Rank one log del Pezzo surfaces of index two

By
Hideo Kojima*

Abstract

Let S be a rank one \log del Pezzo surface of index two and S^{0} the smooth part of S. In this paper we determine the singularity type of S, in a way different from Alekseev and Nikulin [1]. Moreover, we calculate the fundamental group of S^{0} and prove that S contains the affine plane as a Zariski open subset if and only if $\pi_{1}\left(S^{0}\right)=(1)$.

1. Introduction

Throughout the present article we work over an algebraically closed field k of characteristic zero. Whenever we consider problems of topological nature, we assume that k to be the complex number field C. Let S be a normal projective surface with only quotient singular points. The index of S is the smallest positive integer N such that $N K_{S}$ is a Cartier divisor. Since S has only quotient singularities, the index of S exists. Let $\pi: V \rightarrow S$ be a minimal resolution of singularities and D the exceptional locus, which we identify with a reduced divisor with support D. We often denote (V, D) and S interchangeably.

Definition 1.1. Let S be a normal projective surface with only quotient singular points. Then S is called a log del Pezzo surface if the anticanonical divisor $-K_{S}$ is ample. A \log del Pezzo surface S is said to have rank one if the Picard number of S is equal to one. In the present article we call a \log del Pezzo surface of rank one an LDP1-surface.

In recent years, log del Pezzo surfaces have been studied by several authors. Gurjar and Zhang [8], [9] proved that the fundamental group of the smooth part of every log del Pezzo surface is finite. There are other proofs by Fujiki, Kobayashi and $\mathrm{Lu}[6]$ and by Keel and M^{C} Kernan [12], independently. In [12], Keel and MCKernan studied LDP1-surfaces and proved that the smooth part $S^{0}:=S-\operatorname{Sing} S$ of every LDP1-surface S is log-uniruled, i.e., S^{0} contains a non-empty Zariski open subset dominated by images of the affine line. LDP1surfaces of index one (that is, Gorenstein LDP1-surfaces) have been studied by

[^0]Brenton [2], Demazure [4], Furushima [7], Hidaka and Watanabe [10], Miyanishi and Zhang [19], etc. The classification of LDP1-surfaces of index two was announced by Alekseev and Nikulin [1, Theorem 7]. In [24], Zhang classified all LDP1-surfaces with only rational double points and unique rational triple point. Note that every LDP1-surface can have at most five singular points by [12, Section 9]. In [13], the author classified all LDP1-surfaces with unique singular point. The complete classification of LDP1-surfaces, however, is not yet fully explored.

In the present article, we shall study LDP1-surfaces of index two. In Section 3, by using Zhang's results on LDP1-surfaces (cf. [23] and [24]), we classify all LDP1-surfaces of index two. Our method is quite different from Alekseev and Nikulin [1]. In Section 4 we calculate the fundamental groups of the smooth parts of the LDP1-surfaces of index two. Our main result is the following theorem.

Theorem 1.1. Let S be an LDP1-surface of index two and let π : $(V, D) \rightarrow S$ be a minimal resolution of S, where D is the reduced exceptional divisor. Let S^{0} be the smooth part of S. Then the following assertions hold:
(1) There exist exactly 18 singularity types of LDP1-surfaces of index two, each of which is realizable and given in terms of the weighted dual graph of D in Table 1 (see Appendix).
(2) Suppose that (V, D) is not isomorphic to $\left(\Sigma_{4}, M_{4}\right)$. Then there exist $a(-1)$-curve $C \in \operatorname{MV}(V, D)$ (for the definition of $\operatorname{MV}(V, D)$, see Section 2) and a \mathbf{P}^{1}-fibration $\Phi: V \rightarrow \mathbf{P}^{1}$ such that $\varphi:=\left.\Phi\right|_{V-D}: V-D \rightarrow \mathbf{P}^{1}$ is an \mathbf{A}^{1}-fibration or an untwisted \mathbf{A}_{*}^{1}-fibration (for the definition, see [17]). Further, the configuration of $C+D$ as well as all singular fibers of Φ can be explicitly described. The configuration is given in Appendix, as the configuration (n) for $2 \leq n \leq 18$.
(3) $\pi_{1}\left(S^{0}\right)$ is a finite group of order ≤ 8. The fundamental group $\pi_{1}\left(S^{0}\right)$ and the singularity type of the quasi-universal covering U of S (see Section 4) are given in Table 1 together with other data.
(4) S contains the affine plane as a Zariski open subset if and only if $\pi_{1}\left(S^{0}\right)=(1)$.

A $(-n)$-curve is a smooth complete rational curve with self-intersection number $-n$. A connected reduced effective divisor T on a smooth surface is a (-2)-rod (resp. a (-2)-fork) if T consists entirely of (-2 -curves and T can be contracted to a cyclic rational double point (resp. a non-cyclic rational double point). A (-2)-rod (resp. a (-2)-fork) corresponds to the exceptional locus of a minimal resolution of a rational double point of Dynkin type A_{n} (resp. D_{n} $(n \geq 4), E_{6}, E_{7}$ or E_{8}). A reduced effective divisor D is called an NC (resp. SNC) divisor if D has only normal (resp. simple normal) crossings. We employ the following notation:
K_{X} : the canonical divisor on X.
$\rho(X)$: the Picard number of X.
$\Sigma_{n}(n \geq 0)$: a Hirzebruch surface of degree n.
$M_{n}(n \geq 0)$: a minimal section of Σ_{n}.
$\# D$: the number of all irreducible components in $\operatorname{Supp} D$.
Acknowledgements. The author would like to thank the referee for useful comments.

2. Preliminary results

Definition 2.1. (1) An SNC divisor D on a smooth projective surface is said to be of type $K_{n}(n \geq 1)$ if D consists entirely of rational curves and has the weighted dual graph as shown in Figure 1.
(2) A quotient singular point P on a normal surface \bar{X} is said to be of type K_{n} if the reduced exceptional divisor of a minimal resolution of $P \in \bar{X}$ is of type K_{n}. Note that if the index of P is equal to two then P is of type K_{n} by [1, Proposition 2] (see also [25, Lemma 1.8]).

Figure 1
Let T be a normal projective surface with only quotient singular points. If the index of T is equal to two, then each singular point of T is a rational double point or a quotient singular point of type K_{n}. As usual, rational double points are indicated by their Dynkin types $A_{n}, D_{n}(n \geq 4), E_{6}, E_{7}$, and E_{8}. When we say T a surface of type $A_{7} 2 K_{1}$ for example, this means that T has three singular points, one of which is of type A_{7} and other two are of type K_{1}. We indicate this by writing $S\left(A_{7} 2 K_{1}\right)$.

Now, let S be an LDP1-surface and let $\pi: V \rightarrow S$ be a minimal resolution of S. Let $D=\sum_{i} D_{i}$ be the reduced exceptional divisor with respect to π, where the D_{i} are irreducible components of D. Since S has only log-terminal singularities, there exists uniquely an effective \mathbf{Q}-divisor $D^{\#}=\sum_{i} \alpha_{i} D_{i}$ such that $0 \leq \alpha_{i}<1$ for any i and $D^{\#}+K_{V}$ is numerically equivalent to $\pi^{*} K_{S}$ (see [11], [18], [16], etc.). Hereafter in the present section, we retain this situation.

Lemma 2.1. (1) $-\left(D^{\#}+K_{V}\right)$ is nef and big \mathbf{Q}-Cartier divisor. Moreover, for any irreducible curve $F,-\left(D^{\#}+K_{V} \cdot F\right)=0$ if and only if F is a component of D.
(2) Any ($-n$)-curve with $n \geq 2$ is a component of D.
(3) V is a rational surface.

Proof. See [24, Lemma 1.1].
Lemma 2.2. There is no (-1)-curve E such that, after contracting E and consecutively (smoothly) contractible curves in $E+D$, the image of the divisor $E+D$ can be contracted to quotient singular points.

Proof. See [23, Lemma 1.4].
By Lemma 2.1 (1), if C is an irreducible curve not contained in Supp D, then $-\left(C \cdot D^{\#}+K_{V}\right)$ takes value in $\{n / p \mid n \in \mathbf{N}\}$, where p is the index of S. So we can find an irreducible curve C such that $-\left(C \cdot D^{\#}+K_{V}\right)$ attains the smallest positive value. We denote the set of such irreducible curves by $\operatorname{MV}(V, D)$.

Definition 2.2 (cf. [24, Definitions 1.2 and 3.2]). With the same notation as above, assume that $\rho(V) \geq 3$.
(1) (V, D) is said to be of the first kind if there exits an irreducible curve $C \in \operatorname{MV}(V, D)$ such that $\left|C+D+K_{V}\right| \neq \emptyset .(V, D)$ is said to be of the second kind if (V, D) is not of the first kind, i.e., $\left|C+D+K_{V}\right|=\emptyset$ for any curve $C \in \operatorname{MV}(V, D)$.
(2) Assume that (V, D) is of the second kind. (V, D) is said to be of type (IIa) if there exists a curve $C \in \mathrm{MV}(V, D)$ meeting at least two (-2)-curves in Supp $D .(V, D)$ is said to be of type (IIb) if there exists a curve $C \in \operatorname{MV}(V, D)$ meeing only one component of D but (V, D) is not of type (IIa). (V, D) is said to be of type (IIc) if (V, D) is neither of type (IIa) nor of type (IIb).

We shall prove that if the index of (V, D) is equal to two and $\rho(V) \geq 3$, then (V, D) is of the second kind (see Theorem 3.1).

Lemma 2.3. Assume that (V, D) is of the second kind and that there exists a curve $C \in \operatorname{MV}(V, D)$ meeting at least three components D_{0}, D_{1} and D_{2} of D. Then either $G:=2 C+D_{0}+D_{1}+D_{2}+K_{V} \sim 0$ or there exists a (-1)-curve Γ such that $G \sim \Gamma$ and $(C \cdot \Gamma)=\left(D_{i} \cdot \Gamma\right)=0$ for $i=0,1,2$.

Proof. See [23, Lemma 2.3].
Lemma 2.4. Assume that (V, D) is of the second kind. Then every curve $C \in \operatorname{MV}(V, D)$ is a (-1)-curve.

Proof. See [23, Lemma 2.2] and [8, Proposition 3.6]. See also [13, Lemma 1.5].

