On [X, U(n)] when dim X is 2n

By

Hiroaki HAMANAKA* and Akira KONO

1. Introduction

Take a topological group G. Then, for a CW-complex X, the homotopy set [X, G] forms a group. This association is a functor from the category of CW-complexes and continuous maps up to homotopy to the category of groups and homomorphisms.

In this paper, we consider the case G = U(n) and denote [X, U(n)] by $U_n(X)$. In this case, remark that, even if X is base pointed, [X, U(n)] and $[X, U(n)]_0$ are isomorphic, since $1 \to \operatorname{Map}_0(X, U(n)) \to \operatorname{Map}(X, U(n)) \to U(n) \to 1$ is a splitting extension of group and U(n) is connected.

Also, if n is sufficiently large, $U_n(X)$ merely equals to $\tilde{K}^1(X)$. In fact, this is true, when X is a CW-complex whose dimension is lower than 2n, since $(U(\infty), U(n))$ is 2n-connected. Thus we may say that $U_n(X)$ is "the unstable \tilde{K}^1 -theory" and $U_n(X)$ may provide additional informations to the ordinary K-theory.

Of course, an uncomputable object is useless, and we should offer some methods, tools to compute them and show examples. In the following, we shall investigate the case of [X, U(n)] when dim X is 2n.

Our results are the followings:

Theorem 1.1. If dim $X \leq 2n$ then the next exact sequence holds:

$$\widetilde{K}^0(X) \stackrel{\Theta}{\longrightarrow} \mathrm{H}^{2n}\left(X; \mathbf{Z}\right) \to U_n(X) \to \widetilde{K}^1(X) \to 0.$$

(The explicit form of Θ is given in Proposition 3.1.) Denoting Coker Θ by $N_n(X)$, the following is a central extension:

(1.1)
$$0 \to N_n(X) \xrightarrow{\iota} U_n(X) \to \widetilde{K}^1(X) \to 0.$$

In addition, the above exact sequence has the naturality; if X, Y are CWcomplexes with their dimensions no more than 2n and a continuous map f:

Received July 5, 2002

^{*}Partially supported by Grant-in-Aid for Scientific Research, Ministry of Education, Japanese Government, No.13740040.

 $X \rightarrow Y$ is given, the following commutes.

$$\begin{split} &\widetilde{K}^{0}(Y) \xrightarrow{\Theta} \mathrm{H}^{2n}\left(Y;\mathbf{Z}\right) \xrightarrow{} U_{n}(Y) \xrightarrow{} \widetilde{K}^{1}(Y) \xrightarrow{} 0 \\ & \downarrow f^{*} & \downarrow f^{*} & \downarrow f^{*} \\ & \widetilde{K}^{0}(X) \xrightarrow{\Theta} \mathrm{H}^{2n}\left(X;\mathbf{Z}\right) \xrightarrow{} U_{n}(X) \xrightarrow{} \widetilde{K}^{1}(X) \xrightarrow{} 0. \end{split}$$

Theorem 1.2. Let X be a finite CW-complex and dim $X \leq 2n$. Then $N_n(X)$ is a finite Abelian group and the order of any element in $N_n(X)$ divides n!.

Also we give the following theorem concerning $N_n()$.

Theorem 1.3. Let X_1 , X_2 be finite CW-complexes whose dimensions are $2n_1$, $2n_2$ respectively. Assume $\widetilde{K}^0(X_1)$ or $\widetilde{K}^0(X_1)$ is free and $\mathrm{H}^{2n_1}(X_1; \mathbb{Z})$ $= \mathrm{H}^{2n_2}(X_2; \mathbb{Z}) = \mathbb{Z}$. If $N_{n_1}(X_1) \cong \mathbb{Z}/l_1\mathbb{Z}$ and $N_{n_2}(X_2) \cong \mathbb{Z}/l_2\mathbb{Z}$, then $N_{n_1+n_2}(X_1 \wedge X_2) \cong \mathbb{Z}/\binom{n_1+n_2}{n_1}l_1l_2\mathbb{Z}$.

When $\widetilde{K}^1(X) = 0$, $U_n(X)$ and $N_n(X)$ coincide. As an example of such a case, we compute $U_{n+m-1}(\Sigma CP^{n-1} \wedge \Sigma CP^{m-1})$. (See Corollary 4.3.) Since we can regard ΣCP^{n-1} as a subspace of U(n), there is a map $\gamma' : \Sigma CP^{n-1} \wedge$ $\Sigma CP^{m-1} \to U(n+m-1)$ which is a restriction of the commutator map from $U(n) \wedge U(m)$ to U(n+m-1). Our calculation shows that $U_{n+m-1}(\Sigma CP^{n-1} \wedge$ $\Sigma CP^{m-1})$ is a cyclic group and γ' is its generator.

R. Bott has showed U(n) and U(m) does not homotopy-commute in U(n+m-1) by means of the Samelson product. The order of γ' above mentioned indicates "how much far from homotopy-commutativity" ΣCP^{n-1} and ΣCP^{m-1} are.

Next, we shall look into the case $\widetilde{K}^1(X) \neq 0$. In this case, even if dim X = 2n, $U_n(X)$ may be non-abelian and, in fact, we show such cases. Our results are the followings.

We set $\mathrm{H}^*(U(n); \mathbf{Z}) = \bigwedge (x_1, x_3, x_5, \dots, x_{2n-1})$ where $x_{2k-1} = \sigma c_k$, σ is the cohomology suspension and c_k is the k-th universal Chern class. We loosely denote the cohomology map induced by a map f which lies in a homotopy class α by α^* .

Theorem 1.4. In the same condition as Theorem 1.1, for any $\tilde{\alpha}, \beta \in U_n(X)$, their commutator $[\tilde{\alpha}, \tilde{\beta}]$ lies in $\iota(N_n(X))$ and we have

$$[\widetilde{\alpha}, \widetilde{\beta}] = \iota \langle u \rangle$$

where $u = \sum_{k+l+1=n} (\widetilde{\alpha}^*(x_{2k+1}) \cup \widetilde{\beta}^*(x_{2l+1}))$ in $\mathrm{H}^{2n}(X; \mathbf{Z})$ and $\langle u \rangle \in N_n(X)$ means the class represented by u.

Corollary 1.1. In addition to the assumption of Theorems 1.4, we assume that $\mathrm{H}^{2n}(X; \mathbb{Z})$ is free. Then, if $\alpha \in \widetilde{K}^1(X)$ has a finite order, its inverse image $\widetilde{\alpha} \in U_n(X)$ belongs to the center of $U_n(X)$.

As an application, we give $U_n(X)$ where X is a sphere bundle over a sphere.

