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Rank one log del Pezzo surfaces of index two

By
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Abstract

Let S be a rank one log del Pezzo surface of index two and S0 the
smooth part of S. In this paper we determine the singularity type of S,
in a way different from Alekseev and Nikulin [1]. Moreover, we calculate
the fundamental group of S0 and prove that S contains the affine plane
as a Zariski open subset if and only if π1(S

0) = (1).

1. Introduction

Throughout the present article we work over an algebraically closed field
k of characteristic zero. Whenever we consider problems of topological nature,
we assume that k to be the complex number field C. Let S be a normal
projective surface with only quotient singular points. The index of S is the
smallest positive integer N such that NKS is a Cartier divisor. Since S has
only quotient singularities, the index of S exists. Let π : V → S be a minimal
resolution of singularities and D the exceptional locus, which we identify with a
reduced divisor with support D. We often denote (V, D) and S interchangeably.

Definition 1.1. Let S be a normal projective surface with only quotient
singular points. Then S is called a log del Pezzo surface if the anticanonical
divisor −KS is ample. A log del Pezzo surface S is said to have rank one if
the Picard number of S is equal to one. In the present article we call a log del
Pezzo surface of rank one an LDP1-surface.

In recent years, log del Pezzo surfaces have been studied by several authors.
Gurjar and Zhang [8], [9] proved that the fundamental group of the smooth
part of every log del Pezzo surface is finite. There are other proofs by Fujiki,
Kobayashi and Lu [6] and by Keel and McKernan [12], independently. In [12],
Keel and McKernan studied LDP1-surfaces and proved that the smooth part
S0 := S − Sing S of every LDP1-surface S is log-uniruled, i.e., S0 contains a
non-empty Zariski open subset dominated by images of the affine line. LDP1-
surfaces of index one (that is, Gorenstein LDP1-surfaces) have been studied by
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Brenton [2], Demazure [4], Furushima [7], Hidaka and Watanabe [10], Miyanishi
and Zhang [19], etc. The classification of LDP1-surfaces of index two was
announced by Alekseev and Nikulin [1, Theorem 7]. In [24], Zhang classified
all LDP1-surfaces with only rational double points and unique rational triple
point. Note that every LDP1-surface can have at most five singular points by
[12, Section 9]. In [13], the author classified all LDP1-surfaces with unique
singular point. The complete classification of LDP1-surfaces, however, is not
yet fully explored.

In the present article, we shall study LDP1-surfaces of index two. In
Section 3, by using Zhang’s results on LDP1-surfaces (cf. [23] and [24]), we
classify all LDP1-surfaces of index two. Our method is quite different from
Alekseev and Nikulin [1]. In Section 4 we calculate the fundamental groups of
the smooth parts of the LDP1-surfaces of index two. Our main result is the
following theorem.

Theorem 1.1. Let S be an LDP1-surface of index two and let π :
(V, D) → S be a minimal resolution of S, where D is the reduced exceptional
divisor. Let S0 be the smooth part of S. Then the following assertions hold:

(1) There exist exactly 18 singularity types of LDP1-surfaces of index two,
each of which is realizable and given in terms of the weighted dual graph of D
in Table 1 (see Appendix).

(2) Suppose that (V, D) is not isomorphic to (Σ4, M4). Then there exist
a (−1)-curve C ∈ MV(V, D) (for the definition of MV(V, D), see Section 2)
and a P1-fibration Φ : V → P1 such that ϕ := Φ|V −D : V − D → P1 is an
A1-fibration or an untwisted A1

∗-fibration (for the definition, see [17]). Further,
the configuration of C + D as well as all singular fibers of Φ can be explicitly
described. The configuration is given in Appendix, as the configuration (n) for
2 ≤ n ≤ 18.

(3) π1(S0) is a finite group of order ≤ 8. The fundamental group π1(S0)
and the singularity type of the quasi-universal covering U of S (see Section 4)
are given in Table 1 together with other data.

(4) S contains the affine plane as a Zariski open subset if and only if
π1(S0) = (1).

A (−n)-curve is a smooth complete rational curve with self-intersection
number −n. A connected reduced effective divisor T on a smooth surface is a
(−2)-rod (resp. a (−2)-fork) if T consists entirely of (−2)-curves and T can be
contracted to a cyclic rational double point (resp. a non-cyclic rational double
point). A (−2)-rod (resp. a (−2)-fork) corresponds to the exceptional locus of
a minimal resolution of a rational double point of Dynkin type An (resp. Dn

(n ≥ 4), E6, E7 or E8). A reduced effective divisor D is called an NC (resp.
SNC) divisor if D has only normal (resp. simple normal) crossings. We employ
the following notation:

KX : the canonical divisor on X.
ρ(X): the Picard number of X.
Σn(n ≥ 0): a Hirzebruch surface of degree n.
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Mn(n ≥ 0): a minimal section of Σn.
#D: the number of all irreducible components in SuppD.

Acknowledgements. The author would like to thank the referee for
useful comments.

2. Preliminary results

Definition 2.1. (1) An SNC divisor D on a smooth projective surface
is said to be of type Kn (n ≥ 1) if D consists entirely of rational curves and
has the weighted dual graph as shown in Figure 1.

(2) A quotient singular point P on a normal surface X is said to be of
type Kn if the reduced exceptional divisor of a minimal resolution of P ∈ X is
of type Kn. Note that if the index of P is equal to two then P is of type Kn

by [1, Proposition 2] (see also [25, Lemma 1.8]).

Figure 1

K1: �
−4

Kn (n ≥ 2): �
−3

�
−2

� � � � � � � � � �
−2

�
−3

n−2︷ ︸︸ ︷

Let T be a normal projective surface with only quotient singular points.
If the index of T is equal to two, then each singular point of T is a rational
double point or a quotient singular point of type Kn. As usual, rational double
points are indicated by their Dynkin types An, Dn (n ≥ 4), E6, E7, and E8.
When we say T a surface of type A72K1 for example, this means that T has
three singular points, one of which is of type A7 and other two are of type K1.
We indicate this by writing S(A72K1).

Now, let S be an LDP1-surface and let π : V → S be a minimal resolution
of S. Let D =

∑
i Di be the reduced exceptional divisor with respect to π,

where the Di are irreducible components of D. Since S has only log-terminal
singularities, there exists uniquely an effective Q-divisor D# =

∑
i αiDi such

that 0 ≤ αi < 1 for any i and D# +KV is numerically equivalent to π∗KS (see
[11], [18], [16], etc.). Hereafter in the present section, we retain this situation.

Lemma 2.1. (1) −(D#+KV ) is nef and big Q-Cartier divisor. More-
over, for any irreducible curve F , −(D# + KV · F ) = 0 if and only if F is a
component of D.

(2) Any (−n)-curve with n ≥ 2 is a component of D.
(3) V is a rational surface.

Proof. See [24, Lemma 1.1].

Lemma 2.2. There is no (−1)-curve E such that, after contracting E
and consecutively (smoothly) contractible curves in E + D, the image of the
divisor E + D can be contracted to quotient singular points.
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Proof. See [23, Lemma 1.4].

By Lemma 2.1 (1), if C is an irreducible curve not contained in Supp D,
then −(C · D# + KV ) takes value in {n/p| n ∈ N}, where p is the index of
S. So we can find an irreducible curve C such that −(C · D# + KV ) attains
the smallest positive value. We denote the set of such irreducible curves by
MV(V, D).

