On $[X, U(n)]$ when $\operatorname{dim} X$ is $2 n$

By

Hiroaki Hamanaka* and Akira Kono

1. Introduction

Take a topological group G. Then, for a CW-complex X, the homotopy set $[X, G]$ forms a group. This association is a functor from the category of CW-complexes and continuous maps up to homotopy to the category of groups and homomorphisms.

In this paper, we consider the case $G=U(n)$ and denote $[X, U(n)]$ by $U_{n}(X)$. In this case, remark that, even if X is base pointed, $[X, U(n)]$ and $[X, U(n)]_{0}$ are isomorphic, since $1 \rightarrow \operatorname{Map}_{0}(X, U(n)) \rightarrow \operatorname{Map}(X, U(n)) \rightarrow$ $U(n) \rightarrow 1$ is a splitting extension of group and $U(n)$ is connected.

Also, if n is sufficiently large, $U_{n}(X)$ merely equals to $\widetilde{K}^{1}(X)$. In fact, this is true, when X is a CW-complex whose dimension is lower than $2 n$, since $(U(\infty), U(n))$ is $2 n$-connected. Thus we may say that $U_{n}(X)$ is "the unstable \widetilde{K}^{1}-theory" and $U_{n}(X)$ may provide additional informations to the ordinary K-theory.

Of course, an uncomputable object is useless, and we should offer some methods, tools to compute them and show examples. In the following, we shall investigate the case of $[X, U(n)]$ when $\operatorname{dim} X$ is $2 n$.

Our results are the followings:
Theorem 1.1. If $\operatorname{dim} X \leq 2 n$ then the next exact sequence holds:

$$
\widetilde{K}^{0}(X) \xrightarrow{\Theta} \mathrm{H}^{2 n}(X ; \mathbf{Z}) \rightarrow U_{n}(X) \rightarrow \widetilde{K}^{1}(X) \rightarrow 0
$$

(The explicit form of Θ is given in Proposition 3.1.) Denoting Coker Θ by $N_{n}(X)$, the following is a central extension:

$$
\begin{equation*}
0 \rightarrow N_{n}(X) \xrightarrow{\iota} U_{n}(X) \rightarrow \widetilde{K}^{1}(X) \rightarrow 0 \tag{1.1}
\end{equation*}
$$

In addition, the above exact sequence has the naturality; if X, Y are $C W$ complexes with their dimensions no more than $2 n$ and a continuous map f :

Received July 5, 2002
*Partially supported by Grant-in-Aid for Scientific Research, Ministry of Education, Japanese Government, No. 13740040.
$X \rightarrow Y$ is given, the following commutes.

Theorem 1.2. Let X be a finite $C W$-complex and $\operatorname{dim} X \leq 2 n$. Then $N_{n}(X)$ is a finite Abelian group and the order of any element in $N_{n}(X)$ divides n !.

Also we give the following theorem concerning $N_{n}(\quad)$.
Theorem 1.3. Let X_{1}, X_{2} be finite $C W$-complexes whose dimensions are $2 n_{1}, 2 n_{2}$ respectively. Assume $\widetilde{K}^{0}\left(X_{1}\right)$ or $\widetilde{K}^{0}\left(X_{1}\right)$ is free and $\mathrm{H}^{2 n_{1}}\left(X_{1} ; \mathbf{Z}\right)$ $=\mathrm{H}^{2 n_{2}}\left(X_{2} ; \mathbf{Z}\right)=\mathbf{Z}$. If $N_{n_{1}}\left(X_{1}\right) \cong \mathbf{Z} / l_{1} \mathbf{Z}$ and $N_{n_{2}}\left(X_{2}\right) \cong \mathbf{Z} / l_{2} \mathbf{Z}$, then $N_{n_{1}+n_{2}}\left(X_{1} \wedge X_{2}\right) \cong \mathbf{Z} /\binom{n_{1}+n_{2}}{n_{1}} l_{1} l_{2} \mathbf{Z}$.

When $\widetilde{K}^{1}(X)=0, U_{n}(X)$ and $N_{n}(X)$ coincide. As an example of such a case, we compute $U_{n+m-1}\left(\Sigma C P^{n-1} \wedge \Sigma C P^{m-1}\right)$. (See Corollary 4.3.) Since we can regard $\Sigma C P^{n-1}$ as a subspace of $U(n)$, there is a map $\gamma^{\prime}: \Sigma C P^{n-1} \wedge$ $\Sigma C P^{m-1} \rightarrow U(n+m-1)$ which is a restriction of the commutator map from $U(n) \wedge U(m)$ to $U(n+m-1)$. Our calculation shows that $U_{n+m-1}\left(\Sigma C P^{n-1} \wedge\right.$ $\Sigma C P^{m-1}$) is a cyclic group and γ^{\prime} is its generator.
R. Bott has showed $U(n)$ and $U(m)$ does not homotopy-commute in $U(n+m-1)$ by means of the Samelson product. The order of γ^{\prime} above mentioned indicates "how much far from homotopy-commutativity" $\Sigma C P^{n-1}$ and $\Sigma C P^{m-1}$ are.

Next, we shall look into the case $\widetilde{K}^{1}(X) \neq 0$. In this case, even if $\operatorname{dim} X=$ $2 n, U_{n}(X)$ may be non-abelian and, in fact, we show such cases. Our results are the followings.

We set $\mathrm{H}^{*}(U(n) ; \mathbf{Z})=\bigwedge\left(x_{1}, x_{3}, x_{5}, \ldots, x_{2 n-1}\right)$ where $x_{2 k-1}=\sigma c_{k}, \sigma$ is the cohomology suspension and c_{k} is the k-th universal Chern class. We loosely denote the cohomology map induced by a map f which lies in a homotopy class α by α^{*}.

Theorem 1.4. In the same condition as Theorem 1.1, for any $\widetilde{\alpha}, \widetilde{\beta} \in$ $U_{n}(X)$, their commutator $[\widetilde{\alpha}, \widetilde{\beta}]$ lies in $\iota\left(N_{n}(X)\right)$ and we have

$$
[\widetilde{\alpha}, \widetilde{\beta}]=\iota\langle u\rangle,
$$

where $u=\sum_{k+l+1=n}\left(\widetilde{\alpha}^{*}\left(x_{2 k+1}\right) \cup \widetilde{\beta}^{*}\left(x_{2 l+1}\right)\right)$ in $\mathrm{H}^{2 n}(X ; \mathbf{Z})$ and $\langle u\rangle \in N_{n}(X)$ means the class represented by u.

Corollary 1.1. In addition to the assumption of Theorems 1.4, we assume that $\mathrm{H}^{2 n}(X ; \mathbf{Z})$ is free. Then, if $\alpha \in \widetilde{K}^{1}(X)$ has a finite order, its inverse image $\widetilde{\alpha} \in U_{n}(X)$ belongs to the center of $U_{n}(X)$.

