A direct proof of dependence vanishing theorem for sequences generated by Weyl transformation

By

Kenji Yasutomi

1. Introduction

Sugita [1] proposed a problem relating to a pseudo-random number generation. Let $d^{(m)}(x)$ be the m-th digit of $x \geq 0$ in decimal part of its dyadic expansion, and $X_l^{(m)}$ be the $\{0,1\}$ -valued function on $[0,1)^2$ such that

$$X_l^{(m)}(x,\alpha) = \sum_{k=1}^m d^{(k)}(x+l\alpha) \pmod{2}.$$

When α is "good", the process $\{X_n^{(m)}(\,\cdot\,,\alpha)\}_{n=0}^\infty$ on ([0,1),P) converges in law to $\{0,1\}$ -valued fair i.i.d. when $m\to\infty$, where P is the Lebesgue measure on [0,1). Note that the process $\{X_n^{(m)}(\,\cdot\,,\alpha)\}_{n=0}^\infty$ is generated by the Weyl transformation and has strong dependence. The convergence claims that the dependence disappears when $m\to\infty$. The problem is the following.

Problem. What α is "good"?

Sugita [1] conjectured that any irrational number α is "good" and showed that any α with dyadic expansion containing some finite sequences infinity many times is "good".

Since the method in Sugita [1] was complicated, we showed a.e. α is "good" in [4] for any Bernoulli measure P and any base of expansion by using a simple method originated with Sugita [2]. But, since we regarded α as a random variable, we could not know whether each given α is "good" or not.

In this paper, we show α which satisfies a condition similar to Sugita [1] is "good" by a more direct method. Moreover, our method assures that the extensions of the class of measures P and that base of expansion in [4] are still valid.

2. Theorem

Let $b \geq 2$ be a natural number, $d^{(m)}(x)$ be the m-th digit of $x \geq 0$ in decimal part of its base-b expansion, and $X_l^{(m)}$ be a $\{0,\ldots,b-1\}$ -valued function on $[0,1)^2$ such that

$$X_l^{(m)}(x,\alpha) = \sum_{k=1}^m d^{(k)}(x+l\alpha) \pmod{b}.$$

We assume that P is a measure on [0,1) such that $\{d^{(i)}\}_i$ is independent with respect to it, and that

$$\liminf_{i} \min_{0 \le \varsigma < b} P(d^{(i)} = \varsigma) > 0.$$

Our main result is the following:

Theorem 2.1. Any α with base-b expansion containing any finite sequence infinity many times is "good", i.e., the process $\{X_n^{(m)}(\,\cdot\,,\alpha)\}_{n=0}^\infty$ on ([0,1),P) converges in law to $\{0,\ldots,b-1\}$ -valued fair i.i.d. when $m\to\infty$.

Sugita [1] actually showed Theorem 2.1 in case b=2 and P is the Lebesgue measure. In fact, we show the following stronger statement:

Proposition 2.1. For each $n \in \mathbb{N}$, let $A_n \subset [0,1)$ be the set of all $\alpha \in [0,1)$ whose base-b expansion contains a finite sequence

$$\underbrace{0\cdots0}_{k+\kappa}\underbrace{0\cdots0}_{\kappa+2}1\underbrace{0\cdots0}_{\kappa+2}1\cdots\underbrace{0\cdots0}_{\kappa+2}1\underbrace{0\cdots0}_{k+\kappa}$$

infinity many times for every k, where $\kappa := \min\{j \in \mathbb{N} \mid b^j \geq n-1\}$ and $M := n(b-1)(b^{\kappa+2} + (b-1)b^{\kappa})$. Then any $\alpha \in \cap_{n=1}^{\infty} A_n$ is "good", i.e., the process $\{X_n^{(m)}(\cdot,\alpha)\}_{n=0}^{\infty}$ on ([0,1),P) converges in law to $\{0,\ldots,b-1\}$ -valued fair i.i.d. when $m \to \infty$.

Now, we prove Proposition 2.1.

