2], [Ge], [Kr], [Kru3], [Liu], [Na1], [Re], [St2], [Te]). Re-
cently, by using the infinitesimal Teichmüller norms of certain vector fields to
Teichmüller spaces, Gardiner and Lakic [GL2] defined a metric density λ, the
Teichmüller density, on such a surface R. They also use the Teichmüller density
λ to study the hyperbolic density on R and characterize the uniform perfect-
ness of closed sets in the complex plane C. In this note, we shall give some
basic properties of the Teichmüller density λ and the distance dK , giving some
close relation between them. Particularly, we shall show that the Teichmüller
density λ is precisely the metric density of the infinitesimal form of the dis-
tance dK (see Theorems 1 and 2), that the distance function dK : R × R → R
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218 Shen Yu-Liang

is continuously differentiable off the diagonal (see Theorem 6), and that the
Teichmüller density λ is continuous on the whole surface R (see Theorem 4).
We shall prove these results by studying the Teichmüller shift mappings and
some holomorphic mappings from Riemann surfaces into Teichmüller spaces,
and as by-products, we shall prove some results on the continuity of point shift
differentials and extremal differentials (see Theorems 3 and 5).

2. Preliminaries

In this section, we shall give the precise definitions of Kra’s distance dK
and the Teichmüller density λ. As already stated in Section 1, they are de-
fined respectively by using the Teichmüller shift mappings and the infinitesimal
Teichmüller norms of certain vector fields to Teichmüller spaces, and have close
relation with the hyperbolic distance and the hyperbolic density, so we need to
recall some basic definitions and fundamental results from hyperbolic geometry
and quasiconformal Teichmüller theory.

We begin with the basic definitions and notations on hyperbolic density
(and distance). Let ∆ = {z : |z| < 1} denote the unit disk on the complex
plane C. On ∆ one can define the hyperbolic Poincaré metric GH,∆ : T∆ =
∆ × C → R by

(2.1) GH,∆(z, v) =
|v|

1 − |z|2 ,

with density ρ∆ = ρ∆(z)|dz| by

(2.2) ρ∆(z) =
GH,∆(z, v)

|v| =
1

1 − |z|2 .

The Poincaré distance dH,∆(z1, z2) between two points z1, z2 induced by ρ∆ is

(2.3) dH,∆(z1, z2) =
1
2

log
1 +

∣∣∣∣ z1 − z2
1 − z1z2

∣∣∣∣
1 −

∣∣∣∣ z1 − z2
1 − z1z2

∣∣∣∣
.

Let R be a hyperbolic Riemann surface covered by the unit disk ∆. Then
there is a Fuchsian group Γ such that R = ∆/Γ. Let π : ∆ → R denote the
canonical holomorphic projection. On R one can define the hyperbolic metric
GH,R : TR → R by requiring that π∗GH,R = GH,∆, or precisely, for any
(z, v) ∈ T∆, that

(2.4) GH,R(π(z), dzπ(v)) = GH,∆(z, v),

with density ρR = ρR(w)|dw| by

(2.5) ρR(w(π(z)))|(w ◦ π)′(z)| = ρ∆(z) =
1

1 − |z|2 ,



�

�

�

�

�

�

�

�

Some notes on Teichmüller shift mappings and the Teichmüller density 219

where w is any local parameter on R. The hyperbolic distance dH,R(p1, p2)
between two points p1, p2 induced by ρR is

(2.6) dH,R(p1, p2) = inf{dH,∆(z1, z2) : π(z1) = p1, π(z2) = p2}.

In the following, when there is no ambiguity, we set dH,R = dH , GH,R = GH ,
ρR = ρ.

Now we begin to define Kra’s distance dK by Teichmüller shift mappings.
A (classical) Teichmüller shift mapping (see [Te]) is the uniquely extremal map-
ping Tδ which sends the zero point to −δ (0 ≤ δ < 1) and fixes every boundary
point of the unit disk ∆. It is a Teichmüller mapping with Beltrami coefficient
µδ such that µ0 = 0, while for δ > 0, µδ = kδ|φδ|/φδ, where kδ > 0, and φδ is
a holomorphic function in ∆ − {0}, which has a first order pole at 0 and has
unit L1-norm.

In general, a Teichmüller shift mapping on a hyperbolic Riemann surface R
is the uniquely extremal mapping Tp1,p2 which sends p1 to p2 and is homotopic
to the identity mapping modulo the ideal boundary ∂R. It is a Teichmüller
mapping with Beltrami coefficient µp1,p2 such that, for p2 = p1, µp1,p2 = 0,
while for p2 �= p1, µp1,p2 = kp1,p2 |φp1,p2 |/φp1,p2 , where kp1,p2 > 0, and φp1,p2
is a holomorphic quadratic differential in R − {p1}, which has a first order
pole at p1 and has unit L1-norm. Following [St2], we call φp1,p2 a point shift
differential.