Lemma 2.5. Let $\Phi: V \rightarrow \mathbf{P}^{1}$ be a \mathbf{P}^{1}-fibration. Then the following assertions hold:
(1) $\#\{$ irreducible components of D not in any fiber of $\Phi\}=1+\sum(\#\{(-1)$ curves in $F\}-1$), where F moves over all singular fibers of Φ.
(2) If a singular fiber F consists only of (-1)-curves and (-2)-curves then F has one of the configurations (i), (ii) and (iii) in Figure 2. In Figure 2, the integer over a curve is the self-intersection number of the corresponding curve.
(3) Suppose that there exists a singular fiber F such that F is of type (i) or (ii) in Figure 2. Let C be the unique (-1)-curve in $\operatorname{Supp} F$. Suppose further that $C \in \operatorname{MV}(V, D)$. Then each singular fiber consists of (-2)-curves
and (-1)-curves, say E_{1} and E_{2} (possibly $E_{1}=E_{2}$), and $E_{i} \in \operatorname{MV}(V, D)$ for $i=1,2$.

Proof. See [23, Lemmas 1.5 and 1.6].

Figure 2

3. Classification

Let (V, D) be an LDP1-surface of index two. If $\rho(V) \leq 2$, then $(V, D) \cong$ $\left(\Sigma_{4}, M_{4}\right)$ (see No. 1 in Table 1). We assume that $\rho(V) \geq 3$. Let $D=\sum_{i=1}^{r} D^{(i)}$ be the decomposition of D into connected components. Assume that $D^{(i)}$ $(1 \leq i \leq s)$ is of type K_{n} and $D^{(j)}(j>s)$ is a (-2)-rod or a (-2 -fork. It is then clear that $s \geq 1$ and $D^{\#}=(1 / 2) \sum_{i=1}^{s} D^{(i)}$ (see Section 2 for the definition of $\left.D^{\#}\right)$. Further, for any curve E not in $\operatorname{Supp} D,-\left(E \cdot D^{\#}+K_{V}\right) \geq 1 / 2$.

We prove the following result.
Theorem 3.1. Let (V, D) be an LDP1-surface of index two. Assume that $\rho(V) \geq 3$. Then (V, D) is of the second kind, i.e., $\left|C+D+K_{V}\right|=\emptyset$ for any curve $C \in \operatorname{MV}(V, D)$.

Proof. Suppose to the contrary that (V, D) is of the first kind, i.e., there exists a curve $C \in \operatorname{MV}(V, D)$ such that $\left|C+D+K_{V}\right| \neq \emptyset$. By [23, Lemma 2.1], there exists uniquely a decomposition of D as a sum of effective integral divisors $D=D^{\prime}+D^{\prime \prime}$ such that:
(i) $\left(C \cdot D_{i}\right)=\left(D^{\prime \prime} \cdot D_{i}\right)=\left(K_{V} \cdot D_{i}\right)=0$ for any component D_{i} of D^{\prime}.
(ii) $C+D^{\prime \prime}+K_{V} \sim 0$.

Namely, the pair $(V, C+D)$ is a quasi-Iitaka surface (for the definition, see [23, Section 3]). Since (V, D) has index two and each connected component of D^{\prime} is a (-2)-rod or a (-2)-fork, $D^{\prime \prime}$ is a connected component of D and of type K_{n}. In particular, $D^{\#}=(1 / 2) D^{\prime \prime}$.

Since $\left|C+K_{V}\right|=\left|-D^{\prime \prime}\right|=\emptyset$ by (ii), $C \cong \mathbf{P}^{1}$. So $\left(C \cdot D^{\prime \prime}\right)=-(C \cdot C+$ $\left.K_{V}\right)=2$. Since $D^{\#}=(1 / 2) D^{\prime \prime}$, we have

$$
0>\left(C \cdot D^{\#}+K_{V}\right)=\frac{1}{2}\left(D^{\prime \prime} \cdot C\right)+\left(C \cdot K_{V}\right)=1+\left(C \cdot K_{V}\right)=-1-\left(C^{2}\right)
$$

Hence $\left(C^{2}\right) \geq 0$ and $-\left(C \cdot D^{\#}+K_{V}\right) \geq 1$.
Since $\rho(V) \geq 3$, there exists a (-1)-curve E on V. Then

$$
\left(\frac{1}{2} \leq\right)-\left(E \cdot D^{\#}+K_{V}\right)=1-\frac{1}{2}\left(E \cdot D^{\prime \prime}\right) \leq 1 .
$$

Since $C \in \operatorname{MV}(V, D)$, we know that $\left(C^{2}\right)=0$ and $\left(E \cdot D^{\prime \prime}\right)=0$ for any (-1) curve E on V. Then $\mathcal{O}_{C}(C) \cong \mathcal{O}_{\mathbf{P}^{1}}$. Consider the following exact sequence:

$$
0 \rightarrow \mathcal{O}_{V} \rightarrow \mathcal{O}_{V}(C) \rightarrow \mathcal{O}_{\mathbf{P}^{1}} \rightarrow 0
$$

Since V is a rational surface, the induced cohomology exact sequence implies that $h^{0}\left(V, \mathcal{O}_{V}(C)\right)=2$ and a complete linear system $|C|$ is free. So $|C|$ defines a \mathbf{P}^{1}-fibration $\Phi:=\Phi_{|C|}: V \rightarrow \mathbf{P}^{1}$. Let F be a singular fiber of Φ, where we note that V is not relatively minimal. If F contains some components of $D^{\prime \prime}$ then, by Lemma $2.1(2), F$ has a (-1)-curve meeting $D^{\prime \prime}$. This is a contradiction. If F contains no components of $D^{\prime \prime}$, then F has a (-1)-curve G meeting $D^{\prime \prime}$ because some components of $D^{\prime \prime}$ meet C. This is also a contradiction.

We consider LDP1-surfaces of index two and type (IIa) in the following theorem.

Theorem 3.2. Let (V, D) be an LDP1-surface of index two and type (II a). Let $C \in \operatorname{MV}(V, D)$ be a curve meeting at least two (-2)-curves in Supp D. Then the following assertions hold.
(1) The singularity type of (V, D) is one of $2 A_{1} D_{6} K_{1}$ and $A_{1} A_{5} K_{3}$ (see No. 2 and No. 3 in Table 1).
(2) There exist a \mathbf{P}^{1}-fibration $\Psi: V \rightarrow \mathbf{P}^{1}$ and a component H of D such that H is a section of Ψ and the other components of D are contained in singular fibers of Ψ. In particular, $V-D$ is affine-ruled, i.e., $V-D$ contains a non-empty Zariski open subset isomorphic to $U \times \mathbf{A}^{1}$, where U is a smooth algebraic curve.
(3) The configuration of $C+D$ and all singular fibers of Ψ is given in the configuration (n) for $n=2$ or 3 in Appendix.
(4) All the cases are realizable.

Proof. By Lemma 2.4, C is a (-1)-curve. Let D_{1} and D_{2} be two (-2)curves in Supp D which C meets. Since $\left|C+D+K_{V}\right|=\emptyset,\left(C \cdot D_{1}\right)=\left(C \cdot D_{2}\right)=$ 1. So a divisor $F_{0}:=2 C+D_{1}+D_{2}$ defines a \mathbf{P}^{1}-fibration $\Phi=\Phi_{\left|F_{0}\right|}: V \rightarrow \mathbf{P}^{1}$. By Lemma 2.5 (3), each singular fiber of Φ consists only of (-1)-curves and (-2)-curves.
(I) The case where C meets a component D_{0} of $D-\left(D_{1}+D_{2}\right)$. By Lemma 2.3, either $G:=2 C+D_{0}+D_{1}+D_{2}+K_{V}=F_{0}+D_{0}+K_{V} \sim 0$ or there exists
a (-1)-curve Γ such that $G \sim \Gamma$ and $(C \cdot \Gamma)=\left(D_{i} \cdot \Gamma\right)=0$ for $i=0,1,2$. We consider the following two cases I-1 and I-2 separately.

Case I-1. $\quad G \sim 0$. Then D_{0} is a 2-section of Φ because $\left(D_{0} \cdot F_{0}\right)=$ $-\left(D_{0} \cdot D_{0}+K_{V}\right)=2$. Since the dual graph of $C+D$ is a tree by $[15$, Lemma I.2.1.3], $\left(D_{0} \cdot D_{1}\right)=\left(D_{0} \cdot D_{2}\right)=\left(D_{1} \cdot D_{2}\right)=0$. If D_{i} is a component of $D-\left(D_{0}+D_{1}+D_{2}\right)$, then

$$
0 \leq\left(D_{i} \cdot F_{0}\right)=\left(D_{i} \cdot-D_{0}-K_{V}\right) \leq 0 .
$$

So $\left(D_{i} \cdot F_{0}\right)=\left(D_{i} \cdot D_{0}\right)=\left(D_{i} \cdot K_{V}\right)=0$. Hence $\left(D_{j} \cdot D-D_{j}\right)=0$ for $j=0,1,2$ and each connected component of $D-D_{0}$ is a (-2)-rod or a (-2)-fork. Since the index of (V, D) is equal to two, $\left(D_{0}^{2}\right)=-4$.

By using $\rho(V)=\# D+1$ and Lemma 2.5 (1), we know that every singular fiber has the configuration (i) or (ii) in Figure 2. Applying the Hurwitz formula to $\left.\Phi\right|_{D_{0}}: D_{0} \rightarrow \mathbf{P}^{1}$, we see that Φ has at most two singular fibers. Let $u: V \rightarrow \Sigma_{n}$ be a contraction of all (-1)-curves and consecutively (smoothly) contractible curves in the fibers of Φ. By Lemma 2.1 (2), $n=0$ or 1 . We put $u_{*}\left(D_{0}\right) \sim 2 M_{n}+\alpha \ell$, where ℓ is a fiber of $\Phi_{1}=\Phi \circ u^{-1}: \Sigma_{n} \rightarrow \mathbf{P}^{1}$. Since $u_{*}\left(D_{0}\right)$ is a smooth rational curve, we have $\alpha=n+1$ and $\left(u_{*}\left(D_{0}\right)^{2}\right)=$ $\left(2 M_{n}+(n+1) \ell\right)^{2}=4$. Then we know that Φ has just two singular fibers F_{0} and F_{1} and that $\# F_{1}=1+(8-2)=7$. Hence the configuration of F_{1} looks like that of (ii) in Figure 2. The singularity type of (V, D) is then $2 A_{1} D_{6} K_{1}$.

