$K O$-theory of flag manifolds

By
Daisuke Kishimoto, Akira Kono and Akihiro Ohsita

1. Introduction

The purpose of this paper is to determine the $K O^{*}$-groups of flag manifolds which are the homogeneous spaces $G(n) / T$ for $G=U, S p, S O$ and T is the maximal torus of $G(n)$. We compute it by making use of the Atiyah-Hirzebruch spectral sequence and obtain the following.

Theorem. The $K O^{i}$-groups of $G(n) / T$ for $G=U, S p, S O$ are as in Table 1, where $s=n!/ 2,2^{n-1} n!$ for $G=U, S p$ and $s=2^{m-2} m!, 2^{m-1} m$! for $G=S O$ and $n=2 m, 2 m+1$ respectively.

2. The Atiyah-Hirzebruch spectral sequence

First we recall that the coefficient ring of $K O$-theory is that

$$
K O^{*}=\mathbf{Z}\left[\alpha, x, \beta, \beta^{-1}\right] /\left(2 \alpha, \alpha^{3}, \alpha x, x^{2}-4 \beta\right),
$$

where $|\alpha|=-1,|x|=-4$ and $|\beta|=-8$.
Let X be a finite CW-complex. The Atiyah-Hirzebruch spectral sequence of $K O^{*}(X)$ is the spectral sequence with $E_{2}^{p, q} \cong H^{p}\left(X ; K O^{q}\right)$ converging to $K O^{*}(X)$. It is well known that the differential d_{2} of the Atiyah-Hirzebruch spectral sequence of $K O^{*}(X)$ is given by the following (see [2]).

$$
d_{2}^{*, q}= \begin{cases}S q^{2} \pi_{2}, & q \equiv 0(8) \\ S q^{2}, & q \equiv-1(8) \\ 0, & \text { otherwise }\end{cases}
$$

where π_{2} is the modulo 2 reduction.
It is well known that G / T is a CW-complex with only even cells, where G is a compact connected Lie group and T is the maximal torus of G ([1]). The next proposition, given in [4] and [5], is concerned with the Atiyah-Hirzebruch spectral sequence of $K O^{*}(X)$ for the special X which can be G / T.

Proposition 2.1. Let X be a $C W$-complex whose cohomology is torsion free and concentrated in even dimension, and $E_{r}(X)$ be the r-th term of the Atiyah-Hirzebruch spectral sequence of $K O^{*}(X)$. Then we have the following.

[^0]1. $\iota: E_{3}^{p, q}(X) \cong H^{p}\left(H^{*}\left(X ; \mathbf{Z}_{2}\right) ; S q^{2}\right)$ for $q \equiv-1(8)$.
2. Let d_{r} be the first non-trivial differential $(r \geq 3)$.
(a) $r \equiv 2$ (8).
(b) There exists $x \in E_{r}^{p, 0}(X)$ such that $\alpha x \neq 0$ and $\alpha d_{r} x \neq 0$.
(c) If X admits a map $\mu: X \times X \rightarrow X$ which makes $H^{*}\left(H^{*}\left(X ; \mathbf{Z}_{2}\right)\right.$; $\left.S q^{2}\right)$ to be a Hopf algebra, then $\iota(\alpha x)$ is indecomposable and $\iota\left(d_{r} x\right)$ is primitive for the least p and $x \in E_{r}^{p, 0}(X)$ in (b).

3. The $S q^{2}$-cohomology of flag manifolds

Recall that the cohomology of the flag manifold $U(n) / T$ is

$$
H^{*}(U(n) / T ; \mathbf{Z}) \cong \mathbf{Z}\left[x_{1}, \ldots, x_{n}\right] /\left(c_{1}, \ldots, c_{n}\right)
$$

where $\left|x_{i}\right|=2$ and c_{j} is the j-th elementary symmetric function in x_{1}, \ldots, x_{n}.
We determine the $S q^{2}$-cohomology of $U(n) / T$ by the similar way of Proposition 2 in [4].