Corollary 1.2. If $S^{2n+1} \to X \to S^{2m+1}$ is a fibration where 0 < n < m, then $U_{2(n+m+1)}(X)$ has three generators α , β and ϵ , and its relations are

$$[\alpha, \epsilon] = [\beta, \epsilon] = 0$$
$$(n + m + 1)!\epsilon = 0$$
$$[\alpha, \beta] = n!m!\epsilon.$$

2. Exact sequence

We denote $U(\infty)/U(n)$ by W_n . Then, from the fibration $U(n) \xrightarrow{j} U(\infty) \xrightarrow{p} W_n$, we can deduce the following fibration sequence:

$$\cdots \to \Omega U(\infty) \xrightarrow{\Omega p} \Omega W_n \xrightarrow{\delta} U(n) \xrightarrow{j} U(\infty) \xrightarrow{p} W_n.$$

Since j is a group homomorphism, Ωp is a loop map and also δ is the loop map of $B\delta: W_n \to BU(n)$, for a CW-complex X, there is an exact sequence of groups:

$$[X, \Omega U(\infty)] \xrightarrow{\Omega p_*} [X, \Omega W_n] \xrightarrow{\delta_*} U_n(X) \xrightarrow{j_*} [X, U(\infty)].$$

Recall the natural isomorphisms $[X, BU] \cong \widetilde{K}^0(X), [X, U(\infty)] \cong \widetilde{K}^1(X)$ and, also, the Bott map $\beta : BU \xrightarrow{\simeq} \Omega U(\infty)$. Moreover, since W_n is 2*n*-connected, $[X, W_n]$ is trivial, when dim $X \leq 2n$, and this implies j_* is a surjection. These argument implies the next exact sequence, which has the naturality:

$$\widetilde{K}^{0}(X) \xrightarrow{\Omega p_{*}\beta_{*}} [X, \Omega W_{n}] \xrightarrow{\delta_{*}} U_{n}(X) \xrightarrow{j_{*}} \widetilde{K}^{1}(X) \to 0.$$

Here, we use the isomorphism $[X, \Omega W_n] \cong \mathrm{H}^{2n}(X; \mathbb{Z})$ as groups introduced as following. In the rest, we assume dim $X \leq 2n$.

Let $x \in \mathrm{H}^{2n+1}(W_n; \mathbf{Z}) \cong \mathbf{Z}$ be the generator such that $p^*(x) = x_{2n+1} \in \mathrm{H}^*(U(\infty); \mathbf{Z})$. Consider $a_{2n} = \sigma(x) \in \mathrm{H}^{2n}(\Omega W_n; \mathbf{Z})$ as a map $a_{2n} : \Omega W_n \to K(\mathbf{Z}, 2n)$. Then $a_{2n*} : \pi_*(\Omega W_n) \to \pi_*(K(\mathbf{Z}, 2n))$ (* $\leq 2n$) is isomorphic and also $\pi_{2n+1}(K(\mathbf{Z}, 2n)) = 0$. Therefore, from Whitehead's theorem, $a_{2n*} : [X, \Omega W_n] \to [X, K(\mathbf{Z}, 2n)] \cong \mathrm{H}^{2n}(X; \mathbf{Z})$ is a bijection. Note that $a_{2n} : \Omega W_n \to K(\mathbf{Z}, 2n)$ is a loop map and a_{2n*} above is a group isomorphism. Here we remark that the naturality holds for this isomorphism, i.e., if X, Y are CW-complexes whose dimensions are no more than 2n and given a map $f : X \to Y$, the following is commutative;

Now we set $\Theta = a_{2n*}\Omega p_*\beta_*$, $N_n(X) = \operatorname{Coker}\Theta$ and have the exact sequence and the extension in Theorem 1.1. The map $\operatorname{H}^{2n}(X; \mathbb{Z}) \to U_n(X)$ is the composition $\delta_*(a_{2n*})^{-1}$. The naturality can be easily checked.

Next, we shall prove that

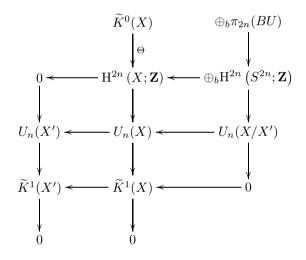
$$0 \to N_n(X) \xrightarrow{\iota} U_n(X) \to \widetilde{K}^1(X) \to 0$$

is a central extension. Let $e_b(b = 1, 2, ..., N)$ be the 2*n*-cells of X, f_b be the attaching map of 2*n*-cell e_b and X' be the (2n - 1)-skeleton of X. We consider the cofibration sequence:

$$\bigvee_b S^{2n-1} \xrightarrow{\vee f_b} X' \longrightarrow X \xrightarrow{\rho} X/X'.$$

Remark $X/X' \cong \bigvee_h S^{2n}$.

Using this, we have a commutative diagram, in which every rows and columns are exact, as follows:



Hence

(2.1)
$$\operatorname{Im}(\mathrm{H}^{2n}(X;\mathbf{Z})\to U_n(X)) = \operatorname{Im}(U_n(X/X')\to U_n(X)).$$

Therefore any element $\alpha \in \text{Im}(\text{H}^{2n}(X; \mathbb{Z}) \to U_n(X))$ can be represented by a map whose value on neighborhood V of X' is constantly the unit, while any element in $U_n(X)$ can be represented by a map whose value on the complement of V is the unit. (The complement of V can be covered by a disjoint union of 2n-dim open cells.) Hence α and β are commutative and we can say that $\text{Im}(\text{H}^{2n}(X; \mathbb{Z}) \to U_n(X))$ lies in the center of $U_n(X)$.

Now we have just finish the proof of Theorem 1.1 and we shall show the proof of Theorem 1.2.

Proof of Theorem 1.2. It immediately follows that when X is a finite CW-complex, $N_n(X)$ is a finitely generated abelian group, since $\mathrm{H}^{2n}(X; \mathbf{Z})$ is finitely generated. Thus we show that $n!\theta = 0$ for any $\theta \in N_n(X)$.

From (2.1), $\operatorname{Im}(\rho^* : U_n(X/X') \to U_n(X)) \cong \operatorname{Coker}\Theta = N_n(X)$ and $N_n(X)$ is isomorphic to a quotient of $U_n(X/X')$.

On the other hand, we can see that

$$U_n(X/X') \cong \bigoplus_b U_n(S^{2n}) \cong \bigoplus_b \mathbf{Z}/n!\mathbf{Z}.$$

Hence the statement follows.

3. Calculation on exact sequence

Let X be a finite CW-complex of dimension 2n. In this section, we give the explicit form of the Θ in Theorem 1.1.

