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KO-theory of flag manifolds

By

Daisuke KisHimoToO, Akira KONO and Akihiro OHSITA

1. Introduction

The purpose of this paper is to determine the K O*-groups of flag manifolds
which are the homogeneous spaces G(n)/T for G = U, Sp, SO and T is the
maximal torus of G(n). We compute it by making use of the Atiyah-Hirzebruch
spectral sequence and obtain the following.

Theorem. The KO'-groups of G(n)/T for G = U,Sp,SO are as in
Table 1, where s = n!/2,2" 'n! for G = U, Sp and s = 2™ 2>m!, 2" tm! for
G = S0 and n =2m,2m + 1 respectively.

2. The Atiyah-Hirzebruch spectral sequence
First we recall that the coefficient ring of KO -theory is that
KO* = Z[a, z, 3, 7]/ (2a, o3, ax, 2* — 40),

where |a| = —1, |z| = —4 and |5] = —8.

Let X be a finite CW-complex. The Atiyah-Hirzebruch spectral sequence
of KO*(X) is the spectral sequence with E¥? = HP(X; KO?) converging to
KO*(X). It is well known that the differential dy of the Atiyah-Hirzebruch
spectral sequence of KO*(X) is given by the following (see [2]).

Sq®m, q=0(8),
dy? ={8¢%,  ¢=-1(8),
0, otherwise,

where 79 is the modulo 2 reduction.

It is well known that G/T is a CW-complex with only even cells, where G
is a compact connected Lie group and T is the maximal torus of G ([1]). The
next proposition, given in [4] and [5], is concerned with the Atiyah-Hirzebruch
spectral sequence of KO*(X) for the special X which can be G/T.

Proposition 2.1.  Let X be a CW-complex whose cohomology is torsion
free and concentrated in even dimension, and E.(X) be the r-th term of the
Atiyah-Hirzebruch spectral sequence of KO*(X). Then we have the following.
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1. o: EYY(X) > HP(H*(X;Z2); S¢?) for g = —1 (8).
2. Let d,. be the first non-trivial differential (r > 3).
(a) r=2(8).
(b) There exists x € EP°(X) such that ax # 0 and ad,x # 0.
(¢c) If X admits a map p: X x X — X which makes H*(H*(X; Z2);
Sq?) to be a Hopf algebra, then t(ax) is indecomposable and (d,x)
is primitive for the least p and v € EP°(X) in (b).

3. The S¢*-cohomology of flag manifolds
Recall that the cohomology of the flag manifold U(n)/T is
H*(U(n)/T;Z) = Zxy, ..., x0)/(c1,- .- cn),

where |z;| = 2 and ¢; is the j-th elementary symmetric function in 1, ..., x,.
We determine the Sq2-cohomology of U(n)/T by the similar way of Propo-
sition 2 in [4].

Proposition 3.1.

* * ~ ) sy Y8m—2), n=2m+1,
H (P (U (n) /T3 Z); $q7) = § [\ Wor 1000 vm=2)
/\(yﬁay14;---ay8m—10az)7 n:2ma

-1
where ysi—o and z are represented by > ryxf xf -xy and xf

respectively.

i< <dok

Proof. Let R be a differential graded algebra (Zs[z1,...,x,),d) with

|z;| = 2 and dz; = 7, and c¢; be the j-th elementary symmetric function in

19

Z1,...,Tn. Then we have
dco; = Coi41 + C1C24, dCoip1 = C1C2441,

where ¢; = 0 for j > n.

Let Ry be the graded differential algebra R; = R/(cy) with the differential
induced from R. We construct the differential graded algebra Rj (k < n)
inductively by the following short exact sequences.

0 Hng_llﬁl Rop—1—Ro, — 0 (2k<n)
0 —Rop L2k Rop — Ropy1— 0 (2k+1< n)
0—-Ry1 R, 1—R, —0 (n is even)
It is obvious that R,, = (H*(U(n)/T;Z>), Sq?) as a differential graded algebra.
We have the following long exact sequences.
c = H'(Rop_1) H(-cang1) HitHR+2(Roy ) iR (R )

S H™2(Ryjq) — -+ (2k < n)
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- — H'(Ray,) H(ey) H™ " (Ray,) — H™ " (Rays1)
3 H*2(Ry,) — -+ (2k+1<n)

Inductively we obtain

H*(Rok) = /\ (Y6, Y14, - - -, Ysk—10, C2), Scar = 1,
H*(Rak11) 2= AW, y1as - Ysk—2), Oysk—2 = car (2k+1<n).