Proof. To show Proposition 2.1, it is sufficient to see

(2.1)
$$P((X_0^{(m)}(\cdot, \alpha), \dots, X_{n-1}^{(m)}(\cdot, \alpha)) = \sigma) \to b^{-n} \quad (m \to \infty)$$

for any n and $\sigma \in \{0, \dots, b-1\}^n =: \Sigma$. Therefore we fix n and $\alpha \in A_n$ from now on, and define $\mathbf{X}^{(m)}$ by

$$\mathbf{X}^{(m)} := (X_0^{(m)}(\,\cdot\,,\alpha), \dots, X_{n-1}^{(m)}(\,\cdot\,,\alpha)).$$

Let us consider m as a new time parameter. Then, we can see that for a certain increasing sequence $\{m_i\}_i$, the $\{\mathbf{X}^{(m_i)}\}_i$ is 'almost' a strong irreducible Markov

chain whose unique stationary distribution is the uniform distribution on Σ . From this observation, (2.1) will be derived.

We use two lemmas. Lemma 2.1 claims that $P(\mathbf{X}^{(m)} = \sigma)$ is 'almost' a Markov kernel on Σ . By the assumption of measure P, we can find p > 0 and \bar{m} as $\inf_{i \geq \bar{m}} \min_{\varsigma} P(d^{(i)} = \varsigma) \geq p$. Let \equiv mean mod b equality for any component on Σ .

Lemma 2.1. Let $m \geq \bar{m}$, $m' \geq m + k + \kappa$, and $d^{(i)}(\alpha) = 0$ for $m < i \leq m'$. Then, for any $\sigma' \in \Sigma$,

$$\left| P(\mathbf{X}^{(m')} = \sigma') - \sum_{\sigma \in \Sigma} P(\mathbf{X}^{(m)} = \sigma) P(\mathbf{X}^{(m')} - \mathbf{X}^{(m)} \equiv \sigma' - \sigma) \right| \le 2(1 - p)^k.$$

Lemma 2.2 claims 'strong irreducibility'. Let * denote any one of $0, 1, \ldots, b-1$.

Lemma 2.2. There exists $\varepsilon > 0$ such that

$$\min_{\sigma} P(\mathbf{X}^{(\widehat{m})} - \mathbf{X}^{(m)} \equiv \sigma' - \sigma) \ge \varepsilon$$

for any $\sigma' \in \Sigma$, $k \geq 2$, $m \geq \bar{m}$ such that

$$\alpha = 0.\underbrace{*\cdots *}_{m}\underbrace{0\cdots 0}_{k+\kappa}\underbrace{0\cdots 0}_{k+2}1\underbrace{0\cdots 0}_{\kappa+2}1\cdots\underbrace{0\cdots 0}_{\kappa+2}1\underbrace{0\cdots 0}_{k+\kappa}*\cdots,$$

and $\widehat{m} := m + k + \kappa + M(\kappa + 3)$.

Now, we show (2.1) by using Lemmas 2.1 and 2.2. Let $m_i \geq \bar{m}$ be as

$$\alpha = 0.\underbrace{*\cdots *}_{m_i}\underbrace{0\cdots 0}_{k_i+\kappa}\underbrace{0\cdots 0}_{\kappa+2}1\underbrace{0\cdots 0}_{\kappa+2}1\cdots\underbrace{0\cdots 0}_{\kappa+2}1\underbrace{0\cdots 0}_{k_i+\kappa}*\cdots,$$

 $\widehat{m}_i := m_i + k_i + \kappa + M(\kappa + 3)$, and $E^{(j)}(\sigma) := P(\mathbf{X}^{(j)} = \sigma) - b^{-n}$. Then, by Lemma 2.1, for $m' \geq \widehat{m}_i + k_i + \kappa$,

$$\left| E^{(m')}(\sigma') - \sum_{\sigma \in \Sigma} E^{(\widehat{m}_i)}(\sigma) P(\mathbf{X}^{(m')} - \mathbf{X}^{(\widehat{m}_i)}) \equiv \sigma' - \sigma) \right| \le 2(1 - p)^{k_i}.$$