See the next diagram:

The above commutative diagram illustrates the definition of Θ . We set u, the fundamental element of $\mathrm{H}^{2n}(K(2n, \mathbb{Z}); \mathbb{Z})$. Then, for any $\theta \in \widetilde{K}^0(X) \cong [X, BU]$,

$$\Theta(\theta) = (a_{2n} \circ \Omega p \circ \beta \circ \theta)^*(u)$$
$$= (\Omega p \circ \beta \circ \theta)^*(a_{2n})$$
$$= \theta^* \beta^* \Omega p^*(a_{2n}).$$

Since, from the definition of a_{2n} , $a_{2n} = \sigma(x)$ and $p^*(x) = \sigma(c_{n+1})$, we can see that $\Theta(\theta) = \theta^* \beta^*(\sigma^2(c_{n+1}))$.

For CW-complexes X and Y, we denote the adjoint isomorphism between the homotopy sets by

$$\tau: [\Sigma X, Y] \to [X, \Omega Y].$$

(We loosely denote the adjoint isomorphism between the mapping spaces by the same symbol τ .)

Let ξ_N be the universal complex vector bundle over BU(N) and η be the canonical complex line bundle over $CP^1 \cong S^2$. Also we set that ζ_N is the classifying map of $(\eta - 1) \wedge (\xi_N - N)$ over $\Sigma^2 BU(N)$ and $\zeta : \Sigma^2 BU \to BU$ is the limit of ζ_N . Then the Bott map satisfies

$$(3.1) \qquad \qquad \beta \simeq \tau^2 \zeta.$$

Since, regarding the homotopy class $\langle \zeta_N \rangle$ as an element of $\widetilde{K}^0(\Sigma^2 BU(N)) \subset \widetilde{K}^0(S^2 \times BU(N)),$

$$\begin{aligned} \langle \zeta_N \rangle &= (\eta - 1) \wedge (\xi_N - N) \\ &= \eta \,\hat{\otimes} \, \xi_N - 1 \,\hat{\otimes} \, \xi_N - \eta \,\hat{\otimes} \, N + 1 \,\hat{\otimes} \, N, \end{aligned}$$

337

we can proceed the calculation of the total Chern class of $\langle \zeta_N \rangle$ in $\mathrm{H}^*(\Sigma^2 BU(N); \mathbf{Z})$ as follows. We regard $\mathrm{H}^*(BT^N; \mathbf{Z}) \supset \mathrm{H}^*(BU(N); \mathbf{Z})$ where T^N is the maximal torus of U(N). Let $c_i \in \mathrm{H}^*(BU; \mathbf{Z})$ be the universal Chern class, c be the generator of $\mathrm{H}^2(S^2; \mathbf{Z})$ and $t_i (i = 1, \ldots, N, |t_i| = 2)$ be the generator of $\mathrm{H}^*(BT^N; \mathbf{Z})$. Then we have

$$\begin{aligned} \zeta_N^* \left(1 + \sum_{i=1}^\infty c_i \right) &= \frac{\prod_{i=1}^N (1+c+t_i)}{(1+Nc) \prod_{i=1}^N (1+t_i)} \\ &= (1-Nc) \prod_{i=1}^N \left(1 + \frac{c}{1+t_i} \right) \\ &= 1 + \sum_{i=1}^N \frac{c}{1+t_i} - Nc \\ &= 1 + c \sum_{i=1}^N \left(\sum_{j=0}^\infty (-t_i)^j \right) - Nc \\ &= 1 + c \left(\sum_{j=1}^\infty \left((-1)^j \sum_{i=1}^N t_i^j \right) \right) \end{aligned}$$

Let $s_j = \sum_{i=1}^N t_i^{j} \in \mathrm{H}^*(BU(N); \mathbf{Z})$ and we also denote the corresponding primitive element in $\mathrm{H}^{2j}(BU; \mathbf{Z})$ by s_j . The above equation implies $\zeta_N^*(c_i) = c \otimes (-1)^{i-1} s_{i-1}$ and hence we obtain

(3.2)
$$\zeta^*(c_i) = (-1)^{i-1} \Sigma^2 s_{i-1}.$$

Now we can see, from (3.1) and (3.2),

$$\beta^*(\sigma^2(c_{n+1})) = (-1)^n s_n$$

and if we set $s_j : \widetilde{K}^0(X) \cong [X, BU] \to \mathrm{H}^{2j}(X; \mathbb{Z})$ as $s_j(\theta) = \theta^*(s_j)$, immediately the next proposition follows.

Proposition 3.1. For $\theta \in \widetilde{K}^0(X)$,

$$\Theta(\theta) = (-1)^n s_n(\theta).$$

Now we can deduce some corollaries.

Corollary 3.1. For $n \ge 1$, $U_n(CP^n)$ vanishes.

Proof. Let t be the generator of $\mathrm{H}^2(CP^n; \mathbf{Z})$. Then, since the first Chern class of the canonical line bundle γ_n over CP^n is t and other Chern classes are zero,

$$s_n(\gamma_n) = t^n$$
.

Thus $\Theta(\gamma_n)$ is the generator of $\mathrm{H}^{2n}(\mathbb{C}P^n; \mathbf{Z}) \cong \mathbf{Z}$ and $N_n(\mathbb{C}P^n)$ vanishes.

Remark that, since $\mathrm{H}^{\mathrm{odd}}(CP^n; \mathbf{Z})$ vanishes, we can see $\widetilde{K}^1(CP^n) = 0$ using the Atiyah-Hirzeburch spectral sequence. (See [2].) Thus, from Theorem 1.1, $U_n(CP^n) = 0$.

Consider CW-complexes X_1 and X_2 whose dimensions are $2n_1$ and $2n_2$ respectively. We'd like to compute $N_{n_1+n_2}(X_1 \wedge X_2)$ from $N_{n_1}(X_1)$ and $N_{n_2}(X_2)$ under some assumptions.

First, let $\mu_N : BU(N) \wedge BU(N) \rightarrow BU$ be the classifying map of $(\xi_N - N) \wedge (\xi_N - N)$ and $\mu : BU \wedge BU \rightarrow BU$ be the limit of μ_N .

