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Recovery of the shape of an obstacle and the
boundary impedance from the far-field pattern

By

Jin Cheng, Jijun Liu and Gen Nakamura

Abstract

In this paper, we consider an inverse scattering problem for an ob-
stacle D ⊂ R3 with Robin boundary condition. A reconstruction pro-
cedure for identifying both the shape of the obstacle and the boundary
impedance from the far-field pattern is proposed. Our method is to trans-
form the far-field patterns into the near-field patterns, then construct an
indicator function from which we can determine the boundary shape.
Having known the shape of D, the boundary impedance is recovered by
moment method for the known boundary.

1. Introduction

Let D be a simply connected domain in R3 with C2 boundary ∂D. The
scattering of time-harmonic acoustic plane waves for the obstacle D with imped-
ance boundary condition is modeled by an exterior boundary value problem for
the Helmholtz equation. That is, for given incident plane wave ui(x) = eikx·d,
the total wave field u = ui + us ∈ H1

loc(R3 \ D) satisfies

(1.1)




∆u + k2u = 0, in R3 \ D

∂u

∂ν
+ λ(x)u = 0, on ∂D

∂us

∂r
− ikus = O

(
1
r

)
, r = |x| −→ ∞,

where ν is the unit normal vector of ∂D directed into the exterior of D.
We assume that λ ∈ L∞(∂D) and �λ > 0 a.e. on ∂D (�λ denotes the

imaginary part of λ). By the results in [4], we know that there exists a unique
solution for the direct scattering problem.

For the incident field ui(x) = eikx·d, the far-field pattern u∞(d, θ) corre-
sponding to the scattered wave us(x) can be defined by

(1.2) us(x) =
eik|x|

|x|
{

u∞(d, θ) + O

(
1
|x|
)}

, |x| −→ ∞,
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where θ, d ∈ S2 (S2 is the unit sphere in R3).
Then our inverse problem is to determine (∂D, λ(x)) from the correspond-

ing far-field pattern u∞(d, θ), θ, d ∈ S2. Isakov conjectured that the uniqueness
of this inverse problems is true. We will not only prove the uniqueness, but
also give the reconstruction procedure for identifying ∂D and λ(x).

For this inverse problems, the limiting cases λ(x) = 0 and λ(x) = ∞
a.e. on ∂D correspond to the Neumann boundary condition and the Dirichlet
boundary condition respectively. In these cases the problem of recovering ∂D
has been studied by many researchers ([1], [4], [8], [13], [15], [18]). The problem
of reconstructing λ(x) has also been studied by some researchers in the case
that D is given ([2], [4], [16], [17]).

For the inverse scattering problem for determining both ∂D and boundary
impedance, to the authors’ knowledge, there are only few results. An ap-
proximate determination (or reconstruction) of the shape of D and boundary
impedance was discussed in [20] by using the asymptotic behavior of the low
frequency scattered waves associated with three different incident waves (or
frequencies). In [11], one numerical method is proposed to determine both ∂D
and impedance λ(x). But it seems there is no published theoretic result for the
uniqueness of this inverse problem. Also there is no result on reconstruction
algorithm for ∂D and boundary impedance.

From the physical point of view, the formulation of the inverse problem
with the Robin boundary condition is more reasonable. The obstacle is not
completely sound-hard or sound-soft, and usually the boundary of the obsta-
cle has some impedance. Moreover in many cases, the impedance is unknown.
Therefore, the following two problems, from both the theoretical and the prac-
tical point of view, are interesting:

1. Is the identification of (∂D, λ(x)) from u∞(d, θ) for all θ, d ∈ S2 unique?
2. If the uniqueness is true, can we give the exact reconstruction procedure

for determining both ∂D and λ(x)?
In this paper, we want to propose a constructive method for the inverse

problem of determining both the shape and impedance from the far-field pat-
terns. In related with the constructive methods for the inverse problems, we
refer to Ikehata ([7], [8], [9]), Ikehata and Nakamura ([10]) and Potthast ([19])
etc. But, to authors’ knowledge, they assume that either the boundary condi-
tion is known or the shape of the obstacle is known. The problem of determining
both the shape and the impedance has not been studied.

In this paper, by transforming the given far-field pattern into the Dirichlet-
to-Neumann map, we can construct some indicator function to identify the
obstacle without knowing its impedance. Although this method is a general
method, some special care must be taken for analyzing the behaviour of the
indicator function in applying it to each problem. After that, we reconstruct
the impedance from the Dirichlet-to-Neumann map by the moment method.

These two reconstruction procedures also imply the uniqueness of identi-
fying both the shape of obstacle and boundary impedance. Compared with the
method proposed in [20], our method is theoretically exact.

Our main result is the following
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Theorem 1. For the inverse scattering problem, the far-field pattern
u∞(d, θ), θ, d ∈ S2, can uniquely determine (∂D, λ(x)). Moreover, the recon-
structive algorithm can be realized by the steps at the end of Section 3.

Remark 1.1. The uniqueness of identifying (∂D, λ(x)) from u∞(d, θ)
for all d, θ ∈ S2 becomes obvious from the reconstruction.

Our paper is organized as follows:
• Section 2: From far-field pattern to the Dirichlet-to-Neumann map
• Section 3: Probe method
• Section 4: Moment method for determining λ(x)
• Section 5: Some estimates
• Section 6: Appendix

2. From far-field pattern to the Dirichlet-to-Neumann map

In this section, we show how to obtain the Dirichlet-to-Neumann map
Λ∂D,λ from the far field pattern u∞(d, θ), θ, d ∈ S2. Our argument is the same
as that of [8] except the part getting the Dirichlet-to-Neumann map from the
Neumann derivatives to the outgoing Green function.