As an application, we give $U_{n}(X)$ where X is a sphere bundle over a sphere.
Corollary 1.2. If $S^{2 n+1} \rightarrow X \rightarrow S^{2 m+1}$ is a fibration where $0<n<$ m, then $U_{2(n+m+1)}(X)$ has three generators α, β and ϵ, and its relations are

$$
\begin{gathered}
{[\alpha, \epsilon]=[\beta, \epsilon]=0} \\
(n+m+1)!\epsilon=0 \\
{[\alpha, \beta]=n!m!\epsilon .}
\end{gathered}
$$

2. Exact sequence

We denote $U(\infty) / U(n)$ by W_{n}. Then, from the fibration $U(n) \xrightarrow{j} U(\infty)$ $\xrightarrow{p} W_{n}$, we can deduce the following fibration sequence:

$$
\cdots \rightarrow \Omega U(\infty) \xrightarrow{\Omega p} \Omega W_{n} \xrightarrow{\delta} U(n) \xrightarrow{j} U(\infty) \xrightarrow{p} W_{n} .
$$

Since j is a group homomorphism, Ωp is a loop map and also δ is the loop map of $B \delta: W_{n} \rightarrow B U(n)$, for a CW-complex X, there is an exact sequence of groups:

$$
[X, \Omega U(\infty)] \xrightarrow{\Omega p_{*}}\left[X, \Omega W_{n}\right] \xrightarrow{\delta_{*}} U_{n}(X) \xrightarrow{j_{*}}[X, U(\infty)] .
$$

Recall the natural isomorphisms $[X, B U] \cong \widetilde{K}^{0}(X),[X, U(\infty)] \cong \widetilde{K}^{1}(X)$ and, also, the Bott map $\beta: B U \xrightarrow{\simeq} \Omega U(\infty)$. Moreover, since W_{n} is $2 n$-connected, [X, W_{n}] is trivial, when $\operatorname{dim} X \leq 2 n$, and this implies j_{*} is a surjection. These argument implies the next exact sequence, which has the naturality:

$$
\widetilde{K}^{0}(X) \xrightarrow{\Omega p_{*} \beta_{*}}\left[X, \Omega W_{n}\right] \xrightarrow{\delta_{*}} U_{n}(X) \xrightarrow{j_{*}} \widetilde{K}^{1}(X) \rightarrow 0 .
$$

Here, we use the isomorphism $\left[X, \Omega W_{n}\right] \cong \mathrm{H}^{2 n}(X ; \mathbf{Z})$ as groups introduced as following. In the rest, we assume $\operatorname{dim} X \leq 2 n$.

Let $x \in \mathrm{H}^{2 n+1}\left(W_{n} ; \mathbf{Z}\right) \cong \mathbf{Z}$ be the generator such that $p^{*}(x)=x_{2 n+1} \in$ $\mathrm{H}^{*}(U(\infty) ; \mathbf{Z})$. Consider $a_{2 n}=\sigma(x) \in \mathrm{H}^{2 n}\left(\Omega W_{n} ; \mathbf{Z}\right)$ as a map $a_{2 n}: \Omega W_{n} \rightarrow$ $K(\mathbf{Z}, 2 n)$. Then $a_{2 n *}: \pi_{*}\left(\Omega W_{n}\right) \rightarrow \pi_{*}(K(\mathbf{Z}, 2 n))(* \leq 2 n)$ is isomorphic and also $\pi_{2 n+1}(K(\mathbf{Z}, 2 n))=0$. Therefore, from Whitehead's theorem, $a_{2 n *}$: $\left[X, \Omega W_{n}\right] \rightarrow[X, K(\mathbf{Z}, 2 n)] \cong \mathrm{H}^{2 n}(X ; \mathbf{Z})$ is a bijection. Note that $a_{2 n}: \Omega W_{n} \rightarrow$ $K(\mathbf{Z}, 2 n)$ is a loop map and $a_{2 n *}$ above is a group isomorphism. Here we remark that the naturality holds for this isomorphism, i.e., if X, Y are CW-complexes whose dimensions are no more than $2 n$ and given a map $f: X \rightarrow Y$, the following is commutative;

Now we set $\Theta=a_{2 n *} \Omega p_{*} \beta_{*}, N_{n}(X)=\operatorname{Coker} \Theta$ and have the exact sequence and the extension in Theorem 1.1. The map $\mathrm{H}^{2 n}(X ; \mathbf{Z}) \rightarrow U_{n}(X)$ is the composition $\delta_{*}\left(a_{2 n *}\right)^{-1}$. The naturality can be easily checked.

Next, we shall prove that

$$
0 \rightarrow N_{n}(X) \xrightarrow{\iota} U_{n}(X) \rightarrow \widetilde{K}^{1}(X) \rightarrow 0
$$

is a central extension. Let $e_{b}(b=1,2, \ldots, N)$ be the $2 n$-cells of X, f_{b} be the attaching map of $2 n$-cell e_{b} and X^{\prime} be the $(2 n-1)$-skeleton of X. We consider the cofibration sequence:

$$
\bigvee_{b} S^{2 n-1} \xrightarrow{\vee f_{b}} X^{\prime} \longrightarrow X \xrightarrow{\rho} X / X^{\prime}
$$

Remark $X / X^{\prime} \cong \bigvee_{b} S^{2 n}$.
Using this, we have a commutative diagram, in which every rows and columns are exact, as follows:

Hence

$$
\begin{equation*}
\operatorname{Im}\left(\mathrm{H}^{2 n}(X ; \mathbf{Z}) \rightarrow U_{n}(X)\right)=\operatorname{Im}\left(U_{n}\left(X / X^{\prime}\right) \rightarrow U_{n}(X)\right) \tag{2.1}
\end{equation*}
$$

Therefore any element $\alpha \in \operatorname{Im}\left(\mathrm{H}^{2 n}(X ; \mathbf{Z}) \rightarrow U_{n}(X)\right)$ can be represented by a map whose value on neighborhood V of X^{\prime} is constantly the unit, while any element in $U_{n}(X)$ can be represented by a map whose value on the complement of V is the unit. (The complement of V can be covered by a disjoint union of $2 n$-dim open cells.) Hence α and β are commutative and we can say that $\operatorname{Im}\left(\mathrm{H}^{2 n}(X ; \mathbf{Z}) \rightarrow U_{n}(X)\right)$ lies in the center of $U_{n}(X)$.

Now we have just finish the proof of Theorem 1.1 and we shall show the proof of Theorem 1.2.

Proof of Theorem 1.2. It immediately follows that when X is a finite CW-complex, $N_{n}(X)$ is a finitely generated abelian group, since $\mathrm{H}^{2 n}(X ; \mathbf{Z})$ is finitely generated. Thus we show that $n!\theta=0$ for any $\theta \in N_{n}(X)$.

From (2.1), $\operatorname{Im}\left(\rho^{*}: U_{n}\left(X / X^{\prime}\right) \rightarrow U_{n}(X)\right) \cong \operatorname{Coker} \Theta=N_{n}(X)$ and $N_{n}(X)$ is isomorphic to a quotient of $U_{n}\left(X / X^{\prime}\right)$.

On the other hand, we can see that

$$
U_{n}\left(X / X^{\prime}\right) \cong \bigoplus_{b} U_{n}\left(S^{2 n}\right) \cong \bigoplus_{b} \mathbf{Z} / n!\mathbf{Z}
$$

Hence the statement follows.

3. Calculation on exact sequence

Let X be a finite CW-complex of dimension $2 n$. In this section, we give the explicit form of the Θ in Theorem 1.1.