Therefore, because $P(\mathbf{X}^{(m')} - \mathbf{X}^{(\widehat{m}_i)} \equiv \sigma' - \sigma) \ge 0$,

$$\left| E^{(m')}(\sigma') \right| \le \sum_{\sigma \in \Sigma} \left| E^{(\widehat{m}_i)}(\sigma) \right| P(\mathbf{X}^{(m')} - \mathbf{X}^{(\widehat{m}_i)}) \equiv \sigma' - \sigma) + 2(1 - p)^{k_i}.$$

Note that $\sum_{\sigma \in \Sigma} P(\mathbf{X}^{(m')} - \mathbf{X}^{(\widehat{m}_i)}) \equiv \sigma' - \sigma = 1$. Thus

(2.2)
$$\max_{\sigma \in \Sigma} |E^{(m')}(\sigma)| \le \max_{\sigma \in \Sigma} |E^{(\widehat{m}_i)}(\sigma)| + 2(1-p)^{k_i}.$$

Again, by Lemma 2.1

$$\left| E^{(\widehat{m}_i)}(\sigma') - \sum_{\sigma \in \Sigma} E^{(m_i)}(\sigma) P(\mathbf{X}^{(\widehat{m}_i)} - \mathbf{X}^{(m_i)}) \equiv \sigma' - \sigma) \right| \le 2(1 - p)^{k_i}.$$

Noting $\varepsilon \sum_{\sigma \in \Sigma} E^{(m_i)}(\sigma) = 0$ and that $P(\mathbf{X}^{(\widehat{m}_i)} - \mathbf{X}^{(m_i)}) \equiv \sigma' - \sigma - \varepsilon \geq 0$ by Lemma 2.2, we have

$$\left| E^{(\widehat{m}_i)}(\sigma') \right| \leq \sum_{\sigma \in \Sigma} \left| E^{(m_i)}(\sigma) \right| \left(P(\mathbf{X}^{(\widehat{m}_i)} - \mathbf{X}^{(m_i)} \equiv \sigma' - \sigma) - \varepsilon \right) + 2(1 - p)^{k_i}.$$

Thus

(2.3)
$$\max_{\sigma \in \Sigma} |E^{(\widehat{m}_i)}(\sigma)| \le (1 - b^n \varepsilon) \max_{\sigma \in \Sigma} |E^{(m_i)}(\sigma)| + 2(1 - p)^{k_i}.$$

By the assumption of α , we can define $\{m_i, k_i\}$ as $m_{i+1} \geq \widehat{m}_i + k_i + \kappa$ and $k_i \geq i(\log(1 - b^n \varepsilon) - \log 2)/\log(1 - p)$. Therefore, by (2.2) and (2.3), we have

$$\begin{aligned}
&\max_{\sigma \in \Sigma} |E^{(m_{i+1})}(\sigma)| \le (1 - b^n \varepsilon) \max_{\sigma \in \Sigma} |E^{(m_i)}(\sigma)| + 4(1 - p)^{k_i} \\
&\le (1 - b^n \varepsilon)^i \left(\max_{\sigma \in \Sigma} |E^{(m_1)}(\sigma)| + 4 \sum_{j=1}^i (1 - b^n \varepsilon)^{-j} (1 - p)^{k_j} \right) \\
&\le (1 - b^n \varepsilon)^i \left(\max_{\sigma \in \Sigma} |E^{(m_1)}(\sigma)| + 4 \sum_{j=1}^i \frac{1}{2^j} \right) \\
&= (1 - b^n \varepsilon)^i (\max_{\sigma \in \Sigma} |E^{(m_1)}(\sigma)| + 4).
\end{aligned}$$

Since $k_i \to \infty$ when $i \to \infty$, by (2.2) and (2.4), for $m \ge \widehat{m}_{i+1} + k_{i+1} + \kappa$, we have

$$\max_{\sigma \in \Sigma} |E^{(m)}(\sigma)| \le \max_{\sigma \in \Sigma} |E^{(m_{i+1})}(\sigma)| + 2(1-p)^{k_{i+1}} \to 0 \qquad (i \to \infty).$$