Without loss of generality, we assume that D ⊂ B(0, R/2) for some con-
stant R > 0 and ‖λ‖L∞(∂D) ≤ λ0 for some constant λ0 > 0. We also assume
that 0 is not the Dirichlet eigenvalue of ∆ + k2 in B(0, R) for given k > 0.

Proposition 2.1. The scattered solution us(x, d) for |x| > R/2 can be
determined uniquely from u∞(d, θ).

Proof. Since us(x) satisfies Helmholtz equation in |x| > R/2 and the
Sommerfeld radiation condition, then us(x) for |x| > R/2 can be expressed as

(2.1) us(x) = k
∑
n≥0

in+1
∑

|m|≤n

bm
n h1

n(k|x|)Y m
n

(
x

|x|
)

,

where h1
n(k|x|) is the first spherical Hankel function of order n and Y m

n (x/|x|)
is the spherical harmonic function.

By the results in [4] (Theorems 2.15 and 2.16, p. 35–36), we know that bm
n

can be expressed in terms of u∞(d, θ):

(2.2) bm
n =

∫
S2

u∞(d, θ)Y m
n (θ)dθ, n = 0, 1, 2, . . . ; |m| ≤ n.

The proof is complete.

In the following, we denote Ω = B(0, R). Let G(x, y) = (eik|x−y|)/(4π|x−
y|) be the fundamental solution of the Helmholtz equation. For each y ∈ R3\D,
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define E(·, y) ∈ H1
loc(R3 \ D) as the solution to

(2.3)




∆E + k2E = 0, in R3 \ D

∂E

∂ν
+ λ(x)E = − ∂

∂ν
G − λ(x)G, on ∂D

∂E

∂r
− ikE = O

(
1
r

)
, r = |x| −→ ∞.

Then we have the following proposition for the outgoing Green function GD(x,
y) := G(x, y) + E(x, y).

Proposition 2.2. GD(x, y), as well as its normal derivatives
∂/(∂ν(x))GD(x, y) and ∂/(∂ν(y))GD(x, y) on B(0, R), can be determined for
x, y ∈ ∂B(0, R) = ∂Ω from u∞(d, θ) for all d, θ ∈ S2.

Proof. Let y ∈ ∂B(0, R1) for any R1 > R.
From our assumption on k, we know that {eikx.d|d ∈ S2} is complete in

L2(∂B(0, R)) (see [4], Theorem 5.5, p. 110). Therefore there exist αn
j (y) and

dn
j (y) such that

(2.4)
∑

1≤j≤mn(y)

αn
j (y)eikx·dn

j (y) −→ G(x, y) in L2(∂B(0, R))

as n −→ ∞.
On the other hand, since

∑
1≤j≤mn(y) αn

j (y)eikx.dn
j (y) and G(x, y) satisfy

the Helmholtz equation in B(0, R), by the results in [4] (Theorem 5.4, p. 109),
we know that (2.4) implies∑

1≤j≤mn(y)

αn
j (y)eikx.dn

j (y) −→ G(x, y)

uniformly on any compact subset of B(0, R) (together with all their derivatives).
Therefore we have∑

1≤j≤mn(y)

αn
j (y)eikx.dn

j (y) −→ G(x, y) in L2(∂D),

∂

∂ν


 ∑

1≤j≤mn(y)

αn
j (y)eikx.dn

j (y)


 −→ ∂

∂ν
G(x, y) in L2(∂D)

as n −→ ∞.
This fact tells us

(2.5)
(

∂

∂ν
+ λ(x)

) ∑
1≤j≤mn(y)

αn
j (y)eikx.dn

j (y)


 −→

(
∂

∂ν
+ λ(x)

)
G(x, y)

in L2(∂D) as n −→ ∞.
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Since us(x, d) ∈ H1(R3 \ D) satisfies

(2.6)




∆us + k2us = 0, in R3 \ D

∂us

∂ν
+ λ(x)us = −

(
∂

∂ν
+ λ(x)

)
eikd.x, on ∂D

∂us

∂r
− ikus = O

(
1
r

)
, r = |x| −→ ∞,

and E(x, y) satisfies (2.3), by the standard results in scattering theory, we have∑
1≤j≤mn(y)

αn
j (y)us(x, dn

j (y)) −→ E(x, y) uniformly on R/2 < |x| < 2R

for y ∈ ∂B(0, R1). From Proposition 2.1, we know that us(x, dn
j (y)), |x| > R/2

can be determined from the far-field pattern u∞(d, θ). Therefore, for R/2 <
|x| < 2R, E(x, y) and its derivatives ∂/(∂ν(x))E(x, y) and ∂/(∂ν(y))E(x, y)
for y ∈ ∂B(0, R1) can also be determined from the far-field pattern u∞(d, θ),
since R1 is arbitrary.

Finally, by letting R1 −→ R, we complete the proof.

Let u(x) ∈ H1(R3 \ D) satisfy the mixed-boundary value problem

(2.7)




∆u + k2u = 0, in Ω \ D

∂u

∂ν
+ λ(x)u = 0, on ∂D

u(x) = f, on ∂Ω

for f ∈ H1/2(∂Ω).

Lemma 2.1. There exists a unique solution of the problem (2.7) for
any f ∈ H1/2(∂Ω).

Proof. Firstly, we prove the uniqueness. It is enough to prove f = 0
implies u = 0 in Ω \ D. For f = 0, it is easy to see from (2.7) that

0 =
∫

Ω\D

(∆u + k2u)udx =
∫

∂D

λuuds −
∫

Ω\D

(�u. � u − k2uu)dx,

0 =
∫

Ω\D

(∆u + k2u)udx +
∫

∂D

λuuds −
∫

Ω\D

(�u. � u − k2uu)dx.