Lemma 3.1. In the above situation,

$$\mu^*(s_j) = \sum_{k=1}^{j-1} \binom{j}{k} s_k \mathbin{\hat{\otimes}} s_{j-k}.$$

Proof. Since H^{*} (BU; **Z**) is free and the Chern character ch = $\sum_{i=0}^{\infty} (s_i/i!)$ satisfies

$$\operatorname{ch}(\xi_N \otimes \xi_N) = \operatorname{ch}(\xi_N) \otimes \operatorname{ch}(\xi_N),$$

we can see that

$$\frac{\mu_N^*(s_j)}{j!} = \sum_{k=1}^{j-1} \frac{s_k}{k!} \,\hat{\otimes} \, \frac{s_{j-k}}{(j-k)!}$$

in $\mathrm{H}^{2j}\left(BU(N) \wedge BU(N); \mathbf{Q}\right)$ and

$$\mu_N^*(s_j) = \sum_{k=1}^{j-1} \binom{j}{k} s_k \hat{\otimes} s_{j-k}$$

in $\mathrm{H}^{2j}(BU(N) \wedge BU(N); \mathbf{Z})$. This implies the statement of the theorem. \Box

This leads us to the next lemma.

Lemma 3.2. Let X_1 , X_2 be CW-complexes. For $\theta_1 \in \widetilde{K}^0(X_1)$ and $\theta_2 \in \widetilde{K}^0(X_2)$, $\theta_1 \wedge \theta_2 \in \widetilde{K}^0(X_1 \wedge X_2)$ satisfies

$$s_j(\theta_1 \wedge \theta_2) = \sum_{k=1}^{j-1} \binom{j}{k} s_k(\theta_1) \hat{\otimes} s_{j-k}(\theta_2).$$

Proof. We regard θ_1 and θ_2 as their classifying maps respectively. Then $\mu \circ (\theta_1 \land \theta_2)$ is the classifying map of $\theta_1 \land \theta_2 \in \widetilde{K}^0(X_1 \land X_2)$:

$$X_1 \wedge X_2 \stackrel{\theta_1 \wedge \theta_2}{\longrightarrow} BU \wedge BU \stackrel{\mu}{\longrightarrow} BU.$$

Thus

$$s_j(\theta_1 \wedge \theta_2) = (\theta_1 \wedge \theta_2)^* \mu^* s_j$$

= $(\theta_1 \wedge \theta_2)^* \sum_{k=1}^{j-1} {j \choose k} s_k \hat{\otimes} s_{j-k}$
= $\sum_{k=1}^{j-1} {j \choose k} s_k(\theta_1) \hat{\otimes} s_{j-k}(\theta_2).$

Now we give the proof of Theorem 1.3.

Proof of Theorem 1.3. Since $\mathrm{H}^{2n_1+2n_2}(X_1 \wedge X_2; \mathbf{Z}) = \mathbf{Z}$, what we have to do is to investigate Im Θ in $\mathrm{H}^{2n_1+2n_2}(X_1 \wedge X_2; \mathbf{Z})$. Let u_1 and u_2 be the generators of $\mathrm{H}^{2n_1}(X_1; \mathbf{Z})$ and $\mathrm{H}^{2n_2}(X_2; \mathbf{Z})$ respectively. First, we see Im $\Theta \supset \langle \binom{n_1+n_2}{n_1} l_1 l_2 u_1 \otimes u_2 \rangle$. Since $N_{n_i}(X_i) \cong \mathbf{Z}/l_i \mathbf{Z}$, there

First, we see Im $\Theta \supset \langle \binom{n_1+n_2}{n_1} l_1 l_2 u_1 \otimes u_2 \rangle$. Since $N_{n_i}(X_i) \cong \mathbf{Z}/l_i \mathbf{Z}$, there exists $\theta_i \in \widetilde{K}^0(X_i)$ which satisfies $s_{n_i}(\theta_i) = l_i u_i$. (i = 1, 2.) Thus $\theta_1 \otimes \theta_2 \in \widetilde{K}^0(X_1 \wedge X_2)$ satisfies

$$egin{aligned} \Theta(heta_1 \, \hat{\otimes} \, heta_2) &= \pm s_{n_1+n_2}(heta_1 \, \hat{\otimes} \, heta_2) \ &= \pm inom{n_1+n_2}{n_1} l_1 l_2 u_1 \otimes u_2 \end{aligned}$$

On the other hand, $\operatorname{Im}\Theta \subset \langle \binom{n_1+n_2}{n_1} l_1 l_2 u_1 \otimes u_2 \rangle$ is also true. Since $\widetilde{K}^0(X_1)$ or $\widetilde{K}^0(X_2)$ is free, any $\theta \in \widetilde{K}^0(X_1 \wedge X_2)$ has the form of $\sum \theta_a \otimes \theta_b$ where $\theta_a \in \widetilde{K}^0(X_1)$ and $\theta_b \in \widetilde{K}^0(X_2)$. From the assumption, it holds that $s_{n_1}(\theta_1) \in \langle l_1 u_1 \rangle$ and $s_{n_2}(\theta_2) \in \langle l_2 u_2 \rangle$. Therefore $s_{n_1+n_2}(\theta_a \otimes \theta_b) \in \langle \binom{n_1+n_2}{n_1} l_1 l_2 u_1 \otimes u_2 \rangle$ and, since $s_{n_1+n_2}$ is primitive, $s_{n_1+n_2}(\theta) \in \langle \binom{n_1+n_2}{n_1} l_1 l_2 u_1 \otimes u_2 \rangle$.

Hence $\operatorname{Im}\Theta = \langle \binom{n_1+n_2}{n_1} l_1 l_2 u_1 \otimes u_2 \rangle$ and the statement follows.

4. Applications

From Theorem 1.3, some corollaries follow directly.

Corollary 4.1. Let X be a finite CW-complex with its dimension 2nand $\mathrm{H}^{2n}(X; \mathbf{Z}) \cong \mathbf{Z}$. If $N_n(X) \cong \mathbf{Z}/l\mathbf{Z}$,

$$N_{n+1}(\Sigma^2 X) \cong \mathbf{Z}/(n+1)l\mathbf{Z}.$$

Proof. Set $X_1 = S^2$ and $X_2 = X$ in Theorem 1.3 and the proof is straightforward.

Corollary 4.2. The next equality holds:

$$U_{n_1+n_2}(CP^{n_1} \wedge CP^{n_2}) \cong \mathbf{Z}/\binom{n_1+n_2}{n_1}\mathbf{Z}.$$

340

Proof. As seen in Corollary 3.1, $N_n(CP^n)$ vanishes. Thus, applying Theorem 1.3, $N_{n_1+n_2}(CP^{n_1} \wedge CP^{n_2}) \cong \mathbf{Z}/\binom{n_1+n_2}{n_1}\mathbf{Z}$. And this coincides with $U_{n_1+n_2}(CP^{n_1} \wedge CP^{n_2})$, since $\widetilde{K}^1(CP^{n_1} \wedge CP^{n_2})$ vanishes.