Proposition 3.1.

$$
H^{*}\left(H^{*}\left(U(n) / T ; \mathbf{Z}_{2}\right) ; S q^{2}\right) \cong \begin{cases}\bigwedge\left(y_{6}, y_{14}, \ldots, y_{8 m-2}\right), & n=2 m+1 \\ \bigwedge\left(y_{6}, y_{14}, \ldots, y_{8 m-10}, z\right), & n=2 m\end{cases}
$$

where $y_{8 k-2}$ and z are represented by $\sum_{i_{1}<\cdots<i_{2 k}} x_{i_{1}} x_{i_{2}}^{2} x_{i_{3}}^{2} \cdots x_{i_{2 k}}^{2}$ and x_{1}^{n-1} respectively.

Proof. Let R be a differential graded algebra $\left(\mathbf{Z}_{2}\left[x_{1}, \ldots, x_{n}\right], d\right)$ with $\left|x_{i}\right|=2$ and $d x_{i}=x_{i}^{2}$, and c_{j} be the j-th elementary symmetric function in x_{1}, \ldots, x_{n}. Then we have

$$
d c_{2 i}=c_{2 i+1}+c_{1} c_{2 i}, d c_{2 i+1}=c_{1} c_{2 i+1}
$$

where $c_{j}=0$ for $j>n$.
Let R_{1} be the graded differential algebra $R_{1}=R /\left(c_{1}\right)$ with the differential induced from R. We construct the differential graded algebra $R_{k}(k \leq n)$ inductively by the following short exact sequences.

$$
\begin{array}{lll}
0 \rightarrow R_{2 k-1} & \stackrel{c_{2 k+1}}{\longrightarrow} \\
2 k-1
\end{array} \rightarrow R_{2 k} \quad \rightarrow 0 \quad(2 k<n)
$$

It is obvious that $R_{n} \cong\left(H^{*}\left(U(n) / T ; \mathbf{Z}_{2}\right), S q^{2}\right)$ as a differential graded algebra.
We have the following long exact sequences.

$$
\begin{aligned}
\cdots \rightarrow H^{i}\left(R_{2 k-1}\right) \xrightarrow{H\left(\cdot c_{2 k+1}\right)} H^{i+4 k+2}\left(R_{2 k-1}\right) & \rightarrow H^{i+4 k+2}\left(R_{2 k}\right) \\
& \stackrel{\delta}{\rightarrow} H^{i+2}\left(R_{2 k-1}\right) \rightarrow \cdots \quad(2 k<n)
\end{aligned}
$$

$$
\begin{aligned}
\cdots \rightarrow H^{i}\left(R_{2 k}\right) \xrightarrow{H\left(\cdot c_{2 k}\right)} H^{i+4 k}\left(R_{2 k}\right) \rightarrow H^{i+4 k} & \left(R_{2 k+1}\right) \\
& \stackrel{\delta}{\rightarrow} H^{i+2}\left(R_{2 k}\right) \rightarrow \cdots \quad(2 k+1 \leq n)
\end{aligned}
$$

Inductively we obtain

$$
\begin{aligned}
H^{*}\left(R_{2 k}\right) & \cong \bigwedge\left(y_{6}, y_{14}, \ldots, y_{8 k-10}, c_{2 k}\right), \delta c_{2 k}=1 \\
H^{*}\left(R_{2 k+1}\right) & \cong \bigwedge\left(y_{6}, y_{14}, \ldots, y_{8 k-2}\right), \delta y_{8 k-2}=c_{2 k}(2 k+1 \leq n)
\end{aligned}
$$

Then $y_{8 k-2}$ is represented by

$$
\sum_{i_{1}<\cdots<i_{2 k}} x_{i_{1}} x_{i_{2}}^{2} x_{i_{3}}^{2} \cdots x_{i_{2 k}}^{2}
$$

and this completes the case that n is odd.
When n is even we have the following exact sequence.

$$
\cdots \rightarrow H^{i}\left(R_{n-1}\right) \xrightarrow{H\left(\cdot c_{n}\right)} H^{i+2 n}\left(R_{n-1}\right) \rightarrow H^{i+2 n}\left(R_{n}\right) \xrightarrow{\delta} H^{i+2}\left(R_{n-1}\right) \rightarrow \cdots
$$

Then we have

$$
H^{*}\left(R_{n}\right) \cong \bigwedge\left(y_{6}, y_{14}, \ldots, y_{8 m-10}, z\right), \delta z=1 \quad(n=2 m)
$$

Therefore z is represented by $x_{2} x_{3} \cdots x_{n}=x_{1}^{n-1} \in R_{n}$ and this completes the proof.