3. Proof of Lemmas

Let the symbol $\lfloor \cdot \rfloor^m$ be the number which is rounded down to the m-th digit and $\langle \cdot \rangle_m$ be $\cdot - \lfloor \cdot \rfloor^m$, i.e. $\lfloor \cdot \rfloor^m = \cdot - \sum_{j=m+1}^\infty b^{-j} d^{(j)}(\cdot)$ and $\langle \cdot \rangle_m = \sum_{j=m+1}^\infty b^{-j} d^{(j)}(\cdot)$. For m < m', define $\langle \lfloor \cdot \rfloor \rangle_m''$ by $\langle \lfloor \cdot \rfloor \rangle_m'' := \lfloor \langle \cdot \rangle_m \rfloor^{m'} = \langle \lfloor \cdot \rfloor^{m'} \rangle_m = \sum_{j=m+1}^{m'} b^{-j} d^{(j)}(\cdot)$.

The main idea of Lemma 2.1 is as follows. The dependence of $\mathbf{X}^{(m)}$ and $\mathbf{X}^{(m')} - \mathbf{X}^{(m)}$ is caused by the carry at m-th digit which arises from the addition $x + l\alpha$. Therefore, intuitively, the 'dependence' is 'little' if $\langle \alpha \rangle_m$ is small enough.

Proof of Lemma 2.1. Let

$$A := \left\{ x \in [0,1) \mid \langle x \rangle_m < \frac{b^k - 1}{b^{m+k}} \right\}.$$

Since $\langle \alpha \rangle_m^{m+k+\kappa} = 0$ by the assumption of α , m and κ , we have

$$(3.1) \quad l\langle\alpha\rangle_m = l(\langle \lfloor\alpha\rfloor\rangle_m^{m+k+\kappa} + \langle\alpha\rangle_{m+k+\kappa}) < \frac{l}{h^{m+k+\kappa}} \le \frac{1}{h^{m+k}} \frac{n-1}{h^{\kappa}} \le \frac{1}{h^{m+k}}$$

for $l \leq n-1$. Therefore, $\langle x \rangle_m + l \langle \alpha \rangle_m < 1/b^m$ for $x \in A$, and hence no carry arises from the addition $x + l\alpha$ at m-th digit, i.e., $\lfloor \langle x \rangle_m + l \langle \alpha \rangle_m \rfloor^m = 0$. Thus $\lfloor x + l\alpha \rfloor^m = \lfloor x \rfloor^m + l \lfloor \alpha \rfloor^m + \lfloor \langle x \rangle_m + l \langle \alpha \rangle_m \rfloor^m = \lfloor x \rfloor^m + l \lfloor \alpha \rfloor^m = \lfloor x + l \lfloor \alpha \rfloor^m \rfloor^m$, i.e., $\mathbf{X}^{(m)}(\cdot, \alpha) = \mathbf{X}^{(m)}(\cdot, \lfloor \alpha \rfloor^m)$ on A. We let Δ denote the symmetric difference. Then

$$\{\mathbf{X}^{(m)} = \sigma\} \triangle \{\mathbf{X}^{(m)}(\cdot, |\alpha|^m) = \sigma\} \subset A^c.$$

Note that $\mathbf{X}^{(m)}(\cdot, \lfloor \alpha \rfloor^m)$ depend only on $d^{(1)}, \ldots, d^{(m)}$ and that $B_{\sigma'} := \{\mathbf{X}^{(m')} - \mathbf{X}^{(m)} \equiv \sigma' - \sigma\}$ depend only on $d^{(m+1)}, d^{(m+2)}, \ldots$. By the independence of base-b expansion,