Then ygi_o is represented by
2 : 2.2 2
Liy Ty Lig =+ Ly,
i1 <o <dag

and this completes the case that n is odd.
When n is even we have the following exact sequence.

N Hi(Rn—l) H(-_)cn) Hi+2n(Rn_1) R Hi+2n(Rn) LN HH_Z(Rn—l) .

Then we have

H*(Rn) = /\(y67y147 e 7y8m_10,z), 62 = 1 (Tl = Zm)

Therefore z is represented by zoxs3---x, = x’f‘l € R,, and this completes the
proof. O

It is well known that
H*(Sp(n)/T;Z) = Zlxy, ..., 2./ (3, ..., c2),
where |z;| = 2 and ¢; is the j-th elementary symmetric function in z1,...,z,.

Proposition 3.2.

H*(H*(Sp(n)/T;22); S4°) = \ (Y2, Y6, - - - » Yan—2),

where Yap_o s represented by > iatis i

i <<l

Proof. Let Ry be the differential graded algebra Zs[x1, . .., x,]| with dx; =
x2. We construct the differential graded algebra Ry for k < n inductively by
the following exact sequence.

-C2,
0— Ry =5 Ry — Rpy1 — 0

It is obvious that R, is isomorphic to (H*(Sp(n)/T;Zs),Sq*) as differential
graded algebras. We have the following exact sequence.

. .2 . . .
c— H(Ryoy) "N H(Ry ) — HY(Ry) S B2 () — -
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Then we obtain inductively

H*(Ri) = \(y2, 6, - - Yan—2), Syar—2 = 1.

2 .2

Therefore y45_o is represented by Zi1<..‘<ik Xiy T, TG xfk and this completes

the proof. O
It is known that
H*(SO(2n+¢€)/U(n); Zs) = A(ea, e4, .- -, €a(ntet1)) se2 = ey,

where € = 0,1, |e;| =4, ¢; = 0 for i > 2(n+e—1) and A(eq,...) is the Zs-
algebra whose Zs-module basis are e;, ---e;, (i1 < --- < x;,) ([6], [8]). We

see the following by making use of the fibration U(n)/T % SO(2n + €)/T %
SO(2n+€)/U(n).

H*(SO(2n+¢€)/T;Zo) = Zo[x1, ..., 20]/(C1,. . Cn) @ Alea, €4, .-+, €2(ntet1)),

where Sq?esi_o = eqi, j*(x;) = x; € HX(U(n)/T;Zy) and p*(e;) = e; €
H'(SO(2n+ €)/T; Z2). ([6], [8])

Proposition 3.3.
H*(H*(SO(2n +€)/T; Zs); Sq?)

NWes Y14 - - - Ysm—10,2) @ N(€Gs €145 - - - €m_105 [€am—2]), € = 0,n = 2m,
~ ) N6, Y14 Ysm—10,2) @ N(€§, €1as- -+ €8 _2)s e=1,n=2m,
) AWe, v14 - Ysm—2) @ A€k, €hay - - - Cams)s e=0,n=2m+1,
AW, Y14 - - - Ysm—2) @ A(e§, €las -+ - €5m_a, [€am+2]), e=1,n=2m+1,
where  Ygg—2, %, €q,_o are Tepresented by Zi1<,_,<m a:ilxi---:ﬁ?%,x?_l,

€4k_o2€e4k + esr_o Tespectively.

Proof. We have the following isomorphism as differential graded algebras
with the differential Sq2.

H*(SO(2n+¢€)/T;Z9) = H*(U(n)/T;Z2) @ H*(SO(2n +¢€)/U(n); Zs)
By Proposition 3.1, we obtain H*(H*(U(n)/T;Z2); Sq*). Then we compute
H*(H*(SO(2n + €)/U(n); Zs); Sq?).
Let M; be the following module, where e}, o = e4;_o2€4; + €s;—2.
M; = Zo(1, e45—2, €41, €5;_o)

Then we see that M; is the differential graded submodule of H*(SO(2n +
€)/U(n); Zs) with the differential S¢>. We have the following isomorphisms as
differential graded modules with the differential Sq?.