It is well known that

$$
H^{*}(S p(n) / T ; \mathbf{Z}) \cong \mathbf{Z}\left[x_{1}, \ldots, x_{n}\right] /\left(c_{1}^{2}, \ldots, c_{n}^{2}\right)
$$

where $\left|x_{i}\right|=2$ and c_{j} is the j-th elementary symmetric function in x_{1}, \ldots, x_{n}.

Proposition 3.2.

$$
H^{*}\left(H^{*}\left(S p(n) / T ; \mathbf{Z}_{2}\right) ; S q^{2}\right) \cong \bigwedge\left(y_{2}, y_{6}, \ldots, y_{4 n-2}\right)
$$

where $y_{4 k-2}$ is represented by $\sum_{i_{1}<\cdots<i_{k}} x_{i_{1}} x_{i_{2}}^{2} x_{i_{3}}^{2} \cdots x_{i_{k}}^{2}$.
Proof. Let R_{0} be the differential graded algebra $\mathbf{Z}_{2}\left[x_{1}, \ldots, x_{n}\right]$ with $d x_{i}=$ x_{i}^{2}. We construct the differential graded algebra R_{k} for $k \leq n$ inductively by the following exact sequence.

$$
0 \rightarrow R_{k} \xrightarrow{\cdot c_{k+1}^{2}} R_{k} \rightarrow R_{k+1} \rightarrow 0
$$

It is obvious that R_{n} is isomorphic to $\left(H^{*}\left(S p(n) / T ; \mathbf{Z}_{2}\right), S q^{2}\right)$ as differential graded algebras. We have the following exact sequence.

$$
\cdots \rightarrow H^{i}\left(R_{k-1}\right) \xrightarrow{H\left(\cdot c_{k}^{2}\right)} H^{i+4 k}\left(R_{k-1}\right) \rightarrow H^{i+4 k}\left(R_{k}\right) \xrightarrow{\delta} H^{i+2}\left(R_{k-1}\right) \rightarrow \cdots
$$

Then we obtain inductively

$$
H^{*}\left(R_{k}\right) \cong \bigwedge\left(y_{2}, y_{6}, \ldots, y_{4 k-2}\right), \delta y_{4 k-2}=1
$$

Therefore $y_{4 k-2}$ is represented by $\sum_{i_{1}<\ldots<i_{k}} x_{i_{1}} x_{i_{2}}^{2} x_{i_{3}}^{2} \cdots x_{i_{k}}^{2}$ and this completes the proof.

It is known that

$$
H^{*}\left(S O(2 n+\epsilon) / U(n) ; \mathbf{Z}_{2}\right) \cong \Delta\left(e_{2}, e_{4}, \ldots, e_{2(n+\epsilon+1)}\right), \quad ; e_{2 i}^{2}=e_{4 i}
$$

where $\epsilon=0,1,\left|e_{i}\right|=i, e_{i}=0$ for $i>2(n+\epsilon-1)$ and $\Delta\left(e_{2}, \ldots\right)$ is the $\mathbf{Z}_{2^{-}}$ algebra whose \mathbf{Z}_{2}-module basis are $e_{i_{1}} \cdots e_{i_{k}}\left(i_{1}<\cdots<x_{i_{k}}\right)$ ([6], [8]). We see the following by making use of the fibration $U(n) / T \xrightarrow{j} S O(2 n+\epsilon) / T \xrightarrow{p}$ $S O(2 n+\epsilon) / U(n)$.
$H^{*}\left(S O(2 n+\epsilon) / T ; \mathbf{Z}_{2}\right) \cong \mathbf{Z}_{2}\left[x_{1}, \ldots, x_{n}\right] /\left(c_{1}, \ldots, c_{n}\right) \otimes \Delta\left(e_{2}, e_{4}, \ldots, e_{2(n+\epsilon+1)}\right)$, where $S q^{2} e_{4 i-2}=e_{4 i}, j^{*}\left(x_{i}\right)=x_{i} \in H^{2}\left(U(n) / T ; \mathbf{Z}_{2}\right)$ and $p^{*}\left(e_{i}\right)=e_{i} \in$ $H^{i}\left(S O(2 n+\epsilon) / T ; \mathbf{Z}_{2}\right)$. ([6], [8])