See the next diagram:

$$
\begin{array}{cc}
{[X, \Omega U(\infty)] \xrightarrow{\Omega p_{*}}} & {\left[X, \Omega W_{n}\right]} \\
\beta_{*} \uparrow & \downarrow a_{2 n *} \\
\widetilde{K}^{0}(X) \rightleftharpoons & \xrightarrow{\Theta}[X, K(2 n, \mathbf{Z})] \Longrightarrow \mathrm{H}^{2 n}(X ; \mathbf{Z})
\end{array}
$$

The above commutative diagram illustrates the definition of Θ. We set u, the fundamental element of $\mathrm{H}^{2 n}(K(2 n, \mathbf{Z}) ; \mathbf{Z})$. Then, for any $\theta \in \widetilde{K}^{0}(X) \cong$ [$X, B U]$,

$$
\begin{aligned}
\Theta(\theta) & =\left(a_{2 n} \circ \Omega p \circ \beta \circ \theta\right)^{*}(u) \\
& =(\Omega p \circ \beta \circ \theta)^{*}\left(a_{2 n}\right) \\
& =\theta^{*} \beta^{*} \Omega p^{*}\left(a_{2 n}\right) .
\end{aligned}
$$

Since, from the definition of $a_{2 n}, a_{2 n}=\sigma(x)$ and $p^{*}(x)=\sigma\left(c_{n+1}\right)$, we can see that $\Theta(\theta)=\theta^{*} \beta^{*}\left(\sigma^{2}\left(c_{n+1}\right)\right)$.

For CW-complexes X and Y, we denote the adjoint isomorphism between the homotopy sets by

$$
\tau:[\Sigma X, Y] \rightarrow[X, \Omega Y]
$$

(We loosely denote the adjoint isomorphism between the mapping spaces by the same symbol τ.)

Let ξ_{N} be the universal complex vector bundle over $B U(N)$ and η be the canonical complex line bundle over $C P^{1} \cong S^{2}$. Also we set that ζ_{N} is the classifying map of $(\eta-1) \wedge\left(\xi_{N}-N\right)$ over $\Sigma^{2} B U(N)$ and $\zeta: \Sigma^{2} B U \rightarrow B U$ is the limit of ζ_{N}. Then the Bott map satisfies

$$
\begin{equation*}
\beta \simeq \tau^{2} \zeta \tag{3.1}
\end{equation*}
$$

Since, regarding the homotopy class $\left\langle\zeta_{N}\right\rangle$ as an element of $\widetilde{K}^{0}\left(\Sigma^{2} B U(N)\right)$ $\subset \widetilde{K}^{0}\left(S^{2} \times B U(N)\right)$,

$$
\begin{aligned}
\left\langle\zeta_{N}\right\rangle & =(\eta-1) \wedge\left(\xi_{N}-N\right) \\
& =\eta \hat{\otimes} \xi_{N}-1 \hat{\otimes} \xi_{N}-\eta \hat{\otimes} N+1 \hat{\otimes} N
\end{aligned}
$$

we can proceed the calculation of the total Chern class of $\left\langle\zeta_{N}\right\rangle$ in $\mathrm{H}^{*}\left(\Sigma^{2} B U(N) ; \mathbf{Z}\right)$ as follows. We regard $\mathrm{H}^{*}\left(B T^{N} ; \mathbf{Z}\right) \supset \mathrm{H}^{*}(B U(N) ; \mathbf{Z})$ where T^{N} is the maximal torus of $U(N)$. Let $c_{i} \in \mathrm{H}^{*}(B U ; \mathbf{Z})$ be the universal Chern class, c be the generator of $\mathrm{H}^{2}\left(S^{2} ; \mathbf{Z}\right)$ and $t_{i}\left(i=1, \ldots, N,\left|t_{i}\right|=2\right)$ be the generator of $\mathrm{H}^{*}\left(B T^{N} ; \mathbf{Z}\right)$. Then we have

$$
\begin{aligned}
\zeta_{N^{*}}\left(1+\sum_{i=1}^{\infty} c_{i}\right) & =\frac{\prod_{i=1}^{N}\left(1+c+t_{i}\right)}{(1+N c) \prod_{i=1}^{N}\left(1+t_{i}\right)} \\
& =(1-N c) \prod_{i=1}^{N}\left(1+\frac{c}{1+t_{i}}\right) \\
& =1+\sum_{i=1}^{N} \frac{c}{1+t_{i}}-N c \\
& =1+c \sum_{i=1}^{N}\left(\sum_{j=0}^{\infty}\left(-t_{i}\right)^{j}\right)-N c \\
& =1+c\left(\sum_{j=1}^{\infty}\left((-1)^{j} \sum_{i=1}^{N} t_{i}^{j}\right)\right)
\end{aligned}
$$

Let $s_{j}=\sum_{i=1}^{N} t_{i}{ }^{j} \in \mathrm{H}^{*}(B U(N) ; \mathbf{Z})$ and we also denote the corresponding primitive element in $\mathrm{H}^{2 j}(B U ; \mathbf{Z})$ by s_{j}. The above equation implies $\zeta_{N}{ }^{*}\left(c_{i}\right)=$ $c \hat{\otimes}(-1)^{i-1} s_{i-1}$ and hence we obtain

$$
\begin{equation*}
\zeta^{*}\left(c_{i}\right)=(-1)^{i-1} \Sigma^{2} s_{i-1} . \tag{3.2}
\end{equation*}
$$

Now we can see, from (3.1) and (3.2),

$$
\beta^{*}\left(\sigma^{2}\left(c_{n+1}\right)\right)=(-1)^{n} s_{n}
$$

and if we set $s_{j}: \widetilde{K}^{0}(X) \cong[X, B U] \rightarrow \mathrm{H}^{2 j}(X ; \mathbf{Z})$ as $s_{j}(\theta)=\theta^{*}\left(s_{j}\right)$, immediately the next proposition follows.

Proposition 3.1. For $\theta \in \widetilde{K}^{0}(X)$,

$$
\Theta(\theta)=(-1)^{n} s_{n}(\theta) .
$$

Now we can deduce some corollaries.
Corollary 3.1. For $n \geq 1, U_{n}\left(C P^{n}\right)$ vanishes.
Proof. Let t be the generator of $\mathrm{H}^{2}\left(C P^{n} ; \mathbf{Z}\right)$. Then, since the first Chern class of the canonical line bundle γ_{n} over $C P^{n}$ is t and other Chern classes are zero,

$$
s_{n}\left(\gamma_{n}\right)=t^{n} .
$$

Thus $\Theta\left(\gamma_{n}\right)$ is the generator of $\mathrm{H}^{2 n}\left(C P^{n} ; \mathbf{Z}\right) \cong \mathbf{Z}$ and $N_{n}\left(C P^{n}\right)$ vanishes.
Remark that, since $\mathrm{H}^{\text {odd }}\left(C P^{n} ; \mathbf{Z}\right)$ vanishes, we can see $\widetilde{K}^{1}\left(C P^{n}\right)=0$ using the Atiyah-Hirzeburch spectral sequence. (See [2].) Thus, from Theorem 1.1, $U_{n}\left(C P^{n}\right)=0$.

Consider CW-complexes X_{1} and X_{2} whose dimensions are $2 n_{1}$ and $2 n_{2}$ respectively. We'd like to compute $N_{n_{1}+n_{2}}\left(X_{1} \wedge X_{2}\right)$ from $N_{n_{1}}\left(X_{1}\right)$ and $N_{n_{2}}\left(X_{2}\right)$ under some assumptions.