$$\left| P(\mathbf{X}^{(m)} = \sigma) - \sum_{\sigma' \in \Sigma} P(\mathbf{X}^{(m)} = \sigma) P(\mathbf{X}^{(m')} - \mathbf{X}^{(m)} \equiv \sigma' - \sigma) \right| \\
\leq \sum_{\sigma' \in \Sigma} \left| P(\{\mathbf{X}^{(m)} = \sigma\} \cap B_{\sigma'}) - P(\mathbf{X}^{(m)} = \sigma) P(B_{\sigma'}) \right| \\
\leq \sum_{\sigma' \in \Sigma} \left| P(\{\mathbf{X}^{(m)} = \sigma\} \cap B_{\sigma'}) - P(\{\mathbf{X}^{(m)}(\cdot, \lfloor \alpha \rfloor^m) = \sigma\} \cap B_{\sigma'}) \right| \\
+ \sum_{\sigma' \in \Sigma} \left| P(\{\mathbf{X}^{(m)}(\cdot, \lfloor \alpha \rfloor^m) = \sigma\} \cap B_{\sigma'}) - P(\mathbf{X}^{(m)} = \sigma) P(B_{\sigma'}) \right| \\
\leq \sum_{\sigma' \in \Sigma} \left| P(\{\mathbf{X}^{(m)} = \sigma\} \cap B_{\sigma'}) - P(\{\mathbf{X}^{(m)}(\cdot, \lfloor \alpha \rfloor^m) = \sigma\} \cap B_{\sigma'}) \right| \\
+ \sum_{\sigma' \in \Sigma} P(B_{\sigma'}) \left| P(\mathbf{X}^{(m)}(\cdot, \lfloor \alpha \rfloor^m) = \sigma) - P(\mathbf{X}^{(m)} = \sigma) \right| \\
\leq \sum_{\sigma' \in \Sigma} P(A^c \cap B_{\sigma'}) + \sum_{\sigma' \in \Sigma} P(B_{\sigma'}) P(A^c) = 2P(A^c).$$

By the definition of A,

$$P(A^{c}) = P(0 < \forall i \le k, \ d^{(m+i)}(x) = b - 1)$$
$$= \prod_{i=1}^{k} P(d^{(m+i)}(x) = b - 1) \le (1 - p)^{k}.$$

To prove Lemma 2.2 we use following lemma. For $u \in \mathbb{N}$, let

$$Y(u) := \sum_{i=1}^{\kappa+3} d^{(i)} \left(\frac{u}{b^{\kappa+3}} \right) \pmod{b},$$

$$\mathbf{Y}(u) := (Y(u), Y(u+1), \dots, Y(u+n-1)).$$

For any $\sigma \in \Sigma$, there exist $0 \leq \varsigma < b$ and $0 \leq u_i < s$ $b^{\kappa+3} - b^{\kappa+1}$ such that

$$\sigma \equiv \varsigma \mathbf{1} + \sum_{i=1}^{M} \mathbf{Y}(u_i).$$

Now we can see the proof of Lemma 2.2.

Proof of Lemma 2.2. Let $\widetilde{m}_{-1} := m$, $\widetilde{m}_i := m + k + \kappa + i(\kappa + 3)$ for 0 < i < M and

$$A_{\varsigma,u_1,\dots,u_M} := \left\{ x \left| \sum_{i=\widetilde{m}_{-1}+1}^{\widetilde{m}_0} d^{(i)}(x) = \varsigma, \left\langle \! \left\lfloor x \right\rfloor \! \right\rangle_{\widetilde{m}_0}^{\widetilde{m}_M+1} = \sum_{i=1}^M \frac{u_i}{b^{\widetilde{m}_i}} \right. \right\}.$$

First, by the independence of $\{d^{(i)}\}_i$, we have

$$\begin{split} P(A_{\varsigma,u_{1},\dots,u_{M}}) &= P\left(\sum_{i=\widetilde{m}_{-1}+1}^{\widetilde{m}_{0}} d^{(i)}(x) = \varsigma\right) \prod_{j=\widetilde{m}_{0}+1}^{\widetilde{m}_{M}+1} P\left(d^{(j)}(x) = d^{(j)}\left(\sum_{i=1}^{M} \frac{u_{i}}{b^{\widetilde{m}_{i}}}\right)\right) \\ &\geq p^{M(\kappa+3)+1} \sum_{\varsigma'} P\left(\sum_{i=\widetilde{m}_{-1}+1}^{\widetilde{m}_{0}-1} d^{(i)}(x) = \varsigma'\right) P\left(d^{(\widetilde{m}_{0})} = \varsigma - \varsigma'\right) \\ &\geq p^{M(\kappa+3)+2} \sum_{\varsigma'} P\left(\sum_{i=\widetilde{m}_{-1}+1}^{\widetilde{m}_{0}-1} d^{(i)}(x) = \varsigma'\right) = p^{M(\kappa+3)+2} =: \varepsilon. \end{split}$$