It is known that the Teichmüller shift mapping plays an important role in
the theory of extremal quasiconformal mappings and Teichmüller spaces (see
[EL2], [Ge], [Kr], [Re], [St2]) and in classical complex analysis (see [Kru3])
as well. As stated in the beginning, when studying the self-maps of Riemann
surfaces and the geometry of Teichmüller spaces, Kra [Kr] introduced a distance
dK on every hyperbolic Riemann surface R by the Teichmüller shift mappings.
The precise definition is as follows:

Definition 1. For any two points p1 and p2 in a surface S, Kra’s dis-
tance dK is defined as

(2.7) dK(p1, p2) =
1
2

log
1 + kp1,p2
1 − kp1,p2

.

We have the following known results.

Theorem A. The identity mapping id : (R, dH) → (R, dK) is not an
isometry unless R = Cpqr = C − {p, q, r}.

Remark 1. When R is of conformally finite type, Theorem A was
proved independently by Kra [Kr] and Nag [Na1]. Later Liu [Liu] extended
it to all hyperbolic Riemann surfaces of conformally infinite type with three
exceptions: the cases when R is ∆, ∆ with one puncture, or an annulus. Very
recently, Earle and Lakic [EL2] gave an explicit and elementary proof of The-
orem A in all cases.
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Remark 2. It is a classical result of Teichmüller (see [Li]) that when R
is the punctured sphere Cpqr, dK = dH . On the other hand, when R is simply
connected, it is easy to see that dK is uniquely determined by dH . In fact, we
have the following exact formula:

log
edK + 1
edK − 1

= µ

(
e2dH − 1
e2dH + 1

)
,

where µ(r) is the conformal module of the Grötzsch ring domain whose bound-
ary components are the unit circle and the line segment {x : 0 ≤ x ≤ r}. Noting
that µ(r) = (1 + o(1)) log(4/r) as r → 0, we find that dK = dH/2 + o(dH) as
dH → 0. For more details, see the papers [Re], [Te].

It is well known that the hyperbolic metric GH is the infinitesimal form of
the hyperbolic distance dH , namely, for any z ∈ ∆ and any number v ∈ C, it
holds that

(2.8) GH(π(z), dzπ(v)) = lim
t→0+

dH(π(z), π(z + tv))
t

.

Now we let GK denote the infinitesimal form of the distance dK , that is, for
any z ∈ ∆ and any number v ∈ C, we have

(2.9) GK(π(z), dzπ(v)) = lim
t→0+

dK(π(z), π(z + tv))
t

.

Then, as stated in [EL2], a consequence of Theorems A and 5 of [EKL] is

Corollary B. If R is not the punctured sphere Cpqr, then dK(p1, p2) <
dH(p1, p2) for any pair of distinct points p1, p2 in R. In addition, GK < GH
except at the points on the zero section.

Remark 3. As remarked above, when R is the punctured sphere Cpqr,
GK = GH , when R is simply connected, GK = GH/2. We shall show that
GK > GH/2 whenever R is not simply connected, except at the points on the
zero section.

Finally, we recall some basic definitions and some fundamental results from
the theory of extremal quasiconformal mappings and Teichmüller spaces and
define the Teichmüller density λ. For more details, see the papers [Ha], [Kru1],
[RS2], [St1] and the books [Ga], [GL1].

Let M(S) denote the unit ball of the space Belt(S) of all essentially
bounded Beltrami differentials µ = µ(w)dw̄/dw on a hyperbolic surface S,
and SA(S) the unit sphere of the space A(S) of all holomorphic quadratic
differentials φ = φ(w)dw2 on S with finite L1-norm

‖φ‖ =
∫∫

S

|φ| < +∞.

For a given µ ∈ M(S), denote by fµ the uniquely determined quasiconformal
mapping on S with Beltrami coefficient µ and some normalized condition which
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can be specified from context. Two elements µ and ν in M(S) are equivalent,
and denoted by µ ∼ ν, if fµ is homotopic to fν (mod ∂S). Then T (S) =
M(S)/ ∼ is the Teichmüller space of S. Let Φ denote the canonical holomorphic
projection M(S) → T (S), and dµΦ denote the differential of Φ at the point
Φ(µ). We also denote by M(µ, S) the set of all elements ν ∈ M(S) equivalent
to µ, and set

(2.10) k(µ) = inf{‖ν‖∞ : ν ∈M(µ, S)}.

We say that ν ∈ M(µ, S) is extremal if ‖ν‖∞ = k(µ). It is known that there
always exists at least one extremal element in the class M(µ, S). A quasi-
conformal mapping f on S is said to be extremal if its Beltrami coefficient µ
is extremal in its own class M(µ, S). The Teichmüller distance between two
points Φ(µ1) and Φ(µ2) in T (S) is defined as

(2.11) dT (Φ(µ1),Φ(µ2)) =
1
2

log
1 + k(µ)
1 − k(µ)

,

where µ is the Beltrami coefficient of the mapping fµ2 ◦ (fµ1)−1.
Two elements µ and ν in Belt(S) are infinitesimally equivalent and denoted

by µ ≈ ν, if
∫∫
S
µφ =

∫∫
S
νφ for all φ ∈ A(S). Then µ ≈ ν iff d0Φ(µ) = d0Φ(ν).