Subtracting these two equalities generates∫
∂D

�λ(x)|u|2ds = 0,

which leads to u = 0 on ∂D from the assumption on λ(x).
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Therefore we get ∂u/(∂ν(x)) = 0 on ∂D. Now the uniqueness of the
Cauchy problem for the Helmholtz equations implies u = 0 in Ω \ D. By the
integral equation method for the scattering problem ([3], [4]), we know that this
problem can be transformed into a Fredholm integral equation of the second
kind. Therefore the uniqueness implies the existence.

By this unique solution u ∈ H1(Ω) of (2.7) for f ∈ H1/2(∂Ω), we can
define the Dirichlet-to-Neumann map

Λ∂D,λ : f −→ ∂u

∂ν
|∂Ω ∈ H−1/2(∂Ω).

In next Lemma, we show the relations between the far field patterns and
the Dirichlet-to-Neumann map.

Lemma 2.2. Suppose that u satisfies (2.7). Then (∂u/∂ν)|∂Ω can be
obtained from u∞(d, θ), θ, d ∈ S2.

Proof. It is enough to prove for f ∈ C∞(∂Ω). Let x0 ∈ ∂B(0, R0) for
R/2 < R0 < R. By the Green’s formula, we have

u(x0) =
∫

Ω\D

(GD∆u − u∆GD) dx

=
∫

∂Ω

(
GD

∂u

∂ν1
− u

∂GD

∂ν1

)
ds +

∫
∂D

(
GD

∂u

∂ν1
− u

∂GD

∂ν1

)
ds

=
∫

∂Ω

(
GD(x, x0)

∂u(x)
∂ν1

− f(x)
∂GD(x, x0)

∂ν1

)
ds

+
∫

∂D

(
GDλ +

∂GD

∂ν

)
uds

=
∫

∂Ω

(
GD(x, x0)

∂u(x)
∂ν1(x)

− f(x)
∂GD(x, x0)

∂ν1(x)

)
ds

where ν1 is the outward normal to the boundary of domain Ω \ D.
Taking the normal derivatives of u on ∂B(0, R0) in above expression and

letting R0 −→ R, by the properties of the single layer potential and double
layer potential ([4]), we have
(2.8)

1
2

∂u(x0)
∂ν1(x0)

=
∫

∂Ω

∂GD(x, x0)
∂ν1(x0)

∂u(x)
∂ν1(x)

ds − ∂

∂ν1(x0)

∫
∂Ω

f(x)
∂GD(x, x0)

∂ν1(x)
ds.

The equation (2.8) is a Fredholm integral equation of the second kind with
respect to (∂u(x))/(∂ν(x))|∂Ω. There exists a unique solution due to the unique
solvability of (2.7) (Lemma 2.1).

By Proposition 2.2, we know that, for x, y ∈ ∂Ω, ∇xGD(x, y) and ∇yGD(x,
y) can be obtained from u∞(d, θ), θ, d ∈ S2. Therefore (∂u/∂ν)|∂Ω can be
obtained from u∞(d, θ), θ, d ∈ S2.
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The proof is complete.

From this lemma, we can see that the original inverse problem can be stated
as that reconstructing the shape of the obstacle and the boundary impedance
from the Dirichlet-to-Neumann map Λ∂D,λ.

Remark 2.1. The Dirichlet-to-Neumann map (∂u/∂ν)|∂Ω = Λ∂D,λf
can be defined by the following weak form: a bounded linear functional on
H1/2(∂Ω) such that

〈Λ∂D,λf, g〉 =
∫

Ω\D

(�u � v − k2uv)dx −
∫

∂D

λuvds

for any g ∈ H1/2(∂Ω), where v is any element in H1(Ω\D) such that v |∂Ω = g.

Corresponding to D = ∅, we can introduce a Dirichlet-to-Neumann map
Λ0,0 : H1/2(∂Ω) −→ H−1/2(∂Ω) by

Λ0,0 : f −→ ∂u1

∂ν
|∂Ω

where u1(x) ∈ H1(Ω) satisfies

(2.9)

{
∆u1 + k2u1 = 0, in Ω
u1(x) = f, on ∂Ω.

Since we assume that 0 is not the Dirichlet eigenvalue of the operator
∆ + k2 in Ω, Λ0,0 can be well defined and is independent of (∂D, λ(x)).

Lemma 2.3. Let u ∈ H1(Ω \ D) and u1 ∈ H1(Ω) be the solutions to
(2.7) and (2.9), respectively. There exists a constant C = C(k, R, λ0) such that

‖u − u1‖H1(Ω\D) ≤ C ‖u1‖H1(D)

holds for all f ∈ H1/2(∂Ω).

In the cases of λ = 0 and λ = ∞, this result may be found in [9]. The
proof of this Lemma is given in Section 5.

3. Probe method

Definition 1. For any continuous curve c = {c(t)| 0 ≤ t ≤ 1}, if it
satisfies

(1) c(0), c(1) ∈ ∂Ω,
(2) c(t) ∈ Ω(0 < t < 1),

then we call c a needle in Ω.

Definition 2. For any needle c in Ω, we call

t(c, D) = sup{0 < t < 1 ; c(s) ∈ Ω \ D for all 0 < s < t}
geometric impact parameter (GIP). It is obvious that t(c, D) = 1 if c does not
touch any point on ∂D.
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From this definition, we know if a needle c touches D, then t(c, D) < 1
and t(c, D) is the first hitting time, i.e., c(t(c, D)) ∈ ∂D and c(t) ∈ Ω \ D for
0 < t < t(c, D).

Since Ω \ D is connected, it is easy to get a reconstruction algorithm for
∂D in terms of the geometric impact parameter and the needle, i.e.,

(3.1) ∂D = {c(t) ; t = t(c, D), c is a needle and t(c, D) < 1}.