Definition 2.2 (cf. [24, Definitions 1.2 and 3.2]). With the same nota-
tion as above, assume that ρ(V ) ≥ 3.

(1) (V, D) is said to be of the first kind if there exits an irreducible curve
C ∈ MV(V, D) such that |C + D + KV | �= ∅. (V, D) is said to be of the second
kind if (V, D) is not of the first kind, i.e., |C + D + KV | = ∅ for any curve
C ∈ MV(V, D).

(2) Assume that (V, D) is of the second kind. (V, D) is said to be of type
(IIa) if there exists a curve C ∈ MV(V, D) meeting at least two (−2)-curves in
Supp D. (V, D) is said to be of type (IIb) if there exists a curve C ∈ MV(V, D)
meeing only one component of D but (V, D) is not of type (IIa). (V, D) is said
to be of type (IIc) if (V, D) is neither of type (IIa) nor of type (IIb).

We shall prove that if the index of (V, D) is equal to two and ρ(V ) ≥ 3,
then (V, D) is of the second kind (see Theorem 3.1).

Lemma 2.3. Assume that (V, D) is of the second kind and that there
exists a curve C ∈ MV(V, D) meeting at least three components D0, D1 and
D2 of D. Then either G := 2C + D0 + D1 + D2 + KV ∼ 0 or there exists a
(−1)-curve Γ such that G ∼ Γ and (C · Γ) = (Di · Γ) = 0 for i = 0, 1, 2.

Proof. See [23, Lemma 2.3].

Lemma 2.4. Assume that (V, D) is of the second kind. Then every
curve C ∈ MV(V, D) is a (−1)-curve.

Proof. See [23, Lemma 2.2] and [8, Proposition 3.6]. See also [13, Lemma
1.5].

Lemma 2.5. Let Φ : V → P1 be a P1-fibration. Then the following
assertions hold:

(1) #{irreducible components of D not in any fiber of Φ} = 1+
∑

(#{(−1)-
curves in F} − 1), where F moves over all singular fibers of Φ.

(2) If a singular fiber F consists only of (−1)-curves and (−2)-curves then
F has one of the configurations (i), (ii) and (iii) in Figure 2. In Figure 2, the
integer over a curve is the self-intersection number of the corresponding curve.

(3) Suppose that there exists a singular fiber F such that F is of type
(i) or (ii) in Figure 2. Let C be the unique (−1)-curve in SuppF . Suppose
further that C ∈ MV(V, D). Then each singular fiber consists of (−2)-curves
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and (−1)-curves, say E1 and E2 (possibly E1 = E2), and Ei ∈ MV(V, D) for
i = 1, 2.

Proof. See [23, Lemmas 1.5 and 1.6].

Figure 2
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3. Classification

Let (V, D) be an LDP1-surface of index two. If ρ(V ) ≤ 2, then (V, D) ∼=
(Σ4, M4) (see No. 1 in Table 1). We assume that ρ(V ) ≥ 3. Let D =

∑r
i=1 D(i)

be the decomposition of D into connected components. Assume that D(i)

(1 ≤ i ≤ s) is of type Kn and D(j) (j > s) is a (−2)-rod or a (−2)-fork. It is
then clear that s ≥ 1 and D# = (1/2)

∑s
i=1 D(i) (see Section 2 for the definition

of D#). Further, for any curve E not in SuppD, −(E · D# + KV ) ≥ 1/2.
We prove the following result.

Theorem 3.1. Let (V, D) be an LDP1-surface of index two. Assume
that ρ(V ) ≥ 3. Then (V, D) is of the second kind, i.e., |C + D + KV | = ∅ for
any curve C ∈ MV(V, D).

Proof. Suppose to the contrary that (V, D) is of the first kind, i.e., there
exists a curve C ∈ MV(V, D) such that |C + D + KV | �= ∅. By [23, Lemma
2.1], there exists uniquely a decomposition of D as a sum of effective integral
divisors D = D′ + D′′ such that:

(i) (C · Di) = (D′′ · Di) = (KV · Di) = 0 for any component Di of D′.
(ii) C + D′′ + KV ∼ 0.

Namely, the pair (V, C +D) is a quasi-Iitaka surface (for the definition, see [23,
Section 3]). Since (V, D) has index two and each connected component of D′

is a (−2)-rod or a (−2)-fork, D′′ is a connected component of D and of type
Kn. In particular, D# = (1/2)D′′.
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Since |C + KV | = | − D′′| = ∅ by (ii), C ∼= P1. So (C · D′′) = −(C · C +
KV ) = 2. Since D# = (1/2)D′′, we have

0 > (C · D# + KV ) =
1
2
(D′′ · C) + (C · KV ) = 1 + (C · KV ) = −1 − (C2).

Hence (C2) ≥ 0 and −(C · D# + KV ) ≥ 1.
Since ρ(V ) ≥ 3, there exists a (−1)-curve E on V . Then(

1
2
≤

)
− (E · D# + KV ) = 1 − 1

2
(E · D′′) ≤ 1.

Since C ∈ MV(V, D), we know that (C2) = 0 and (E · D′′) = 0 for any (−1)-
curve E on V . Then OC(C) ∼= OP1 . Consider the following exact sequence:

0 → OV → OV (C) → OP1 → 0.

Since V is a rational surface, the induced cohomology exact sequence implies
that h0(V,OV (C)) = 2 and a complete linear system |C| is free. So |C| defines a
P1-fibration Φ := Φ|C| : V → P1. Let F be a singular fiber of Φ, where we note
that V is not relatively minimal. If F contains some components of D′′ then,
by Lemma 2.1 (2), F has a (−1)-curve meeting D′′. This is a contradiction.
If F contains no components of D′′, then F has a (−1)-curve G meeting D′′

because some components of D′′ meet C. This is also a contradiction.

We consider LDP1-surfaces of index two and type (IIa) in the following
theorem.

Theorem 3.2. Let (V, D) be an LDP1-surface of index two and type
(IIa). Let C ∈ MV(V, D) be a curve meeting at least two (−2)-curves in
Supp D. Then the following assertions hold.

(1) The singularity type of (V, D) is one of 2A1D6K1 and A1A5K3 (see
No. 2 and No. 3 in Table 1).

(2) There exist a P1-fibration Ψ : V → P1 and a component H of D
such that H is a section of Ψ and the other components of D are contained in
singular fibers of Ψ. In particular, V − D is affine-ruled, i.e., V − D contains
a non-empty Zariski open subset isomorphic to U × A1, where U is a smooth
algebraic curve.

(3) The configuration of C +D and all singular fibers of Ψ is given in the
configuration (n) for n = 2 or 3 in Appendix.

(4) All the cases are realizable.

Proof. By Lemma 2.4, C is a (−1)-curve. Let D1 and D2 be two (−2)-
curves in Supp D which C meets. Since |C+D+KV | = ∅, (C ·D1) = (C ·D2) =
1. So a divisor F0 := 2C +D1 +D2 defines a P1-fibration Φ = Φ|F0| : V → P1.
By Lemma 2.5 (3), each singular fiber of Φ consists only of (−1)-curves and
(−2)-curves.

(I) The case where C meets a component D0 of D−(D1+D2). By Lemma
2.3, either G := 2C + D0 + D1 + D2 + KV = F0 + D0 + KV ∼ 0 or there exists
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a (−1)-curve Γ such that G ∼ Γ and (C · Γ) = (Di · Γ) = 0 for i = 0, 1, 2. We
consider the following two cases I-1 and I-2 separately.