Proposition 3.3.

$$
\begin{aligned}
& H^{*}\left(H^{*}\left(S O(2 n+\epsilon) / T ; \mathbf{Z}_{2}\right) ; S q^{2}\right) \\
& \cong \begin{cases}\bigwedge\left(y_{6}, y_{14} \ldots y_{8 m-10}, z\right) \otimes \bigwedge\left(e_{6}^{\prime}, e_{14}^{\prime}, \ldots, e_{8 m-10}^{\prime},\left[e_{4 m-2}\right]\right), \epsilon=0, n=2 m \\
\bigwedge\left(y_{6}, y_{14} \ldots y_{8 m-10}, z\right) \otimes \bigwedge\left(e_{6}^{\prime}, e_{14}^{\prime}, \ldots, e_{8 m-2}^{\prime}\right), & \epsilon=1, n=2 m \\
\bigwedge\left(y_{6}, y_{14} \ldots y_{8 m-2}\right) \otimes \bigwedge\left(e_{6}^{\prime}, e_{14}^{\prime}, \ldots, e_{8 m-2}^{\prime}\right), & \epsilon=0, n=2 m+1, \\
\bigwedge\left(y_{6}, y_{14} \ldots y_{8 m-2}\right) \otimes \bigwedge\left(e_{6}^{\prime}, e_{14}^{\prime}, \ldots, e_{8 m-2}^{\prime},\left[e_{4 m+2}\right]\right), & \epsilon=1, n=2 m+1,\end{cases}
\end{aligned}
$$

where $y_{8 k-2}, z, e_{8 k-2}^{\prime}$ are represented by $\sum_{i_{1}<\cdots<i_{2 k}} x_{i_{1}} x_{i_{2}}^{2} \cdots x_{i_{2 k}}^{2}, x_{1}^{n-1}$, $e_{4 k-2} e_{4 k}+e_{8 k-2}$ respectively.

Proof. We have the following isomorphism as differential graded algebras with the differential $S q^{2}$.

$$
H^{*}\left(S O(2 n+\epsilon) / T ; \mathbf{Z}_{2}\right) \cong H^{*}\left(U(n) / T ; \mathbf{Z}_{2}\right) \otimes H^{*}\left(S O(2 n+\epsilon) / U(n) ; \mathbf{Z}_{2}\right)
$$

By Proposition 3.1, we obtain $H^{*}\left(H^{*}\left(U(n) / T ; \mathbf{Z}_{2}\right) ; S q^{2}\right)$. Then we compute $H^{*}\left(H^{*}\left(S O(2 n+\epsilon) / U(n) ; \mathbf{Z}_{2}\right) ; S q^{2}\right)$.

Let M_{i} be the following module, where $e_{8 i-2}^{\prime}=e_{4 i-2} e_{4 i}+e_{8 i-2}$.

$$
M_{i}=\mathbf{Z}_{2}\left\langle 1, e_{4 i-2}, e_{4 i}, e_{8 i-2}^{\prime}\right\rangle
$$