So B(S) = Belt(S)/ ≈ is the tangent space of T (S) at the base point Φ(0).
We denote by Belt(µ, S) the set of all elements ν in Belt(S) infinitesimally
equivalent to µ and set

(2.12) ‖µ‖S = inf{‖ν‖∞ : ν ∈ Belt(µ, S)}.

By the Hahn-Banach extension theorem and Riesz representative theorem from
functional analysis theory, ‖µ‖S has another equivalent definition, namely,

(2.13) ‖µ‖S = sup
φ∈SA(S)

∣∣∣∣
∫∫

S

µφ

∣∣∣∣ .
We say that ν ∈ Belt(µ, S) is infinitesimally extremal if ‖ν‖∞ = ‖µ‖S . Again,
there always exists at least one infinitesimally extremal element in the class
Belt(µ, S).

Now we can define the Teichmüller density λ = λ(w)|dw| introduced by
Gardiner and Lakic [GL2] as follows:

Definition 2. For any point p ∈ R, choose some local parameter w on
some neighborhood of p with w(p) = w0. Choose some vector field V (w)(∂/∂w)
on R such that V (w0) = 1, V (φ) =:

∫∫
R
∂V φ = 0 for all φ ∈ A(R), that is,

∂V ∈ Belt(0, R). Then, with Rp = R− {p},

(2.14) λ(w0) =: ‖∂V ‖Rp
= sup
φ∈SA(Rp)

∣∣∣∣
∫∫

R

∂V φ

∣∣∣∣ .
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We proceed to state some basic results on extremality and infinitesimal
extremality of Beltrami differentials. Hamilton, Krushkal, Reich and Strebel
showed that a Beltrami coefficient µ ∈ M(S) is extremal if and only if it
is infinitesimally extremal, which can happen precisely when µ satisfies the
Hamilton-Krushkal condition ‖µ‖∞ = ‖µ‖S . In this case, there exists a so-
called Hamilton sequence (φn) in SA(S) such that

∫∫
S
µφn → ‖µ‖∞ as n→ ∞.

Furthermore, either µ is Teichmüller, meaning as usual that µ = ‖µ‖∞|φ|/φ
for some φ ∈ SA(S), or (φn) is degenerating in the sense that φn → 0 locally
uniformly in S.

Now let µ ∈M(S) and set

(2.15) h(µ) = inf{‖ν|S−E‖∞ : ν ∈M(µ, S), E ⊂ S compact}.
Clearly, h(µ) ≤ k(µ) ≤ ‖µ‖∞. If h(µ) < k(µ), then, by the Frame Mapping
Theorem, M(µ, S) contains a Teichmüller extremal k(µ)|φ|/φ, and any Hamil-
ton sequence for k(µ)|φ|/φ must converge in norm to φ. In this case, following
[ELi], we call Φ(µ) a Strebel point.

Let µ ∈ Belt(S). Following Earle-Gardiner [EG], let

(2.16) β(µ) = sup lim sup
n→∞

∣∣∣∣
∫∫

S

µφn

∣∣∣∣ ,
where the supremum is taken over all degenerating sequences (φn) in SA(S).
Clearly, β(µ) ≤ ‖µ‖S ≤ ‖µ‖∞. If β(µ) < ‖µ‖S , then, by the Infinitesimal
Frame Mapping Theorem, Belt(µ, S) contains a Teichmüller infinitesimal ex-
tremal ‖µ‖S |φ|/φ and any Hamilton sequence for ‖µ‖S |φ|/φ must also converge
in norm to φ. In this case, we call d0(Φ)(µ) an infinitesimal Reich-Strebel point.

We will make essential use of the following results:

Proposition C. If M(µ, S) contains a Teichmüller extremal k(µ)|φ|/φ,
then

(2.17)
1 + k(µ)
1 − k(µ)

≤
∫∫

S

|φ|
|1 + µ φ

|φ| |2
1 − |µ|2 .

Proposition D. For any Beltrami coefficient µ ∈ Belt(S), if µt = tµ+
o(t) uniformly in S, then

(2.18) k(µt) = |t|‖µ‖S + o(t) = |t| sup
φ∈SA(S)

∣∣∣∣
∫∫

S

µφ

∣∣∣∣+ o(t).

From (2.18) one can deduce that the infinitesimal form GT : TT (S) → R

of the Teichmüller distance dT is

GT (Φ(µ), dµΦ(ν)) = inf
{∥∥∥∥ ν̃

1 − |µ|2
∥∥∥∥
∞

: dµΦ(ν̃) = dµΦ(ν)
}

= sup
φ∈SA(fµ(S))

∣∣∣∣∣
∫∫

fµ(S)

(
ν

1 − |µ|2
∂fµ

∂fµ

)
◦ (fµ)−1φ

∣∣∣∣∣ .
(2.19)
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3. The infinitesimal form GK and the Teichmüller density λ

In this section, we shall show that the Teichmüller density λ is precisely
the metric density of the infinitesimal form GK . We first give some expressions
of the infinitesimal form GK and give a lower bound of GK as a supplement to
Corollary B.