Case I-1. G ∼ 0. Then D0 is a 2-section of Φ because (D0 · F0) =
−(D0 · D0 + KV ) = 2. Since the dual graph of C + D is a tree by [15, Lemma
I.2.1.3], (D0 · D1) = (D0 · D2) = (D1 · D2) = 0. If Di is a component of
D − (D0 + D1 + D2), then

0 ≤ (Di · F0) = (Di · −D0 − KV ) ≤ 0.

So (Di ·F0) = (Di ·D0) = (Di ·KV ) = 0. Hence (Dj ·D−Dj) = 0 for j = 0, 1, 2
and each connected component of D − D0 is a (−2)-rod or a (−2)-fork. Since
the index of (V, D) is equal to two, (D2

0) = −4.
By using ρ(V ) = #D +1 and Lemma 2.5 (1), we know that every singular

fiber has the configuration (i) or (ii) in Figure 2. Applying the Hurwitz formula
to Φ|D0 : D0 → P1, we see that Φ has at most two singular fibers. Let
u : V → Σn be a contraction of all (−1)-curves and consecutively (smoothly)
contractible curves in the fibers of Φ. By Lemma 2.1 (2), n = 0 or 1. We
put u∗(D0) ∼ 2Mn + α�, where � is a fiber of Φ1 = Φ ◦ u−1 : Σn → P1.
Since u∗(D0) is a smooth rational curve, we have α = n + 1 and (u∗(D0)2) =
(2Mn + (n + 1)�)2 = 4. Then we know that Φ has just two singular fibers F0

and F1 and that #F1 = 1 + (8 − 2) = 7. Hence the configuration of F1 looks
like that of (ii) in Figure 2. The singularity type of (V, D) is then 2A1D6K1.

The configuration of C + D + E1 looks like that of Figure 3, where E1 is
the unique (−1)-curve in Supp(F1). Put G0 := 4E1 + 3D3 + 2D5 + D0 + D5.
Then G0 defines a P1-fibration Ψ := Φ|G0| : V → P1, C and D6 are sections
of Ψ and D − D6 is contained in singular fibers of Ψ. Let Gi (i = 1, 2) be
the singular fiber of Ψ containing Di. By considering ρ(V ) = #D + 1 = 10
and Lemma 2.5 (1), we can easily see that the configuration of C + D and all
singular fibers of Ψ is given in the configuration (2) in Appendix. In particular,
V − D is affine-ruled.

Figure 3
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Case I-2. There exists a (−1)-curve Γ such that G ∼ Γ and (C · Γ) =
(Di · Γ) = 0 for i = 0, 1, 2. Since G = F0 + D0 + KV ∼ Γ and (D0 · Γ) = 0,
(F0 · D0) = −(D0 + KV · D0) = 2, i.e., D0 is a 2-section of Φ. Since (Γ · C) =
(Γ · Di) = 0 (i = 0, 1, 2), Γ is contained in a fiber F1 of Φ. By Lemma 2.5
(3), the configuration of F1 looks like that of (i), (ii) or (iii) in Figure 2. If F1
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has the configuration (i) or (iii) in Figure 2, then there exists a (−1)-curve E
(possibly Γ) and a reduced effective divisor ∆(≤ D) such that |E+∆+KV | �= ∅
because (Γ · D0) = 0. By Lemma 2.5 (3), E ∈ MV(V, D). Then (V, D) is of
the first kind, a contradiction. So the configuration of F1 looks like that of
(ii) in Figure 2. Since each connected component of D can be contracted to a
quotient singular point, D0 meets F1 as follows (Figure 4):

Figure 4
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Since (V, D) has index two, (D2
0) = −2. We claim that D−D0 is contained

in fibers of Φ. Indeed, suppose that Di ≤ D−D0 is not in any fiber of Φ. Then
(Di · Γ) = (Di · F0 + D0 + KV ) ≥ (Di · F0) ≥ 1. On the other hand,

((Di · Γ) ≥)(Di · F0) = (Di · F1) ≥ (Di · 2Γ) > (Di · Γ).

This is absurd. So each connected component of D is a (−2)-rod or a (−2)-fork.
This contradicts that the index of (V, D) is equal to two. Therefore, Case I-2
does not take place.

(II) The case where C does not meet any component of D − (D1 + D2).
We claim that there exist no (−4)-curves in SuppD. Indeed, if Di is a (−4)-
curve in Supp D, then (Di · D − Di) = 0. Since (C · Di) = 0, Di is contained
in a singular fiber of Φ. This is a contradiction because each singular fiber of
Φ consists only of (−1)-curves and (−2)-curves.

Since (V, D) has index two and D contains no (−4)-curves, there exists a
(−3)-curve D0 in Supp D. Then (D0 · Dj) = 1, where j = 1 or 2, because D0

is not contained in any fiber of Φ. Assume that j = 1. Let D(i) (i = 1, 2) be
the connected component of D containing Di. Then D(1) is of type Kn (n ≥ 3)
and D(2) is a (−2)-rod or a (−2)-fork because −(C ·D# + KV ) ≥ 1/2. Let D4

be the (−3)-curve in Supp(D(1)) other than D0. Then D4 also meets D1. So
D(1) is of type K3. Since (D − D1 · D1) = 2, by using the arguments as in the
proof of [23, Lemma 5.3], we know that (D − D2 · D2) = 0.

Let F0, . . . , Fr (r ≥ 0) be all singular fibers of Φ. We claim that:

Claim 1. r = 1 and the configuration of F1 looks like that of (iii) in
Figure 2.

Proof. If r = 0, then ρ(V ) = 2 + (#F0 − 1) = 4. On the other hand,
ρ(V ) = #D + 1 ≥ #D(1) + #D(2) + 1 = 5, which is a contradiction. So r ≥ 1.
Since (D−D2 ·D2) = 0, D−D(1) is contained in singular fibers of Φ. By using
ρ(V ) = #D + 1 and Lemma 2.5 (1), we know that r = 1. If the configuration
of F1 looks like that of (i) or (ii) in Figure 2, then the unique (−1)-curve E1 in
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Supp(F1) meets both of D0 and D4 which are sections of Φ. Then

−(E1 · D# + KV ) ≤ 1 − 1
2
(E1 · D0 + D4) ≤ 0,

which is a contradiction. This proves Claim 1.

Let E1 and E′
1 be the two (−1)-curves in Supp(F1). Since D0 and D4

are sections of Φ and D − D(1) is contained in singular fibers of Φ, we may
assume that (E1 · D0) = (E′

1 · D4) = 1. Note that (F1)red − (E1 + E′
1) �= 0

by ρ(V ) = #D + 1 and Lemma 2.2. Let µ : V → Σ3 be the contraction of
all (−1)-curves and consecutively (smoothly) contractible curves in fibers of Φ
except for those meeting D0. Then M3 = µ∗(D0), (µ∗(D0) · µ∗(D4)) = 0 and
(µ∗(D4)2) = 3. By Claim 1, we can easily see that ρ(V ) = 2 + (#F0 − 1) +
(#F1 − 1) = 2 + (#F0 − 1) + ((µ∗(D4)2) − (D2

4)) = 10. Hence the singularity
type of (V, D) is A1A5K3 and the configuration of C + D + E1 + E′

1 is given in
the configuration (3) in Appendix.

The assertions (1)–(3) are thus verified. The assertion (4) is clear.