Then we see that M_{i} is the differential graded submodule of $H^{*}(S O(2 n+$ $\left.\epsilon) / U(n) ; \mathbf{Z}_{2}\right)$ with the differential $S q^{2}$. We have the following isomorphisms as differential graded modules with the differential $S q^{2}$.
$H^{*}\left(S O(2 n+\epsilon) / U(n) ; \mathbf{Z}_{2}\right) \cong \begin{cases}M_{1} \otimes \cdots \otimes M_{m-1} \otimes \bigwedge\left(e_{4 m-2}\right), \epsilon=0, n=2 m, \\ M_{1} \otimes \cdots \otimes M_{m}, & \epsilon=1, n=2 m, \\ M_{1} \otimes \cdots \otimes M_{m}, & \epsilon=0, n=2 m+1, \\ M_{1} \otimes \cdots \otimes M_{m} \otimes \bigwedge\left(e_{4 m+2}\right), & \epsilon=1, n=2 m+1 .\end{cases}$

Since $H^{*}\left(M_{i} ; S q^{2}\right) \cong \mathbf{Z}_{2}\left\langle 1,\left[e_{8 i-2}^{\prime}\right]\right\rangle$ and $e_{8 i-2}^{\prime}{ }^{2}=S q^{2}\left(e_{8 i-6} e_{8 i}+e_{16 i-6}\right)$, the proof is completed.

4. Proof of Theorem

Let $B T^{n}$ be the classifying space of an n-torus and $\mu_{n}: B T^{n} \times B T^{n} \rightarrow$ $B T^{2 n}$ be the identity. We can set $H^{*}\left(B T^{2 n} ; \mathbf{Z}\right) \cong \mathbf{Z}\left[x_{1}, \ldots, x_{2 n}\right], H^{*}\left(B T^{n} \times\right.$ $\left.B T^{n} ; \mathbf{Z}\right) \cong \mathbf{Z}\left[x_{1}, \ldots, x_{n}\right] \otimes \mathbf{Z}\left[x_{n+1}, \ldots, x_{2 n}\right]$ and

$$
\mu_{n}^{*}\left(x_{i}\right)= \begin{cases}x_{i} \otimes 1, & i \leq n \\ 1 \otimes x_{i}, & i>n\end{cases}
$$

Then we have the following.

$$
\begin{aligned}
& \mu_{n}^{*}\left(\sum_{i_{1}<\cdots<i_{k} \leq 2 n} x_{i_{1}} x_{i_{2}}^{2} x_{i_{3}}^{2} \cdots x_{i_{k}}^{2}\right) \\
& =\sum_{i_{1}<\cdots<i_{k} \leq n} x_{i_{1}} x_{i_{2}}^{2} \cdots x_{i_{k}}^{2} \otimes 1+\sum_{i_{1}<\cdots<i_{k-1} \leq n<i_{k}} \sum_{i_{1}<\cdots<i_{k-2} \leq n<i_{k-1}<i_{k}} x_{i_{1}} x_{i_{2}}^{2} \cdots x_{i_{k-2}}^{2} \otimes x_{i_{k-1}}^{2} x_{i_{k}}^{2}+\cdots x_{i_{k-1}}^{2} \otimes x_{i_{k}}^{2} \\
& \quad+\sum_{i_{1} \leq n<i_{2}<\cdots<i_{k}} x_{i_{1}} \otimes x_{i_{2}}^{2} \cdots x_{i_{k}}^{2}+\sum_{n<i_{1}<\cdots<i_{k}} 1 \otimes x_{i_{1}} x_{i_{2}}^{2} \ldots x_{i_{k}}^{2} \\
& =\sum_{i_{1}<\cdots<i_{k} \leq n} x_{i_{1}} x_{i_{2}}^{2} x_{i_{3}}^{2} \cdots x_{i_{k}}^{2} \otimes 1+\sum_{i_{1}<\cdots<i_{k-1} \leq n<i_{k}} x_{i_{1}} x_{i_{2}}^{2} \cdots x_{i_{k-1}}^{2} \otimes c_{1}^{2} \\
& \quad+\sum_{i_{1}<\cdots<i_{k-2} \leq n<i_{k-1}<i_{k}}^{2} x_{i_{2}}^{2} \cdots x_{i_{k-2}}^{2} \otimes c_{2}^{2}+\cdots \\
& \quad+\sum_{i_{1} \leq n<i_{2}<\cdots<i_{k}} x_{i_{1}} \otimes c_{k-1}^{2}+1 \otimes \sum_{n \leq i_{1}<\cdots<i_{k}} x_{i_{1}} x_{i_{2}}^{2} x_{i_{3}}^{2} \cdots x_{i_{k}}^{2}
\end{aligned}
$$