Let $\epsilon_{n-1} : \Sigma CP^{n-1} \to U(n)$ be the usual embedding described in [6, pp. 22–23]. This embedding satisfies in cohomology

$$\epsilon_{n-1}^*(x_{2k+1}) = \Sigma t^k$$

where t is the generator of $\mathrm{H}^2(CP^{n-1}; \mathbf{Z})$ and $1 \le k \le n-1$. Also we set the commutator map $\gamma : U(n) \land U(m) \to U(n+m-1)$ and $\gamma' = \gamma \circ (\epsilon_{n-1} \land \epsilon_{m-1})$.

Corollary 4.3. We can see

$$U_{n+m-1}(\Sigma CP^{n-1} \wedge \Sigma CP^{m-1}) \cong \mathbf{Z} / \frac{(n+m-1)!}{(n-1)!(m-1)!} \mathbf{Z}$$

and its generator is the class $\langle \gamma' \rangle$.

Proof. We set $X = \Sigma CP^{n-1} \wedge \Sigma CP^{m-1}$. From Corollaries 4.1 and 4.2, the first half of this corollary can be easily obtained and what we have to do is to prove that $\langle \gamma' \rangle$ is a generator of $U_{n+m-1}(X)$. From Theorem 1.1, to prove this, it is sufficient to show that, in the exact sequence below, $\langle \gamma' \rangle \in U_{n+m-1}(X)$ comes from $\Sigma(t^{n-1}) \otimes \Sigma(t^{m-1}) \in \mathrm{H}^{2n+2m-2}(X; \mathbf{Z})$.

$$\widetilde{K}^0(X) \to \mathrm{H}^{2n+2m-2}(X; \mathbf{Z}) \to U_{n+m-1}(X) \to \widetilde{K}^1(X).$$

In the similar manner to that in [4], we consider the next diagram:

$$\Omega S^{2(n+m)-1} \xrightarrow{\Omega j} \Omega W_{n+m-1}$$

$$\downarrow^{\lambda_0} \qquad \downarrow^{\delta} \qquad \downarrow^{\delta} \qquad \downarrow^{\delta}$$

$$U(n) \wedge U(m) \xrightarrow{\gamma} U(n+m-1) \xrightarrow{\cong} U(n+m-1)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$U(n+m) \xrightarrow{i} U(\infty)$$

$$\downarrow \qquad \qquad \downarrow$$

$$S^{2(n+m)-1} \xrightarrow{j} W_{n+m-1}$$

where two columns are fibration sequences and i and j are usual embeddings. In [3], it is showed that there exists a map λ_0 which makes the above diagram homotopy commutative and also satisfies

$$\lambda_0^*(v) = x_{2n-1} \otimes x_{2m-1},$$

where v is the generator of $\mathrm{H}^{2n+2m-2}(\Omega S^{2(n+m)-1}; \mathbf{Z})$. (Actually λ_0 is the adjoint of the join of the projections $U(n) \to U(n)/U(n-1)$ and $U(m) \to$

U(m)/U(m-1).) If we set $\lambda = \Omega j \circ \lambda_0$, since $\Omega j^*(a_{2n}) = v$, we have that $\lambda^*(a_{2n}) = x_{2n-1} \otimes x_{2m-1}$.

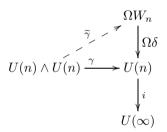
Hence $(\lambda \circ (\epsilon_{n-1} \wedge \epsilon_{m-1}))^*(a_{2n}) = \Sigma^2(t^{n-1} \otimes t^{m-1})$, i.e., by the isomorphism $[X, \Omega W_{n+m-1}] \xrightarrow{a_{2n}} H^{2n+2m-2}(X; \mathbf{Z}), \langle \lambda \circ (\epsilon_{n-1} \wedge \epsilon_{m-1}) \rangle$ corresponds to the generator $\Sigma^2(t^{n-1} \otimes t^{m-1})$.

Moreover, since $\delta \circ \lambda = \gamma$, $\delta^*(a_{2n*})^{-1}(\Sigma^2(t^{n-1} \otimes t^{m-1})) = \langle \delta^*(\lambda \circ (\epsilon_{n-1} \wedge \epsilon_{m-1})) \rangle = \langle \gamma \circ (\epsilon_{n-1} \wedge \epsilon_{m-1}) \rangle = \langle \gamma' \rangle$ and the proof is finished.

5. Commutator in $U_n(X)$

In the rest of this paper, we treat the case dim X = 2n and $\tilde{K}^1(X) \neq 0$. In such cases, $U_n(X)$ may not be commutative. We prove Theorem 1.4 which describes the commutator in $U_n(X)$ in such cases.

In the rest, let γ be the commutator map $U(n) \wedge U(n) \rightarrow U(n)$ and consider the next diagram.



Since $i \circ \gamma$ is null-homotopic, there exists a lift $\tilde{\gamma} : U(n) \wedge U(n) \to \Omega W_n$, such that $\Omega \delta \circ \tilde{\gamma} \simeq \gamma$.

To find an adequate lift $\tilde{\gamma}$, we prepare some maps and propositions. We set $j: \Sigma U(n) \vee \Sigma U(n) \to BU(n), k: \Sigma U(n) \times \Sigma U(n) \to BU$ as the following compositions respectively:

$$\Sigma U(n) \vee \Sigma U(n) \xrightarrow{\tau^{-1} 1 \vee \tau^{-1} 1} BU(n) \vee BU(n) \xrightarrow{\nabla} BU(n),$$

$$\Sigma U(n) \times \Sigma U(n) \xrightarrow{\tau^{-1} 1 \times \tau^{-1} 1} BU(n) \times BU(n) \xrightarrow{\overline{\mu}} BU,$$

where ∇ is the folding map and $\overline{\mu}$ is the classifying map of the cross product of the universal vector bundles over BU(n).