The configuration of $C+D+E_{1}$ looks like that of Figure 3, where E_{1} is the unique (-1)-curve in $\operatorname{Supp}\left(F_{1}\right)$. Put $G_{0}:=4 E_{1}+3 D_{3}+2 D_{5}+D_{0}+D_{5}$. Then G_{0} defines a \mathbf{P}^{1}-fibration $\Psi:=\Phi_{\left|G_{0}\right|}: V \rightarrow \mathbf{P}^{1}, C$ and D_{6} are sections of Ψ and $D-D_{6}$ is contained in singular fibers of Ψ. Let $G_{i}(i=1,2)$ be the singular fiber of Ψ containing D_{i}. By considering $\rho(V)=\# D+1=10$ and Lemma 2.5 (1), we can easily see that the configuration of $C+D$ and all singular fibers of Ψ is given in the configuration (2) in Appendix. In particular, $V-D$ is affine-ruled.

Figure 3
Case I-2. There exists a (-1 -curve Γ such that $G \sim \Gamma$ and $(C \cdot \Gamma)=$ $\left(D_{i} \cdot \Gamma\right)=0$ for $i=0,1,2$. Since $G=F_{0}+D_{0}+K_{V} \sim \Gamma$ and $\left(D_{0} \cdot \Gamma\right)=0$, $\left(F_{0} \cdot D_{0}\right)=-\left(D_{0}+K_{V} \cdot D_{0}\right)=2$, i.e., D_{0} is a 2 -section of Φ. Since $(\Gamma \cdot C)=$ $\left(\Gamma \cdot D_{i}\right)=0(i=0,1,2), \Gamma$ is contained in a fiber F_{1} of Φ. By Lemma 2.5 (3), the configuration of F_{1} looks like that of (i), (ii) or (iii) in Figure 2. If F_{1}
has the configuration (i) or (iii) in Figure 2, then there exists a (-1)-curve E (possibly Γ) and a reduced effective divisor $\Delta(\leq D)$ such that $\left|E+\Delta+K_{V}\right| \neq \emptyset$ because $\left(\Gamma \cdot D_{0}\right)=0$. By Lemma $2.5(3), E \in \operatorname{MV}(V, D)$. Then (V, D) is of the first kind, a contradiction. So the configuration of F_{1} looks like that of (ii) in Figure 2. Since each connected component of D can be contracted to a quotient singular point, D_{0} meets F_{1} as follows (Figure 4):

Figure 4
Since (V, D) has index two, $\left(D_{0}^{2}\right)=-2$. We claim that $D-D_{0}$ is contained in fibers of Φ. Indeed, suppose that $D_{i} \leq D-D_{0}$ is not in any fiber of Φ. Then $\left(D_{i} \cdot \Gamma\right)=\left(D_{i} \cdot F_{0}+D_{0}+K_{V}\right) \geq\left(D_{i} \cdot F_{0}\right) \geq 1$. On the other hand,

$$
\left(\left(D_{i} \cdot \Gamma\right) \geq\right)\left(D_{i} \cdot F_{0}\right)=\left(D_{i} \cdot F_{1}\right) \geq\left(D_{i} \cdot 2 \Gamma\right)>\left(D_{i} \cdot \Gamma\right)
$$

This is absurd. So each connected component of D is a (-2)-rod or a (-2)-fork. This contradicts that the index of (V, D) is equal to two. Therefore, Case I-2 does not take place.
(II) The case where C does not meet any component of $D-\left(D_{1}+D_{2}\right)$. We claim that there exist no (-4)-curves in $\operatorname{Supp} D$. Indeed, if D_{i} is a (-4) curve in $\operatorname{Supp} D$, then $\left(D_{i} \cdot D-D_{i}\right)=0$. Since $\left(C \cdot D_{i}\right)=0, D_{i}$ is contained in a singular fiber of Φ. This is a contradiction because each singular fiber of Φ consists only of (-1)-curves and (-2)-curves.

Since (V, D) has index two and D contains no (-4)-curves, there exists a (-3)-curve D_{0} in $\operatorname{Supp} D$. Then $\left(D_{0} \cdot D_{j}\right)=1$, where $j=1$ or 2 , because D_{0} is not contained in any fiber of Φ. Assume that $j=1$. Let $D^{(i)}(i=1,2)$ be the connected component of D containing D_{i}. Then $D^{(1)}$ is of type $K_{n}(n \geq 3)$ and $D^{(2)}$ is a (-2)-rod or a (-2)-fork because $-\left(C \cdot D^{\#}+K_{V}\right) \geq 1 / 2$. Let D_{4} be the (-3)-curve in $\operatorname{Supp}\left(D^{(1)}\right)$ other than D_{0}. Then D_{4} also meets D_{1}. So $D^{(1)}$ is of type K_{3}. Since $\left(D-D_{1} \cdot D_{1}\right)=2$, by using the arguments as in the proof of [23, Lemma 5.3], we know that $\left(D-D_{2} \cdot D_{2}\right)=0$.

Let $F_{0}, \ldots, F_{r}(r \geq 0)$ be all singular fibers of Φ. We claim that:
Claim 1. $r=1$ and the configuration of F_{1} looks like that of (iii) in Figure 2.

Proof. If $r=0$, then $\rho(V)=2+\left(\# F_{0}-1\right)=4$. On the other hand, $\rho(V)=\# D+1 \geq \# D^{(1)}+\# D^{(2)}+1=5$, which is a contradiction. So $r \geq 1$. Since $\left(D-D_{2} \cdot D_{2}\right)=0, D-D^{(1)}$ is contained in singular fibers of Φ. By using $\rho(V)=\# D+1$ and Lemma 2.5 (1), we know that $r=1$. If the configuration of F_{1} looks like that of (i) or (ii) in Figure 2, then the unique (-1)-curve E_{1} in
$\operatorname{Supp}\left(F_{1}\right)$ meets both of D_{0} and D_{4} which are sections of Φ. Then

$$
-\left(E_{1} \cdot D^{\#}+K_{V}\right) \leq 1-\frac{1}{2}\left(E_{1} \cdot D_{0}+D_{4}\right) \leq 0
$$

which is a contradiction. This proves Claim 1.
Let E_{1} and E_{1}^{\prime} be the two (-1)-curves in $\operatorname{Supp}\left(F_{1}\right)$. Since D_{0} and D_{4} are sections of Φ and $D-D^{(1)}$ is contained in singular fibers of Φ, we may assume that $\left(E_{1} \cdot D_{0}\right)=\left(E_{1}^{\prime} \cdot D_{4}\right)=1$. Note that $\left(F_{1}\right)_{\text {red }}-\left(E_{1}+E_{1}^{\prime}\right) \neq 0$ by $\rho(V)=\# D+1$ and Lemma 2.2. Let $\mu: V \rightarrow \Sigma_{3}$ be the contraction of all (-1)-curves and consecutively (smoothly) contractible curves in fibers of Φ except for those meeting D_{0}. Then $M_{3}=\mu_{*}\left(D_{0}\right),\left(\mu_{*}\left(D_{0}\right) \cdot \mu_{*}\left(D_{4}\right)\right)=0$ and $\left(\mu_{*}\left(D_{4}\right)^{2}\right)=3$. By Claim 1, we can easily see that $\rho(V)=2+\left(\# F_{0}-1\right)+$ $\left(\# F_{1}-1\right)=2+\left(\# F_{0}-1\right)+\left(\left(\mu_{*}\left(D_{4}\right)^{2}\right)-\left(D_{4}^{2}\right)\right)=10$. Hence the singularity type of (V, D) is $A_{1} A_{5} K_{3}$ and the configuration of $C+D+E_{1}+E_{1}^{\prime}$ is given in the configuration (3) in Appendix.

The assertions (1)-(3) are thus verified. The assertion (4) is clear.
We consider LDP1-surfaces of index two and type (IIb) in the following theorem.

Theorem 3.3. Let (V, D) be an LDP1-surface of index two and type (IIb). Let $C \in \operatorname{MV}(V, D)$ be a curve meeting only one component of D. Then the following assertions hold.
(1) The singularity type of (V, D) is one of $K_{5}, K_{9}, A_{2} K_{6}$ and $A_{4} K_{5}$ (see No. $n(4 \leq n \leq 7)$ in Table 1).
(2) There exists a \mathbf{P}^{1}-fibration $\Phi: V \rightarrow \mathbf{P}^{1}$ such that the configuration of $C+D$ and all singular fibers of Φ is given in the configuration (n) for $4 \leq n \leq 7$ in Appendix. In particular, all components of D, except one section or two disjoint sections, are contained in singular fibers of Φ.
(3) $V-D$ is affine-ruled.
(4) All the cases are realizable.

Proof. By Lemma 2.4, C is a (-1)-curve. Let D_{i} be the unique component of D meeting C and let D^{\prime} be the connected component of D containing D_{i}.

Suppose that D^{\prime} is a (-2)-rod or a (-2)-fork. By Lemma 2.2 , there exists an effective divisor Δ_{0} with $\operatorname{Supp} \Delta_{0} \subset \operatorname{Supp} D^{\prime}$ such that $2 C+\Delta_{0}$ defines a \mathbf{P}^{1}-fibration $\Phi_{0}:=\Phi_{|2 C+\Delta|}: V \rightarrow \mathbf{P}^{1}$. Since the index of (V, D) is equal to two, there exists a connected component $D^{\prime \prime}$ of D such that $D^{\prime \prime}$ is of type K_{n}. Then $D^{\prime \prime}$ is contained in a singular fiber G of Φ_{0} and there exists a (-1)-curve E in $\operatorname{Supp} G$ meeting $D^{\prime \prime}$. Then we have

$$
-\left(E \cdot D^{\#}+K_{V}\right) \leq \frac{1}{2}<-\left(C \cdot D^{\#}+K_{V}\right)=1
$$

This is absurd. Hence D^{\prime} is of type K_{n}. Lemma 2.2 implies that $n \geq 5$ and D_{i} is not a terminal component of D^{\prime}.

Let $D^{\prime}=D_{1}^{\prime}+\cdots+D_{n}^{\prime}$ be the decomposition of D^{\prime} into irreducible components, where we assume that $D_{i}=D_{i}^{\prime}$ and $\left(D_{j}^{\prime} \cdot D_{j+1}^{\prime}\right)=1$ for $j=1, \ldots, n-1$. By Lemma 2.2, there exist an effective divisor Δ supported on D^{\prime} and an integer $e>0$ such that $F_{0}:=e C+\Delta$ defines a \mathbf{P}^{1}-fibration $\Phi:=\Phi_{\left|F_{0}\right|}: V \rightarrow \mathbf{P}^{1}$. The dual graph of $C+(\Delta)_{\text {red }}$ looks like that of (1) or (2) in Figure 5. Note that we may assume that $i=2$ in the configuration (1) in Figure 5.