where c_{i} is the i-th elementary symmetric function in $x_{n+1}, \ldots, x_{2 n}$. Then we have the following for $y_{k}=\sum_{i_{1}<\cdots<i_{k}} x_{i_{1}} x_{i_{2}}^{2} x_{i_{3}}^{2} \cdots x_{i_{k}}^{2} \in H^{*}\left(B T^{\infty} ; \mathbf{Z}\right)$.

$$
\begin{equation*}
\mu_{\infty}^{*}\left(y_{k}\right)=y_{k} \otimes 1+1 \otimes y_{k}+\sum_{i=1}^{k-1} y_{k-i} \otimes c_{i}^{2} \tag{*}
\end{equation*}
$$

Let $\mu_{G / T}: G / T \times G / T \rightarrow G / T$ be the natural inclusion for $G=U, S p, S O$, then we have the following commutative diagram.

Note Propositions 3.1, 3.2 and $(*)$, then we see that $H^{*}\left(H^{*}\left(G / T ; \mathbf{Z}_{2}\right) ; S q^{2}\right)$ is a Hopf algebra by $\mu_{G / T}$ for $G=U, S p$. Consider the following commutative diagram, where $\bar{\mu}$ is the natural inclusion.

Since $S O / U$ is a Hopf space with the multiplication $\bar{\mu}$ and Proposition 3.3 holds, we see that $H^{*}\left(H^{*}\left(S O / T ; \mathbf{Z}_{2}\right) ; S q^{2}\right)$ is a Hopf algebra by $\mu_{S O / T}$.

Proposition 4.1. $\quad H^{*}\left(H^{*}\left(G / T ; \mathbf{Z}_{2}\right) ; S q^{2}\right)$ is a Hopf algebra by $\mu_{G / T}$ for $G=U, S p, S O$.

Lemma 4.1. $\quad E_{r}(G / T)$ collapses at $r=3$ for $G=U, S p, S O$.
Proof. Let $d_{r}: E_{r}(U / T) \rightarrow E_{r}(U / T)$ be the first non-trivial differential for $r \geq 3$, then we have $r \equiv 2$ (8) by Proposition 2.1, (2), (a). There exists $x \in$ $E_{r}^{p, 0}(U / T)$ such that $\iota(\alpha x)$ is indecomposable, $\iota\left(d_{r} x\right)$ is primitive and $\alpha x \neq 0$, $\alpha d_{r} x \neq 0$ by Proposition 2.1, (2), (c) and 4.1, where ι is as in Proposition 2.1, (1). By Proposition 4.23 of [7] and Proposition 3.1, $\iota(\alpha x)$ and $\iota\left(d_{r} x\right)$ have degree $\equiv-2$ (8). Then we have $r \equiv\left|\iota\left(d_{r} x\right)\right|-|\iota(\alpha x)| \equiv 0$ (8) and this contradicts to $r \equiv 2$ (8). By the same way we see that $E_{r}(S p / T)$ and $E_{r}(S O / T)$ collapse at $r=3$.

Consider the homomorphism $E_{r}(G / T) \rightarrow E_{r}(G(n) / T)$ induced from the natural inclusion

$$
G(n) / T \rightarrow G / T,
$$

for $G=U, S p, S O$, then we obtain the following for $r \geq 3$ by Propositions 3.1, 3.2, 3.3 and Lemma 4.1, where we identify $H^{*}\left(H^{*}\left(G(n) / T ; \mathbf{Z}_{2}\right) ; S q^{2}\right)$ with $E_{3}^{*,-1}(G(n) / T)$ by Proposition 2.1, (1).