Also we set $f : \Sigma(U(n) \wedge U(n)) \to \Sigma U(n) \vee \Sigma U(n)$ as follows: Setting (0, *) be the base point of $\Sigma U(n)$, we regard $\Sigma U(n) \vee \Sigma U(n) \subset \Sigma U(n) \times \Sigma U(n)$. For $x, y \in U(n)$ and $t \in [0, 1]$, we set $f_0 : U(n) * U(n) \to \Sigma U(n) \vee \Sigma U(n)$ as

$$f_0(t, x, y) = \begin{cases} ((1 - 2t, x), *) & \left(0 \le t \le \frac{1}{2}\right) \\ (*, (2t - 1, y)) & \left(\frac{1}{2} \le t \le 1\right). \end{cases}$$

Then set $f: \Sigma(U(n) \wedge U(n)) \simeq U(n) * U(n) \xrightarrow{f_0} \Sigma U(n) \vee \Sigma U(n).$

Proposition 5.1. A map $\tilde{\gamma} : U(n) \wedge U(n) \to \Omega W_n$ satisfies $\Omega \delta \circ \tilde{\gamma} \simeq \gamma$, if and only if $\tau^{-1} \tilde{\gamma}$ makes the following diagram homotopy commutative:

Proof. We recall that f induces the generalized Whitehead product

$$[\ ,\]:[\Sigma U(n),BU(n)]\times [\Sigma U(n),BU(n)] \rightarrow [\Sigma (U(n)\wedge U(n)),BU(n)]$$

by associating, for $\eta, \eta' \in [\Sigma U(n), BU(n)]$ represented by g and h respectively, the class $[\eta, \eta']$ represented by $\nabla \circ (g \lor h) \circ f$. This implies that $j \circ f$ represents $[\tau^{-1}1, \tau^{-1}1]$, while it is known that $\tau[\tau^{-1}\eta, \tau^{-1}\eta'] = \langle \eta, \eta' \rangle$ where $\langle \ , \ \rangle$ is the generalized Samelson product. (See [1].) Thus, $\tau(j \circ f)$ lies in $\tau[\tau^{-1}1, \tau^{-1}1] = \langle 1, 1 \rangle$ and

$$\tau(j \circ f) \simeq \gamma.$$

Hence, the commutativity of the above diagram is equivalent to

$$\tau(\delta \circ \tau^{-1}\widetilde{\gamma}) \simeq \gamma,$$

while $\tau(\delta \circ \tau^{-1}\widetilde{\gamma}) = \Omega \delta \circ \widetilde{\gamma}$.

Let EU be a space that $U(\infty)$ acts freely. We denote the quotient map $EU \rightarrow EU/U(n) = BU(n)$ by q' and consider the next commutative diagram, in which each row is a fibration.

(5.1)
$$\begin{array}{cccc} W_n & \xrightarrow{\delta} & BU(n) & \xrightarrow{Bi} & BU \\ p \uparrow & p' \uparrow & & \parallel \\ & U(\infty) & \longrightarrow & EU & \longrightarrow & BU \end{array}$$

Lemma 5.1. In the Leray-Serre spectral sequence of the fibration $W_n \xrightarrow{\delta} BU(n) \xrightarrow{Bi} BU$, the cohomology element $x \in H^{2n+1}(W_n; \mathbb{Z})$ transgresses to the (n + 1)-th Chern class $c_{n+1} \in H^{2n+2}(BU; \mathbb{Z})$, i.e., $\partial(x) = Bi^*(c_{n+1})$ in the diagram

$$\mathrm{H}^{2n+1}\left(W_{n};\mathbf{Z}\right) \overset{\partial}{\longrightarrow} \mathrm{H}^{2n+2}\left(BU(n),W_{n};\mathbf{Z}\right) \overset{Bi^{*}}{\xleftarrow{}} \mathrm{H}^{2n+2}\left(BU;\mathbf{Z}\right).$$

Proof. In the Leray-Serre spectral sequence of the fibration $W_n \to BU(n) \to BU$, the transgression image in $\mathrm{H}^{2n+2}(BU; \mathbf{Z})$ is equals to $\mathrm{Ker}(Bi^* : \mathrm{H}^{2n+2}(BU; \mathbf{Z}) \to \mathrm{H}^{2n+2}(BU(n); \mathbf{Z}))$ which is generated by c_{n+1} .

On the other hand, in the Leray-Serre spectral sequence of the fibration $U(\infty) \to EU \to BU$, $x_{2n+1} \in H^*(U(\infty); \mathbb{Z})$ transgresses to $c_{n+1} + (\text{decomposable elements}) \in H^{2n+2}(BU; \mathbb{Z}).$

Therefore, since $p^*(x) = x_{2n+1}$ and (5.1) is commutative, it follows that x transgresses to c_{n+1} .

Proposition 5.2. We can take $\tilde{\gamma}$ so that

$$\widetilde{\gamma}^*(a_{2n}) = \sum_{k+l+1=n} x_{2k+1} \otimes x_{2l+1}.$$

Proof. In this proof we set $A = \Sigma(U(n) \wedge U(n))$. Let I_f , C_f be the mapping cylinder and the mapping cone of f respectively and q be the quotient map $I_f \to I_f/A = C_f$. Then we have a cofibration

$$A \to I_f \to C_f$$

where it is known that $C_f \simeq \Sigma U(n) \times \Sigma U(n)$. (See Theorem 4.2 of [1] for detail.) Also, the homotopy commutativity of the next diagram, in which ϕ is the map induced by the natural projection $[0,1] \times A \to A$, can be easily checked.

$$(5.2) \qquad \begin{array}{c} A & & I_{f} & \stackrel{q}{\longrightarrow} C_{f} \\ & & \downarrow^{\varphi} \\ & & \downarrow^{\varphi} \\ \Sigma(U(n) \wedge U(n)) & \stackrel{f}{\longrightarrow} \Sigma U(n) \vee \Sigma U(n) & \Sigma U(n) \times \Sigma U(n) \\ & & \downarrow^{j} \\ & & \downarrow^{k} \\ W_{n} & \stackrel{\delta}{\longrightarrow} BU(n) & \stackrel{Bi}{\longrightarrow} BU \end{array}$$

We regard that $BU(n) \xrightarrow{Bi} BU$ is a fibration and δ is the inclusion of the fibre $W_n = Bi^{-1}(*)$ where * is the base point of BU. We set $A/A \in I_f/A = C_f$ as the base point of C_f , deform the composition $C_f \cong \Sigma U(n) \times \Sigma U(n) \xrightarrow{k} BU$ so as to be base point preserving and denote the obtained map by k'. Then, by the homotopy lifting property, we can deform $j \circ \phi$ into j' so that $k' \circ q = Bi \circ j'$. Now we have a commutative (not only "homotopy commutative") diagram:

The commutativity of the above diagram implies $j'|_A : A \to W_n$. Thus, if we let $j_A = j'|_A$, $\delta \circ j_A \simeq j \circ f$ and, by Proposition 5.1, it follows that τj_A satisfies the claim $\Omega \delta \circ \tau j_A \simeq \gamma$.