Figure 5
Case (1). Then $F_{0}=3\left(C+D_{2}^{\prime}\right)+2 D_{3}^{\prime}+D_{1}^{\prime}+D_{4}^{\prime}$. Moreover, D_{5}^{\prime} is a section of Φ and $D-D_{5}^{\prime}$ is contained in singular fibers of Φ. Let $F_{0}, F_{1}, \ldots, F_{r}$ ($r \geq 0$) be all singular fibers of Φ. By using $\rho(V)=\# D+1$ and Lemma 2.5 (1), we know that $F_{i}(1 \leq i \leq r)$ has only one (-1)-curve, say E_{i}. So $r \leq 1$ and the equality holds if and only if $n \geq 6$. If $r=0$, then the singularity type of (V, D) is K_{5} and the configuration of $C+D$ is given in the configuration (4) in Appendix.

Assume that $r=1$. If $\left(F_{1}\right)_{\text {red }}-E_{1}$ is connected, then we can easily see that the singularity type of (V, D) is K_{9} and the configuration of $C+D+E_{1}$ is given in the configuration (5) in Appendix. Assume that $\left(F_{1}\right)_{\text {red }}-E_{1}$ is not connected. Put $D^{\prime \prime}:=D-D^{\prime}$. Since E_{1} is the unique (-1)-curve in $\operatorname{Supp}\left(F_{1}\right)$ and $(0<)-\left(E_{1} \cdot D^{\#}+K_{V}\right) \leq 1-(1 / 2)\left(E_{1} \cdot D^{\prime}\right) \leq 1 / 2, D^{\prime \prime}$ is a (-2)-rod or a (-2)-fork. Note that $\left(E_{1} \cdot D^{\prime}\right)=\left(E_{1} \cdot D_{n}^{\prime}\right)=1$ because the intersection matrix of $\left(F_{1}\right)_{\text {red }}-D_{n}^{\prime}=D^{\prime \prime}+E_{1}+D_{6}^{\prime}+\cdots+D_{n-1}^{\prime}$ is negative definite. By using [23, Lemma 1.6 (1)], we know that $n=6$ and $\# D^{\prime \prime}=2$. Hence the singularity type of (V, D) is $A_{2} K_{6}$ and the configuration of $C+D$ and F_{1} is given in the configuration (6) in Appendix.

Case (2). Then $F_{0}=2\left(C+D_{i}^{\prime}\right)+D_{i-1}^{\prime}+D_{i+1}^{\prime}$. Moreover, D_{i-2}^{\prime} and D_{i+2}^{\prime} are sections of Φ and $D-\left(D_{i-2}^{\prime}+D_{i+2}^{\prime}\right)$ is contained in singular fibers of Φ.

We consider the case where D_{i-2}^{\prime} and D_{i+2}^{\prime} are (-2)-curves. Then $n \geq 7$ and $3<i<n-2$. Let F_{1} (resp. F_{2}) be the singular fiber of Φ containing $D_{1}^{\prime}+\cdots+D_{i-3}^{\prime}$ (resp. $\left.D_{i+3}^{\prime}+\cdots+D_{n}^{\prime}\right)$. By using $\rho(V)=\# D+1$ and Lemma 2.5 (1), we know that $F_{1}=F_{2}, F_{1}$ has just two (-1)-curves E_{1} and E_{1}^{\prime}, and that Φ has no singular fibers other than F_{0} and F_{1}. Let m be the number of connected components of $\left(F_{1}\right)_{\text {red }}-\left(E_{1}+E_{1}^{\prime}\right)$. Then $m=2$ or 3 . If $m=2$, then we may assume that E_{1} meets both of $D_{1}^{\prime}+\cdots+D_{i-3}^{\prime}$ and $D_{i+3}^{\prime}+\cdots+D_{n}^{\prime}$. Then $-\left(E_{1} \cdot D^{\#}+K_{V}\right) \leq 0$, which is a contradiction. So $m=3$. Since $-\left(E_{1} \cdot D^{\#}+K_{V}\right)$ and $-\left(E_{1}^{\prime} \cdot D^{\#}+K_{V}\right)$ are positive, we know that $\left(E_{1} \cdot D^{\prime}\right)=\left(E_{1}^{\prime} \cdot D^{\prime}\right)=1$ and $D^{\prime \prime}:=\left(F_{1}\right)_{\text {red }}-\left(E_{1}+E_{1}^{\prime}+D_{1}^{\prime}+\cdots+D_{i-3}^{\prime}+D_{i+3}^{\prime}+\cdots+D_{n}^{\prime}\right)$ is a (-2)-rod or a (-2)-fork. Then E_{1} and E_{1}^{\prime} meets $D^{\prime \prime}$. This is a contradiction because
the intersection matrix of $E_{1}+E_{1}^{\prime}+D^{\prime \prime}$ is then not negative definite. Thus we know that D_{i-2}^{\prime} or D_{i+2}^{\prime} is a (-3)-curve. We may assume that D_{i-2}^{\prime} is a (-3)-curve, i.e., $i=3$.

Assume that $D_{i+2}^{\prime}=D_{5}^{\prime}$ is a (-2)-curve, i.e., $n \geq 6$. Let F_{1} be the singular fiber of Φ containing $D_{6}^{\prime}, \ldots, D_{n}^{\prime}$. Then F_{1} has at least two (-1)curves because F_{1} must have a (-1)-curve meeting D_{1}^{\prime} which is a section of Φ. By using $\rho(V)=\# D+1$ and Lemma 2.5 (1), we know that F_{1} has just two (-1)-curves E_{1} and E_{1}^{\prime} and that there exist no singular fibers of Φ other than F_{0} and F_{1}. We may assume that $\left(E_{1} \cdot D_{1}^{\prime}\right)=1$. Then $\left(E_{1} \cdot D_{6}^{\prime}+\cdots+D_{n}^{\prime}\right)=0$ since $-\left(E_{1} \cdot D^{\#}+K_{V}\right)>0$. So $D^{\prime \prime}:=\left(F_{1}\right)_{\text {red }}-\left(E_{1}+E_{1}^{\prime}+D_{6}^{\prime}+\cdots+D_{n}^{\prime}\right) \neq 0$. Further, $D^{\prime \prime}$ is a (-2)-rod or a (-2)-fork because E_{1} must meet $D^{\prime \prime}$. Since E_{1}^{\prime} also meets $D^{\prime \prime}$, the intersection matrix of $E_{1}+E_{1}^{\prime}+D^{\prime}$ is not negative definite. This is a contradiction. Thus we know that $D_{5}^{(1)}$ is a (-3)-curve, i.e., $n=5$.

Let F_{1}, \ldots, F_{r} be all singular fibers of Φ other than F_{0}. Since $\rho(V)=$ $\# D+1=2+\sum_{i=0}^{r}\left(\# F_{i}-1\right)=5+\sum_{i=1}^{r}\left(\# F_{i}-1\right) \geq 6$, we have $r \geq 1$. By using an argument similar to the case (II) as in the proof of Theorem 3.2, we know that $r=1, F_{1}$ contains just two (-1)-curves E_{1} and E_{1}^{\prime} and that $\# F_{1}=6$. Hence the singularity type of (V, D) is $A_{4} K_{5}$ and the configuration of $C+D$ and F_{1} is given in the configuration (7) in Appendix.

The assertions (1) and (2) are thus verified. The assertion (4) is clear. Since $(C \cdot D)=\left(C \cdot D^{\prime}\right)=1$ and the dual graph of D^{\prime} is linear, the assertion (3) follows from [23, Lemma 6.2].

We consider LDP1-surfaces of index two and type (IIc) in the following theorem.

Theorem 3.4. Let (V, D) be an LDP1-surface of index two and type (IIc). Then the following assertions hold.
(1) The singularity type of (V, D) is one of $A_{2} K_{2}, 2 A_{2} K_{3}, 2 A_{3} K_{2}, A_{7} K_{2}$, $A_{3} D_{5} K_{1}, 2 D_{4} K_{1}, D_{8} K_{1}, A_{4} K_{1}, A_{7} K_{1}, A_{1} A_{5} K_{1}$ and $A_{7} 2 K_{1}$ (see No. $n(8 \leq$ $n \leq 18)$ in Table 1).
(2) There exist a curve $C \in \operatorname{MV}(V, D)$ and a \mathbf{P}^{1}-fibration $\Phi: V \rightarrow \mathbf{P}^{1}$ such that the configuration of $C+D$ and all singular fibers of Φ is given in the configuration (n) for $8 \leq n \leq 18$ in Appendix. In particular, all components, except one section or two disjoint sections, are contained in singular fibers of Φ.
(3) $V-D$ is affine-ruled if $n \neq 12$.
(4) All the cases are realizable.

Proof. We take a curve $C \in \operatorname{MV}(V, D)$. Then C meets a $(-n)$-curve D_{0} ($n=3$ or 4) and a (-2)-curve D_{1} by the hypothesis. Further, C is a (-1)curve by Lemma 2.4. Let $D^{(i)}(i=0,1)$ be the connected component of D containing D_{i}. Since $-\left(C \cdot D^{\#}+K_{V}\right)>0, D^{(1)}$ is a (-2 -rod or a (-2 -fork and $-\left(C \cdot D^{\#}+K_{V}\right)=1 / 2$. Let $D^{(i)}=\sum_{j=1}^{r_{i}} D_{j}^{(i)}(i=0,1)$ be the irreducible decomposition of $D^{(i)}$, where we put $D_{1}^{(i)}=D_{i}$.
(I) The case $n=3$. Then $D^{(0)}$ is of type $K_{r_{0}}\left(r_{0} \geq 2\right)$ and $D_{1}^{(0)}$ is a
terminal component of $D^{(0)}$. We claim that:
Claim 1. $D^{(1)}$ is a (-2)-rod and $D_{1}^{(1)}$ is a terminal component of $D^{(1)}$.
Proof. Suppose that $D^{(1)}$ is a (-2)-fork or $D_{1}^{(1)}$ is not a terminal component of $D^{(1)}$. Then there exists an effective divisor Δ with Supp $\Delta \subset$ $\operatorname{Supp}\left(D^{(1)}\right)$ such that $G_{0}:=2 C+\Delta$ defines a \mathbf{P}^{1}-fibration $\Phi_{0}:=\Phi_{\left|G_{0}\right|}: V \rightarrow$ \mathbf{P}^{1}. Then $D_{1}^{(0)}$ is a 2-section of Φ_{0} and the configuration of G_{0} looks like that of (i) or (ii) in Figure 2. Further, another (-3)-curve in $\operatorname{Supp}\left(D^{(0)}\right)$ is contained in a fiber of Φ_{0}. On the other hand, by Lemma 2.5 (3), every singular fiber of Φ_{0} consists only of (-1)-curves and (-2)-curves. This is a contradiction. This proves Claim 1.