Recall that p = π(ζ) is the universal covering from ∆ onto R. In the
following we shall use ζ = π−1 as a local parameter. Let p ∈ R be given.
Choose z0 ∈ ∆ with π(z0) = p. Then there exists some r > 0 such that π is
injective in ∆r = {ζ : |ζ − z0| < r}. Set Dr = π(∆r). Then for any q ∈ Dr

there exists a unique z ∈ ∆r with π(z) = q. Now we define

(3.1) f̃(ζ) = ζ +
z − z0
r

(r − |ζ − z0|), ζ ∈ ∆r,

and set

(3.2) f = χDr
π ◦ f̃ ◦ π−1 + χR−Dr

id,

where χ denotes the characteristic function of a set. Clearly, f is homotopic to
the Teichmüller shift mapping Tp,q modulo ∂Rp.

Now a direct computation will show that the Beltrami coefficient of f̃ is

(3.3) µ̃(ζ) =
(z − z0)(ζ − z0)

(z − z0)(ζ − z0) − 2r|ζ − z0|
= −z − z0

2r
ζ − z0
|ζ − z0| + o(|z − z0|).

By definition, the Beltrami coefficient of f is µ = χ∆r
µ̃. So we get from (3.3)

that

(3.4) µ(ζ) = −z − z0
2r

ζ − z0
|ζ − z0|χ∆r

+ o(|z − z0|).

Now we can apply Proposition D to µ and obtain

(3.5) kp,q =
|z − z0|

2r
sup

φ∈SA(Rp)

∣∣∣∣
∫∫

∆r

ζ − z0
|ζ − z0|φ

∣∣∣∣+ o(|z − z0|).

Noting that dH(p, q) = dH(z0, z), we conclude that

(3.6) |z − z0| = (1 − |z0|2)dH(p, q) + o(dH(p, q)).

Consequently,

(3.7) kp,q =
(1 − |z0|2)dH(p, q)

2r
sup

φ∈SA(Rp)

∣∣∣∣
∫∫

∆r

ζ − z0
|ζ − z0|φ

∣∣∣∣+ o(dH(p, q)).

So

dK(p, q) =
1
2

log
1 + kp,q
1 − kp,q

= kp,q + o(kp,q)

=
(1 − |z0|2)dH(p, q)

2r
sup

φ∈SA(Rp)

∣∣∣∣
∫∫

∆r

ζ − z0
|ζ − z0|φ

∣∣∣∣+ o(dH(p, q)).
(3.8)
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Thus

(3.9) lim
q→p

dK(p, q)
dH(p, q)

=
(1 − |z0|2)

2r
sup

φ∈SA(Rp)

∣∣∣∣
∫∫

∆r

ζ − z0
|ζ − z0|φ

∣∣∣∣ .
Particularly,

(3.10) GK(p, vp) =
(1 − |z0|2)GH(p, vp)

2r
sup

φ∈SA(Rp)

∣∣∣∣
∫∫

∆r

ζ − z0
|ζ − z0|φ

∣∣∣∣ .
Now

(3.11)
∫∫

∆r

ζ − z0
|ζ − z0|φ =

∫ r

0

sds

∫
|ζ|=s

ζ

s
φ(ζ + z0)

dζ

iζ
= 2πrResζ=z0 φ(ζ),

where and in what follows, Resζ=z0 φ(ζ) denotes the residue of φ(ζ) at z0. It
should be noted that the residue Resζ=z0 φ(ζ) depends on the choice of the
local parameter z0. So

(3.12) GK(p, vp) = π(1 − |z0|2)GH(p, vp) sup
φ∈SA(Rp)

|Resζ=z0 φ(ζ)|.

To get a lower bound of GK(p, vp), as done in [GL2], we use the Poincaré
theta series operator ΘΓ (see [Ga]), which is defined as

ΘΓψ =
∑
γ∈Γ

ψ ◦ γ(γ′)2.

Letting

ψ(ζ) =
(1 − |z0|2)2

(ζ − z0)(1 − z0ζ)3
,

and φ = ΘΓψ. Then φ = φ(ζ)dζ2 ∈ A(Rp), and ‖φ‖ = ‖ΘΓψ‖ ≤ ‖ψ‖ = 2π.
Now

Resζ=z0 φ(ζ) =
1

1 − |z0|2 .

So GK(p, vp) ≥ GH(p, vp)/2. Note that if the equality holds for a non-zero
vector vp, then ‖φ‖ = ‖ΘΓψ‖ = ‖ψ‖ = 2π, which implies that Γ is the trivial
group, or equivalently, R is simply connected. As remarked in Section 2, the
converse is also true.