Note that $\varepsilon > 0$ does not depend on $0 \le \varsigma < b$ or $0 \le u_i < b^{\kappa+3} - b^{\kappa+1}$. Thus, by Lemma 3.1, it is sufficient to prove Lemma 2.2 to see that

(3.2)
$$\left\{ x \mid \mathbf{X}^{(\widehat{m})}(x) - \mathbf{X}^{(m)}(x) \equiv \varsigma \mathbf{1} + \sum_{i=1}^{M} \mathbf{Y}(u_i) \right\} \supset A_{\varsigma, u_1, \dots, u_M}$$

for any $0 \le \varsigma < b$ and $0 \le u_i < b^{\kappa+3} - b^{\kappa+1}$. We will see that $\mathbf{X}^{(\widetilde{m}_{i-1})} - \mathbf{X}^{(\widetilde{m}_i)}$ is determined only by $\langle \lfloor x \rfloor \rangle_{\widetilde{m}_{i-1}}^{\widetilde{m}_i}$ on $A_{\varsigma,u_1,...,u_M}$. Note the assumption of $k,\,\alpha,$ and m, i.e., $k\geq 2$ and

$$\alpha = 0.\underbrace{*\cdots*}_{m}\underbrace{0\cdots0}_{k+\kappa}\underbrace{0\cdots0}_{k+2}\underbrace{1\underbrace{0\cdots0}}_{\kappa+2}\underbrace{1\cdots\underbrace{0\cdots0}}_{\kappa+2}\underbrace{1\underbrace{0\cdots0}}_{k+\kappa}*\cdots.$$

Since $\langle \alpha \rangle_{\widetilde{m}_i}^{\widetilde{m}_i + \kappa + 2} = 0$, we have

$$l\langle \alpha \rangle_{\widetilde{m}_i} < \frac{1}{h\widetilde{m}_i + 2} \quad \text{for} \quad 0 \le i \le M$$

in the same way as (3.1).

Let $x \in A_{\varsigma,u_1,\dots,u_M}$. Since $\langle \lfloor x \rfloor \rangle_{\widetilde{m}_i}^{\widetilde{m}_{i+1}} = u_{i+1}/b^{\widetilde{m}_{i+1}}$ for $0 \leq i < M$ and $\langle \lfloor x \rfloor \rangle_{\widetilde{m}_M}^{\widetilde{m}_M+1} = 0$, we have

$$\begin{split} \langle x \rangle_{\widetilde{m}_i} &= \langle \lfloor x \rfloor \rangle_{\widetilde{m}_i}^{\widetilde{m}_{i+1}} + \langle x \rangle_{\widetilde{m}_{i+1}} \\ &< \frac{u_{i+1}+1}{b\widetilde{m}_{i+1}} \leq \frac{b^{\kappa+3}-b^{\kappa+1}}{b\widetilde{m}_{i+1}} = \frac{1}{b\widetilde{m}_i} - \frac{1}{b\widetilde{m}_i+2} \qquad \text{for} \quad 0 \leq i < M, \\ \langle x \rangle_{\widetilde{m}_M} &= \langle \lfloor x \rfloor \rangle_{\widetilde{m}_M}^{\widetilde{m}_M+1} + \langle x \rangle_{\widetilde{m}_M+1} \leq \frac{1}{b\widetilde{m}_M+1} < \frac{1}{b\widetilde{m}_M} - \frac{1}{b\widetilde{m}_M+2}. \end{split}$$

Thus, no carry arises from the addition $x + l\alpha$ at \widetilde{m}_i -th digit, i.e. $\lfloor \langle x \rangle_{\widetilde{m}_i} + l \langle \alpha \rangle_{\widetilde{m}_i} \rfloor^{\widetilde{m}_i} = 0$ for $0 \le i \le M$. Therefore

$$\langle\!\langle x+l\alpha \rangle\!\rangle_{\widetilde{m}_{i-1}}^{\widetilde{m}_i} = \langle\!\langle \lfloor x \rfloor^{\widetilde{m}_i} + l \lfloor \alpha \rfloor^{\widetilde{m}_i} \rangle_{\widetilde{m}_{i-1}} = \langle\langle\!\langle x \rfloor\!\rangle_{\widetilde{m}_{i-1}}^{\widetilde{m}_i} + l \langle\!\langle \alpha \rfloor\!\rangle_{\widetilde{m}_{i-1}}^{\widetilde{m}_i} \rangle_{\widetilde{m}_{i-1}}.$$