By Claim 1, we may assume that $\left(D_{j}^{(1)} \cdot D_{j+1}^{(1)}\right)=1$ for $j=1, \ldots, r_{1}-1$. Lemma 2.2 implies that $r_{1} \geq 2$. So $F_{0}:=3 C+2 D_{1}^{(1)}+D_{2}^{(1)}+D_{1}^{(0)}$ defines a \mathbf{P}^{1}-fibration $\Phi:=\Phi_{\left|F_{0}\right|}: V \rightarrow \mathbf{P}^{1}, D_{2}^{(0)}$ (which exists) and $D_{3}^{(1)}$ (which exists if $r_{1} \geq 3$) are sections of Φ and $D-\left(D_{2}^{(0)}+D_{3}^{(1)}\right)$ is contained in singular fibers of Φ.

We consider the following five cases I-1-I-5 separately.
Case I-1. $\quad r_{1}=2$. If $r_{0}=2$, then, by virtue of Lemma 2.5 (1), we know that F_{0} is the unique singular fiber of Φ. Hence the singularity type of (V, D) is $A_{2} K_{2}$ and the configuration of $C+D$ is given in the configuration (8) in Appendix. We assume that $r_{0} \geq 3$. Let F_{1} be the fiber of Φ containing $D_{3}^{(0)}, \ldots, D_{r_{0}}^{(0)}$. By using $\rho(V)=\# D+1$ and Lemma 2.5 (1), we know that Φ has no singular fibers other than F_{0} and F_{1} and that F_{1} has a unique (-1)curve E_{1}. If $\left(F_{1}\right)_{\text {red }}-E_{1}$ is connected, then $\left(F_{1}\right)_{\text {red }}-E_{1}=D_{3}^{(0)}+\cdots+D_{r_{0}}^{(0)}$, $\left(E_{1} \cdot D\right)=1$ and

$$
-\left(E_{1} \cdot D^{\#}+K_{V}\right)=\frac{1}{2}=-\left(C \cdot D^{\#}+K_{V}\right)
$$

This is a contradiction because (V, D) is then of type (IIb). Hence $D^{\prime}:=$ $\left(F_{1}\right)_{\text {red }}-\left(E_{1}+D_{3}^{(0)}+\cdots+D_{r_{0}}^{(0)}\right) \neq 0$. It is then easy to see that D^{\prime} is a (-2)-rod or a (-2)-fork. Since F_{1} consists of a (-1)-curve E_{1}, a (-3)-curve $D_{r_{0}}^{(0)}$ and (-2)-curves, we know that $r_{0}=3$ and $\# D^{\prime}=2$ by [23, Lemma 1.6 (1)]. Hence the singularity type of (V, D) is $2 A_{2} K_{3}$ and the configuration of $C+D+E_{1}$ is given in the configuration (9) in Appendix.

Case I-2. $\quad r_{0}=2$ and $r_{1}=3$. Then $D_{2}^{(0)}$ and $D_{3}^{(1)}$ are sections of Φ. Let $F_{0}, F_{1}, \ldots, F_{t}(t \geq 0)$ be all singular fibers of Φ. By using an argument similar to the case (II) as in the proof of Theorem 3.2, we know that $t=1$, the configuration of F_{1} looks like that of (ii) in Figure 2 and that $\# F_{1}=5$. Hence the singularity type of (V, D) is $2 A_{3} K_{2}$ and the configuration of $C+D$ and F_{1} is given in the configuration (10) in Appendix.

Case I-3. $\quad r_{0}=2$ and $r_{1} \geq 4$. Then $D_{2}^{(0)}$ and $D_{3}^{(1)}$ are sections of Φ. Let F_{1} be the fiber of Φ containing $D_{4}^{(1)}, \ldots, D_{r_{1}}^{(1)}$. Then F_{1} has at least two
(-1)-curves. By using $\rho(V)=\# D+1$ and Lemma 2.5 (1), we know that F_{1} has just two (-1)-curves E_{1} and E_{1}^{\prime} and Φ has no singular fibers other than F_{0} and F_{1}. Assume that $\left(E_{1} \cdot D_{2}^{(0)}\right)=1$. Let $\mu: V \rightarrow W$ be a contraction of a (-1)-curve E_{1}^{\prime} and consecutively (smoothly) contractible curves in the fiber F_{1} except for those meeting $D_{2}^{(0)}$ or $D_{3}^{(1)}$ such that $\mu_{*}\left(D_{4}^{(1)}\right)$ becomes a (-1)curves. Then $\mu_{*}\left(F_{1}\right)$ has just two (-1)-curves $\mu_{*}\left(E_{1}\right)$ and $\mu_{*}\left(D_{4}^{(1)}\right)$. Further, the multiplicities of $\mu_{*}\left(E_{1}\right)$ and $\mu_{*}\left(D_{4}^{(1)}\right)$ in $\mu_{*}\left(F_{1}\right)$ are equal to one. So the configuration of $\mu_{*}\left(F_{1}\right)$ looks like that of (iii) in Figure 2. The configuration of $\mu_{*}\left(C+D+E_{1}+E_{1}^{\prime}\right)$ looks like that of Figure 6. Note that $\mu \neq \mathrm{id}$. Since F_{1} has just two (-1)-curves, the birational morphism μ starts with a blowing-up at a center P on $\mu_{*}\left(D_{4}^{(1)}\right)-\left\{\mu_{*}\left(D_{4}^{(1)}\right) \cap \mu_{*}\left(D_{3}^{(1)}\right)\right\}$. If $P \in \mu_{*}\left(D_{A}\right) \cap \mu_{*}\left(D_{4}^{(1)}\right)$, then E_{1} must meet two components of D whose coefficients in $D^{\#}$ are equal to $1 / 2$. Then $-\left(E_{1} \cdot D^{\#}+K_{V}\right)=0$, which is a contradiction. So $P \notin \mu_{*}\left(D_{A}\right)$. Then $D^{(1)} \geq \mu^{\prime}\left(\mu_{*}\left(D_{1}^{(1)}+D_{2}^{(1)}+D_{3}^{(1)}+D_{4}^{(1)}+D_{A}+D_{B}+D_{C}\right)\right)$. Since $D^{(1)}$ is a (-2)-rod by Claim 1, we konw that μ is the blowing-up with center P. Hence the singularity type of (V, D) is $A_{7} K_{2}$ and the configuration of $C+D+E_{1}+E_{1}^{\prime}$ is given in the configuration (11) in Appendix.

Figure 6

Figure 7
Case I-4. $\quad r_{0} \geq 3$ and $r_{1}=3$. Let F_{1} be the fiber of Φ containing $D_{3}^{(0)}, \ldots, D_{r_{0}}^{(0)}$. Then, by using an argument similar to Case I-3, we know that F_{1} has just two (-1)-curves E_{1} and E_{1}^{\prime} and Φ has no singular fibers other than
F_{0} and F_{1}. Since either E_{1} or E_{1}^{\prime} meets $D_{3}^{(1)}$, which is a section of Φ, we may assume that $\left(E_{1} \cdot D_{3}^{(1)}\right)=1$. Let $\mu: V \rightarrow W$ be a contraction of (-1)-curve E_{1}^{\prime} and consecutively (smoothly) contractible curves in the fiber F_{1} except for those meeting $D_{2}^{(0)}$ or $D_{3}^{(1)}$ such that $\mu_{*}\left(D_{3}^{(0)}\right)$ becomes a (-1)-curve. Then, by usnig an argument similar to Case I-3, we know that the configuration of $\mu_{*}\left(C+E_{1}+E_{1}^{\prime}+D\right)$ looks like that of Figure 7. Note that the fundamental points of μ lie on $\mu_{*}\left(D_{3}^{(0)}\right)-\left\{\mu_{*}\left(D_{3}^{(0)}\right) \cap \mu_{*}\left(D_{2}^{(0)}\right)\right\}$. We can easily see that D contains a connected componetnt D^{\prime} which can be contracted to a quotient singular point of index ≥ 3. This is a contradiction. Therefore, Case I- 4 does not take place.

Case I-5. $\quad r_{0} \geq 3$ and $r_{1} \geq 4$. Let F_{1} (resp. F_{2}) be the fiber of Φ containing $D_{3}^{(0)}, \ldots, D_{r_{0}}^{(0)}\left(\right.$ resp. $\left.D_{4}^{(1)}, \ldots, D_{r_{1}}^{(1)}\right)$. If $F_{1} \neq F_{2}$, then F_{1} and F_{2} have at least two (-1)-curves. This contradicts Lemma 2.5 (1). So $F_{1}=F_{2}$. Further, Lemma 2.5 (1) implies that F_{1} has at most two (-1)-curves.

Suppose that F_{1} has a unique (-1)-curve E_{1}. Then $\left(F_{1}\right)_{\text {red }}=E_{1}+D_{3}^{(0)}+$ $\cdots+D_{r_{0}}^{(0)}+D_{4}^{(1)}+\cdots+D_{r_{1}}^{(1)}$. By using [23, Lemma 1.6 (1)] (see Case I-1), we know that $r_{0}=3, r_{2}=5$ and that E_{1} meets $D_{3}^{(0)}$ and $D_{5}^{(1)}$. It follows from $\rho(V)=\# D+1$ and Lemma 2.5 (1) that Φ has another singular fiber F_{2} and F_{2} has just two (-1)-curves E_{2} and E_{2}^{\prime}. We may assume that $\left(E_{2} \cdot D_{2}^{(0)}\right)=1$. Then $-\left(E_{2} \cdot D^{\#}+K_{V}\right) \leq 1 / 2=-\left(C \cdot D^{\#}+K_{V}\right)$. So E_{2} meets D in only (-2)curves. This contradicts the assumption that (V, D) is of type (IIc). Hence F_{1} has just two (-1)-curves.