We can summarize the above as

Theorem 1. The infinitesimal form GK of the distance dK has the
expression (3.10) and (3.12). When R is the punctured sphere Cpqr, GK = GH ,
when R is simply connected, GK = GH/2, in all other cases, GH/2 < GK <
GH except at the points on the zero section.

Now we show that the Teichmüller density λ is precisely the metric density
of the infinitesimal form GK . Let

(3.13) V (ζ) =
(

1 − |ζ − z0|
r

)
χ∆r

.
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Clearly, V (z0) = 1. For any φ ∈ A(Rp), noting that

(3.14) ∂V = − 1
2r

ζ − z0
|ζ − z0|χ∆r

,

we obtain from (3.11) that

V (φ) =
∫∫

R

∂V φ = − 1
2r

∫∫
∆r

ζ − z0
|ζ − z0|φ = −πResζ=z0 φ.

So V (φ) = 0 for all φ ∈ A(R), and

(3.15) λ(z0) =
1
2r

sup
φ∈SA(Rp)

∣∣∣∣
∫∫

∆r

ζ − z0
|ζ − z0|φ

∣∣∣∣ = π sup
φ∈SA(Rp)

|Resζ=z0 φ|.

By (3.12) and (3.15), noting that ρ(z0) = 1/(1 − |z0|2), we obtain

(3.16)
GK(p, vp)
GH(p, vp)

=
λ(z0)
ρ(z0)

,

which implies that λ is the metric density of GK . We have obtained

Theorem 2. The Teichmüller density λ is the metric density of the
infinitesimal form GK and has the expression (3.15). When R is the punctured
sphere Cpqr, λ = ρ, when R is simply connected, λ = ρ/2, in all other cases,
ρ/2 < λ < ρ.

4. Point shift differential and extremal differential

Since ∂V ∈ Belt(0, R), we conclude that β(∂V ) = 0. By the Infinitesimal
Frame Mapping Theorem, there exists unique φ in SA(Rp), which we denote
by φp, such that λ(z0)|φp|/φp ∈ Belt(∂V,Rp). For simplicity, we shall call φp
an extremal differential (at the point p). Note that by definition,

λ(z0) = sup
φ∈SA(Rp)

Re
∫∫

R

∂V φ

=
1
2r

sup
φ∈SA(Rp)

Re
∫∫

∆r

ζ − z0
|ζ − z0|φ

= π sup
φ∈SA(Rp)

Re(Resζ=z0 φ).

(4.1)

Then φp is the unique element in SA(Rp) which attains the first supremum in
(4.1), and every element φ ∈ A(Rp) satisfies

(4.2) Resζ=z0 φ = −λ(z0)
π

∫∫
R

|φp|
φp

φ.

Here it should be pointed out that the extremal differential φp depends on the
choice of the local parameter z0.
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Remark 4. This is a convenient place to point out that the Teichmüller
density λ = λR is monotone, namely, λR0 ≥ λR holds for each Riemann surface
and for each subdomain R0 of R. In fact, if p ∈ R0, and π(z0) = p, then
λR0(z0) = π supψ∈SA(R0p) |Resζ=z0 ψ|, λR(z0) = π supφ∈SA(Rp) |Resζ=z0 φ|.
Noting that for any φ ∈ SA(Rp), ψ = φ/‖φ‖R0 ∈ SA(R0p), we conclude
that λR0(z0) ≥ λR(z0).

Remark 5. It is known that the Poincaré density is holomorphically
contractive, namely, f∗ρS ≤ ρR for any holomorphic mapping f between two
Riemann surfaces R and S, and it is invariant under covering projections, that
is, f∗ρS = ρR when f : R→ S is a covering. Neither is true for the Teichmüller
density λ, however. In fact, let π : ∆ → R be a universal covering for a non-
simply connected Riemann surface R, then π∗λR > π∗(ρR/2) = ρ∆/2 = λ∆,
except at the points on the zero section. More generally, for any covering
mapping π : R → S between two Riemann surfaces, it is easy to see that
π∗λS ≥ λR.

We recall that kp,q |φp,q|/φp,q is the Beltrami coefficient of the Teichmüller
shift mapping Tp,q . Now we prove

Theorem 3. Under the notations before (π(z0) = p, π(z) = q, dρ(z0, z)
= dρ(p, q)),

(1) limq→p ‖(z − z0)/(|z − z0|)φp,q − φp‖ = 0;
(2) limq→p ‖(z − z0)/(|z − z0|)φq,p + φp‖ = 0.

Proof. We apply Proposition C to µ (which is the Beltrami coefficient of
the mapping f by (3.2)) and kp,q |φp,q|/φp,q and obtain

(4.3)
1 + kp,q
1 − kp,q

≤
∫∫

R

|φp,q |
|1 + µ

φp,q

|φp,q| |2
1 − |µ|2 .

By (3.5) and (3.15) we get

kp,q = |z − z0|λ(z0) + o(|z − z0|)

and so

(4.4)
1 + kp,q
1 − kp,q

= 1 + 2|z − z0|λ(z0) + o(|z − z0|).