On the other hand, since j' is a map between pairs $(I_f, A) \to (BU(n), W_n)$, we obtain the next commutative diagram.

$$\begin{array}{cccc} \mathrm{H}^{2n+1}\left(A,*;\mathbf{Z}\right) & \stackrel{\partial}{\longrightarrow} & \mathrm{H}^{2n+2}\left(I_{f},A;\mathbf{Z}\right) & \stackrel{q^{*}}{\longleftarrow} & \mathrm{H}^{2n+2}\left(C_{f},*;\mathbf{Z}\right) \\ (5.4) & \uparrow_{jA^{*}} & \uparrow_{j'^{*}} & \uparrow_{k'^{*}} \\ \mathrm{H}^{2n+1}\left(W_{n},*;\mathbf{Z}\right) & \stackrel{\partial}{\longrightarrow} \mathrm{H}^{2n+2}\left(BU(n),W_{n};\mathbf{Z}\right) & \stackrel{Bi^{*}}{\longleftarrow} & \mathrm{H}^{2n+2}\left(BU,*;\mathbf{Z}\right) \end{array}$$

Here we observe the exact sequence of the pair (I_f, A)

$$\mathrm{H}^{2n+1}\left(I_{f}/A;\mathbf{Z}\right) \xrightarrow{q^{*}} \mathrm{H}^{2n+1}\left(I_{f},*;\mathbf{Z}\right) \xrightarrow{f^{*}} \mathrm{H}^{2n+1}\left(A,*;\mathbf{Z}\right) \xrightarrow{\partial} \mathrm{H}^{2n+2}\left(I_{f},A;\mathbf{Z}\right).$$

Since, by the diagram (5.2), q^* is equal to the cohomology map induced by $\Sigma U(n) \vee \Sigma U(n) \hookrightarrow \Sigma U(n) \times \Sigma U(n)$, q^* is epic and f^* is 0-map. This implies $\partial : \mathrm{H}^{2n+1}(A, *; \mathbf{Z}) \to \mathrm{H}^{2n+2}(I_f, A; \mathbf{Z})$ is monic.

Now, using Lemma 5.1, we chase the diagram (5.4) as

$$\partial j_A^*(x) = {j'}^* \partial(x) = {j'}^* Bi^*(c_{n+1}) = q^* {k'}^*(c_{n+1})$$

By the diagram (5.2) and the definition of k, it follows that, under the identification of $I_f/A = C_f \simeq \Sigma U(n) \times \Sigma U(n)$,

(5.5)
$$\partial j_A^*(x) = q^* k^*(c_{n+1}) = \sum_{k+l=n+1} (\Sigma x_{2k-1}) \otimes (\Sigma x_{2l-1}).$$

Moreover we know that the next diagram commutes:

$$\begin{array}{cccc} \mathrm{H}^{2n+2}\left(\Sigma A;\mathbf{Z}\right) & \stackrel{\pi^{*}}{\longrightarrow} & \mathrm{H}^{2n+2}\left(C_{f};\mathbf{Z}\right) \\ & & & \\ & & \\ & & \\ \mathrm{H}^{2n+1}\left(A;\mathbf{Z}\right) & \stackrel{\partial}{\longrightarrow} & \mathrm{H}^{2n+2}\left(I_{f},A;\mathbf{Z}\right) \end{array}$$

The map π is the quotient map $C_f \to C_f/(\Sigma U(n) \vee \Sigma U(n)) \cong \Sigma A$, i.e., this is homotopic to the natural projection

$$\pi: C_f \cong \Sigma U(n) \times \Sigma U(n) \to \Sigma U(n) \wedge \Sigma U(n).$$

Therefore,

(5.6)
$$\partial \left(\Sigma \left(\sum_{k+l=n+1} x_{2k-1} \otimes x_{2l-1} \right) \right) = \sum_{k+l=n+1} (\Sigma x_{2k-1}) \otimes (\Sigma x_{2l-1}).$$

Finally, since ∂ : $\mathrm{H}^{2n+1}(A, *; \mathbf{Z}) \to \mathrm{H}^{2n+2}(I_f, A; \mathbf{Z})$ is monic, (5.5) and (5.6) imply that

$$j_A^*(x) = \Sigma\left(\sum_{k+l=n+1} x_{2k-1} \otimes x_{2l-1}\right)$$

and, if we set $\tilde{\gamma} = \tau j_A$, we have

$$\widetilde{\gamma}^*(a_{2n}) = \sum_{k+l=n+1} x_{2k-1} \otimes x_{2l-1}$$

as desired.

Now, we shall show the proof of Theorem 1.4.

Proof of Theorem 1.4. Let X be a CW-complex with its dimension 2n, and take any $\tilde{\alpha}$ and $\tilde{\beta} \in U_n(X)$. Assume that each class is represented by aand b respectively. Since $\tilde{K}^1(X)$ is commutative, their commutator $[\tilde{\alpha}, \tilde{\beta}]$ comes from $N_n(X)$. Recall that $[X, \Omega W_n]$ is isomorphic to $H^{2n}(X; \mathbb{Z})$ by the correspondence which associates, for $\phi \in [X, \Omega W_n]$, the cohomology class $\phi^*(a_{2n})$. Hence, what we have to do is to compute $\lambda^*(a_{2n})$ where $\lambda : X \to \Omega W_n$ satisfies $\Omega \delta \circ \lambda \in [\tilde{\alpha}, \tilde{\beta}]$.

On the other hand, by the definition, we know $[\tilde{\alpha}, \tilde{\beta}]$ is the class represented by the map $\gamma \circ (a \times b) \circ \Delta$, where Δ is the diagonal map of X. Thus we can set $\lambda = \tilde{\gamma} \circ (a \times b) \circ \Delta$ as shown in the following diagram.

$$X \xrightarrow{\Delta} X \times X \xrightarrow{a \times b} U(n) \times U(n) \xrightarrow{\gamma} U(n)$$

$$\downarrow^{i}$$

$$U(\infty)$$

Therefore we have that

$$\lambda^*(a_{2n}) = \Delta^*(\widetilde{\alpha} \times \beta)^* \widetilde{\gamma}^*(a_{2n})$$

= $\Delta^*(\widetilde{\alpha} \times \widetilde{\beta})^* \left(\sum_{k+l+1=n} x_{2k+1} \otimes x_{2l+1} \right)$
= $\sum_{k+l+1=n} \widetilde{\alpha}^*(x_{2k+1}) \cup \widetilde{\beta}^*(x_{2l+1}).$

Here, if we let $u = \sum_{k+l+1=n} \widetilde{\alpha}^*(x_{2k+1}) \cup \widetilde{\beta}^*(x_{2l+1})$, by the correspondence $[X, \Omega W_n] \cong \mathrm{H}^{2n}(X; \mathbf{Z})$, we have

$$[\widetilde{\alpha},\beta] = \iota \langle u \rangle.$$

Now we give the proof of Corollary 1.1.