Let E_{1} and E_{1}^{\prime} be two (-1)-curves in $\operatorname{Supp}\left(F_{1}\right)$. We may assume that $\left(E_{1} \cdot D_{3}^{(0)}+\cdots+D_{r_{0}}^{(0)}\right)>0$. Then $E_{1} \in \operatorname{MV}(V, D)$. Since (V, D) is of type (IIc), E_{1} meets $D^{\prime}:=\left(F_{1}\right)_{\mathrm{red}}-\left(E_{1}+E_{1}^{\prime}+D_{3}^{(0)}+\cdots+D_{r_{0}}^{(0)}\right)$. Note that D^{\prime} consists only of (-2)-curves. Suppose that $\left(E_{1} \cdot D^{\prime}-\left(D_{4}^{(1)}+\cdots+D_{r_{1}}^{(1)}\right)\right)=1$. Then $\left(E_{1}^{\prime}\right.$. $\left.D_{4}^{(1)}+\cdots+D_{r_{1}}^{(1)}\right)=1$. Since the intersection matrix of $\left(F_{1}\right)_{\text {red }}-E_{1}^{\prime}$ is negative definite, $D^{\prime}-\left(D_{4}^{(1)}+\cdots+D_{r_{1}}^{(1)}\right)$ is an irreducible (-2 -curve and $\left(E_{1} \cdot D_{3}^{(0)}+\cdots+\right.$ $\left.D_{r_{0}}^{(0)}\right)=\left(E_{1} \cdot D_{r_{0}}^{(0)}\right)=1$. Further, $\left(E_{1}^{\prime} \cdot D_{3}^{(0)}+\cdots+D_{r_{0}}^{(0)}\right)=\left(E_{1}^{\prime} \cdot D_{r_{0}}^{(0)}\right)=1$. The intersection matrix of $E_{1}+E_{1}^{\prime}+D_{r_{0}}^{(0)}+D^{\prime}-\left(D_{4}^{(1)}+\cdots+D_{r_{1}}^{(1)}\right)$ is then not negative definite, which is a contradiction. Suppose that $\left(E_{1} \cdot D_{4}^{(1)}+\cdots+D_{r_{1}}^{(1)}\right)=1$. Since the intersection matrix of $E_{1}+D_{3}^{(0)}+\cdots+D_{r_{0}}^{(0)}+D_{4}^{(1)}+\cdots+D_{r_{1}}^{(1)}$ is negative definite, $\left(E_{1} \cdot D_{3}^{(0)}+\cdots+D_{r_{0}}^{(0)}\right)=\left(E_{1} \cdot D_{r_{0}}^{(0)}\right)=1$ and $r_{1}=4$. Further, $r_{0} \geq 4$ and $\left(E_{1}^{\prime} \cdot D_{3}^{(0)}+\cdots+D_{r_{0}-1}^{(0)}\right)=1$. Since $(1 / 2 \leq)-\left(E_{1}^{\prime} \cdot D^{\#}+K_{V}\right) \leq$ $1 / 2=-\left(C \cdot D^{\#}+K_{V}\right)$, it follows that $E_{1}^{\prime} \in \operatorname{MV}(V, D)$. Then (V, D) is of type (IIa) or (IIb). This is also a contradiction. Therefore, Case I-5 does not take place.
(II) The case $n=4$. In this case we may assume that every curve $E \in$ $\operatorname{MV}(V, D)$ meets a (-4)-curve in $\operatorname{Supp} D$. Since $\left(D_{0}^{2}\right)=-4, D_{0}$ is a connected component of D. Let $D^{(1)}$ be the connected component of D containing D_{1}. Then $D^{(1)}$ is a (-2)-rod or a (-2)-fork.
(II-1) The case where D_{1} is not a terminal component of $D^{(1)}$ or $D^{(1)}$ is a (-2)-fork. Then there exists an effective divisor Δ with $\operatorname{Supp} \Delta \subset \operatorname{Supp}\left(D^{(1)}\right)$ such that $F_{0}:=2 C+\Delta$ gives rise to a \mathbf{P}^{1}-fibration $\Phi=\Phi_{\left|F_{0}\right|}: V \rightarrow \mathbf{P}^{1}$. Then D_{0} is a 2 -section of Φ and the configuration of F_{0} looks like that of (i) or (ii) in Figure 2. It follows from Lemma 2.5 (3) that every singular fiber of Φ consists of (-1)-curves and (-2)-curves. Hence each connected component of D other than D_{0} is a (-2)-rod or a (-2)-fork because $D-\left(D_{0}+D^{(1)}\right)$ is contained in fibers of Φ.

Let $\sigma: V \rightarrow W$ be the contraction of C and put $B:=\sigma_{*}\left(D-D_{1}\right)$. Then the pair (W, B) is an LDP1-surface by [23, Lemma 4.3]. In particular, (W, B) is a dP3-surface (for the definition, see [24, Introduction]). Put $B_{0}:=\sigma_{*}\left(D_{0}\right)$ and $D_{1}^{\prime}:=\sigma_{*}\left(D_{1}\right)$. Then B_{0} is a (-3)-curve and $\left(B_{0} \cdot B-B_{0}\right)=0$. Further, $B^{\#}=(1 / 3) B_{0}$. Note that $(W, B) \neq\left(\Sigma_{3}, M_{3}\right)$ since $\# D^{(1)} \geq 3$.

Claim 2. (W, B) is of type (IIa) or (IIc).
Proof. Suppose that (W, B) is of the first kind. Then there exists a curve $E \in \operatorname{MV}(W, B)$ such that $\left|E+B+K_{W}\right| \neq \emptyset$. By using the same argument as in the proof of Theorem 3.1, we know that E is a (-1)-curve, $(E \cdot B)=\left(E \cdot B_{0}\right)=$ 2 and $E+B_{0}+K_{W} \sim 0$. Since $\sigma^{\prime}(E)$ is not a component of $D, \sigma^{\prime}(E)$ is a (-1)curve by Lemma 2.1. Then $-\left(\sigma^{\prime}(E) \cdot D^{\#}+K_{V}\right)=1-(1 / 2)\left(\sigma^{\prime}(E) \cdot D_{0}\right)=0$, which is a contradiction. Hence (W, B) is of the second kind. By $[24$, Theorem 4.1], (W, B) is not of type (IIb). This proves Claim 2.

We consider the following two Cases II-1-1 and II-1-2 separately.
Case II-1-1. $\quad D_{1}$ is not a terminal component of $D^{(1)}$. Note that $-\left(D_{1}^{\prime}\right.$. $\left.B^{\#}+K_{W}\right)=2 / 3$. For any curve $E \in \operatorname{MV}(W, B), E$ is a (-1)-curve and $-\left(E \cdot B^{\#}+K_{W}\right) \geq 2 / 3$ by Lemma 2.4 and Claim 2. So $D_{1}^{\prime} \in \operatorname{MV}(W, B)$. By the hypothesis that $\left(D^{(1)}-D_{1} \cdot D_{1}\right) \geq 2,(W, B)$ is of type (IIa). It then follows from [24, Theorem 3.3] that the configuration of $D_{1}^{\prime}+B$ looks like that of Figure 8, where a solid line stands for a component of B; a line with $*$ on it is a section of the vertical \mathbf{P}^{1}-fibration $\phi: W \rightarrow \mathbf{P}^{1}$. Hence the singularity type of (V, D) is $A_{3} D_{5} K_{1}$ and the configuration of $C+D$ and all singular fibers of a \mathbf{P}^{1}-fibration $\Psi:=\phi \circ \sigma: V \rightarrow \mathbf{P}^{1}$ is given in the configuration (12) in Appendix.

Figure 8

Case II-1-2. $\quad D_{1}$ is a terminal component of $D^{(1)}$. By the hypothesis in Case II-1, $D^{(1)}$ is a (-2)-fork. By Claim 2 and [24, Theorems 3.3 and 5.2], the dual graph of B is one of those given in the cases No. m ($m=28,66,67,68$, $84,97)$ in [24, Appendix]. If $m=28$, then there exists a curve $E \in \mathrm{MV}(W, B)$ such that E meets the (-3)-curve B_{0} and two (-2)-curves in Supp B by [24, Theorem 3.3]. Then $\sigma^{\prime}(E) \in \operatorname{MV}(V, D)$ and $\sigma^{\prime}(E)$ meets two (-2)-curves and D_{0}. So (V, D) is of type (IIa), which is a contradiction. Hence (W, B) is of type (IIc). We consider the following three subcases II-1-2-1 through II-1-2-3 separately.

Subcase II-1-2-1. $m=66,67$ or 68 . Note that $D_{1}^{\prime} \in \operatorname{MV}(W, B)$. By [24, Theorem 5.2], D_{1}^{\prime} must meet B_{0} and a terminal component of $\sigma_{*}\left(D^{(1)}-\right.$ $\left.D_{1}\right)$. Then $D^{(1)}$ is a (-2)-rod, which contradicts the hypothesis in Case II-1-2. Therefore, this subcase does not take place.

Subcase II-1-2-2. $\quad m=84$. The configuration of $D_{1}^{\prime}+B$ then looks like that of Figure 9, where $D_{1}^{\prime}=B_{1}^{\prime}$ or B_{2}^{\prime} (cf. [24, Appendix]). If $D_{1}^{\prime}=B_{2}^{\prime}$, then we can easily see that $\sigma^{\prime}\left(B_{1}^{\prime}\right) \in \operatorname{MV}(V, D)$ and $\sigma^{\prime}\left(B_{1}^{\prime}\right)$ satisfies the hypothesis in Case II-1-1. So we are reduced to the situation treated in Case II-1-1. If $D_{1}^{\prime}=B_{1}^{\prime}$, then the singularity type of (V, D) is $2 D_{4} K_{1}$ and the configuration of $C+C^{\prime}+D$, where $C^{\prime}=\sigma^{\prime}\left(B_{2}^{\prime}\right)$, looks like that of Figure 10, where $\left(D_{i}^{2}\right)=-2$ for $1 \leq i \leq 8$. Put $G_{0}:=D_{0}+D_{1}+D_{5}+2\left(C+C^{\prime}\right)$. Then G_{0} defines a $\mathbf{P}^{1}-$ fibration $\Psi:=\Phi_{\left|G_{0}\right|}: V \rightarrow \mathbf{P}^{1}, D_{2}$ and D_{6} are sections of Ψ and $D-\left(D_{2}+D_{6}\right)$ is contained in singular fibers of Ψ. By using $\rho(V)=\# D+1=10$ and Lemma 2.5 (1), we can easily see that the configuration of $C+D$ and all singular fibers of Φ is given in the configuration (13) in Appendix.