First, let $\mu_{N}: B U(N) \wedge B U(N) \rightarrow B U$ be the classifying map of ($\xi_{N}-$ $N) \wedge\left(\xi_{N}-N\right)$ and $\mu: B U \wedge B U \rightarrow B U$ be the limit of μ_{N}.

Lemma 3.1. In the above situation,

$$
\mu^{*}\left(s_{j}\right)=\sum_{k=1}^{j-1}\binom{j}{k} s_{k} \hat{\otimes} s_{j-k}
$$

Proof. Since $\mathrm{H}^{*}(B U ; \mathbf{Z})$ is free and the Chern character ch $=\sum_{i=0}^{\infty}\left(s_{i} / i!\right)$ satisfies

$$
\operatorname{ch}\left(\xi_{N} \hat{\otimes} \xi_{N}\right)=\operatorname{ch}\left(\xi_{N}\right) \hat{\otimes} \operatorname{ch}\left(\xi_{N}\right)
$$

we can see that

$$
\frac{\mu_{N}{ }^{*}\left(s_{j}\right)}{j!}=\sum_{k=1}^{j-1} \frac{s_{k}}{k!} \hat{\otimes} \frac{s_{j-k}}{(j-k)!}
$$

in $\mathrm{H}^{2 j}(B U(N) \wedge B U(N) ; \mathbf{Q})$ and

$$
\mu_{N}{ }^{*}\left(s_{j}\right)=\sum_{k=1}^{j-1}\binom{j}{k} s_{k} \hat{\otimes} s_{j-k}
$$

in $\mathrm{H}^{2 j}(B U(N) \wedge B U(N) ; \mathbf{Z})$. This implies the statement of the theorem.
This leads us to the next lemma.
Lemma 3.2. Let X_{1}, X_{2} be $C W$-complexes. For $\theta_{1} \in \widetilde{K}^{0}\left(X_{1}\right)$ and $\theta_{2} \in \widetilde{K}^{0}\left(X_{2}\right), \theta_{1} \wedge \theta_{2} \in \widetilde{K}^{0}\left(X_{1} \wedge X_{2}\right)$ satisfies

$$
s_{j}\left(\theta_{1} \wedge \theta_{2}\right)=\sum_{k=1}^{j-1}\binom{j}{k} s_{k}\left(\theta_{1}\right) \hat{\otimes} s_{j-k}\left(\theta_{2}\right) .
$$

Proof. We regard θ_{1} and θ_{2} as their classifying maps respectively. Then $\mu \circ\left(\theta_{1} \wedge \theta_{2}\right)$ is the classifying map of $\theta_{1} \wedge \theta_{2} \in \widetilde{K}^{0}\left(X_{1} \wedge X_{2}\right)$:

$$
X_{1} \wedge X_{2} \xrightarrow{\theta_{1} \wedge \theta_{2}} B U \wedge B U \xrightarrow{\mu} B U .
$$

Thus

$$
\begin{aligned}
s_{j}\left(\theta_{1} \wedge \theta_{2}\right) & =\left(\theta_{1} \wedge \theta_{2}\right)^{*} \mu^{*} s_{j} \\
& =\left(\theta_{1} \wedge \theta_{2}\right)^{*} \sum_{k=1}^{j-1}\binom{j}{k} s_{k} \hat{\otimes} s_{j-k} \\
& =\sum_{k=1}^{j-1}\binom{j}{k} s_{k}\left(\theta_{1}\right) \hat{\otimes} s_{j-k}\left(\theta_{2}\right) .
\end{aligned}
$$

Now we give the proof of Theorem 1.3.
Proof of Theorem 1.3. Since $\mathrm{H}^{2 n_{1}+2 n_{2}}\left(X_{1} \wedge X_{2} ; \mathbf{Z}\right)=\mathbf{Z}$, what we have to do is to investigate $\operatorname{Im} \Theta$ in $\mathrm{H}^{2 n_{1}+2 n_{2}}\left(X_{1} \wedge X_{2} ; \mathbf{Z}\right)$. Let u_{1} and u_{2} be the generators of $\mathrm{H}^{2 n_{1}}\left(X_{1} ; \mathbf{Z}\right)$ and $\mathrm{H}^{2 n_{2}}\left(X_{2} ; \mathbf{Z}\right)$ respectively.

First, we see $\operatorname{Im} \Theta \supset\left\langle\binom{ n_{1}+n_{2}}{n_{1}} l_{1} l_{2} u_{1} \otimes u_{2}\right\rangle$. Since $N_{n_{i}}\left(X_{i}\right) \cong \mathbf{Z} / l_{i} \mathbf{Z}$, there exists $\theta_{i} \in \widetilde{K}^{0}\left(X_{i}\right)$ which satisfies $s_{n_{i}}\left(\theta_{i}\right)=l_{i} u_{i}$. $\left(i=1,2\right.$.) Thus $\theta_{1} \hat{\otimes} \theta_{2} \in$ $\widetilde{K}^{0}\left(X_{1} \wedge X_{2}\right)$ satisfies

$$
\begin{aligned}
\Theta\left(\theta_{1} \hat{\otimes} \theta_{2}\right) & = \pm s_{n_{1}+n_{2}}\left(\theta_{1} \hat{\otimes} \theta_{2}\right) \\
& = \pm\binom{ n_{1}+n_{2}}{n_{1}} l_{1} l_{2} u_{1} \otimes u_{2}
\end{aligned}
$$

On the other hand, $\operatorname{Im} \Theta \subset\left\langle\binom{ n_{1}+n_{2}}{n_{1}} l_{1} l_{2} u_{1} \otimes u_{2}\right\rangle$ is also true. Since $\widetilde{K}^{0}\left(X_{1}\right)$ or $\widetilde{K}^{0}\left(X_{2}\right)$ is free, any $\theta \in \widetilde{K}^{0}\left(X_{1} \wedge X_{2}\right)$ has the form of $\sum \theta_{a} \hat{\otimes} \theta_{b}$ where $\theta_{a} \in$ $\widetilde{K}^{0}\left(X_{1}\right)$ and $\theta_{b} \in \widetilde{K}^{0}\left(X_{2}\right)$. From the assumption, it holds that $s_{n_{1}}\left(\theta_{1}\right) \in\left\langle l_{1} u_{1}\right\rangle$ and $s_{n_{2}}\left(\theta_{2}\right) \in\left\langle l_{2} u_{2}\right\rangle$. Therefore $\left.s_{n_{1}+n_{2}}\left(\theta_{a} \otimes \theta_{b}\right) \in\left\langle\begin{array}{c}n_{1}+n_{2} \\ n_{1}\end{array}\right) l_{1} l_{2} u_{1} \otimes u_{2}\right\rangle$ and, since $s_{n_{1}+n_{2}}$ is primitive, $s_{n_{1}+n_{2}}(\theta) \in\left\langle\binom{ n_{1}+n_{2}}{n_{1}} l_{1} l_{2} u_{1} \otimes u_{2}\right\rangle$.

Hence $\operatorname{Im} \Theta=\left\langle\binom{ n_{1}+n_{2}}{n_{1}} l_{1} l_{2} u_{1} \otimes u_{2}\right\rangle$ and the statement follows.