Proof of Corollary 1.1. Take $\tilde{\alpha} \in U_n(X)$ and assume that the order of its image in $\tilde{K}^1(X)$ is finite. Then, for $x_{2k+1} \in H^*(U(n); \mathbb{Z})$ is primitive,

346

 $\widetilde{\alpha}^*(x_{2k+1})$ has, also, a finite order. This implies that, for any $\widetilde{\beta} \in U_n(X)$, $\sum_{k+l+1=n} \widetilde{\alpha}^*(x_{2k+1}) \cup \widetilde{\beta}^*(x_{2l+1})$ has a finite order as well, while $\mathrm{H}^{2n}(X; \mathbb{Z})$ is free. Hence $\sum_{k+l+1=n} \widetilde{\alpha}^*(x_{2k+1}) \cup \widetilde{\beta}^*(x_{2l+1}) = 0$ and, as seen in the proof of Theorem 1.4, $[\widetilde{\alpha}, \widetilde{\beta}]$ vanishes.

6. Examples

In this section, using Theorems 1.1 and 1.4, we give Corollary 1.2 as an example.

Proof of Corollary 1.2. Let 0 < n < m, $S^{2n+1} \xrightarrow{i} X \xrightarrow{p} S^{2m+1}$ be a fibration and set N = n + m + 1, i.e., dim X = 2N. We set the generators of $\mathrm{H}^{2n+1}\left(S^{2n+1};\mathbf{Z}\right)$ and $\mathrm{H}^{2m+1}\left(S^{2m+1};\mathbf{Z}\right)$ as u_{2n+1} and u_{2m+1} respectively. Also we loosely denote $p^*(u_{2m+1}) \in \mathrm{H}^*(X;\mathbf{Z})$ by u_{2m+1} and the inverse image $(i^*)^{-1}(u_{2n+1})$ by u_{2n+1} , i.e.,

$$\mathrm{H}^*\left(X;\mathbf{Z}\right) = \wedge(u_{2n+1}, u_{2m+1}).$$

Since $\mathrm{H}^*(X; \mathbf{Z})$ is free, Atiyah-Hirzeburch spectral sequence of X is trivial. Then, if we set the generators of $\widetilde{K}^1(S^{2n+1})$ and $\widetilde{K}^1(S^{2m+1})$ as ϵ_n and ϵ_m respectively, $\widetilde{K}^1(X) \cong \mathbf{Z} \oplus \mathbf{Z}$ has two generators α and β which satisfy

(6.1) $i^* \alpha = \epsilon_n, \qquad \beta = p^* \epsilon_m.$

From Theorem 1.1 we have a central extension

$$0 \to N_N(X) \to U_N(X) \to \widetilde{K}^1(X) \to 0.$$

Thus we can take $\widetilde{\alpha}, \widetilde{\beta} \in U_N(X)$ so that they come to α and β in $\widetilde{K}^1(X)$ respectively.

Lemma 6.1. $N_n(X) \cong \pi_{2N}(U(N)) \cong \mathbb{Z}/N!\mathbb{Z}.$

Proof. We set $X' = X^{(2N-1)}$ the (2N - 1)-skeleton of X. From the assumption of X, we have a cell decomposition,

$$X = S^{2n+1} \cup e_{2m+1} \cup e_{2N}, \ X' = S^{2n+1} \cup e_{2m+1}.$$

Thus $S^{2n+2} \to \Sigma X' \to S^{2m+2}$ is cofibration and $0 = U_N(S^{2m+2}) \to U_N(\Sigma X') \to U_N(S^{2n+2}) = 0$ is exact. Hence $U_N(\Sigma X') = 0$.

Next, from (2.1), $N_N(X) = \text{Im}(U_N(X/X') \to U_N(X))$ and also

$$0 = U_N(\Sigma X') \to U_N(X/X') \to U_N(X) \to U_N(X')$$

is exact. Therefore $N_N(X) \cong U_N(X/X') = \pi_{2N}(U(N))$ which is known to be $\mathbb{Z}/N!\mathbb{Z}$.

Now, we set $\epsilon = u_{2n+1}u_{2m+1} \in \mathrm{H}^{2N}(X; \mathbf{Z}), \ \langle \epsilon \rangle \in N_N(X)$ is the class determined by ϵ , and $\tilde{\epsilon} = \iota \langle \epsilon \rangle$. Then, we have prepared three generators $\tilde{\alpha}, \tilde{\beta}$ and $\tilde{\epsilon}$ of $U_N(X)$. All we have to do is to prove $[\tilde{\alpha}, \tilde{\beta}] = n!m!\tilde{\epsilon}$.

Since ϵ_n is the generator of $\widetilde{K}^1(S^{2n+1}) \cong [S^{2n+1}, U(\infty)]$, it is well known that

$$\epsilon_n^{*}(\sigma c_k) = \begin{cases} n! u_{2n+1} & (k=n+1) \\ 0 & (\text{otherwise}). \end{cases}$$

Hence, from (6.1) and the definition of $\tilde{\alpha}$ and $\tilde{\beta}$,

$$\widetilde{\alpha}^*(x_{2k+1}) = \begin{cases} n! u_{2n+1} & (k=n) \\ 0 & (\text{otherwise}), \end{cases}$$

$$\widetilde{\beta}^*(x_{2k+1}) = \begin{cases} m! u_{2m+1} & (k=m) \\ 0 & (\text{otherwise}) \end{cases}$$

Therefore $\sum_{k+l+1=n} (\widetilde{\alpha}^*(x_{2k+1}) \cup \widetilde{\beta}^*(x_{2l+1})) = n!m!\epsilon$ and it follows from Theorem 1.4 that $[\widetilde{\alpha}, \widetilde{\beta}] = n!m!\widetilde{\epsilon}$.

DEPARTMENT OF NATURAL SCIENCE HYOGO UNIVERSITY OF TEACHER EDUCATION

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE KYOTO UNIVERSITY

References

- M. Arkowitz, The generalized Whitehead Product, Pacific J. Math. 12 (1962), 7–23.
- [2] M. F. Atiyah and F. Hirzeburch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math. 3 (1961), 7–38.
- [3] R. Bott, A note on the Samelson product in the classical groups, Comment. Math. Helv. 34 (1960), 249–256.
- [4] H. Hamanaka, Homotopy-commutativity in rotation groups, J. Math. Kyoto Univ. 36-3 (1996), 519–537.
- [5] S. Y. Husseini, A note on the intrinsic join of Stiefel manifolds, Comment. Math. Helv. 38 (1963), 26–30.
- [6] I. M. James, *The topology of Stiefel manifolds*, London Math. Soc. Lecture Notes 24, Cambridge University Press, 1976.