Thus

$$\begin{split} X_l^{(\widetilde{m}_i)}(x) - X_l^{(\widetilde{m}_{i-1})}(x) &= \sum_{j=\widetilde{m}_{i-1}+1}^{m_i} d^{(j)}(\langle \lfloor x + l\alpha \rfloor)_{\widetilde{m}_{i-1}}^{\widetilde{m}_i}) \\ &= \sum_{j=\widetilde{m}_{i-1}+1}^{\widetilde{m}_i} d^{(j)}(\langle \lfloor x \rfloor)_{\widetilde{m}_{i-1}}^{\widetilde{m}_i} + l\langle \lfloor \alpha \rfloor)_{\widetilde{m}_{i-1}}^{\widetilde{m}_i}). \end{split}$$

Since $(\!(\alpha)\!)_{\widetilde{m}_{i-1}}^{\widetilde{m}_i} = 1/b^{\widetilde{m}_i}$ for $1 \leq i \leq M$ and $(\!(\alpha)\!)_{\widetilde{m}_{-1}}^{\widetilde{m}_0} = 0$,

$$\begin{split} X_{l}^{(\widetilde{m}_{i})}(x) - X_{l}^{(\widetilde{m}_{i-1})}(x) &= \sum_{j=\widetilde{m}_{i-1}+1}^{\widetilde{m}_{i}} d^{(j)} \left(\frac{u_{i}+l}{b^{\widetilde{m}_{i}}} \right) \\ &= Y(u_{i}+l) \quad \text{for} \quad 1 \leq i \leq M, \\ X_{l}^{(\widetilde{m}_{0})}(x) - X_{l}^{(\widetilde{m}_{-1})}(x) &= \sum_{j=\widetilde{m}_{-1}+1}^{\widetilde{m}_{0}} d^{(j)} (\langle\!\langle x \rangle\!\rangle_{\widetilde{m}_{-1}}^{\widetilde{m}_{0}}) = \varsigma. \end{split}$$

Therefore

$$\mathbf{X}^{(\widehat{m})}(x) - \mathbf{X}^{(m)}(x) \equiv \varsigma \mathbf{1} + \sum_{i=1}^{M} \mathbf{Y}(u_i).$$

Now we have the inclusion relation (3.2) and complete the proof of Lemma 2.2.

Finally, we see Lemma 3.1.

Proof of Lemma 3.1. We begin with some properties of the function Y. Let $J := (b-1)b^{\kappa} + b^{\kappa+2}$ and

$$s_j := \sum_{i=1}^J Y(j+i).$$

Then, we have that for $0 \le j < b^{\kappa}$,

$$s_{j} - s_{j-1} = \sum_{i=1}^{J} Y(j+i) - \sum_{i=1}^{J} Y(j-1+i)$$

$$= Y(j+J) - Y(j)$$

$$= \sum_{h=1}^{\kappa+3} \left(d^{(h)} \left(\frac{j}{b^{\kappa+3}} + \frac{b-1}{b^{3}} + \frac{1}{b^{1}} \right) - d^{(h)} \left(\frac{j}{b^{\kappa+3}} \right) \right)$$

$$= \sum_{h=4}^{\kappa+3} \left(d^{(h)} \left(\frac{j}{b^{\kappa+3}} \right) - d^{(h)} \left(\frac{j}{b^{\kappa+3}} \right) \right) + b - 1 + 1 = 0 \pmod{b}$$

and that

$$s_{b^{\kappa}} - s_{b^{\kappa} - 1} = \sum_{i=1}^{J} Y(b^{\kappa} + i) - \sum_{i=1}^{J} Y(b^{\kappa} - 1 + i)$$

$$= Y(b^{\kappa} + J) - Y(b^{\kappa})$$

$$= \sum_{h=1}^{\kappa+3} (d^{(h)}(b^{-2} + b^{-1}) - d^{(h)}(b^{-3})) = 1 \pmod{b}.$$