By (3.4) and (3.14) we have

µ(ζ) = (z − z0)∂V (ζ) + o(|z − z0|)

and so

(4.5)
∫∫

R

|φp,q|
|1 + µ

φp,q

|φp,q | |2
1 − |µ|2 = 1 + 2 Re

∫∫
R

(z − z0)∂V φp,q + o(|z − z0|).
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Since λ(z0)|φp|/φp ∈ Belt(∂V,Rp), we get from (4.3)–(4.5) that

lim
q→p

Re
∫∫

R

|φp|
φp

z − z0
|z − z0|φp,q = 1,

which implies that ((z−z0)/|z−z0|φp,q) is a Hamilton sequence for the infinites-
imal extremal Beltrami differential λ(z0)|φp|/φp as q → p. Since λ(z0)|φp|/φp
represents an infinitesimal Reich-Strebel point, ((z − z0)/|z − z0|φp,q) must
converge in norm to φp as q → p. This finishes the proof of the first conclusion.

Noting that Tq,p = T−1
p,q , we conclude that

(4.6) φp,q = −(1 − k2
p,q)φq,p ◦ Tp,q(∂Tp,q)2.

So the second conclusion follows from the first one.

Example 1. When R = ∆, π = id, and the computation in Section 3
shows that

φz0 = − 1
2π

(1 − |z0|2)2
(1 − z0ζ)3(ζ − z0)

.

So in this case we have

(4.7) lim
z→z0

∥∥∥∥ z − z0
|z − z0|φz0,z +

1
2π

(1 − |z0|2)2
(1 − z0ζ)3(ζ − z0)

∥∥∥∥ = 0.

Particularly, for the classical Teichmüller shift mapping, ‖φδ − 1/2πζ‖ → 0 as
δ → 0+. On the other hand, by (4.2) we obtain that for any z0 ∈ ∆ and any
φ ∈ A(∆z0), it holds that

(4.8)
1

2π(1 − |z0|2)
∫∫

∆

(1 − z0ζ)3(ζ − z0)
|(1 − z0ζ)3(ζ − z0)|φ = Resζ=z0 φ.

So we have the following reproducing formula for functions φ ∈ A(∆),

(4.9) φ(z) =
1

2π(1 − |z|2)
∫∫

∆

(1 − z̄ζ)3

|(1 − z̄ζ)3(ζ − z)|φ.

5. Smoothness of the distance dK and the Teichmüller density λ

We choose p0 ∈ R and consider the map F : R→ T (Rp0) defined as

(5.1) F (p) = Φ(µp0,p),

where µp0,p is the Beltrami coefficient of the Teichmüller shift mapping Tp0,p.
By a result of Bers [Be] (see also [Na2]), F is a holomorphic mapping. By
definition,

(5.2) dK(p1, p2) = dT (F (p1), F (p2)),

so GK = F ∗GT , or more precisely, GK(p, vp) = GT (F (p), dpF (vp)), that is, the
infinitesimal form GK is the pull-back of the Teichmüller metric GT under the
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holomorphic mapping F . On the other hand, it is well known that GT is con-
tinuous on the whole tangent bundle, and it is even continuously differentiable
except at the points on the zero section when R is of conformally finite type
(see [Ga]). Since the map F is holomorphic, we obtain the following theorem.

Theorem 4. The infinitesimal form GK is continuous on the whole
bundle TR. Consequently, the Teichmüller density λ is continuous on the whole
surface R. Furthermore, when R is of conformally finite type, GK is continu-
ously differentiable except at the points on the zero section, so λ is continuously
differentiable on the whole surface R.

Remark 5. It is known that the holomorphic curvature of the Teich-
müller metric GT is identically equal to −4 (see [AP] for more details). So the
holomorphic curvature of GK is bounded above by −4.

Remark 6. Let diK denote the inner distance induced by dK , or equiv-
alently, it is the integral of the infinitesimal form GK . Since F (R) ⊂ T (Rp0)
does not contain any Teichmüller geodesic segment (see [EL2], Theorem 2), we
conclude that dK < diK on the whole surface unless R = Cpqr, so dK is not
an inner distance. It is known that both the hyperbolic distance dH and the
Teichmüller distance dT are inner.

An immediate consequence of Theorem 4 is the continuity of extremal
differentials. For any point p ∈ R, under the local parameter z = π−1,
λ(z) = −πResζ=z φp. Now let pn → p. By the continuity of λ, Resζ=zn

φpn
→

Resζ=z φp. On the other hand, since (φpn
) is a normal family, we conclude

without loss of generality that (φpn
) converges to some φ ∈ A(Rp) locally uni-

formly in Rp. By Fatou’s Lemma, ‖φ‖ ≤ 1. Since Resζ=zn
φpn

→ Resζ=z φ,
Resζ=z φ = Resζ=z φp, so we must have ‖φ‖ = 1 and so φ = φp. Consequently,
by Lebesgue’s dominated convergence theorem we have ‖φpn

− φp‖ → 0. We
have proved

Theorem 5. limq→p ‖φq − φp‖ = 0.