4. Applications

From Theorem 1.3, some corollaries follow directly.
Corollary 4.1. Let X be a finite $C W$-complex with its dimension $2 n$ and $\mathrm{H}^{2 n}(X ; \mathbf{Z}) \cong \mathbf{Z}$. If $N_{n}(X) \cong \mathbf{Z} / l \mathbf{Z}$,

$$
N_{n+1}\left(\Sigma^{2} X\right) \cong \mathbf{Z} /(n+1) l \mathbf{Z}
$$

Proof. Set $X_{1}=S^{2}$ and $X_{2}=X$ in Theorem 1.3 and the proof is straightforward.

Corollary 4.2. The next equality holds:

$$
U_{n_{1}+n_{2}}\left(C P^{n_{1}} \wedge C P^{n_{2}}\right) \cong \mathbf{Z} /\binom{n_{1}+n_{2}}{n_{1}} \mathbf{Z}
$$

Proof. As seen in Corollary 3.1, $N_{n}\left(C P^{n}\right)$ vanishes. Thus, applying Theorem 1.3, $N_{n_{1}+n_{2}}\left(C P^{n_{1}} \wedge C P^{n_{2}}\right) \cong \mathbf{Z} /\binom{n_{1}+n_{2}}{n_{1}} \mathbf{Z}$. And this coincides with $U_{n_{1}+n_{2}}\left(C P^{n_{1}} \wedge C P^{n_{2}}\right)$, since $\widetilde{K}^{1}\left(C P^{n_{1}} \wedge C P^{n_{2}}\right)$ vanishes.

Let $\epsilon_{n-1}: \Sigma C P^{n-1} \rightarrow U(n)$ be the usual embedding described in $[6, \mathrm{pp}$. 22-23]. This embedding satisfies in cohomology

$$
\epsilon_{n-1}^{*}\left(x_{2 k+1}\right)=\Sigma t^{k}
$$

where t is the generator of $\mathrm{H}^{2}\left(C P^{n-1} ; \mathbf{Z}\right)$ and $1 \leq k \leq n-1$. Also we set the commutator map $\gamma: U(n) \wedge U(m) \rightarrow U(n+m-1)$ and $\gamma^{\prime}=\gamma \circ\left(\epsilon_{n-1} \wedge \epsilon_{m-1}\right)$.

Corollary 4.3. We can see

$$
U_{n+m-1}\left(\Sigma C P^{n-1} \wedge \Sigma C P^{m-1}\right) \cong \mathbf{Z} / \frac{(n+m-1)!}{(n-1)!(m-1)!} \mathbf{Z}
$$

and its generator is the class $\left\langle\gamma^{\prime}\right\rangle$.
Proof. We set $X=\Sigma C P^{n-1} \wedge \Sigma C P^{m-1}$. From Corollaries 4.1 and 4.2, the first half of this corollary can be easily obtained and what we have to do is to prove that $\left\langle\gamma^{\prime}\right\rangle$ is a generator of $U_{n+m-1}(X)$. From Theorem 1.1, to prove this, it is sufficient to show that, in the exact sequence below, $\left\langle\gamma^{\prime}\right\rangle \in U_{n+m-1}(X)$ comes from $\Sigma\left(t^{n-1}\right) \otimes \Sigma\left(t^{m-1}\right) \in \mathrm{H}^{2 n+2 m-2}(X ; \mathbf{Z})$.

$$
\widetilde{K}^{0}(X) \rightarrow \mathrm{H}^{2 n+2 m-2}(X ; \mathbf{Z}) \rightarrow U_{n+m-1}(X) \rightarrow \widetilde{K}^{1}(X)
$$

In the similar manner to that in [4], we consider the next diagram:

where two columns are fibration sequences and i and j are usual embeddings. In [3], it is showed that there exists a map λ_{0} which makes the above diagram homotopy commutative and also satisfies

$$
\lambda_{0}{ }^{*}(v)=x_{2 n-1} \otimes x_{2 m-1},
$$

where v is the generator of $\mathrm{H}^{2 n+2 m-2}\left(\Omega S^{2(n+m)-1} ; \mathbf{Z}\right)$. (Actually λ_{0} is the adjoint of the join of the projections $U(n) \rightarrow U(n) / U(n-1)$ and $U(m) \rightarrow$
$U(m) / U(m-1)$.) If we set $\lambda=\Omega j \circ \lambda_{0}$, since $\Omega j^{*}\left(a_{2 n}\right)=v$, we have that $\lambda^{*}\left(a_{2 n}\right)=x_{2 n-1} \otimes x_{2 m-1}$.

Hence $\left(\lambda \circ\left(\epsilon_{n-1} \wedge \epsilon_{m-1}\right)\right)^{*}\left(a_{2 n}\right)=\Sigma^{2}\left(t^{n-1} \otimes t^{m-1}\right)$, i.e., by the isomorphism $\left[X, \Omega W_{n+m-1} \xrightarrow{a_{2 n}} \mathrm{H}^{2 n+2 m-2}(X ; \mathbf{Z}),\left\langle\lambda \circ\left(\epsilon_{n-1} \wedge \epsilon_{m-1}\right)\right\rangle\right.$ corresponds to the generator $\Sigma^{2}\left(t^{n-1} \otimes t^{m-1}\right)$.

Moreover, since $\delta \circ \lambda=\gamma, \delta^{*}\left(a_{2 n *}\right)^{-1}\left(\Sigma^{2}\left(t^{n-1} \otimes t^{m-1}\right)=\left\langle\delta^{*}\left(\lambda \circ\left(\epsilon_{n-1} \wedge\right.\right.\right.\right.$ $\left.\left.\left.\epsilon_{m-1}\right)\right)\right\rangle=\left\langle\gamma \circ\left(\epsilon_{n-1} \wedge \epsilon_{m-1}\right)\right\rangle=\left\langle\gamma^{\prime}\right\rangle$ and the proof is finished.

5. Commutator in $U_{n}(X)$

In the rest of this paper, we treat the case $\operatorname{dim} X=2 n$ and $\widetilde{K}^{1}(X) \neq 0$. In such cases, $U_{n}(X)$ may not be commutative. We prove Theorem 1.4 which describes the commutator in $U_{n}(X)$ in such cases.

In the rest, let γ be the commutator map $U(n) \wedge U(n) \rightarrow U(n)$ and consider the next diagram.

Since $i \circ \gamma$ is null-homotopic, there exists a lift $\widetilde{\gamma}: U(n) \wedge U(n) \rightarrow \Omega W_{n}$, such that $\Omega \delta \circ \widetilde{\gamma} \simeq \gamma$.

To find an adequate lift $\widetilde{\gamma}$, we prepare some maps and propositions. We set $j: \Sigma U(n) \vee \Sigma U(n) \rightarrow B U(n), k: \Sigma U(n) \times \Sigma U(n) \rightarrow B U$ as the following compositions respectively:

$$
\begin{aligned}
& \Sigma U(n) \vee \Sigma U(n) \xrightarrow{\tau^{-1} 1 \vee \tau^{-1} 1} B U(n) \vee B U(n) \xrightarrow{\nabla} B U(n), \\
& \Sigma U(n) \times \Sigma U(n) \xrightarrow{\tau^{-1} 1 \times \tau^{-1} 1} B U(n) \times B U(n) \xrightarrow{\bar{\mu}} B U,
\end{aligned}
$$

where ∇ is the folding map and $\bar{\mu}$ is the classifying map of the cross product of the universal vector bundles over $B U(n)$.