We consider LDP1-surfaces of index two and type (IIb) in the following
theorem.

Theorem 3.3. Let (V, D) be an LDP1-surface of index two and type
(IIb). Let C ∈ MV(V, D) be a curve meeting only one component of D. Then
the following assertions hold.

(1) The singularity type of (V, D) is one of K5, K9, A2K6 and A4K5 (see
No. n (4 ≤ n ≤ 7) in Table 1).

(2) There exists a P1-fibration Φ : V → P1 such that the configuration
of C + D and all singular fibers of Φ is given in the configuration (n) for
4 ≤ n ≤ 7 in Appendix. In particular, all components of D, except one section
or two disjoint sections, are contained in singular fibers of Φ.

(3) V − D is affine-ruled.
(4) All the cases are realizable.

Proof. By Lemma 2.4, C is a (−1)-curve. Let Di be the unique component
of D meeting C and let D′ be the connected component of D containing Di.

Suppose that D′ is a (−2)-rod or a (−2)-fork. By Lemma 2.2, there exists
an effective divisor ∆0 with Supp ∆0 ⊂ SuppD′ such that 2C + ∆0 defines a
P1-fibration Φ0 := Φ|2C+∆| : V → P1. Since the index of (V, D) is equal to
two, there exists a connected component D′′ of D such that D′′ is of type Kn.
Then D′′ is contained in a singular fiber G of Φ0 and there exists a (−1)-curve
E in Supp G meeting D′′. Then we have

−(E · D# + KV ) ≤ 1
2

< −(C · D# + KV ) = 1.

This is absurd. Hence D′ is of type Kn. Lemma 2.2 implies that n ≥ 5 and Di

is not a terminal component of D′.
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Let D′ = D′
1+ · · ·+D′

n be the decomposition of D′ into irreducible compo-
nents, where we assume that Di = D′

i and (D′
j ·D′

j+1) = 1 for j = 1, . . . , n− 1.
By Lemma 2.2, there exist an effective divisor ∆ supported on D′ and an inte-
ger e > 0 such that F0 := eC + ∆ defines a P1-fibration Φ := Φ|F0| : V → P1.
The dual graph of C + (∆)red looks like that of (1) or (2) in Figure 5. Note
that we may assume that i = 2 in the configuration (1) in Figure 5.

Figure 5
(1)

�
−3

D′
1 �

−2

D′
2

�C −1

�
−2

D′
3 �

−2

D′
4

(2)

�
−2

D′
i−1 �

−2

D′
i

�C −1

�
−2

D′
i+1

Case (1). Then F0 = 3(C + D′
2) + 2D′

3 + D′
1 + D′

4. Moreover, D′
5 is a

section of Φ and D−D′
5 is contained in singular fibers of Φ. Let F0, F1, . . . , Fr

(r ≥ 0) be all singular fibers of Φ. By using ρ(V ) = #D + 1 and Lemma 2.5
(1), we know that Fi (1 ≤ i ≤ r) has only one (−1)-curve, say Ei. So r ≤ 1
and the equality holds if and only if n ≥ 6. If r = 0, then the singularity type
of (V, D) is K5 and the configuration of C +D is given in the configuration (4)
in Appendix.

Assume that r = 1. If (F1)red − E1 is connected, then we can easily see
that the singularity type of (V, D) is K9 and the configuration of C + D + E1

is given in the configuration (5) in Appendix. Assume that (F1)red −E1 is not
connected. Put D′′ := D −D′. Since E1 is the unique (−1)-curve in Supp(F1)
and (0 <)− (E1 ·D# + KV ) ≤ 1− (1/2)(E1 ·D′) ≤ 1/2, D′′ is a (−2)-rod or a
(−2)-fork. Note that (E1 ·D′) = (E1 ·D′

n) = 1 because the intersection matrix
of (F1)red − D′

n = D′′ + E1 + D′
6 + · · · + D′

n−1 is negative definite. By using
[23, Lemma 1.6 (1)], we know that n = 6 and #D′′ = 2. Hence the singularity
type of (V, D) is A2K6 and the configuration of C + D and F1 is given in the
configuration (6) in Appendix.

Case (2). Then F0 = 2(C + D′
i) + D′

i−1 + D′
i+1. Moreover, D′

i−2 and
D′

i+2 are sections of Φ and D − (D′
i−2 + D′

i+2) is contained in singular fibers
of Φ.

We consider the case where D′
i−2 and D′

i+2 are (−2)-curves. Then n ≥ 7
and 3 < i < n − 2. Let F1 (resp. F2) be the singular fiber of Φ containing
D′

1 + · · ·+D′
i−3 (resp. D′

i+3 + · · ·+D′
n). By using ρ(V ) = #D +1 and Lemma

2.5 (1), we know that F1 = F2, F1 has just two (−1)-curves E1 and E′
1, and

that Φ has no singular fibers other than F0 and F1. Let m be the number of
connected components of (F1)red− (E1 +E′

1). Then m = 2 or 3. If m = 2, then
we may assume that E1 meets both of D′

1+· · ·+D′
i−3 and D′

i+3+· · ·+D′
n. Then

−(E1·D#+KV ) ≤ 0, which is a contradiction. So m = 3. Since −(E1·D#+KV )
and −(E′

1 ·D# + KV ) are positive, we know that (E1 ·D′) = (E′
1 ·D′) = 1 and

D′′ := (F1)red − (E1 + E′
1 + D′

1 + · · · + D′
i−3 + D′

i+3 + · · · + D′
n) is a (−2)-rod

or a (−2)-fork. Then E1 and E′
1 meets D′′. This is a contradiction because
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the intersection matrix of E1 + E′
1 + D′′ is then not negative definite. Thus

we know that D′
i−2 or D′

i+2 is a (−3)-curve. We may assume that D′
i−2 is a

(−3)-curve, i.e., i = 3.
Assume that D′

i+2 = D′
5 is a (−2)-curve, i.e., n ≥ 6. Let F1 be the

singular fiber of Φ containing D′
6, . . . , D

′
n. Then F1 has at least two (−1)-

curves because F1 must have a (−1)-curve meeting D′
1 which is a section of Φ.

By using ρ(V ) = #D + 1 and Lemma 2.5 (1), we know that F1 has just two
(−1)-curves E1 and E′

1 and that there exist no singular fibers of Φ other than
F0 and F1. We may assume that (E1 ·D′

1) = 1. Then (E1 ·D′
6 + · · ·+ D′

n) = 0
since −(E1 ·D# +KV ) > 0. So D′′ := (F1)red− (E1 +E′

1 +D′
6 + · · ·+D′

n) �= 0.
Further, D′′ is a (−2)-rod or a (−2)-fork because E1 must meet D′′. Since E′

1

also meets D′′, the intersection matrix of E1 +E′
1 +D′ is not negative definite.

This is a contradiction. Thus we know that D
(1)
5 is a (−3)-curve, i.e., n = 5.

Let F1, . . . , Fr be all singular fibers of Φ other than F0. Since ρ(V ) =
#D + 1 = 2 +

∑r
i=0(#Fi − 1) = 5 +

∑r
i=1(#Fi − 1) ≥ 6, we have r ≥ 1.

By using an argument similar to the case (II) as in the proof of Theorem 3.2,
we know that r = 1, F1 contains just two (−1)-curves E1 and E′

1 and that
#F1 = 6. Hence the singularity type of (V, D) is A4K5 and the configuration
of C + D and F1 is given in the configuration (7) in Appendix.