M ®: & Mp_1® Alegm—2),e =0,n =2m,
M Q- ®M,, e=1,n=2m,
M ®: - M,,, e=0n=2m+1,
M@ ® My @ A(eamy2), €=1,n=2m-+1.

H*(SO(2n+e€)/U(n); Zsy) =
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Since H*(M;;S¢%) = Zs(1, [e};_,]) and egi_22 = Sq¢*(esi—gesi + €16i—6), the
proof is completed. O

4. Proof of Theorem
Let BT™ be the classifying space of an n-torus and u, : BT™ x BT" —

BT?" be the identity. We can set H*(BT?";Z) = Z[x,...,T2,], H*(BT" x
BT™Z) 2 Z[xy,...,2,] @ Z[xny1, ..., T2, and

*(25) z; ®1, i< n,
€Tr;,) =
Hn i 1® x;, i>n.

Then we have the following.

* E 2,2 2
lu”n xilxizxi_g e xik
11 < <ip <21
_ 2 2 22 2
= E Ty, - xy, @1+ E Tiy Ty 0 Ty, Ty,
1< <ix<n 1y <o <bp—1 <n<ig
2 2 2 2
+ z : TiyTig w0 Ty, Ty Ty T

11 < <ig—2<n<ig—1<ig

2 2 2 2
+ E Ty @@y, cwp + E 1@z @y, ... xf,

11 <n<in< - <ig n<i;<...<tg
_ 2 .2 2 L2 2 2
= g iy Ty Ty -y, @1+ E Ty Xy - Ty, B
1 <-<ig<n 1< <ip—1<n<ig
§ 2 2 2
_|_ xilzig ...zik72 ®62+...

1 < <Lip—2<n<ip_1<ig

2 2 2 2
+ E T, ®cp_1+1® E Ty Ty, Ty, T,

11 <n<io< - <ip n<ip < <ip
where ¢; is the i-th elementary symmetric function in z,41,...,22,. Then we
have the following for yx, =3, . _;, xilxixi e x22k € H*(BT>;Z).
k—1
(%) Woolyn) =y @1+ 1@y + Y Yo ® ¢
i=1

Let pg/r : G/TxG/T — G/T be the natural inclusion for G = U, Sp, SO,
then we have the following commutative diagram.

G/T x G/T —— BT x BT

HG/Tl luoc

G/T _ BT
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Note Propositions 3.1, 3.2 and (*), then we see that H*(H*(G/T;Zs); Sq?) is
a Hopf algebra by pg,r for G = U, Sp. Consider the following commutative
diagram, where [ is the natural inclusion.

U/TxU/T —— SOJ/T x SO/T —— SO/U x SO/U

/»LU/TJ( luso/T ﬁl

Uu/T e SO/T e SO/U

Since SO/U is a Hopf space with the multiplication zi and Proposition 3.3
holds, we see that H*(H*(SO/T;Zs); Sq*) is a Hopf algebra by Hso,T-

Proposition 4.1. H*(H*(G/T;Z>); Sq?) is a Hopf algebra by payT for
G =U,Sp,SO.

Lemma 4.1. E.(G/T) collapses at r = 3 for G = U, Sp, SO.

Proof. Let d, : E.(U/T) — E.(U/T) be the first non-trivial differential
for r > 3, then we have r = 2 (8) by Proposition 2.1, (2), (a). There exists x €
EPO(U/T) such that t(ax) is indecomposable, ¢(d,.z) is primitive and oz # 0,
ad,x # 0 by Proposition 2.1, (2), (¢) and 4.1, where ¢ is as in Proposition 2.1,
(1). By Proposition 4.23 of [7] and Proposition 3.1, «(ax) and ¢(d,x) have degree
= —2 (8). Then we have r = |¢(d,z)| — |¢(ax)| = 0 (8) and this contradicts to
r = 2 (8). By the same way we see that F,(Sp/T) and E.(SO/T) collapse at
r=3. O

Consider the homomorphism E,.(G/T) — E.(G(n)/T) induced from the
natural inclusion

G(n)/T — G/T,

for G = U, Sp, SO, then we obtain the following for » > 3 by Propositions
3.1, 3.2, 3.3 and Lemma 4.1, where we identify H*(H*(G(n)/T;Zs); Sq?) with
E;’_l(G(n)/T) by Proposition 2.1, (1).