We also have some corresponding properties of the distance function dK .
We consider the continuous function G : R→ R defined as

(5.3) G(p) = dK(p0, p) = dT (F (p0), F (p)) = dT (Φ(0),Φ(µp0,p).

When R is of conformally finite type, it is known that dT is continuously dif-
ferentiable except at the points on the diagonal (see [Ea] or [Ga]). Since F
is holomorphic, G is continuously differentiable whenever p �= p0. When R is
of conformally infinite type, by a result of Lakic [La], the function Φ(ν) →
dT (Φ(0),Φ(ν)) is continuously differentiable at Φ(µ) if it is a Strebel point.
Clearly, when p �= p0, F (p) is a Strebel point in T (Rp0). So G is again contin-
uously differentiable whenever p �= p0. So we have

Theorem 6. The function G : R → R is continuously differentiable
except at the point p0. Consequently, the distance function dK : R× R → R is
continuously differentiable off the diagonal.
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Remark 7. Recall that

kp0,p =
e2dK(p0,p) − 1
e2dK(p0,p) + 1

=
e2G(p) − 1
e2G(p) + 1

,

so kp0,p is also continuously differentiable except at the point p0. It is also
logarithmically pluri-subharmonic on the whole surface R. In fact, let gT denote
the Green function of a Teichmüller space, then (see [Kru2])

(5.4) gT = log
e2dT − 1
e2dT + 1

,

and so

(5.5) gT (F (p0), F (p)) = log
e2dK(p0,p) − 1
e2dK(p0,p) + 1

= log
e2G(p) − 1
e2G(p) + 1

= log kp0,p,

which implies that kp0,p is logarithmically pluri-subharmonic on the whole sur-
face R.

In the rest of the section, we shall give the derivatives of the mapping
F : R → T (Rp0) and the function G : R → R, which is of independent interest.

Proposition 7. Under the local parameter z = π−1, for any z ∈ ∆ and
non-zero v ∈ C,

dz(F ◦ π)(v)

= dµp0,π(z)Φ

(
(1 − k2

p0,π(z))GK(π(z), dzπ(v))
v

|v|
|φπ(z)|
φπ(z)

◦ Tp0,π(z)

∂Tp0,π(z)

∂Tp0,π(z)

)
.

Proof. Since we have already known that F is holomorphic, we only need
to calculate

(5.6) dz(F ◦ π)(v)

= lim
t→0+

F (π(z + tv)) − F (π(z))
t

= lim
t→0+

Φ(µp0,π(z+tv)) − Φ(µp0,π(z))
t

.

Let µt denote the Beltrami coefficient of the mapping Tπ(z),π(z+tv) ◦ Tp0,π(z),
then Φ(µt) = Φ(µp0,π(z+tv)) = F (π(z + tv)) and it is a holomorphic mapping.
Now

(5.7) µt =
µp0,π(z) + µπ(z),π(z+tv) ◦ Tp0,π(z)

∂Tp0,π(z)

∂Tp0,π(z)

1 + µp0,π(z)µπ(z),π(z+tv) ◦ Tp0,π(z)
∂Tp0,π(z)

∂Tp0,π(z)

.

Since

µπ(z),π(z+tv)

= kπ(z),π(z+tv)

|φπ(z),π(z+tv)|
φπ(z),π(z+tv)

= (tGK(π(z), dzπ(v)) + o(t))
|φπ(z),π(z+tv)|
φπ(z),π(z+tv)

,
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and by Theorem 3, ‖vφπ(z),π(z+tv) − |v|φπ(z)‖ → 0 as t → 0+, we conclude by
(5.7) that

(5.8) µ′(0+) = (1 − k2
p0,π(z))GK(π(z), dzπ(v))

v

|v|
|φπ(z)|
φπ(z)

◦ Tp0,π(z)

∂Tp0,π(z)

∂Tp0,π(z)
.

Consequently, by (5.6) and (5.8) we obtain as required that

dz(F ◦ π)(v) =
d

dt
Φ(µt)|t=0+ = dµ0Φ(µ′(0+))

= dµp0,π(z)Φ

(
(1 − k2

p0,π(z))GK(π(z), dzπ(v))
v

|v|
|φπ(z)|
φπ(z)

◦ Tp0,π(z)

∂Tp0,π(z)

∂Tp0,π(z)

)

Using the formula of dF , we can examine directly that GK = F ∗GT . In
fact, under the local parameter z = π−1, by (2.19),

GT (F (π(z)), dz(F ◦ π)(v))
= GT (Φ(µp0,π(z)), dµp0,π(z)Φ(µ′(0+)))

= sup
φ∈SA(Rπ(z))

∣∣∣∣∣
∫∫

R

(
µ′(0+)

1 − k2
p0,π(z)

∂Tp0,π(z)

∂Tp0,π(z)

)
◦ (Tp0,π(z))−1φ

∣∣∣∣∣
= sup

φ∈SA(Rπ(z))

∣∣∣∣
∫∫

R

GK(π(z), dzπ(v))
v

|v|
|φπ(z)|
φπ(z)

φ

∣∣∣∣ = GK(π(z), dzπ(v)).