The assertions (1) and (2) are thus verified. The assertion (4) is clear.
Since (C · D) = (C · D′) = 1 and the dual graph of D′ is linear, the assertion
(3) follows from [23, Lemma 6.2].

We consider LDP1-surfaces of index two and type (IIc) in the following
theorem.

Theorem 3.4. Let (V, D) be an LDP1-surface of index two and type
(IIc). Then the following assertions hold.

(1) The singularity type of (V, D) is one of A2K2, 2A2K3, 2A3K2, A7K2,
A3D5K1, 2D4K1, D8K1, A4K1, A7K1, A1A5K1 and A72K1 (see No. n (8 ≤
n ≤ 18) in Table 1).

(2) There exist a curve C ∈ MV(V, D) and a P1-fibration Φ : V → P1

such that the configuration of C + D and all singular fibers of Φ is given in the
configuration (n) for 8 ≤ n ≤ 18 in Appendix. In particular, all components,
except one section or two disjoint sections, are contained in singular fibers of
Φ.

(3) V − D is affine-ruled if n �= 12.
(4) All the cases are realizable.

Proof. We take a curve C ∈ MV(V, D). Then C meets a (−n)-curve D0

(n = 3 or 4) and a (−2)-curve D1 by the hypothesis. Further, C is a (−1)-
curve by Lemma 2.4. Let D(i) (i = 0, 1) be the connected component of D
containing Di. Since −(C · D# + KV ) > 0, D(1) is a (−2)-rod or a (−2)-fork
and −(C ·D# + KV ) = 1/2. Let D(i) =

∑ri

j=1 D
(i)
j (i = 0, 1) be the irreducible

decomposition of D(i), where we put D
(i)
1 = Di.

(I) The case n = 3. Then D(0) is of type Kr0 (r0 ≥ 2) and D
(0)
1 is a
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terminal component of D(0). We claim that:

Claim 1. D(1) is a (−2)-rod and D
(1)
1 is a terminal component of D(1).

Proof. Suppose that D(1) is a (−2)-fork or D
(1)
1 is not a terminal com-

ponent of D(1). Then there exists an effective divisor ∆ with Supp ∆ ⊂
Supp(D(1)) such that G0 := 2C + ∆ defines a P1-fibration Φ0 := Φ|G0| : V →
P1. Then D

(0)
1 is a 2-section of Φ0 and the configuration of G0 looks like that of

(i) or (ii) in Figure 2. Further, another (−3)-curve in Supp(D(0)) is contained
in a fiber of Φ0. On the other hand, by Lemma 2.5 (3), every singular fiber of
Φ0 consists only of (−1)-curves and (−2)-curves. This is a contradiction. This
proves Claim 1.

By Claim 1, we may assume that (D(1)
j · D(1)

j+1) = 1 for j = 1, . . . , r1 − 1.

Lemma 2.2 implies that r1 ≥ 2. So F0 := 3C + 2D
(1)
1 + D

(1)
2 + D

(0)
1 defines a

P1-fibration Φ := Φ|F0| : V → P1, D
(0)
2 (which exists) and D

(1)
3 (which exists

if r1 ≥ 3) are sections of Φ and D− (D(0)
2 +D

(1)
3 ) is contained in singular fibers

of Φ.
We consider the following five cases I-1–I-5 separately.

Case I-1. r1 = 2. If r0 = 2, then, by virtue of Lemma 2.5 (1), we
know that F0 is the unique singular fiber of Φ. Hence the singularity type of
(V, D) is A2K2 and the configuration of C + D is given in the configuration
(8) in Appendix. We assume that r0 ≥ 3. Let F1 be the fiber of Φ containing
D

(0)
3 , . . . , D

(0)
r0 . By using ρ(V ) = #D + 1 and Lemma 2.5 (1), we know that Φ

has no singular fibers other than F0 and F1 and that F1 has a unique (−1)-
curve E1. If (F1)red − E1 is connected, then (F1)red − E1 = D

(0)
3 + · · · + D

(0)
r0 ,

(E1 · D) = 1 and

−(E1 · D# + KV ) =
1
2

= −(C · D# + KV ).

This is a contradiction because (V, D) is then of type (IIb). Hence D′ :=
(F1)red − (E1 + D

(0)
3 + · · · + D

(0)
r0 ) �= 0. It is then easy to see that D′ is a

(−2)-rod or a (−2)-fork. Since F1 consists of a (−1)-curve E1, a (−3)-curve
D

(0)
r0 and (−2)-curves, we know that r0 = 3 and #D′ = 2 by [23, Lemma 1.6

(1)]. Hence the singularity type of (V, D) is 2A2K3 and the configuration of
C + D + E1 is given in the configuration (9) in Appendix.

Case I-2. r0 = 2 and r1 = 3. Then D
(0)
2 and D

(1)
3 are sections of Φ.

Let F0, F1, . . . , Ft (t ≥ 0) be all singular fibers of Φ. By using an argument
similar to the case (II) as in the proof of Theorem 3.2, we know that t = 1, the
configuration of F1 looks like that of (ii) in Figure 2 and that #F1 = 5. Hence
the singularity type of (V, D) is 2A3K2 and the configuration of C + D and F1

is given in the configuration (10) in Appendix.

Case I-3. r0 = 2 and r1 ≥ 4. Then D
(0)
2 and D

(1)
3 are sections of Φ.

Let F1 be the fiber of Φ containing D
(1)
4 , . . . , D

(1)
r1 . Then F1 has at least two
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(−1)-curves. By using ρ(V ) = #D + 1 and Lemma 2.5 (1), we know that F1

has just two (−1)-curves E1 and E′
1 and Φ has no singular fibers other than

F0 and F1. Assume that (E1 · D(0)
2 ) = 1. Let µ : V → W be a contraction of

a (−1)-curve E′
1 and consecutively (smoothly) contractible curves in the fiber

F1 except for those meeting D
(0)
2 or D

(1)
3 such that µ∗(D

(1)
4 ) becomes a (−1)-

curves. Then µ∗(F1) has just two (−1)-curves µ∗(E1) and µ∗(D
(1)
4 ). Further,

the multiplicities of µ∗(E1) and µ∗(D
(1)
4 ) in µ∗(F1) are equal to one. So the

configuration of µ∗(F1) looks like that of (iii) in Figure 2. The configuration of
µ∗(C + D + E1 + E′

1) looks like that of Figure 6. Note that µ �= id. Since F1

has just two (−1)-curves, the birational morphism µ starts with a blowing-up
at a center P on µ∗(D

(1)
4 )− {µ∗(D

(1)
4 ) ∩ µ∗(D

(1)
3 )}. If P ∈ µ∗(DA) ∩ µ∗(D

(1)
4 ),

then E1 must meet two components of D whose coefficients in D# are equal
to 1/2. Then −(E1 ·D# + KV ) = 0, which is a contradiction. So P �∈ µ∗(DA).
Then D(1) ≥ µ′(µ∗(D

(1)
1 +D

(1)
2 +D

(1)
3 +D

(1)
4 +DA +DB +DC)). Since D(1) is

a (−2)-rod by Claim 1, we konw that µ is the blowing-up with center P . Hence
the singularity type of (V, D) is A7K2 and the configuration of C +D+E1 +E′

1

is given in the configuration (11) in Appendix.