Proposition 4.2.  We have the following for r > 3:

drysk—2 =0, Ysk—2 € B2 (U(n)/T),
drysr—2 =0, Yar—2 € EF~1(Sp(n)/T),
drysk—2 = dregp_o = 0, Ysk—2: o € EXT1(SO(n)/T).

Proposition 4.3. We have the following for r > 3:

dregnt2 = 0, eanta € EFTH(SO(4n + 3)/T),
drégn_o =0, €an—2 € E:’_I(SO(4TL)/T)

Proof. Consider the following projection.

p:SO(4n +3)/T — SO(4n +3)/SO(4n + 2) = S +2
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Then we have p*(s) = eqnt2 € H*(SO(4n + 3)/T;Zy), where s is a generator
of HAn+2(§4n+2,7,) > Z,. It is easily seen that

Ey~H(S4?) = H(H* (5" Z9); S¢°) = A\ ([s]).

Since d,.([s]) = 0 (r > 3), we have d,.e4,12 = 0 (r > 3) for e4,12 € EF~1(SO(4n
+3)/T).

Since it is shown in Lemma 2.2 of [5] that dyeq,—2 = 0 (r > 3) for
ean—o € EX71(SO(4n) /U(2n)), we have d,e4,—2 = 0 (r > 3) for e4,_o €
E»~1(SO(4n)/T) by considering the homomorphism E,.(SO(4n)/U(2n)) —
E.(S0(4n)/T) induced from the projection SO(4n)/T — SO(4n)/U(2n). O

Proposition 4.4.  We have the following for r > 3:
drz =0, z € E.(SO(4n+¢)/T) (e=0,1),
dyz =0, z € E.(U(2n)/T).

Proof. It is shown in (2-6) and Theorem 2.5 of [5] that E,.(SO(4n +
€)/SO(2) x SO(4n + € — 2)) collapses at r = 3 and

_ t2n_1] S4 ,2) e=0

B3 (S0(An)/S0(2) x S0(n + ¢ — 2)) = § N A2l ’
§71(S0(n)/S0(2) x SO(n + ¢~ 2)) {/\([t%_l])’ o
where ¢t = i*(s ® 1) € H?(SO(4n + €)/SO(2) x SO(4n + € — 2);Zy), s is
a generator of H?(BSO(2);Z3) = Zy and the map i is as in the following
commutative diagram.

SO(4n +€)/T - BT

/| !

SO(n +¢)/SO(2) x SO(n + ¢ = 2) —— BSO(2) x BSO(4n + ¢ - 2)

Then we have p*(t) = z1 € H*(SO(4n + €)/T;Zs) and p*([t*"71]) = 2 €
Ey~'(SO(4n + €)/T) by Proposition 3.3. Since d,.([t**7']) = 0 (r > 3), we
have d,.z =0 (r > 3).

Consider the homomorphism j* : E,.(SO(4n +¢€)/T) — E.(U(2n)/T) in-
duced from the following inclusion.

j:U@2n)/T — SO(4n+¢€)/T
Then we have j*(z) = z € Ey ' (U(2n)/T) for z € Ey ' (SO(4n + €)/T).
Since d,.z = 0 (r > 3) for z € E.(SO4n +¢)/T), dvz =0 (r > 3) for z €
E.(U(2n)/T). O
By Propositions 4.2, 4.3 and 4.4, we have the following;:

Lemma 4.2. E,.(G(n)/T) collapses at r = 3 for G =U, Sp, SO.
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Proof of Theorem. Let X be a finite CW-complex such that H*(X;Z) is
torsion free and concentrated in even dimension. Consider the Bott sequence

= KY(X) = KO"™(X) - KO"™(X) S K™Y (X) — -+,
where ¢ : KO (X) — K'(X) is the complexification map. Since rc = 2 for
the realization map r : K%(X) — KO*X) and K*(X) is torsion free and

concentrated in even dimension, we have the following ([3]):

KO (X) = sZ,,
KO*(X) =rZ® s,
rank KO°(X) =rank KO™*(X)=)_rank H*(X;Z),

rank KO~(X) =rank KO~%(X) = " rank H*"*(X; Z).