Proposition 4.2. We have the following for $r \geq 3$:

$$
\begin{array}{ll}
d_{r} y_{8 k-2}=0, & y_{8 k-2} \in E_{r}^{*,-1}(U(n) / T), \\
d_{r} y_{4 k-2}=0, & y_{4 k-2} \in E_{r}^{*,-1}(S p(n) / T), \\
d_{r} y_{8 k-2}=d_{r} e_{8 k-2}^{\prime}=0, & y_{8 k-2}^{\prime}, e_{8 k-2}^{\prime} \in E_{r}^{*,-1}(S O(n) / T)
\end{array}
$$

Proposition 4.3. We have the following for $r \geq 3$:

$$
\begin{aligned}
d_{r} e_{4 n+2}=0, & & e_{4 n+2} \in E_{r}^{*,-1}(S O(4 n+3) / T), \\
d_{r} e_{4 n-2}=0, & & e_{4 n-2} \in E_{r}^{*,-1}(S O(4 n) / T) .
\end{aligned}
$$

Proof. Consider the following projection.

$$
p: S O(4 n+3) / T \rightarrow S O(4 n+3) / S O(4 n+2)=S^{4 n+2}
$$

Then we have $p^{*}(s)=e_{4 n+2} \in H^{*}\left(S O(4 n+3) / T ; \mathbf{Z}_{2}\right)$, where s is a generator of $H^{4 n+2}\left(S^{4 n+2} ; \mathbf{Z}_{2}\right) \cong \mathbf{Z}_{2}$. It is easily seen that

$$
E_{3}^{*,-1}\left(S^{4 n+2}\right) \cong H^{*}\left(H^{*}\left(S^{4 n+2} ; \mathbf{Z}_{2}\right) ; S q^{2}\right) \cong \bigwedge([s])
$$

Since $d_{r}([s])=0(r \geq 3)$, we have $d_{r} e_{4 n+2}=0(r \geq 3)$ for $e_{4 n+2} \in E_{r}^{*,-1}(S O(4 n$ $+3) / T$).

Since it is shown in Lemma 2.2 of [5] that $d_{r} e_{4 n-2}=0(r \geq 3)$ for $e_{4 n-2} \in E_{r}^{*,-1}(S O(4 n) / U(2 n))$, we have $d_{r} e_{4 n-2}=0(r \geq 3)$ for $e_{4 n-2} \in$ $E_{r}^{*,-1}(S O(4 n) / T)$ by considering the homomorphism $E_{r}(S O(4 n) / U(2 n)) \rightarrow$ $E_{r}(S O(4 n) / T)$ induced from the projection $S O(4 n) / T \rightarrow S O(4 n) / U(2 n)$.

Proposition 4.4. We have the following for $r \geq 3$:

$$
\begin{aligned}
d_{r} z=0, & & z \in E_{r}(S O(4 n+\epsilon) / T) \quad(\epsilon=0,1), \\
d_{r} z=0, & & z \in E_{r}(U(2 n) / T) .
\end{aligned}
$$

Proof. It is shown in (2-6) and Theorem 2.5 of [5] that $E_{r}(S O(4 n+$ $\epsilon) / S O(2) \times S O(4 n+\epsilon-2)$) collapses at $r=3$ and

$$
E_{3}^{*,-1}(S O(4 n) / S O(2) \times S O(4 n+\epsilon-2)) \cong \begin{cases}\bigwedge\left(\left[t^{2 n-1}\right], s_{4 n-2}\right), & \epsilon=0 \\ \bigwedge\left(\left[t^{2 n-1}\right]\right), & \epsilon=1\end{cases}
$$

where $t=i^{*}(s \otimes 1) \in H^{2}\left(S O(4 n+\epsilon) / S O(2) \times S O(4 n+\epsilon-2) ; \mathbf{Z}_{2}\right), s$ is a generator of $H^{2}\left(B S O(2) ; \mathbf{Z}_{2}\right) \cong \mathbf{Z}_{2}$ and the map i is as in the following commutative diagram.

Then we have $p^{*}(t)=x_{1} \in H^{*}\left(S O(4 n+\epsilon) / T ; \mathbf{Z}_{2}\right)$ and $p^{*}\left(\left[t^{2 n-1}\right]\right)=z \in$ $E_{3}^{*,-1}(S O(4 n+\epsilon) / T)$ by Proposition 3.3. Since $d_{r}\left(\left[t^{2 n-1}\right]\right)=0(r \geq 3)$, we have $d_{r} z=0(r \geq 3)$.