Figure 6

µ∗(D
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(1)
4 )

−2 µ∗(DA)
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−2 µ∗(DC)
��
��
��
��
�

−1

µ∗(E1) −3

Figure 7
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�
��−2

�
��−2

��
��
��
��
��
��
�
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(0)
3 )−2

µ∗(D
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Case I-4. r0 ≥ 3 and r1 = 3. Let F1 be the fiber of Φ containing
D

(0)
3 , . . . , D

(0)
r0 . Then, by using an argument similar to Case I-3, we know that

F1 has just two (−1)-curves E1 and E′
1 and Φ has no singular fibers other than
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F0 and F1. Since either E1 or E′
1 meets D

(1)
3 , which is a section of Φ, we may

assume that (E1 · D(1)
3 ) = 1. Let µ : V → W be a contraction of (−1)-curve

E′
1 and consecutively (smoothly) contractible curves in the fiber F1 except for

those meeting D
(0)
2 or D

(1)
3 such that µ∗(D

(0)
3 ) becomes a (−1)-curve. Then,

by usnig an argument similar to Case I-3, we know that the configuration of
µ∗(C + E1 + E′

1 + D) looks like that of Figure 7. Note that the fundamental
points of µ lie on µ∗(D

(0)
3 ) − {µ∗(D

(0)
3 ) ∩ µ∗(D

(0)
2 )}. We can easily see that

D contains a connected componetnt D′ which can be contracted to a quotient
singular point of index ≥ 3. This is a contradiction. Therefore, Case I-4 does
not take place.

Case I-5. r0 ≥ 3 and r1 ≥ 4. Let F1 (resp. F2) be the fiber of Φ containing
D

(0)
3 , . . . , D

(0)
r0 (resp. D

(1)
4 , . . . , D

(1)
r1 ). If F1 �= F2, then F1 and F2 have at least

two (−1)-curves. This contradicts Lemma 2.5 (1). So F1 = F2. Further,
Lemma 2.5 (1) implies that F1 has at most two (−1)-curves.

Suppose that F1 has a unique (−1)-curve E1. Then (F1)red = E1 +D
(0)
3 +

· · ·+ D
(0)
r0 + D

(1)
4 + · · ·+ D

(1)
r1 . By using [23, Lemma 1.6 (1)] (see Case I-1), we

know that r0 = 3, r2 = 5 and that E1 meets D
(0)
3 and D

(1)
5 . It follows from

ρ(V ) = #D + 1 and Lemma 2.5 (1) that Φ has another singular fiber F2 and
F2 has just two (−1)-curves E2 and E′

2. We may assume that (E2 · D(0)
2 ) = 1.

Then −(E2 ·D# +KV ) ≤ 1/2 = −(C ·D# +KV ). So E2 meets D in only (−2)-
curves. This contradicts the assumption that (V, D) is of type (IIc). Hence F1

has just two (−1)-curves.
Let E1 and E′

1 be two (−1)-curves in Supp(F1). We may assume that
(E1 ·D(0)

3 + · · ·+D
(0)
r0 ) > 0. Then E1 ∈ MV(V, D). Since (V, D) is of type (IIc),

E1 meets D′ := (F1)red − (E1 + E′
1 + D

(0)
3 + · · ·+ D

(0)
r0 ). Note that D′ consists

only of (−2)-curves. Suppose that (E1 · D′−(D(1)
4 +· · ·+D

(1)
r1 )) = 1. Then (E′

1 ·
D

(1)
4 + · · ·+D

(1)
r1 ) = 1. Since the intersection matrix of (F1)red −E′

1 is negative
definite, D′−(D(1)

4 +· · ·+D
(1)
r1 ) is an irreducible (−2)-curve and (E1 ·D(0)

3 +· · ·+
D

(0)
r0 ) = (E1 ·D(0)

r0 ) = 1. Further, (E′
1 ·D(0)

3 + · · ·+D
(0)
r0 ) = (E′

1 ·D(0)
r0 ) = 1. The

intersection matrix of E1+E′
1+D

(0)
r0 +D′−(D(1)

4 +· · ·+D
(1)
r1 ) is then not negative

definite, which is a contradiction. Suppose that (E1 · D(1)
4 + · · · + D

(1)
r1 ) = 1.

Since the intersection matrix of E1 + D
(0)
3 + · · · + D

(0)
r0 + D

(1)
4 + · · · + D

(1)
r1 is

negative definite, (E1 ·D(0)
3 + · · ·+D

(0)
r0 ) = (E1 ·D(0)

r0 ) = 1 and r1 = 4. Further,
r0 ≥ 4 and (E′

1 · D(0)
3 + · · · + D

(0)
r0−1) = 1. Since (1/2 ≤) − (E′

1 · D# + KV ) ≤
1/2 = −(C ·D# + KV ), it follows that E′

1 ∈ MV(V, D). Then (V, D) is of type
(IIa) or (IIb). This is also a contradiction. Therefore, Case I-5 does not take
place.

(II) The case n = 4. In this case we may assume that every curve E ∈
MV(V, D) meets a (−4)-curve in SuppD. Since (D2

0) = −4, D0 is a connected
component of D. Let D(1) be the connected component of D containing D1.
Then D(1) is a (−2)-rod or a (−2)-fork.
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(II-1) The case where D1 is not a terminal component of D(1) or D(1) is a
(−2)-fork. Then there exists an effective divisor ∆ with Supp ∆ ⊂ Supp(D(1))
such that F0 := 2C + ∆ gives rise to a P1-fibration Φ = Φ|F0| : V → P1. Then
D0 is a 2-section of Φ and the configuration of F0 looks like that of (i) or (ii) in
Figure 2. It follows from Lemma 2.5 (3) that every singular fiber of Φ consists
of (−1)-curves and (−2)-curves. Hence each connected component of D other
than D0 is a (−2)-rod or a (−2)-fork because D − (D0 + D(1)) is contained in
fibers of Φ.

Let σ : V → W be the contraction of C and put B := σ∗(D − D1). Then
the pair (W, B) is an LDP1-surface by [23, Lemma 4.3]. In particular, (W, B)
is a dP3-surface (for the definition, see [24, Introduction]). Put B0 := σ∗(D0)
and D′

1 := σ∗(D1). Then B0 is a (−3)-curve and (B0 · B − B0) = 0. Further,
B# = (1/3)B0. Note that (W, B) �= (Σ3, M3) since #D(1) ≥ 3.

Claim 2. (W, B) is of type (IIa) or (IIc).
Proof. Suppose that (W, B) is of the first kind. Then there exists a curve

E ∈ MV(W, B) such that |E+B+KW | �= ∅. By using the same argument as in
the proof of Theorem 3.1, we know that E is a (−1)-curve, (E · B) = (E · B0) =
2 and E +B0 +KW ∼ 0. Since σ′(E) is not a component of D, σ′(E) is a (−1)-
curve by Lemma 2.1. Then −(σ′(E) · D# + KV ) = 1 − (1/2)(σ′(E) · D0) = 0,
which is a contradiction. Hence (W, B) is of the second kind. By [24, Theorem
4.1], (W, B) is not of type (IIb). This proves Claim 2.

We consider the following two Cases II-1-1 and II-1-2 separately.