In order to reconstruct ∂D, it suffices to consider the problem of calculating
the GIP for each needle from the Dirichlet-to-Neumann map.

Lemma 3.1. Suppose that Γ is an arbitrary open set of ∂Ω. For each
t > 0, there exists a sequence {vn}n=1,2,... in H1(Ω), which satisfy ∆vn+k2vn =
0, such that supp(vn|∂Ω) ⊂ Γ and

vn −→ G(· − c(t)) in H1
loc(Ω \ {c(t′)|0 < t′ ≤ t}).

This result comes from the Runge approximation theorem (see [7]).

Remark 3.1. Usually the Runge approximation is not constructive, be-
cause its proof is done by using the unique continuation and Hahn-Banach the-
orem. However for the Helmholtz equation, it is possible to make the Runge
approximation constructive by using the translation theory (see [6]) and has
been done in [10] for the case k = 0.

It is obvious that vn|∂Ω depends on c(t). We denote it by vn|∂Ω =
fn(·, c(t)), where fn(·, c(t)) ∈ H1/2(∂Ω) and supp(fn(·, c(t)) ⊂ Γ.

For a given needle c in Ω and 0 < t < 1, we can construct a function

(3.2) I(t, c) = lim
n−→∞〈(Λ∂D,λ − Λ0,0)fn(·, c(t)), fn(·, c(t))〉

where 〈·, ·〉 is the pairing between H−1/2(∂Ω) and H1/2(∂Ω).
Next we show that I(t, c) ( denotes the real part) can be used to cal-

culate GIP.

Theorem 2. For a given needle c(t) in Ω, t(c, D) is given by

(3.3)
t(c, D) = sup{0 < t < 1; the limit in (3.2) exists for all t′ (0 < t′ < t),

inf
0<t′<t

(I(t′, c)) > −∞}.

Proof. We do some preliminary considertion. For a given needle c(t), by
Lemma 3.1, we know that there exists a sequences {vn(x)} ⊂ H1(Ω) which
satisfies

(3.4)

{
∆vn + k2vn = 0, in Ω
vn = fn(·, c(t)), on ∂Ω, supp fn(·, c(t)) ⊂ Γ,
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and

(3.5) vn −→ G(· − c(t)) in H1
loc(Ω \ {c(t′)|0 < t′ ≤ t}) (n −→ ∞).

Let un(x) ∈ H1(Ω) satisfy

(3.6)




∆un + k2un = 0, in Ω \ D

∂un

∂ν
+ λ(x)un = 0, on ∂D

un(x) = fn, on ∂Ω,

then wn = un − vn|Ω\D ∈ H1(Ω \ D) satisfies

(3.7)




∆wn + k2wn = 0, in Ω \ D

∂wn

∂ν
+ λ(x)wn = −

(
∂vn

∂ν
+ λ(x)vn

)
, on ∂D

wn(x) = 0, on ∂Ω.

By the calculation in Section 6, we have

− 〈(Λ∂D,λ − Λ0,0)fn(·, c(t)), fn(·, c(t))〉
=
∫

Ω\D

{| � wn|2 − k2|wn|2}dx +
∫

D

{| � vn|2 − k2|vn|2}dx

+
∫

∂D

{λ|vn|2 − λ|wn|2}ds −
∫

∂D

(λ − λ)wnvnds.

(3.8)

By Lemmas 2.3 and 3.1, we know that, for 0 < t < t(c, D), it holds that

(3.9) wn −→ w in H1(Ω \ D), n −→ ∞,

where w satisfies

(3.10)




∆w + k2w = 0, in Ω \ D

∂w

∂ν
+ λ(x)w = −

(
∂G(· − c(t))

∂ν
+ λ(x)G(· − c(t))

)
, on ∂D

w(x) = 0, on ∂Ω.

Let 0 < t < t(c, D) and n tend to infinity in (3.8). Then by (3.9), we have

−I(t, c) =
∫

D

{| � G(· − c(t))|2 − k2|G(· − c(t))|2}dx

+
∫

Ω\D

{| � w|2 − k2|w|2}dx

+
∫

∂D

{λ|G(· − c(t))|2 − λ|w|2}ds +
∫

∂D

(λ − λ)wGds.

(3.11)
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Now we prove (3.3). If t(c, D) = 1, this is clear. So let t(c, D) < 1. For any
t (0 < t < t(c, D)), it is easy to see the limit of (3.2) exists for all t′ (0 < t′ < t)
and inf0<t′<t(I(t′, c)) > −∞. Hence t(c, D) ≤ t̃, where t̃ is the right handside
of (3.3). Suppose t(c, D) < t̃. For 0 < t < t(c, D), we have

−I(t, c) =
∫

D

[| � G(· − c(t))|2 − k2|G(· − c(t))|2]dx

+
∫

Ω\D

(| � w|2 − k2|w|2)dx +
∫

∂D

λ[|G(· − c(t))|2 − |w2|]ds

− 2
∫

∂D

�λ�(wG(· − c(t)))ds

≥
∫

D

| � G(· − c(t))|2dx − k2

∫
D

|G(· − c(t))|2dx − k2

∫
Ω\D

|w|2dx

+
∫

∂D

λ[|G(· − c(t))|2 − |w|2]ds − 2
∫

∂D

�λ�[wG(· − c(t))]ds.

(3.12)

According to the singularity analysis about w(x, x0) and G(x − x0) for
x0 ∈ ∂D (see Theorems 3 and 4 below) and from (3.12), we have

lim
t↑t(c,D)

(I(t, c)) = −∞.

This contradicts to t(c, D) < t̃.