Also we set $f: \Sigma(U(n) \wedge U(n)) \rightarrow \Sigma U(n) \vee \Sigma U(n)$ as follows: Setting $(0, *)$ be the base point of $\Sigma U(n)$, we regard $\Sigma U(n) \vee \Sigma U(n) \subset \Sigma U(n) \times \Sigma U(n)$. For $x, y \in U(n)$ and $t \in[0,1]$, we set $f_{0}: U(n) * U(n) \rightarrow \Sigma U(n) \vee \Sigma U(n)$ as

$$
f_{0}(t, x, y)= \begin{cases}((1-2 t, x), *) & \left(0 \leq t \leq \frac{1}{2}\right) \\ (*,(2 t-1, y)) & \left(\frac{1}{2} \leq t \leq 1\right)\end{cases}
$$

Then set $f: \Sigma(U(n) \wedge U(n)) \simeq U(n) * U(n) \xrightarrow{f_{0}} \Sigma U(n) \vee \Sigma U(n)$.
Proposition 5.1. A map $\widetilde{\gamma}: U(n) \wedge U(n) \rightarrow \Omega W_{n}$ satisfies $\Omega \delta \circ \widetilde{\gamma} \simeq \gamma$, if and only if $\tau^{-1} \widetilde{\gamma}$ makes the following diagram homotopy commutative:

Proof. We recall that f induces the generalized Whitehead product

$$
[,]:[\Sigma U(n), B U(n)] \times[\Sigma U(n), B U(n)] \rightarrow[\Sigma(U(n) \wedge U(n)), B U(n)]
$$

by associating, for $\eta, \eta^{\prime} \in[\Sigma U(n), B U(n)]$ represented by g and h respectively, the class $\left[\eta, \eta^{\prime}\right]$ represented by $\nabla \circ(g \vee h) \circ f$. This implies that $j \circ f$ represents $\left[\tau^{-1} 1, \tau^{-1} 1\right]$, while it is known that $\tau\left[\tau^{-1} \eta, \tau^{-1} \eta^{\prime}\right]=\left\langle\eta, \eta^{\prime}\right\rangle$ where \langle,$\rangle is the$ generalized Samelson product. (See [1].) Thus, $\tau(j \circ f)$ lies in $\tau\left[\tau^{-1} 1, \tau^{-1} 1\right]=$ $\langle 1,1\rangle$ and

$$
\tau(j \circ f) \simeq \gamma
$$

Hence, the commutativity of the above diagram is equivalent to

$$
\tau\left(\delta \circ \tau^{-1} \widetilde{\gamma}\right) \simeq \gamma
$$

while $\tau\left(\delta \circ \tau^{-1} \widetilde{\gamma}\right)=\Omega \delta \circ \widetilde{\gamma}$.
Let $E U$ be a space that $U(\infty)$ acts freely. We denote the quotient map $E U \rightarrow E U / U(n)=B U(n)$ by q^{\prime} and consider the next commutative diagram, in which each row is a fibration.

Lemma 5.1. In the Leray-Serre spectral sequence of the fibration $W_{n} \xrightarrow{\delta} B U(n) \xrightarrow{B i} B U$, the cohomology element $x \in \mathrm{H}^{2 n+1}\left(W_{n} ; \mathbf{Z}\right)$ transgresses to the $(n+1)$-th Chern class $c_{n+1} \in \mathrm{H}^{2 n+2}(B U ; \mathbf{Z})$, i.e., $\partial(x)=B i^{*}\left(c_{n+1}\right)$ in the diagram

$$
\mathrm{H}^{2 n+1}\left(W_{n} ; \mathbf{Z}\right) \xrightarrow{\partial} \mathrm{H}^{2 n+2}\left(B U(n), W_{n} ; \mathbf{Z}\right) \stackrel{B i^{*}}{\stackrel{1}{2 n+2}}(B U ; \mathbf{Z}) .
$$

Proof. In the Leray-Serre spectral sequence of the fibration $W_{n} \rightarrow B U(n)$ $\rightarrow B U$, the transgression image in $\mathrm{H}^{2 n+2}(B U ; \mathbf{Z})$ is equals to $\operatorname{Ker}\left(B i^{*}\right.$: $\left.\mathrm{H}^{2 n+2}(B U ; \mathbf{Z}) \rightarrow \mathrm{H}^{2 n+2}(B U(n) ; \mathbf{Z})\right)$ which is generated by c_{n+1}.

On the other hand, in the Leray-Serre spectral sequence of the fibration $U(\infty) \rightarrow E U \rightarrow B U, x_{2 n+1} \in \mathrm{H}^{*}(U(\infty) ; \mathbf{Z})$ transgresses to $c_{n+1}+$ (decomposable elements) $\in \mathrm{H}^{2 n+2}(B U ; \mathbf{Z})$.

Therefore, since $p^{*}(x)=x_{2 n+1}$ and (5.1) is commutative, it follows that x transgresses to c_{n+1}.

Proposition 5.2. We can take $\widetilde{\gamma}$ so that

$$
\widetilde{\gamma}^{*}\left(a_{2 n}\right)=\sum_{k+l+1=n} x_{2 k+1} \otimes x_{2 l+1} .
$$

Proof. In this proof we set $A=\Sigma(U(n) \wedge U(n))$. Let I_{f}, C_{f} be the mapping cylinder and the mapping cone of f respectively and q be the quotient $\operatorname{map} I_{f} \rightarrow I_{f} / A=C_{f}$. Then we have a cofibration

$$
A \rightarrow I_{f} \rightarrow C_{f}
$$

where it is known that $C_{f} \simeq \Sigma U(n) \times \Sigma U(n)$. (See Theorem 4.2 of [1] for detail.) Also, the homotopy commutativity of the next diagram, in which ϕ is the map induced by the natural projection $[0,1] \times A \rightarrow A$, can be easily checked.

We regard that $B U(n) \xrightarrow{B i} B U$ is a fibration and δ is the inclusion of the fibre $W_{n}=B i^{-1}(*)$ where $*$ is the base point of $B U$. We set $A / A \in I_{f} / A=C_{f}$ as the base point of C_{f}, deform the composition $C_{f} \cong \Sigma U(n) \times \Sigma U(n) \xrightarrow{k} B U$ so as to be base point preserving and denote the obtained map by k^{\prime}. Then, by the homotopy lifting property, we can deform $j \circ \phi$ into j^{\prime} so that $k^{\prime} \circ q=B i \circ j^{\prime}$. Now we have a commutative (not only "homotopy commutative") diagram:

The commutativity of the above diagram implies $\left.j^{\prime}\right|_{A}: A \rightarrow W_{n}$. Thus, if we let $j_{A}=\left.j^{\prime}\right|_{A}, \delta \circ j_{A} \simeq j \circ f$ and, by Proposition 5.1, it follows that τj_{A} satisfies the claim $\Omega \delta \circ \tau j_{A} \simeq \gamma$.