Case II-1-1. D1 is not a terminal component of D(1). Note that −(D′
1 ·

B# + KW ) = 2/3. For any curve E ∈ MV(W, B), E is a (−1)-curve and
−(E · B# + KW ) ≥ 2/3 by Lemma 2.4 and Claim 2. So D′

1 ∈ MV(W, B).
By the hypothesis that (D(1) − D1 · D1) ≥ 2, (W, B) is of type (IIa). It then
follows from [24, Theorem 3.3] that the configuration of D′

1 + B looks like that
of Figure 8, where a solid line stands for a component of B; a line with ∗ on
it is a section of the vertical P1-fibration φ : W → P1. Hence the singularity
type of (V, D) is A3D5K1 and the configuration of C +D and all singular fibers
of a P1-fibration Ψ := φ ◦ σ : V → P1 is given in the configuration (12) in
Appendix.

Figure 8
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Case II-1-2. D1 is a terminal component of D(1). By the hypothesis in
Case II-1, D(1) is a (−2)-fork. By Claim 2 and [24, Theorems 3.3 and 5.2], the
dual graph of B is one of those given in the cases No. m (m = 28, 66, 67, 68,
84, 97) in [24, Appendix]. If m = 28, then there exists a curve E ∈ MV(W, B)
such that E meets the (−3)-curve B0 and two (−2)-curves in Supp B by [24,
Theorem 3.3]. Then σ′(E) ∈ MV(V, D) and σ′(E) meets two (−2)-curves and
D0. So (V, D) is of type (IIa), which is a contradiction. Hence (W, B) is of
type (IIc). We consider the following three subcases II-1-2-1 through II-1-2-3
separately.

Subcase II-1-2-1. m = 66, 67 or 68. Note that D′
1 ∈ MV(W, B). By

[24, Theorem 5.2], D′
1 must meet B0 and a terminal component of σ∗(D(1) −

D1). Then D(1) is a (−2)-rod, which contradicts the hypothesis in Case II-1-2.
Therefore, this subcase does not take place.

Subcase II-1-2-2. m = 84. The configuration of D′
1 + B then looks like

that of Figure 9, where D′
1 = B′

1 or B′
2 (cf. [24, Appendix]). If D′

1 = B′
2, then

we can easily see that σ′(B′
1) ∈ MV(V, D) and σ′(B′

1) satisfies the hypothesis
in Case II-1-1. So we are reduced to the situation treated in Case II-1-1. If
D′

1 = B′
1, then the singularity type of (V, D) is 2D4K1 and the configuration of

C + C ′ + D, where C ′ = σ′(B′
2), looks like that of Figure 10, where (D2

i ) = −2
for 1 ≤ i ≤ 8. Put G0 := D0 + D1 + D5 + 2(C + C ′). Then G0 defines a P1-
fibration Ψ := Φ|G0| : V → P1, D2 and D6 are sections of Ψ and D−(D2 +D6)
is contained in singular fibers of Ψ. By using ρ(V ) = #D +1 = 10 and Lemma
2.5 (1), we can easily see that the configuration of C +D and all singular fibers
of Φ is given in the configuration (13) in Appendix.

Figure 9

−2

−2

−2

��
��
��
��
��
��
��
�

−1 B′
1 −2

−2
−2

−2 ��
��
��
��
��
��
��
�

−1 B′
2

B0 −3

Figure 10

D2

D4

D3

D1 ��
��
��
��
��
��
��

−1

C

D6

D8

D7

D5 ��
��
��
��
��
��
��

−1

C ′
D0 −4

Subcase II-1-2-3. m = 97. The configuration of D′
1 + B then looks like

that of Figure 11 (cf. [24, Appendix]). So the singularity type of (V, D) is
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D8K1. Put Di+1 := σ′(Bi), i = 1, . . . , 7 and G0 := D0 +4C +3D1 +2D2 +D3.
Then G0 defines a P1-fibration Ψ := Φ|G0| : V → P1, D4 is a section of Ψ
and D − D4 is contained in singular fibers of Ψ. We can easily see that the
configuration of C +D and all singular fibers of Ψ is given in the configuration
(14) in Appendix.

Figure 11

��
��
��
��
��
��
��
��
��
��
��
�

D′
1 −1

�
�

��

−2

B1 �
�

��

−2

B2 �
�

��

−2

B3 �
�

��

−2

B4 �
�

�
��

B5

−2
�

�
�

−2

B6

�
�

� −2

B7

B0 −3

(II-2) The case where D(1) is a (−2)-rod and D1 is a terminal component of
D(1). Let D(1) = D

(1)
1 +· · ·+D

(1)
r be the decomposition of D(1) into irreducible

components, where D
(1)
1 = D1 and (D(1)

i · D(1)
i+1) = 1 for i = 1, . . . , r − 1. By

Lemma 2.2 and ρ(V ) = #D + 1, r ≥ 4. A divisor F0 := 4C + 3D
(1)
1 + 2D

(1)
2 +

D0 + D
(1)
3 defines a P1-fibration Φ := Φ|F0| : V → P1. Then D

(1)
4 is a section

of Φ and D −D
(1)
4 is contained in singular fibers of Φ. If r = 4, then, by using

ρ(V ) = #D+1 and Lemma 2.5 (1), we know that Φ has no singular fibers other
than F0. Hence the singularity type of (V, D) is A4K1 and the configuration of
C + D is given in the configuration (15) in Appendix.

We assume that r ≥ 5. Let F1 be the singular fiber of Φ containing
D

(1)
5 , . . . , D

(1)
r . It then follows form ρ(V ) = #D + 1 and Lemma 2.5 (1) that

F1 has a unique (−1)-curve E1 and Φ has no singular fibers other than F0 and
F1. If (F1)red − E1 is connected, then (F1)red = E1 + D

(1)
5 + · · · + D

(1)
r and

the configuration of F1 looks like that of (ii) in Figure 2. Hence the singularity
type of (V, D) is A7K1 and the configuration of C + D and F1 is given in the
configuration (16) in Appendix.

We assume further that (F1)red − E1 is not connected. We note that
D′ := (F1)red − (E1 + D

(1)
5 + · · ·+ D

(1)
r ) is connected because F1 has no (−1)-

curves other than E1. Since the intersection matrix of E1 + D
(1)
5 + · · · + D

(1)
r

is negative definite, (E1 · D
(1)
j ) = 1, where j = 5 or r. If D′ is a (−2)-rod

or a (−2)-fork, then the configuration of F1 looks like that of (i) in Figure 2
by Lemma 2.5 (2). Hence the singularity type of (V, D) is A1A5K1 and the
configuration of C + D and F1 is given in the configuration (17) in Appendix.
Assume that D′ is of type Kn. Then −(E1 · D# + KV ) = 1/2 and hence
E1 ∈ MV(V, D). By the hypothesis in (II), D′ is of type K1. If E1 does not
meet D

(1)
r , then we are reduced to the situation treated in (II-1). So we may

assume that (E1 ·D(1)) = (E1 ·D(1)
r ) = 1. Since (F1)red is a linear chain and D′

is a (−4)-curve, r = 7. Hence the singularity type of (V, D) is A72K1 and the



�

�

�

�

�

�

�

�

118 Hideo Kojima

configuration of C + D and all singular fibers of Φ is given in the configuration
(18) in Appendix.

The assertions (1) and (2) are thus verified. The assertion (4) is clear. The
assertion (3) can be verified by using [23, Lemma 3.3].

The assertions (1) and (2) of Theorem 1.1 follows from Theorems 3.1
through 3.4.