The reconstruction algorithm for the shape of the obstacle can be re-
alized by the following steps:

• Calculate the Dirichlet-to-Neumann map Λλ,D from the far field pat-
terns u∞(d, θ), d, θ ∈ S2.

• For any given needle c(t), calculate the sequences vn and fn(·, c).
• Calculate 〈(Λ∂D,λ − Λ0,0)fn(·, c(t)), fn(·, c(t))〉.
• Calculate I(c, t) and t(c, D) by (3.2) and (3.3), respectively.
• Calculate ∂D by (3.1).

What we still have to prove for Theorem 1 is to reconstruct boundary
impedance, which will be given in the next section.

Remark 3.2. The “reconstruction” in this paper means that there exist
some formulae such that the unknown functions can be calculated directly from
these formulae. This is different from the “reconstruction” in the numerical
simulations. Of course, there is the close relation between the “mathematical
reconstruction” and “numerical reconstruction”. In this paper, we will not
discuss the “numerical reconstruction”.

4. Moment method for determining λ(x)

In this section, we reconstruct the boundary impedance λ(x). Since in the
previous section, we have reconstructed ∂D from the far field patterns u∞(d, θ),
d, θ ∈ S2, therefore in this section we assume that ∂D is known.
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By the definition of the Dirichlet-to-Neumann map Λ∂D,λ, we know that,
if u(x) ∈ H1(Ω \ D) satisfies

(4.1)




∆u + k2u = 0, in Ω \ D

∂u

∂ν
+ λ(x)u = 0, on ∂D

u(x) = f, on ∂Ω

for a given f(x) ∈ H1/2(∂Ω), then its Neumann boundary datum can be ob-
tained formally by

∂u(x)
∂ν

|∂Ω = Λ∂D,λf(x) ∈ H−1/2(∂Ω).

Lemma 4.1. Suppose that uj(x), j = 1, 2, . . . satisfy (4.1) with f = fj.
Put φj(x) = uj(x)|∂D. If

(4.2) span{fj(x)} = H1/2(∂Ω),

then we have
span{φj(x)} = H1/2(∂D).

Proof. Assume that f(x) ∈ H−1/2(∂D) which satisfies

(4.3)
∫

∂D

φjfds = 0, j = 1, 2, . . . ,

we want to prove that f(x) = 0. Here
∫

∂D
φjfds is applied to denote the

pairing 〈f, φj〉 between H1/2(∂D) and H−1/2(∂D). Later on we use the same
convention for the integral on ∂D.

Consider the following mixed boundary value problem


∆v + k2v = 0, in Ω \ D

∂v

∂ν
+ λ(x)v = f, on ∂D

v = 0, on ∂Ω.

(4.4)

Since �λ > 0, similarly to the treatment of proving Lemma 2.1, we know there
exists a unique solution for (4.4).

By the Green’s formula, we know that

0 =
∫

Ω\D

(v∆uj − uj∆v)dx

=
∫

∂Ω

(
∂uj

∂ν1
v − ∂v

∂ν1
uj

)
+
∫

∂D

(
∂uj

∂ν1
v − ∂v

∂ν1
uj

)
,

(4.5)

where ν1 is the outward normal of domain Ω \ D.



�

�

�

�

�

�

�

�

176 Jin Cheng, Jijun Liu and Gen Nakamura

Noticing ν1 = −ν on ∂D and v|∂Ω = 0, we have

∫
∂Ω

∂v

∂ν
ujds =

∫
∂D

(
λvuj +

∂v

∂ν
uj

)
ds.

Therefore, it holds that∫
∂Ω

fj
∂v

∂ν
ds =

∫
∂D

φjfds = 0, j = 1, 2, . . . .

Since span{fj(x)} = H1/2(∂Ω), we obtain

∂v

∂ν
|∂Ω = 0.

By the uniqueness of the Cauchy problem for the Helmholtz equations in
domain Ω \ D, we have v(x) = 0 in Ω \ D. Then by (4.4), we know f(x) = 0.

The proof is complete.

On the other hand, we can obtain uj |∂D and (∂uj/∂ν)|∂D by solving the
following Cauchy problem

(4.6)




∆uj + k2uj = 0, in Ω \ D

uj = fj ,
∂uj

∂ν
= Λ∂D,λfj on ∂Ω

for a given fj(x).
Taking the integral in the impedance boundary condition, we have that

the impedance λ(x) satisfies

(4.7)
∫

∂D

λ(x)uj(x)ds = −
∫

∂D

∂uj

∂ν
ds, j = 1, 2, . . .

Here note that span{uj |∂D} is dense in H1/2(∂D) by Lemma 4.1, hence
λ(x) can be solved uniquely from this moment problem.

Now the recovery of the impedance λ can be realized by the following steps:
• Choose fj , j = 1, 2, . . . such that span{fj}∞j=1 = H1/2(∂Ω).
• For every fj , solve the Cauchy problem (4.6) and obtain uj |∂D and

(∂uj/∂ν)|∂D.
• Solve the moment problem (4.7) to get λ.

5. Some estimates

In this section we give the proof of Lemma 2.3 and estimate of
‖w‖L2(Ω\D). Although the boundary condition is different, the proofs are the
same as those of [9] except for some estimates given in Theorem 4 below, we
give the detailed proofs for the readers’ convenience.
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Proof of Lemma 2.3. Put p(x) = u(x) − u1(x)|Ω\D. It is easy to verify
that p(x) satisfies

(5.1)




∆p + k2p = 0, in Ω \ D

∂p

∂ν
+ λ(x)p = −g, on ∂D

p(x) = 0, on ∂Ω

where g(x) = ((∂u1/∂ν) + λ(x)u1)|∂D.
By the Green’s formula, we have∫

Ω\D

(�p � φ − k2pφ)dx −
∫

∂D

λpφds =
∫

∂D

gφds = 〈g, φ|∂D〉

for all φ ∈ V = {φ ∈ H1(Ω \ D), φ|∂Ω = 0}.
Therefore

‖p‖H1(Ω\D) ≤ C ‖g‖H−1/2(∂D) = C

∥∥∥∥∂u1

∂ν
+ λ(x)u1

∥∥∥∥
H−1/2(∂D)

.