Figure 9

Figure 10
Subcase II-1-2-3. $\quad m=97$. The configuration of $D_{1}^{\prime}+B$ then looks like that of Figure 11 (cf. [24, Appendix]). So the singularity type of (V, D) is
$D_{8} K_{1}$. Put $D_{i+1}:=\sigma^{\prime}\left(B_{i}\right), i=1, \ldots, 7$ and $G_{0}:=D_{0}+4 C+3 D_{1}+2 D_{2}+D_{3}$. Then G_{0} defines a \mathbf{P}^{1}-fibration $\Psi:=\Phi_{\left|G_{0}\right|}: V \rightarrow \mathbf{P}^{1}, D_{4}$ is a section of Ψ and $D-D_{4}$ is contained in singular fibers of Ψ. We can easily see that the configuration of $C+D$ and all singular fibers of Ψ is given in the configuration (14) in Appendix.

Figure 11
(II-2) The case where $D^{(1)}$ is a (-2)-rod and D_{1} is a terminal component of $D^{(1)}$. Let $D^{(1)}=D_{1}^{(1)}+\cdots+D_{r}^{(1)}$ be the decomposition of $D^{(1)}$ into irreducible components, where $D_{1}^{(1)}=D_{1}$ and $\left(D_{i}^{(1)} \cdot D_{i+1}^{(1)}\right)=1$ for $i=1, \ldots, r-1$. By Lemma 2.2 and $\rho(V)=\# D+1, r \geq 4$. A divisor $F_{0}:=4 C+3 D_{1}^{(1)}+2 D_{2}^{(1)}+$ $D_{0}+D_{3}^{(1)}$ defines a \mathbf{P}^{1}-fibration $\Phi:=\Phi_{\left|F_{0}\right|}: V \rightarrow \mathbf{P}^{1}$. Then $D_{4}^{(1)}$ is a section of Φ and $D-D_{4}^{(1)}$ is contained in singular fibers of Φ. If $r=4$, then, by using $\rho(V)=\# D+1$ and Lemma 2.5 (1), we know that Φ has no singular fibers other than F_{0}. Hence the singularity type of (V, D) is $A_{4} K_{1}$ and the configuration of $C+D$ is given in the configuration (15) in Appendix.

We assume that $r \geq 5$. Let F_{1} be the singular fiber of Φ containing $D_{5}^{(1)}, \ldots, D_{r}^{(1)}$. It then follows form $\rho(V)=\# D+1$ and Lemma 2.5 (1) that F_{1} has a unique (-1)-curve E_{1} and Φ has no singular fibers other than F_{0} and F_{1}. If $\left(F_{1}\right)_{\text {red }}-E_{1}$ is connected, then $\left(F_{1}\right)_{\text {red }}=E_{1}+D_{5}^{(1)}+\cdots+D_{r}^{(1)}$ and the configuration of F_{1} looks like that of (ii) in Figure 2. Hence the singularity type of (V, D) is $A_{7} K_{1}$ and the configuration of $C+D$ and F_{1} is given in the configuration (16) in Appendix.

We assume further that $\left(F_{1}\right)_{\text {red }}-E_{1}$ is not connected. We note that $D^{\prime}:=\left(F_{1}\right)_{\text {red }}-\left(E_{1}+D_{5}^{(1)}+\cdots+D_{r}^{(1)}\right)$ is connected because F_{1} has no (-1)curves other than E_{1}. Since the intersection matrix of $E_{1}+D_{5}^{(1)}+\cdots+D_{r}^{(1)}$ is negative definite, $\left(E_{1} \cdot D_{j}^{(1)}\right)=1$, where $j=5$ or r. If D^{\prime} is a (-2)-rod or a (-2)-fork, then the configuration of F_{1} looks like that of (i) in Figure 2 by Lemma 2.5 (2). Hence the singularity type of (V, D) is $A_{1} A_{5} K_{1}$ and the configuration of $C+D$ and F_{1} is given in the configuration (17) in Appendix. Assume that D^{\prime} is of type K_{n}. Then $-\left(E_{1} \cdot D^{\#}+K_{V}\right)=1 / 2$ and hence $E_{1} \in \operatorname{MV}(V, D)$. By the hypothesis in (II), D^{\prime} is of type K_{1}. If E_{1} does not meet $D_{r}^{(1)}$, then we are reduced to the situation treated in (II-1). So we may assume that $\left(E_{1} \cdot D^{(1)}\right)=\left(E_{1} \cdot D_{r}^{(1)}\right)=1$. Since $\left(F_{1}\right)_{\text {red }}$ is a linear chain and D^{\prime} is a (-4)-curve, $r=7$. Hence the singularity type of (V, D) is $A_{7} 2 K_{1}$ and the
configuration of $C+D$ and all singular fibers of Φ is given in the configuration (18) in Appendix.

The assertions (1) and (2) are thus verified. The assertion (4) is clear. The assertion (3) can be verified by using [23, Lemma 3.3].

The assertions (1) and (2) of Theorem 1.1 follows from Theorems 3.1 through 3.4.

4. Quasi-universal coverings

Let S (or (V, D)) be an LDP1-surface of index two and let U^{0} be the universal covering of $S^{0}=S-\operatorname{Sing} S=V-D$, which is an algebraic surface because $\pi_{1}\left(S^{0}\right)$ is finite by [8], [9] (see also [6] and [12]). Let U be the normalization of S in the function field of U^{0}. We call U the quasi-universal covering of S (cf. [19] and [24]). It then follows from [24, Proposition 6.1] that U is a log del Pezzo surface. In this section, to complete the proof of Theorem 1.1, we look into the fundamental group $\pi_{1}\left(S^{0}\right)$ of S^{0} and the quasi-universal covering U of S. To exhibit our arguments, we treat only three cases $S=S\left(A_{4} K_{5}\right)$, $S=S\left(2 A_{1} D_{6} K_{1}\right)$ and $S=S\left(2 D_{4} K_{1}\right)$.

Case $S=S\left(A_{4} K_{5}\right)$. The configuration of D is given in the configuration (7) in Appendix, where a linear pencil $\left|E_{1}+D_{6}+D_{7}+D_{8}+D_{9}+E_{2}\right|$ defines the vertical \mathbf{P}^{1}-fibration $\Phi: V \rightarrow \mathbf{P}^{1}$. Let $u: V \rightarrow \Sigma_{3}$ be the contraction of $C, D_{3}, D_{4}, E_{2}, D_{9}, D_{8}, D_{7}$ and D_{6}. Let F be a fiber of Φ. Then $F \sim$ $2\left(C+D_{3}\right)+D_{2}+D_{4} \sim E_{1}+D_{6}+D_{7}+D_{8}+D_{9}+E_{2}$ and $D_{5} \sim D_{1}+3 F-$ $\left(D_{6}+2 D_{7}+3 D_{8}+4 D_{9}+5 E_{2}\right)-\left(D_{3}+D_{4}+C\right)$. Put $G:=C+D_{1}+D_{2}+$ $D_{3}+D_{4}-E_{2}$ and $\Delta:=4 D_{1}+2 D_{2}+3 D_{4}+D_{5}+D_{6}+2 D_{7}+3 D_{8}+4 D_{9}$. Then $5 G \sim \Delta$. Note that $\operatorname{Pic}(V)$ is a free abelian group of rank ten with a free basis $\left\{D_{1}, D_{3}, D_{4}, D_{6}, D_{7}, D_{8}, D_{9}, F, C-E_{2}, E_{2}\right\}$. In $\operatorname{Pic}(V-D)$, which is $\operatorname{Pic}(V)$ modulo the subgroup generated by the components of D, we have $F=2 C=E_{1}+E_{2}$ and $0=D_{5}=3 F-5 E_{2}-C$. So, in $\operatorname{Pic}(V-D)$, $5\left(C-E_{2}\right)=0$. Hence $\operatorname{Pic}(V-D) \cong \mathbf{Z} \oplus \mathbf{Z} /(5)$. By the universal coefficient theorem, we have $H_{1}(V-D ; \mathbf{Z}) \cong \mathbf{Z} /(5)$ (see [5, Section 8] and [14, Proof of Proposition 4.13]).

Let $g_{1}: T_{1} \rightarrow V$ be the composite of the following morphisms in the given order: the $\mathbf{Z} /(5)$-covering defined by the relation $5 G \sim \Delta$, the normalization of the covering surface and the minimal resolution of the isolated singularities on the normalized surface. The configuration of $g_{1}^{-1}(D)$ looks like that of Figure 12 , where a solid line stands for a component of $g_{1}^{-1}(D)$ and $g_{1}^{-1}(C)=\sum_{i=1}^{5} \tilde{C}_{i}$. The \mathbf{P}^{1}-fibration Φ induces a \mathbf{P}^{1}-fibration $\Phi_{1}: T_{1} \rightarrow \mathbf{P}^{1}$ of which all singular fibers are those two given in Figure 12. Note that T_{1} is a rational surface and $\rho\left(T_{1}\right)=23$.

Let $g_{2}: T_{1} \rightarrow T$ be the contraction of $g_{1}^{-1}\left(D-D_{3}\right)$. Put $B:=g_{2 *}\left(g_{1}^{-1}\left(D_{3}\right)\right)$ and $C_{i}:=g_{2}\left(\tilde{C}_{i}\right), i=1, \ldots, 5$. Let $h: T \rightarrow U$ be the contraction of B. Then the singularity type of U is K_{1} and $\rho(U)=5$. Note that g_{1} induces a finite

Figure 12
morphism $\bar{g}_{1}: U \rightarrow S$, which is étale outside $\operatorname{Sing} S$, and U is a \log del Pezzo surface by [24, Corollary 6.2]. A divisor $H:=C_{2}+C_{3}+C_{4}+C_{5}+B$ on T defines a \mathbf{P}^{1}-fibration $\Psi: T \rightarrow \mathbf{P}^{1}$ and C_{1} is a section of Ψ. So $T-H$ contains the affine plane \mathbf{C}^{2} and hence $U-\operatorname{Sing} U$ is simply connected. Therefore, U is the quasi-universal covering of S and $\pi_{1}\left(S^{0}\right) \cong \mathbf{Z} /(5)$.

Remark 1. In the Case $S=S\left(A_{4} K_{5}\right)$, we can easily see that $\pi_{1}\left(S^{0}\right)$ is cyclic by using [20, Lemma 1.5].