4. Quasi-universal coverings

Let S (or (V, D)) be an LDP1-surface of index two and let U0 be the uni-
versal covering of S0 = S − Sing S = V − D, which is an algebraic surface
because π1(S0) is finite by [8], [9] (see also [6] and [12]). Let U be the normal-
ization of S in the function field of U0. We call U the quasi-universal covering
of S (cf. [19] and [24]). It then follows from [24, Proposition 6.1] that U is a
log del Pezzo surface. In this section, to complete the proof of Theorem 1.1, we
look into the fundamental group π1(S0) of S0 and the quasi-universal covering
U of S. To exhibit our arguments, we treat only three cases S = S(A4K5),
S = S(2A1D6K1) and S = S(2D4K1).

Case S = S(A4K5). The configuration of D is given in the configuration
(7) in Appendix, where a linear pencil |E1 + D6 + D7 + D8 + D9 + E2| defines
the vertical P1-fibration Φ : V → P1. Let u : V → Σ3 be the contraction
of C, D3, D4, E2, D9, D8, D7 and D6. Let F be a fiber of Φ. Then F ∼
2(C + D3) + D2 + D4 ∼ E1 + D6 + D7 + D8 + D9 + E2 and D5 ∼ D1 + 3F −
(D6 + 2D7 + 3D8 + 4D9 + 5E2) − (D3 + D4 + C). Put G := C + D1 + D2 +
D3 + D4 − E2 and ∆ := 4D1 + 2D2 + 3D4 + D5 + D6 + 2D7 + 3D8 + 4D9.
Then 5G ∼ ∆. Note that Pic(V ) is a free abelian group of rank ten with a
free basis {D1, D3, D4, D6, D7, D8, D9, F, C − E2, E2}. In Pic(V − D), which
is Pic(V ) modulo the subgroup generated by the components of D, we have
F = 2C = E1 + E2 and 0 = D5 = 3F − 5E2 − C. So, in Pic(V − D),
5(C − E2) = 0. Hence Pic(V − D) ∼= Z ⊕ Z/(5). By the universal coefficient
theorem, we have H1(V − D;Z) ∼= Z/(5) (see [5, Section 8] and [14, Proof of
Proposition 4.13]).

Let g1 : T1 → V be the composite of the following morphisms in the given
order: the Z/(5)-covering defined by the relation 5G ∼ ∆, the normalization of
the covering surface and the minimal resolution of the isolated singularities on
the normalized surface. The configuration of g−1

1 (D) looks like that of Figure
12, where a solid line stands for a component of g−1

1 (D) and g−1
1 (C) =

∑5
i=1 C̃i.

The P1-fibration Φ induces a P1-fibration Φ1 : T1 → P1 of which all singular
fibers are those two given in Figure 12. Note that T1 is a rational surface and
ρ(T1) = 23.

Let g2 : T1 → T be the contraction of g−1
1 (D−D3). Put B := g2∗(g

−1
1 (D3))

and Ci := g2(C̃i), i = 1, . . . , 5. Let h : T → U be the contraction of B. Then
the singularity type of U is K1 and ρ(U) = 5. Note that g1 induces a finite
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Figure 12
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morphism g1 : U → S, which is étale outside Sing S, and U is a log del Pezzo
surface by [24, Corollary 6.2]. A divisor H := C2 + C3 + C4 + C5 + B on T
defines a P1-fibration Ψ : T → P1 and C1 is a section of Ψ. So T −H contains
the affine plane C2 and hence U − Sing U is simply connected. Therefore, U is
the quasi-universal covering of S and π1(S0) ∼= Z/(5).

Remark 1. In the Case S = S(A4K5), we can easily see that π1(S0) is
cyclic by using [20, Lemma 1.5].

Case S = S(2A1D6K1). By using a similar argument to the case S =
S(A4K5), we know that H1(S0;Z) = Z/(2) ⊕ Z/(2), ρ(U) = 1 and U is the
surface obtained by contracting the minimal section on Σ2. We calculate the
fundamental group of S0. The configuration of D is given in the configuration
(2) in Appendix. Let Φ : V → P1 be the vertical P1-fibration. Then ϕ :=
Φ|V −D : V − D → P1 is an A1-fibration onto P1. It is then clear that every
fiber of ϕ is irreducible and ϕ has three multiple fibers miΓi (i = 1, 2, 3) with
{m1, m2, m3} = {2, 2, 4}. By [5, Proposition (4.19)], π1(V − D) (= π1(S0)) is
generated by σ1, σ2 and σ3 with the relation σ1σ2σ3 = σ2

1 = σ2
2 = σ4

3 = 1.
Hence π1(S0) is the binary dihedral group of order 8.

Case S = S(2D4K1). By using a similar argument to the case S =
S(A4K5), we know that H1(S0;Z) = Z/(2) ⊕ Z/(2) and U = P1 × P1. More-
over, we know that the degree of the quasi-universal covering morphism of S is
equal to eight. Hence π1(S0) is a non-abelian group of order 8, i.e., the binary
dihedral group of order 8 or the quaternion group of order 8.

Thus, we can verify the assertion (3) of Theorem 1.1.

Proof of the assertion (4) of Theorem 1.1. Let (V, D) be an LDP1-surface
of index two. If V − D contains the affine plane C2 as a Zariski open subset,
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then V − D is simply connected. Assume that V −D is simply connected. By
the assertion (3) of Theorem 1.1, the singularity type of (V, D) is one of K1, K5,
A2K2 and A4K1. Then (V, D) is a surface corresponding to the configuration
(n) for n = 1, 4, 8 or 15. It is then clear that V − D contains the affine plane
C2 as a Zariski open subset.

The proof of Theorem 1.1 is thus completed.

Appendix. Table and list of configurations

In Table 1, we employ the following notation for finite groups.
D2: the binary dihedral group of order 8.
Q3: the quaternion group of order 8.
In No. 13, we do not know yet which of D2 and Q3 the fundamental group

π1(S0) takes.

No. Sing S H1(S0;Z) π1(S0) ρ(U) Sing U
1 K1 (0) (1) 1 S = U
2 2A1D6K1 Z/(2) ⊕ Z/(2) D2 1 A1

3 A1A5K3 Z/(6) Z/(6) 3 A1

4 K5 (0) (1) 1 U = S
5 K9 Z/(3) Z/(3) 5 K3

6 A2K6 Z/(3) Z/(3) 3 K2

7 A4K5 Z/(5) Z/(5) 5 K1

8 A2K2 (0) (1) 1 U = S
9 2A2K3 Z/(3) Z/(3) 1 K1

10 2A3K2 Z/(4) Z/(4) 1 A1

11 A7K2 Z/(4) Z/(4) 4 2A1

12 A3D5K1 Z/(4) Z/(4) 2 2A1A2

13 2D4K1 Z/(2) ⊕ Z/(2) D2 or Q3 2 U = P1 × P1

14 D8K1 Z/(2) Z/(2) 2 A1D5

15 A4K1 (0) (1) 1 U = S
16 A7K1 Z/(2) Z/(2) 2 A1A3

17 A1A5K1 Z/(2) Z/(2) 1 A1A2

18 A72K1 Z/(4) Z/(4) 1 A1

Table 1

In the following list of configurations, the numbers in brackets coincide
with the classifying numbers in Table 1; a solid line stands for a component of
D; the self-intersection number of a (−2)-curve in SuppD is omitted; a dotted
line in the configuration (n) for n ≥ 2 is a (−1)-curve; a line with ∗ on it is not
contained in any fiber of the vertical P1-fibration on V .
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Figure 13
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