Thus, we have $s := s_{-1} = \cdots = s_{b^{\kappa}-1} \pmod{b}$ and $s_{b^{\kappa}} = s+1 \pmod{b}$. Then, for $1 \le l \le n$,

$$\sum_{i=1}^{J} \mathbf{Y}(b^{\kappa} - l + i) \equiv \sum_{i=1}^{J} (Y(b^{\kappa} - l + i), \dots, Y(b^{\kappa} - l + n - 1 + i))$$

$$\equiv (s_{b^{\kappa} - l}, \dots, s_{b^{\kappa} - l + n - 1})$$

$$\equiv (\underbrace{s, \dots, s}_{l}, s + 1, s_{b^{\kappa} + 1}, \dots, s_{b^{\kappa} - l + n - 1}).$$

Therefore,

$$-s\mathbf{1} + \sum_{i=1}^{J} \mathbf{Y}(b^{\kappa} - l + i) \equiv (\underbrace{0, \dots, 0}_{l}, 1, s_{b^{\kappa} + 1} - s, \dots, s_{b^{\kappa} - l + n - 1} - s) \equiv : \sigma_{l}.$$

Let $\sigma_0 := 1$. Then, for any $\sigma \in \Sigma$, there exist $M_l \geq 0$ such that $\sigma \equiv M_0 \sigma_0 + \cdots + M_{n-1} \sigma_{n-1}$ and $M_0 + \cdots + M_{n-1} \leq n(b-1)$. Therefore, since $\sigma_n \equiv \mathbf{0}, \ \sigma \equiv M_0 \sigma_0 + \cdots + M_{n-1} \sigma_{n-1} + M_n \sigma_n$ and $M_1 + \cdots + M_n = n(b-1)$

where $M_n := n(b-1) - (M_1 + \cdots + M_{n-1})$. Thus, we have

$$\sigma \equiv M_0 \mathbf{1} + \sum_{l=1}^n M_l \left(-s \mathbf{1} + \sum_{i=1}^J \mathbf{Y} (b^{\kappa} - l + i) \right)$$
$$\equiv \left(M_0 - s \sum_{l=1}^n M_l \right) \mathbf{1} + \sum_{l=1}^n M_l \sum_{i=1}^J \mathbf{Y} (b^{\kappa} - l + i).$$

Let

$$\varsigma := M_0 - s \sum_{l=1}^n M_l \pmod{b}$$
$$u_i := b^{\kappa} - l' + ((i-1) \bmod{J}) + 1$$

for $1 \le l' \le n$ and $J \sum_{1 \le l < l'} M_l < i \le J \sum_{1 \le l \le l'} M_l$. Then, since $M = (b^{\kappa+2} + (b-1)b^{\kappa})n(b-1) = J \sum_{l=1}^n M_l$, we have

$$\sigma \equiv \varsigma \mathbf{1} + \sum_{i=1}^{M} \mathbf{Y}(u_i)$$

and
$$0 \le u_i \le b^{\kappa} + J - 1 = b^{\kappa+1} + b^{\kappa+2} - 1 < b^{\kappa+3} - b^{\kappa+1}$$
.

KOBE UNIVERSITY ROKKO KOBE 657-8501, JAPAN e-mail: yasutomi@math.kobe-u.ac.jp

References

- [1] H. Sugita, Pseudo-random number generator by means of irrational rotation, Monte Carlo Methods Appl. 1-1 (1995), 35–57.
- [2] _____, Lectures at Kobe university, 2000.
- [3] S. Takanobu, On the strong-mixing property of skew product of binary transformation on 2-dimensional torus by irrational rotation, Tokyo J. Math. 25-1 (2002), 1-15.
- [4] K. Yasutomi, A limit theorem for sequences generated by Weyl transformation, Probab. Theory Related Fields. 124 (2002), 178–188.