Now we give the derivative of the function G. Noting that

G(π(z + tv)) = dT (Φ(0), F (π(z + tv)))
= dT (Φ(0), F (π(z)) + tdz(F ◦ π)(v) + o(t)),

(5.9)

when z ∈ ∆ − π−1(p0), F (π(z)) is a Strebel point in T (Rp0), by Lemma 2 in
[La], we can obtain

dz(G ◦ π)(v) =
1

1 − k2
p0,π(z)

Re
∫∫

R

µ′(0+)φp0,π(z)

= Re
∫∫

R

GK(π(z), dzπ(v))
v

|v|
|φπ(z)|
φπ(z)

◦ Tp0,π(z)

∂Tp0,π(z)

∂Tp0,π(z)
φp0,π(z)

= −Re
∫∫

R

GK(π(z), dzπ(v))
v

|v|
|φπ(z)|
φπ(z)

φπ(z),p0

= πRe(vResζ=z φπ(z),p0).

(5.10)
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When z ∈ π−1(p0), by Proposition D and (5.9) we obtain

G(π(z + tv)) = dT (Φ(0), tdz(F ◦ π)(v) + o(t))

= |t| sup
φ∈SA(Rp0 )

∣∣∣∣
∫∫

R

GK(π(z), dzπ(v))
v

|v|
|φπ(z)|
φπ(z)

φ

∣∣∣∣+ o(t)

= |t|GK(π(z), dzπ(v)) + o(t) = −|t|π|v|Resζ=z φp0 + o(t)
= |tv|λ(z) + o(t).

(5.11)

Clearly, G is not differentiable at p0.
We state the above discussion as a proposition, which can be served as a

supplement to Theorem 6.

Proposition 8. The function G is not differentiable at p0. Under the
local parameter z = π−1, for any z ∈ ∆−π−1(p0) and non-zero v ∈ C, it holds
that

dz(G ◦ π)(v) = −Re
∫∫

R

GK(π(z), dzπ(v))
v

|v|
|φπ(z)|
φπ(z)

φπ(z),p0

= πRe(vResζ=z φπ(z),p0).

There is a generalization of the concept of Teichmüller shift mapping,
which is called a point shift mapping. More precisely, let Q : S → R be a
quasiconformal mapping, and q0 ∈ S is a fixed point. An extremal mapping
fQ,p which sends q0 to a point p ∈ R and is homotopic to Q modulo ∂S is
called a point shift mapping. Note that fQ,p need not be uniquely extremal.
Let E(Q) denote the set of extremal mappings in the class of quasiconformal
mappings which are homotopic to Q modulo ∂S and set

(5.12) VQ = {p = f(q0) : f ∈ E(Q)}.

Then VQ is called the variablity set of Q with respect to q0 (see [St2], [EL1],
[EL2]). Strebel [St2], Earle and Lakic [EL1-2] proved that VQ is compact,
connected and simply connected. When p ∈ R−VQ, fQ,p is uniquely extremal,
it is a Teichmüller mapping with Beltrami coefficient µQ,p = kQ,p|ψQ,p|/ψQ,p,
where kQ,p > 0, ψQ,p ∈ SA(Sq0) has a simple pole at q0. The inverse mapping
f−1
Q,p is also a Teichmüller mapping with Beltrami coefficient kQ,p|φQ,p|/φQ,p,

where φQ,p ∈ SA(Rp) has a simple pole at p and ψQ,p = −(1 − k2
Q,p)φQ,p ◦

fQ,p(∂fQ,p)2.
Consider FQ : R→ T (Sq0) and GQ : R → R as

FQ(p) = Φ(µQ,p),(5.13)
GQ(p) = dT (Φ(0), FQ(p)) = dT (Φ(0),Φ(µQ,p)).(5.14)

Then FQ is holomorphic on R and GQ is continuously differentiable in
R−VQ. Note that we still have dK(p1, p2) = dT (FQ(p1), FQ(p2)) and so GK =
F ∗
QGT . By the same reasoning as above, we can obtain
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Proposition 9. Under the local parameter z = π−1, for any z ∈ ∆ and
non-zero v ∈ C,

dz(FQ ◦ π)(v)

= dµQ,π(z)Φ

(
GK(π(z), dzπ(v))

v

|v| (1 − |µQ,π(z)|2)
|φπ(z)|
φπ(z)

◦ fQ,π(z)

∂fQ,π(z)

∂fQ,π(z)

)
.

Proposition 10. Under the local parameter z = π−1, for any z ∈ ∆ −
π−1(VQ) and non-zero v ∈ C, it holds that

dz(GQ ◦ π)(v) = −Re
∫∫

R

GK(π(z), dzπ(v))
v

|v|
|φπ(z)|
φπ(z)

φQ,π(z)

= πRe(vResζ=z φQ,π(z)).

For further properties of the function GQ, see Theorem 3 in [EL2].
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