On the other hand, since j^{\prime} is a map between pairs $\left(I_{f}, A\right) \rightarrow\left(B U(n), W_{n}\right)$, we obtain the next commutative diagram.

$$
\begin{array}{ccc}
\mathrm{H}^{2 n+1}(A, * ; \mathbf{Z}) \xrightarrow{\partial} & \mathrm{H}^{2 n+2}\left(I_{f}, A ; \mathbf{Z}\right) & \stackrel{q^{*}}{ } \mathrm{H}^{2 n+2}\left(C_{f}, * ; \mathbf{Z}\right) \\
\uparrow_{j_{A}{ }^{*}} & \uparrow_{j^{\prime *}} & \uparrow_{k^{\prime *}} \tag{5.4}\\
\mathrm{H}^{2 n+1}\left(W_{n}, * ; \mathbf{Z}\right) \xrightarrow{\partial} & \mathrm{H}^{2 n+2}\left(B U(n), W_{n} ; \mathbf{Z}\right) \stackrel{B i^{*}}{\longleftrightarrow} \mathrm{H}^{2 n+2}(B U, * ; \mathbf{Z})
\end{array}
$$

Here we observe the exact sequence of the pair $\left(I_{f}, A\right)$

$$
\mathrm{H}^{2 n+1}\left(I_{f} / A ; \mathbf{Z}\right) \xrightarrow{q^{*}} \mathrm{H}^{2 n+1}\left(I_{f}, * ; \mathbf{Z}\right) \xrightarrow{f^{*}} \mathrm{H}^{2 n+1}(A, * ; \mathbf{Z}) \xrightarrow{\partial} \mathrm{H}^{2 n+2}\left(I_{f}, A ; \mathbf{Z}\right) .
$$

Since, by the diagram (5.2), q^{*} is equal to the cohomology map induced by $\Sigma U(n) \vee \Sigma U(n) \hookrightarrow \Sigma U(n) \times \Sigma U(n), q^{*}$ is epic and f^{*} is 0 -map. This implies $\partial: \mathrm{H}^{2 n+1}(A, * ; \mathbf{Z}) \rightarrow \mathrm{H}^{2 n+2}\left(I_{f}, A ; \mathbf{Z}\right)$ is monic.

Now, using Lemma 5.1, we chase the diagram (5.4) as

$$
\partial j_{A}^{*}(x)=j^{\prime *} \partial(x)=j^{\prime *} B i^{*}\left(c_{n+1}\right)=q^{*} k^{\prime *}\left(c_{n+1}\right) .
$$

By the diagram (5.2) and the definition of k, it follows that, under the identification of $I_{f} / A=C_{f} \simeq \Sigma U(n) \times \Sigma U(n)$,

$$
\begin{equation*}
\partial j_{A}{ }^{*}(x)=q^{*} k^{*}\left(c_{n+1}\right)=\sum_{k+l=n+1}\left(\Sigma x_{2 k-1}\right) \otimes\left(\Sigma x_{2 l-1}\right) . \tag{5.5}
\end{equation*}
$$

Moreover we know that the next diagram commutes:

The map π is the quotient map $C_{f} \rightarrow C_{f} /(\Sigma U(n) \vee \Sigma U(n)) \cong \Sigma A$, i.e., this is homotopic to the natural projection

$$
\pi: C_{f} \cong \Sigma U(n) \times \Sigma U(n) \rightarrow \Sigma U(n) \wedge \Sigma U(n)
$$

Therefore,

$$
\begin{equation*}
\partial\left(\Sigma\left(\sum_{k+l=n+1} x_{2 k-1} \otimes x_{2 l-1}\right)\right)=\sum_{k+l=n+1}\left(\Sigma x_{2 k-1}\right) \otimes\left(\Sigma x_{2 l-1}\right) . \tag{5.6}
\end{equation*}
$$

Finally, since $\partial: \mathrm{H}^{2 n+1}(A, * ; \mathbf{Z}) \rightarrow \mathrm{H}^{2 n+2}\left(I_{f}, A ; \mathbf{Z}\right)$ is monic, (5.5) and (5.6) imply that

$$
j_{A}{ }^{*}(x)=\Sigma\left(\sum_{k+l=n+1} x_{2 k-1} \otimes x_{2 l-1}\right)
$$

and, if we set $\widetilde{\gamma}=\tau j_{A}$, we have

$$
\widetilde{\gamma}^{*}\left(a_{2 n}\right)=\sum_{k+l=n+1} x_{2 k-1} \otimes x_{2 l-1}
$$

as desired.
Now, we shall show the proof of Theorem 1.4.
Proof of Theorem 1.4. Let X be a CW-complex with its dimension $2 n$, and take any $\widetilde{\alpha}$ and $\widetilde{\beta} \in U_{n}(X)$. Assume that each class is represented by a and b respectively. Since $\widetilde{K}^{1}(X)$ is commutative, their commutator $[\widetilde{\alpha}, \widetilde{\beta}]$ comes from $N_{n}(X)$. Recall that $\left[X, \Omega W_{n}\right]$ is isomorphic to $\mathrm{H}^{2 n}(X ; \mathbf{Z})$ by the correspondence which associates, for $\phi \in\left[X, \Omega W_{n}\right]$, the cohomology class $\phi^{*}\left(a_{2 n}\right)$. Hence, what we have to do is to compute $\lambda^{*}\left(a_{2 n}\right)$ where $\lambda: X \rightarrow \Omega W_{n}$ satisfies $\Omega \delta \circ \lambda \in[\widetilde{\alpha}, \widetilde{\beta}]$.

On the other hand, by the definition, we know $[\widetilde{\alpha}, \widetilde{\beta}]$ is the class represented by the map $\gamma \circ(a \times b) \circ \Delta$, where Δ is the diagonal map of X. Thus we can set $\lambda=\widetilde{\gamma} \circ(a \times b) \circ \Delta$ as shown in the following diagram.

Therefore we have that

$$
\begin{aligned}
\lambda^{*}\left(a_{2 n}\right) & =\Delta^{*}(\widetilde{\alpha} \times \widetilde{\beta})^{*} \widetilde{\gamma}^{*}\left(a_{2 n}\right) \\
& =\Delta^{*}(\widetilde{\alpha} \times \widetilde{\beta})^{*}\left(\sum_{k+l+1=n} x_{2 k+1} \otimes x_{2 l+1}\right) \\
& =\sum_{k+l+1=n} \widetilde{\alpha}^{*}\left(x_{2 k+1}\right) \cup \widetilde{\beta}^{*}\left(x_{2 l+1}\right) .
\end{aligned}
$$

Here, if we let $u=\sum_{k+l+1=n} \widetilde{\alpha}^{*}\left(x_{2 k+1}\right) \cup \widetilde{\beta}^{*}\left(x_{2 l+1}\right)$, by the correspondence $\left[X, \Omega W_{n}\right] \cong \mathrm{H}^{2 n}(X ; \mathbf{Z})$, we have

$$
[\widetilde{\alpha}, \widetilde{\beta}]=\iota\langle u\rangle .
$$

Now we give the proof of Corollary 1.1.
Proof of Corollary 1.1. Take $\widetilde{\alpha} \in U_{n}(X)$ and assume that the order of its image in $\widetilde{K}^{1}(X)$ is finite. Then, for $x_{2 k+1} \in \mathrm{H}^{*}(U(n) ; \mathbf{Z})$ is primitive,
$\widetilde{\alpha}^{*}\left(x_{2 k+1}\right)$ has, also, a finite order. This implies that, for any $\widetilde{\beta} \in U_{n}(X)$, $\sum_{k+l+1=n} \widetilde{\alpha}^{*}\left(x_{2 k+1}\right) \cup \widetilde{\beta}^{*}\left(x_{2 l+1}\right)$ has a finite order as well, while $\mathrm{H}^{2 n}(X ; \mathbf{Z})$ is free. Hence $\sum_{k+l+1=n} \widetilde{\alpha}^{*}\left(x_{2 k+1}\right) \cup \widetilde{\beta}^{*}\left(x_{2 l+1}\right)=0$ and, as seen in the proof of Theorem 1.4, $[\widetilde{\alpha}, \widetilde{\beta}]$ vanishes.