Hence the extension of
trivial.
It is well known that the Poincaré series of G(n)/T is as follows ([6]):

prqnio1 ERUX) = B, E8k+2i-1 46 KO%~1(X) is

(1—12)--- (1 —t2")
(1—¢2)---(1—¢2)"
(1—t4)-~-(1—t4n)
(1—12)---(1—12)"

1 (1 —t4)-- (1 —t*m)
T+e2m (1—2)---(1—#2)
(1—t4)-~-(1—t4m)
(1—12).--(1—1¢2)°

G=U,

G = Sp,
P(G(n)/T) =

G =50,n=2m,

G=S50,n=2m+1.

By substituting ¢t = 1,v/—1 with P;(G(n)/T) we have the following,.

ZrankH4i(X; Z)= ZrankH4i+2(X; Z)
nl/2, G=U,
2n-Inl G = Sp,
2m=2m!, G = S0,n=2m,
2m=tml, G =80,n=2m+1.

By Propositions 2.1, 1 and Lemma 4.2, we see that E%~1(G(n)/T) =
Ey Y (G(n)/T) = H*(H*(G(n)/T;Zs);Sq?). Then the Poincaré series of
E%~Y(G(n)/T) are as follows by Propositions 3.1, 3.2 and 3.3, where degrees

oo



are taken by .

Pt(E*’7

1+15)-
1+4¢5).-
)
6

(
(
(
(L+t
(
(
(

(G(n)/T))

(
. (1 + t8m—2
-
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)
(LTI (1 4 i),
(141572,
(14142,
(L3I0 (1 4 1 m2))2,
(14 ¢3m=10)

)7
AL 3mT2))2 (1 4 ),
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G=U,n=2m,
G=Un=2m+1,
G = Sp,

G =50,n=4m,

(
(1 +tAm=2)(1 4+ 8m72) .G = SO, n = 4m + 1,
2

G =SO,n=4m +2,
G =S80,n=4m+3.

By substituting ¢ = 1,+/—1,e¥Y~1"/* with the Poincaré series above we com-

pletes the proof. O
Table 1. KO*-groups of G(n)/T

1

0 sZ D t3Zo

-1 toZs

—2 | SZDtoZo

-3 t1Zo

—4 | SZ D t1Zo

-5 toZs

—6 | SZ Ptolo

-7 t3Zo

U(n)/T
n 0 t 12 t3
8k | 22 4 (~1)kg2k-1 9dh—2 glk=2 _ (_1)kg2h-L 94k-2

8k +1 | 2462 4 (—1)ko2k-1 k=2 gik=2 _ (_])kg2k-1 94k—2
8k +9 24k—1_|_ 1)k22k 1 24k—1_(_1)k22k—1 24k 1 ( 1)k22k 1 24k 1+( 1)k22k—1
8k +3 | 281 4 (—1)k2t-1 24k—1+(_1>1c22k—1 94k—1 _ (- 1)k22k L gh=1_ (_1)kg2h-1
8k +4 2 4 (—1)ko2 2tk 2k — (—1)ko%
8k +5 2 4 (—1)k2% 24 2k — (—1)k
8k+6 24k+1+(71)k22k 24k+1+(71)k22k 24k+17(71)k22k 24k+17(71)k22k
8k + 7 24k+1 _ (_1)k221c 24k+1 + (_1)k22k 24k+1 +(_1)k22k 24k+1 _ (_1)k22k
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Sp(n)/T
lo 3] lo 13
2% 221@72 + 2k:71 22]672 22]{:72 _ 2]@*1 22]672
2k +1 | 92k—1 4 gk=1 92k—1 _ k=1 92k—1 _ gk—1 92k—1 4 ok—1
SO(n)/T
n to t1 tg t3
8k | 22 4 (—1)ko2-1 9k=2 gih=2 _(C)kg2k-1 9tk=2
8k +1 24k—2_|_(_1)k22k—1 9dk=2 k=2 _ (_1>k22k—1 9dk-2
8k+9 | 224 (_1)k22k—1 9k—2 k-2 _ (_1>k22k—1 9dk—2
8k+3 | 2414 (1)1 gkl (_1>k22k—1 9lk-1 _ (_1)k22k—1 glh=1 4 (_1)hg2k-1
8k +4 9tk gth _ (_1)kg2k 9tk gt | (_1)kg2k
8k+5 gt | (—1)kg2k 9tk gtk _ (_1)kg2k 9tk
8k+6 24k 24k + (_1)k22k 24k 24k _ (_1)k22k
8k +7 24k+1 _ (_1>k221c 24k+1 + (_1)k22k 24k+1 + (_1)k22k 24k+1 _ (_1)k22k
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