On the other hand, if we restrict u1 in D, then applying the trace theorem
to u1, which satisfies

(5.2)




∆u1 + k2u1 = 0, in D

∂u1

∂ν
+ λ(x)u1 = g1, on ∂D,

we have ‖g1‖H−1/2(∂D) ≤ C ‖u1‖H1(D).
The proof is complete.

Theorem 3. There exists constant C which is independent of D such
that

‖w‖L2(Ω\D) ≤ C.

Proof. First we define a function v(x) by

(5.3)




∆v + k2v = w, in Ω \ D

∂v

∂ν
+ λ(x)v = 0, on ∂D

v(x) = 0, on ∂Ω.

Then we have

(5.4) ‖v‖H2(Ω\D) ≤ C ‖w‖L2(Ω\D) .

Since Ω \ D is a domain in R3, by the Sobolev embedding theorems, we know
that H2(Ω\D) can be embedded into B1/2(Ω\D) (Hölder space with exponent
1/2) and

‖v‖B1/2 ≤ C ‖v‖H2 .
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Therefore we have
‖v‖B1/2 ≤ C ‖w‖L2 .

From this inequality, we know that

(5.5)

{
|v(x) − v(y)| ≤ C|x − y|1/2 ‖w‖L2(Ω\D) , x, y ∈ Ω \ D

‖v‖L∞(Ω\D) ≤ C ‖w‖L2(Ω\D) .

Now remind the definition of the weak solutions w and v to (3.10) and
(5.3) respectively, we have∫

Ω\D

|w(x)|2dx =
∫

Ω\D

(∆ + k2)v(x)w(x)dx

=
∫

∂D

λ(x)w(x)v(x)ds −
∫

Ω\D

(�w(x) � v(x) − k2w(x)v(x)
)
dx

= −
∫

∂D

v(x)
(

∂

∂ν1
+ λ

)
G(x − c(t))ds

= −
∫

∂D

v(x)λG(x − c(t))ds −
∫

∂D

(v(x) − v(c(t))
∂

∂ν1
G(x − c(t))ds

− v(c(t))
∫

∂D

∂

∂ν1
G(x − c(t))ds.

(5.6)

On the other hand, if y /∈ D, then

−
∫

∂D

∂

∂ν1
G(x − y)ds + k2

∫
D

G(x − y)dx =
∫

D

(∆ + k2)G(x − y)dx = 0.

Hence (5.6) leads to

‖w‖2
L2(Ω\D) = −

∫
∂D

vλG( · − c(t))ds − k2v(c(t))
∫

D

G( · − c(t))dx

−
∫

∂D

(v − v(c(t)))
∂

∂ν1
G( · − c(t))ds.

(5.7)

Here note that the integrals∫
∂D

|G(x − c(t))|ds,

∫
∂D

|x − c(t)|1/2| ∂

∂ν
G(x − c(t))|ds,

∫
D

|G(x − c(t))|dx

are bounded as c(t) −→ ∂Ω, then by (5.5) and (5.7), we have

‖w‖2
L2(Ω\D) ≤ C ‖w‖L2(Ω\D) .

The proof is complete.

Theorem 4. Assume x0 ∈ ∂D and c(t) ∈ (Ω \D)∩ ∂B(x0, δ) for some
δ > 0, where B(x0, δ) is an open ball centered at x0 with radius δ, then there
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exists some constant C > 0 such that for δ small enough the following estimates
hold : ∫

D

| � G(x − c(t))|2dx ≥ C

δ
,

∫
D

|G(x − c(t))|2dx ≤ C,∫
∂D

|G(x − c(t))|2ds ≤ C| ln δ|,
∫

∂D

|w(x, c(t))|2ds ≤ C

∫
∂D

|G(x − c(t))|2ds,

here C may be different.

Proof. Denote the tangent plane of ∂D at point x0 by T (x0, ∂D). From
the expressions of Green’s function, we have
(5.8)

|�G(x − c(t))|2 = O

(
1

|x − c(t)|4
)

, |G(x − c(t))|2 = O

(
1

|x − c(t)|2
)

.

If δ > 0 is small enough, ∂D ∩B(x0, δ) approximates T (x0, ∂D)∩B(x0, δ). So
we have for δ small enough that∫

D

1
|x − c(t)|4 dx ≥

∫
D∩B(x0,δ)

1
|x − c(t)|4 dx ≥

∫
D∩B(x0,δ)

1
(2δ)4

dx

=
1

(2δ)4

∫
D∩B(x0,δ)

dx ≥ 1
(2δ)4

1
4

∫
B(x0,δ)

dx =
C

δ
.

(5.9)

Hence we have obtained the first estimate. The second estimate is obvious.
On the other hand, let c(t′) ∈ Ω \ D satisfy

c(t′) ∈ ∂B(x0, δ), c(t′) − x0 is perpendicular to T (x0, ∂D).

Then there exists a constant C > 0 such that |x− c(t)| ≥ C|x− c(t′)| for δ > 0
small enough. So∫

∂D

|G(x − c(t))|2dx ≤ C

(∫
∂D1

+
∫

∂D2

)
1

|x − c(t′)|2 dx,

where we define

∂D1 = ∂D ∩
{

x : |x − c(t′)| ≥ 1
| ln δ|

}
, ∂D2 = ∂D ∩

{
x : |x − c(t′)| ≤ 1

| ln δ|
}

.