6. Examples

In this section, using Theorems 1.1 and 1.4, we give Corollary 1.2 as an example.

Proof of Corollary 1.2. Let $0<n<m, S^{2 n+1} \xrightarrow{i} X \xrightarrow{p} S^{2 m+1}$ be a fibration and set $N=n+m+1$, i.e., $\operatorname{dim} X=2 N$. We set the generators of $\mathrm{H}^{2 n+1}\left(S^{2 n+1} ; \mathbf{Z}\right)$ and $\mathrm{H}^{2 m+1}\left(S^{2 m+1} ; \mathbf{Z}\right)$ as $u_{2 n+1}$ and $u_{2 m+1}$ respectively. Also we loosely denote $p^{*}\left(u_{2 m+1}\right) \in \mathrm{H}^{*}(X ; \mathbf{Z})$ by $u_{2 m+1}$ and the inverse image $\left(i^{*}\right)^{-1}\left(u_{2 n+1}\right)$ by $u_{2 n+1}$, i.e.,

$$
\mathrm{H}^{*}(X ; \mathbf{Z})=\wedge\left(u_{2 n+1}, u_{2 m+1}\right) .
$$

Since $\mathrm{H}^{*}(X ; \mathbf{Z})$ is free, Atiyah-Hirzeburch spectral sequence of X is trivial. Then, if we set the generators of $\widetilde{K}^{1}\left(S^{2 n+1}\right)$ and $\widetilde{K}^{1}\left(S^{2 m+1}\right)$ as ϵ_{n} and ϵ_{m} respectively, $\widetilde{K}^{1}(X) \cong \mathbf{Z} \oplus \mathbf{Z}$ has two generators α and β which satisfy

$$
\begin{equation*}
i^{*} \alpha=\epsilon_{n}, \quad \beta=p^{*} \epsilon_{m} . \tag{6.1}
\end{equation*}
$$

From Theorem 1.1 we have a central extension

$$
0 \rightarrow N_{N}(X) \rightarrow U_{N}(X) \rightarrow \widetilde{K}^{1}(X) \rightarrow 0
$$

Thus we can take $\widetilde{\alpha}, \widetilde{\beta} \in U_{N}(X)$ so that they come to α and β in $\widetilde{K}^{1}(X)$ respectively.

Lemma 6.1. $\quad N_{n}(X) \cong \pi_{2 N}(U(N)) \cong \mathbf{Z} / N!\mathbf{Z}$.
Proof. We set $X^{\prime}=X^{(2 N-1)}$ the $(2 N-1)$-skeleton of X. From the assumption of X, we have a cell decomposition,

$$
X=S^{2 n+1} \cup e_{2 m+1} \cup e_{2 N}, X^{\prime}=S^{2 n+1} \cup e_{2 m+1}
$$

Thus $S^{2 n+2} \rightarrow \Sigma X^{\prime} \rightarrow S^{2 m+2}$ is cofibration and $0=U_{N}\left(S^{2 m+2}\right) \rightarrow U_{N}\left(\Sigma X^{\prime}\right)$ $\rightarrow U_{N}\left(S^{2 n+2}\right)=0$ is exact. Hence $U_{N}\left(\Sigma X^{\prime}\right)=0$.

Next, from (2.1), $N_{N}(X)=\operatorname{Im}\left(U_{N}\left(X / X^{\prime}\right) \rightarrow U_{N}(X)\right)$ and also

$$
0=U_{N}\left(\Sigma X^{\prime}\right) \rightarrow U_{N}\left(X / X^{\prime}\right) \rightarrow U_{N}(X) \rightarrow U_{N}\left(X^{\prime}\right)
$$

is exact. Therefore $N_{N}(X) \cong U_{N}\left(X / X^{\prime}\right)=\pi_{2 N}(U(N))$ which is known to be Z/ $N!\mathbf{Z}$.

Now, we set $\epsilon=u_{2 n+1} u_{2 m+1} \in \mathrm{H}^{2 N}(X ; \mathbf{Z}),\langle\epsilon\rangle \in N_{N}(X)$ is the class determined by ϵ, and $\widetilde{\epsilon}=\iota\langle\epsilon\rangle$. Then, we have prepared three generators $\widetilde{\alpha}, \widetilde{\beta}$ and $\widetilde{\epsilon}$ of $U_{N}(X)$. All we have to do is to prove $[\widetilde{\alpha}, \widetilde{\beta}]=n!m!\widetilde{\epsilon}$.

Since ϵ_{n} is the generator of $\widetilde{K}^{1}\left(S^{2 n+1}\right) \cong\left[S^{2 n+1}, U(\infty)\right]$, it is well known that

$$
\epsilon_{n}^{*}\left(\sigma c_{k}\right)= \begin{cases}n!u_{2 n+1} & (k=n+1) \\ 0 & \text { (otherwise) }\end{cases}
$$

Hence, from (6.1) and the definition of $\widetilde{\alpha}$ and $\widetilde{\beta}$,

$$
\begin{aligned}
& \widetilde{\alpha}^{*}\left(x_{2 k+1}\right)= \begin{cases}n!u_{2 n+1} & (k=n) \\
0 & (\text { otherwise }),\end{cases} \\
& \widetilde{\beta}^{*}\left(x_{2 k+1}\right)= \begin{cases}m!u_{2 m+1} & (k=m) \\
0 & \text { (otherwise) } .\end{cases}
\end{aligned}
$$

Therefore $\sum_{k+l+1=n}\left(\widetilde{\alpha}^{*}\left(x_{2 k+1}\right) \cup \widetilde{\beta}^{*}\left(x_{2 l+1}\right)\right)=n!m!\epsilon$ and it follows from Theorem 1.4 that $[\widetilde{\alpha}, \widetilde{\beta}]=n!m!\widetilde{\epsilon}$.

Department of Natural Science Hyogo University of Teacher Education
 Department of Mathematics
 Faculty of Science
 Kyoto University

References

[1] M. Arkowitz, The generalized Whitehead Product, Pacific J. Math. 12 (1962), 7-23.
[2] M. F. Atiyah and F. Hirzeburch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math. 3 (1961), 7-38.
[3] R. Bott, A note on the Samelson product in the classical groups, Comment. Math. Helv. 34 (1960), 249-256.
[4] H. Hamanaka, Homotopy-commutativity in rotation groups, J. Math. Kyoto Univ. 36-3 (1996), 519-537.
[5] S. Y. Husseini, A note on the intrinsic join of Stiefel manifolds, Comment. Math. Helv. 38 (1963), 26-30.
[6] I. M. James, The topology of Stiefel manifolds, London Math. Soc. Lecture Notes 24, Cambridge University Press, 1976.