Case $S=S\left(2 A_{1} D_{6} K_{1}\right)$. By using a similar argument to the case $S=$ $S\left(A_{4} K_{5}\right)$, we know that $H_{1}\left(S^{0} ; \mathbf{Z}\right)=\mathbf{Z} /(2) \oplus \mathbf{Z} /(2), \rho(U)=1$ and U is the surface obtained by contracting the minimal section on Σ_{2}. We calculate the fundamental group of S^{0}. The configuration of D is given in the configuration (2) in Appendix. Let $\Phi: V \rightarrow \mathbf{P}^{1}$ be the vertical \mathbf{P}^{1}-fibration. Then $\varphi:=$ $\left.\Phi\right|_{V-D}: V-D \rightarrow \mathbf{P}^{1}$ is an \mathbf{A}^{1}-fibration onto \mathbf{P}^{1}. It is then clear that every fiber of φ is irreducible and φ has three multiple fibers $m_{i} \Gamma_{i}(i=1,2,3)$ with $\left\{m_{1}, m_{2}, m_{3}\right\}=\{2,2,4\}$. By [5, Proposition (4.19)], $\pi_{1}(V-D)\left(=\pi_{1}\left(S^{0}\right)\right)$ is generated by σ_{1}, σ_{2} and σ_{3} with the relation $\sigma_{1} \sigma_{2} \sigma_{3}=\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{3}^{4}=1$. Hence $\pi_{1}\left(S^{0}\right)$ is the binary dihedral group of order 8 .

Case $S=S\left(2 D_{4} K_{1}\right)$. By using a similar argument to the case $S=$ $S\left(A_{4} K_{5}\right)$, we know that $H_{1}\left(S^{0} ; \mathbf{Z}\right)=\mathbf{Z} /(2) \oplus \mathbf{Z} /(2)$ and $U=\mathbf{P}^{1} \times \mathbf{P}^{1}$. Moreover, we know that the degree of the quasi-universal covering morphism of S is equal to eight. Hence $\pi_{1}\left(S^{0}\right)$ is a non-abelian group of order 8 , i.e., the binary dihedral group of order 8 or the quaternion group of order 8 .

Thus, we can verify the assertion (3) of Theorem 1.1.
Proof of the assertion (4) of Theorem 1.1. Let (V, D) be an LDP1-surface of index two. If $V-D$ contains the affine plane \mathbf{C}^{2} as a Zariski open subset,
then $V-D$ is simply connected. Assume that $V-D$ is simply connected. By the assertion (3) of Theorem 1.1, the singularity type of (V, D) is one of K_{1}, K_{5}, $A_{2} K_{2}$ and $A_{4} K_{1}$. Then (V, D) is a surface corresponding to the configuration (n) for $n=1,4,8$ or 15 . It is then clear that $V-D$ contains the affine plane \mathbf{C}^{2} as a Zariski open subset.

The proof of Theorem 1.1 is thus completed.

Appendix. Table and list of configurations

In Table 1, we employ the following notation for finite groups.
D_{2} : the binary dihedral group of order 8 .
Q_{3} : the quaternion group of order 8 .
In No. 13, we do not know yet which of D_{2} and Q_{3} the fundamental group $\pi_{1}\left(S^{0}\right)$ takes.

No.	Sing S	$H_{1}\left(S^{0} ; \mathbf{Z}\right)$	$\pi_{1}\left(S^{0}\right)$	$\rho(U)$	Sing U
1	K_{1}	(0)	(1)	1	$S=U$
2	$2 A_{1} D_{6} K_{1}$	$\mathbf{Z} /(2) \oplus \mathbf{Z} /(2)$	D_{2}	1	A_{1}
3	$A_{1} A_{5} K_{3}$	$\mathbf{Z} /(6)$	$\mathbf{Z} /(6)$	3	A_{1}
4	K_{5}	(0)	(1)	1	$U=S$
5	K_{9}	$\mathbf{Z} /(3)$	$\mathbf{Z} /(3)$	5	K_{3}
6	$A_{2} K_{6}$	$\mathbf{Z} /(3)$	$\mathbf{Z} /(3)$	3	K_{2}
7	$A_{4} K_{5}$	$\mathbf{Z} /(5)$	$\mathbf{Z} /(5)$	5	K_{1}
8	$A_{2} K_{2}$	(0)	(1)	1	$U=S$
9	$2 A_{2} K_{3}$	$\mathbf{Z} /(3)$	$\mathbf{Z} /(3)$	1	K_{1}
10	$2 A_{3} K_{2}$	$\mathbf{Z} /(4)$	$\mathbf{Z} /(4)$	1	A_{1}
11	$A_{7} K_{2}$	$\mathbf{Z} /(4)$	$\mathbf{Z} /(4)$	4	$2 A_{1}$
12	$A_{3} D_{5} K_{1}$	$\mathbf{Z} /(4)$	$\mathbf{Z} /(4)$	2	$2 A_{1} A_{2}$
13	$2 D_{4} K_{1}$	$\mathbf{Z} /(2) \oplus \mathbf{Z} /(2)$	D_{2} or Q_{3}	2	$U=\mathbf{P}^{1} \times \mathbf{P}^{1}$
14	$D_{8} K_{1}$	$\mathbf{Z} /(2)$	$\mathbf{Z} /(2)$	2	$A_{1} D_{5}$
15	$A_{4} K_{1}$	(0)	(1)	1	$U=S$
16	$A_{7} K_{1}$	$\mathbf{Z} /(2)$	$\mathbf{Z} /(2)$	2	$A_{1} A_{3}$
17	$A_{1} A_{5} K_{1}$	$\mathbf{Z} /(2)$	$\mathbf{Z} /(2)$	1	$A_{1} A_{2}$
18	$A_{7} 2 K_{1}$	$\mathbf{Z} /(4)$	$\mathbf{Z} /(4)$	1	A_{1}

Table 1

In the following list of configurations, the numbers in brackets coincide with the classifying numbers in Table 1 ; a solid line stands for a component of D; the self-intersection number of a (-2)-curve in $\operatorname{Supp} D$ is omitted; a dotted line in the configuration (n) for $n \geq 2$ is a (-1)-curve; a line with $*$ on it is not contained in any fiber of the vertical \mathbf{P}^{1}-fibration on V.

(1)

(3)

(6)

(8)

(11)

(13)
(2)

(4)

(5)

(7)

(10)

(12)

(14)

(15)

Figure 13

Department of Mathematics
Graduate School of Science Osaka University
CURRENT ADDRESS:
Faculty of Engineering
Niigata University
Niigata 950-2181, Japan

References

[1] V. A. Alekseev and V. V. Nikulin, Classification of del Pezzo surfaces with log-terminal singularities of index ≤ 2, and involutions on $K 3$ surfaces, Soviet. Math. Dokl. 39 (1989), 507-511.
[2] L. Brenton, On singular complex surfaces with negative canonical bundle, with applications to singular compactifications of \mathbf{C}^{2} and to 3-dimensional rational singuarities, Math. Ann. 248 (1980), 117-124.
[3] E. Brieskorn, Rationale Singularitäten komplexer Flächen, Invent. Math. 4 (1968), 336-358.
[4] M. Demazure, Surfaces de del Pezzo, Lecture Notes in Math. 777, Berlin-Heiderberg-New York, Springer, 1980.
[5] T. Fujita, On the topology of non-complete algebraic surfaces, J. Fac. Sci. Univ. Tokyo 29 (1982), 503-566.
[6] A. Fujiki, R. Kobayashi and S. Lu, On the fundamental group of certain open normal surfaces, Saitama Math. J. 11 (1993), 15-20.
[7] M. Furushima, Singular del Pezzo surfaces and analytic compactifications of 3-dimensional complex affine space \mathbf{C}^{3}, Nagoya Math. J. 104 (1986), 1-28.
[8] R. V. Gurjar and D.-Q. Zhang, π_{1} of smooth points of a log del Pezzo surface is finite: I, J. Math. Sci. Tokyo 1 (1994), 137-180.
[9] R. V. Gurjar and D.-Q. Zhang, π_{1} of smooth points of a log del Pezzo surface is finite: II, J. Math. Sci. Tokyo 2 (1995), 165-196.
[10] F. Hidaka and K. Watanabe, Normal Gorenstein surfaces with ample anticanonical divisor, Tokyo J. Math. 4 (1981), 319-330.
[11] Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model program, Adv. Stud. Pure Math. 10 (1987), 283-360.
[12] S. Keel and J. MCKernan, Rational curves on quasi-projective surfaces, Mem. Amer. Math. Soc. 669 (1999).
[13] H. Kojima, Logarithmic del Pezzo surfaces of rank one with unique singular points, Japan. J. Math. 25 (1999), 343-375.
[14] , Open rational surfaces with logarithmic Kodaira dimension zero, Internat. J. Math. 10 (1999), 619-642.
[15] M. Miyanishi, Non-complete algebraic surfaces, Lecture Notes in Math. 857, Berlin-Heiderberg-New York, Springer, 1981.
[16] , Open algebraic surfaces, CRM Monograph Series 12, Amer. Math. Soc., 2000.
[17] M. Miyanishi and T. Sugie, Homology planes with quotient singularities, J. Math. Kyoto Univ. 31 (1991), 755-788.
[18] M. Miyanishi and S. Tsunoda, Non-complete algebraic surfaces with logarithmic Kodaira dimension $-\infty$ and with non-connected boundaries at infinity, Japan. J. Math. 10 (1984), 195-242.
[19] M. Miyanishi and D.-Q. Zhang, Gorenstein log del Pezzo surfaces of rank one, J. Algebra 118 (1988), 63-84.
[20] M. Nori, Zariski conjecture and related problems, Ann. Sci. École Norm. Sup. 16 (1983), 305-344.
[21] T. Urabe, On singularities on degenerate del Pezzo surfaces of degree 1, 2, Proc. Symp. Pure Math. 40 (1983), 587-591.
[22] D.-Q. Zhang, On Iitaka surfaces, Osaka J. Math. 24 (1988), 417-460.
[23] \qquad , Logarithmic del Pezzo surfaces of rank one with contractible boundaries, Osaka J. Math. 25 (1988), 461-497.
[24] _ Logarithmic del Pezzo surfaces with rational double and triple singular points, Tohoku Math. J. 41 (1989), 399-452.
[25] , Logarithmic Enriques surfaces, J. Math. Kyoto Univ. 31 (1991), 419-466.

[^0]: 1991 Mathematics Subject Classification(s). Primary 14J26; Secondary 14F45, 14J17 Received Octover 4, 2000
 *The author was partially supported by JSPS Research Fellowships for Young Scientists and Grant-in-Aid for Scientific Research, the Ministry of Education, Science and Culture.