The first integral leads to

(5.10)
∫

∂D1

1
|x − c(t′)|2 ds ≤ 4| ln δ|2

∫
∂D1

ds ≤ C| ln δ|2.

For the second integral, since

∂D′
2 =

{
x : x ∈ T (x0, ∂D), |x − x0|2 ≤ 1

| ln δ|2 − δ2

}
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approximates ∂D2 for small δ > 0, we have∫
∂D2

1
|x − c(t′)|2 ds ≤ 2

∫
∂D′

2

1
|x − c(t′)|2 ds =

∫
∂D′

2

1
|x − x0|2 + δ2

ds

= 2
∫ 2π

0

∫ √
| ln δ|−2−δ2

0

rdrdθ

r2 + δ2

= 4π(| ln δ| − ln(| ln δ|) ≤ C| ln δ|

(5.11)

for δ > 0 small enough. Then the third estimate follows from (5.10)–(5.11).
The fourth estimate will be given in Appendix.

6. Appendix

6.1. Expression of Λ∂D,λ

Here we lead to the expression of (3.8). Let v(x) ∈ H1(Ω \ D). From the
definition of the weak solution of un to (3.6), we have

0 =
∫

Ω\D

v∆undx +
∫

Ω\D

k2vundx

=
∫

∂Ω

v
∂un

∂n
ds −

∫
∂D

v
∂un

∂ν
ds −

∫
Ω\D

(�un � v − k2vun)dx.

(6.1)

Hence, reminding the boundary condition of un, we have∫
∂Ω

∂un

∂n
vds =

∫
Ω\D

(�un � v − k2unv)dx −
∫

∂D

λunvds.

Taking v = vn in this expression, we have

(6.2) 〈Λ∂D,λfn, fn〉 =
∫

Ω\D

(�un � vn − k2unvn)dx −
∫

∂D

λunvnds.

Analogously, we have

(6.3) 〈Λ0,0fn, fn〉 =
∫

Ω

(�vn � vn − k2vnvn)dx.

Remind wn = un − vn and consider the expression

(6.4)
∫

Ω\D

[| � wn|2 − k2|wn|2]dx −
∫

∂D

λ|wn|2ds

=
∫

Ω\D

(�wn � wn − k2wnwn)dx −
∫

∂D

λwnwnds.

Since (un − vn)|∂Ω = 0, we have∫
Ω\D

(�un � (un − vn) − k2un(un − vn))dx −
∫

∂D

λun(un − vn)ds = 0.
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Hence, it follows from (6.4) that∫
Ω\D

[| � wn|2 − k2|wn|2]dx −
∫

∂D

λ|wn|2ds

= −
(∫

Ω\D

(�vn � un − k2vnun)dx −
∫

∂D

λvnunds

)

+
∫

Ω\D

(�vn � vn − k2vnvn)dx −
∫

∂D

λvnvnds

= −
∫

Ω\D

(�vn � un − k2vnun)dx +
∫

∂D

λunvnds

−
∫

∂D

λunvnds +
∫

∂D

λvnunds +
∫

Ω

(�vn � vn − k2vnvn)dx

−
∫

D

(| � vn|2 − k2|vn|2)dx −
∫

∂D

λ|vn|2ds

= −〈Λ∂D,λfn, fn〉 + 〈Λ0,0fn, fn〉 +
∫

∂D

(λ − λ)vnunds

−
∫

D

(| � vn|2 − k2|vn|2)dx −
∫

∂D

λ|vn|2ds.

(6.5)

Combining (6.4) and (6.5) and noticing un = wn + vn, we have (3.8).

6.2. Estimate for w
Here we prove the fourth estimate in Theorem 4.
For given needle c ∈ Ω \ D, put x0 = c(t) ∈ Ω \ D and let a ∈ ∂D be

the point at which the needle c first hits ∂D. Suppose x0 is very near to a.
Consider two families of functions {w(·, x0)}, {z(·, x0)} depending on x0 in some
function space X. We donote by w(·, x0) ∼ z(·, x0) in X if {w(·, x0)− z(·, x0)}
is a bounded set in X.

Let G0(x − x0) = 1/(4π|x − x0|). Then it is easy to see that

(∂ν + λ)G(x − x0) ∼ (∂ν + λ)G0(x − x0)

in L2(∂D), hence

(6.6) w(·, x0) ∼ w0(·, x0) in H1(Ω \ D),

where w = w(·, x0) ∈ H1(Ω \ D) is the solution to (3.10) and w0 = w0(·, x0) ∈
H1(Ω \ D) is the solution to

(6.7)




∆w0 + k2w0 = 0, in Ω \ D(
∂

∂ν
+ λ

)
w0 = −

(
∂

∂ν
+ λ

)
G0(· − x0), on ∂D

w0 = 0, on ∂Ω.

By the Sobolev embedding H1/2(∂D) ↪→ Lr(∂D) with 2 ≤ r ≤ 4 and the
Holder inequality, for any q(4/3 ≤ q ≤ 2), there exists a constant C > 0 such
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that ∣∣∣∣
∫

∂D

λ(x)G0(x − x0)φds

∣∣∣∣ ≤ ‖λG0(· − x0)‖Lq(∂D) ‖φ‖Lr(∂D)

≤ C ‖λG0(· − x0)‖Lq(∂D) ‖φ‖H1/2(∂D)

(6.8)

for φ ∈ H1/2(∂D), where 1/r = 1 − 1/q.
Hence λG0(· − x0) ∼ 0 in H−1/2(∂D), and by the well poseness of our

boundary value problem, this implies

(6.9) w0(·, x0) ∼ w1(·, x0) in H1(Ω \ D),

where w1 = w1(·, x0) ∈ H1(Ω \ D) is the solution to

(6.10)




∆w1 + k2w1 = 0, in Ω \ D(
∂

∂ν
+ λ(x)

)
w1 = − ∂

∂ν
G0(· − x0), on ∂D

w1 = 0, on ∂Ω.

Now consider the solution w2 = w2(·, x0) ∈ H1(Ω \ D) to

(6.11)




∆w2 = 0, in Ω \ D(
∂

∂ν
+ λ(x)

)
w2 = − ∂

∂ν
G0(· − x0), on ∂D

w2 = 0, on ∂Ω.

For this problem, we have

Claim 1. λ(x)w2(x, x0) ∼ 0 in H−1/2(∂D), w2(x, x0) ∼ 0 in H−1(Ω \
D), then w1(·, x0) ∼ w2(·, x0) in H1(Ω \ D).

Proof. The proof given here also gives a more precise estimate for w2,
which will be used in the sequel.

Let y = (y1, y2, y3) = (y1(x, x0), y2(x, x0), y3(x, x0)) be a boundary normal
coordinates near point a such that

y(a) = 0, J(x) :=
∂(y(x, x0))

∂x
= I (identity matrix)

at x = x0 and D0 = {y1 < 0} locally near point a. Also, let

A(x) := |J(x)|−1J(x)(J(x))T , x(y(x, x0); x0) = x,

Ã(y) := A(x(y; x0)), ũ(y) := u(x(y; x0)).

Then it is easy to see
(1) Ã(y) ∈ C1 near y = 0;
(2) ∆u = 0 near point a ⇐⇒ � · Ã � · ũ = 0 near 0;



�

�

�

�

�

�

�

�

Recovery of the shape of an obstacle and the boundary impedance 183

(3) δ(x(y; x0) − x0) = δ(y − y0);
(4) ∂ν = ∂y1 .
In order to simplify the description of our argument, from now on we

extend x(y; x0) and Ã(y) to an open ball V ⊂ R3 centered at y = 0 without
destroying their regularities and positivity of Ã(y). By a direct estimate, we
can easily see

G̃0(y; y0) ∼ G0(y − y0) in H1(V ),

where we have adopted the convention y0 = y(x0; x0).
Now consider the solution w̃0

2 ∈ H1(R3
+) to

(6.12)

{
∆w̃0

2 = 0, in y1 > 0
∂y1w̃

0
2 = −∂y1G0(y − y0), on y1 = 0.

and put w̃2(y) := w2(x(y, x0)). If we can prove

Claim 2. ∇ · ((Ã(y) − Ã(y0)) � w̃0
2) ∼ 0 in (H1

0 (V ∩ R3
+))∗,

then we have

(6.13) w̃2 ∼ w̃0
2 in H1(V ∩ R3

+)

by observing
(6.14){

� · (Ã � (w̃2 − w̃0
2)) = −� · ((Ã(y) − Ã(y0)) � w̃0

2), in V ∩ R3
+

∂y1(w̃2 − w̃0
2) = −∂y1G̃0(y, y0) + ∂y1G0(y − y0), on y1 = 0.

Proof for Claim 2 will be given in Subsection 6.3. Therein we also yield a
prescise expression for w̃0

2(y), which completes the proof of Claim 1.

Now we can see that

(6.15) w1(·, x0) ∼ w2(·, x0) in H1(Ω \ D),

from Claim 1 and the well posedness of our boundary value problem.
Now summing up (6.6), (6.9), (6.15) and (6.13), as well as the expression

of w̃0
2(y) in the sequel altogether leads to∫

∂D

|w(x, x0)|2ds ≤ C

(∫
∂D

|G(x − c(t))|2ds + 1
)

,

which completes the proof of the fourth estimate in Theorem 4.

6.3. Proof for Claim 2
Let y0 = (y01, y02, y03) = (y01, y

′
0). Then it is well known that H(y) =

H(y; y0) = G0(y − y0) can be given by

(6.16) H(y) =

{
H+(y) = H+(y; y0), in y1 > y01

H−(y) = H−(y; y0), in y1 < y01
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with the solution H±(y) to

(6.17)




∆H±(y) = 0, in ± (y1 − y01) > 0
H+(y)|y1=y01+0 = H−(y)|y1=y01−0,

∂y1H+(y)|y1=y01+0 − ∂y1H−(y)|y1=y01−0 = −δ(y′ − y′
0).

Denote by Γ±(y1, η
′) and w(y1, η

′) the Fourier transforms of H±(y) and w̃0
2(y)

with respect to y′, respectively. Then, Γ′
± := eiy′

0.η′
Γ± and w′ := eiy′

0.η′
w

satisfy

(6.18)




(∂2
y1

− |η′|2)Γ′
± = 0, in ± (y1 − y01) > 0

Γ′
+|y1=y01+0 = Γ′

−|y1=y01−0,

∂y1Γ
′
+|y1=y01+0 − ∂y1Γ

′
−|y1=y01−0 = −1.

and

(6.19)

{
(∂2

y1
− |η′|2)w′ = 0, in y1 > 0

∂y1w
′ = −∂y1Γ

′
−, on y1 = 0.

respectively. Γ′
± = Γ′

±(y1) is given by

Γ′
±(y1) = 2−1|η′|−1e∓(y1−y01)|η′|,

Hence w′ = w′(y1) = 2−1|η′|−1e−(y1+y01)|η′|. Comparing these two formula, we
have

w̃0
2(y) = H+(y1, y

′;−y01, y
′
0) =

1
4π
√

(y1 + y01)2 + |y′ − y′
0|2

.

This immediately proves Claim 2.
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