Consider the homomorphism $j^{*}: E_{r}(S O(4 n+\epsilon) / T) \rightarrow E_{r}(U(2 n) / T)$ induced from the following inclusion.

$$
j: U(2 n) / T \rightarrow S O(4 n+\epsilon) / T
$$

Then we have $j^{*}(z)=z \in E_{3}^{*,-1}(U(2 n) / T)$ for $z \in E_{3}^{*,-1}(S O(4 n+\epsilon) / T)$. Since $d_{r} z=0(r \geq 3)$ for $z \in E_{r}(S O(4 n+\epsilon) / T), d_{r} z=0(r \geq 3)$ for $z \in$ $E_{r}(U(2 n) / T)$.

By Propositions 4.2, 4.3 and 4.4, we have the following:
Lemma 4.2. $\quad E_{r}(G(n) / T)$ collapses at $r=3$ for $G=U, S p, S O$.

Proof of Theorem. Let X be a finite CW-complex such that $H^{*}(X ; \mathbf{Z})$ is torsion free and concentrated in even dimension. Consider the Bott sequence

$$
\cdots \rightarrow K^{n}(X) \rightarrow K O^{n+2}(X) \rightarrow K O^{n+1}(X) \xrightarrow{\mathbf{c}} K^{n+1}(X) \rightarrow \cdots
$$

where $\mathbf{c}: K O^{i}(X) \rightarrow K^{i}(X)$ is the complexification map. Since $\mathbf{r c}=2$ for the realization map $\mathbf{r}: K^{i}(X) \rightarrow K O^{i}(X)$ and $K^{i}(X)$ is torsion free and concentrated in even dimension, we have the following ([3]):

$$
\begin{aligned}
K O^{2 i+1}(X) & \cong s \mathbf{Z}_{2}, \\
K O^{2 i}(X) & \cong r \mathbf{Z} \oplus s \mathbf{Z}_{2},
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{rank} K O^{0}(X)=\operatorname{rank} K O^{-4}(X)=\sum_{i} \operatorname{rank} H^{4 i}(X ; \mathbf{Z}), \\
& \operatorname{rank} K O^{-2}(X)=\operatorname{rank} K O^{-6}(X)=\sum_{i} \operatorname{rank} H^{4 i+2}(X ; \mathbf{Z}) .
\end{aligned}
$$

Hence the extension of $\bigoplus_{p+q=2 i-1} E_{\infty}^{p, q}(X) \cong \bigoplus_{k} E_{\infty}^{8 k+2 i,-1}$ to $K O^{2 i-1}(X)$ is trivial.

It is well known that the Poincaré series of $G(n) / T$ is as follows ([6]):

$$
P_{t}(G(n) / T)= \begin{cases}\frac{\left(1-t^{2}\right) \cdots\left(1-t^{2 n}\right)}{\left(1-t^{2}\right) \cdots\left(1-t^{2}\right)}, & G=U \\ \frac{\left(1-t^{4}\right) \cdots\left(1-t^{4 n}\right)}{\left(1-t^{2}\right) \cdots\left(1-t^{2}\right)}, & G=S p \\ \frac{1}{1+t^{2 m} \cdot \frac{\left(1-t^{4}\right) \cdots\left(1-t^{4 m}\right)}{\left(1-t^{2}\right) \cdots\left(1-t^{2}\right)},} & G=S O, n=2 m \\ \frac{\left(1-t^{4}\right) \cdots\left(1-t^{4 m}\right)}{\left(1-t^{2}\right) \cdots\left(1-t^{2}\right)}, & G=S O, n=2 m+1\end{cases}
$$

By substituting $t=1, \sqrt{-1}$ with $P_{t}(G(n) / T)$ we have the following.

$$
\begin{aligned}
\sum_{i} \operatorname{rank} H^{4 i}(X ; \mathbf{Z}) & =\sum_{i} \operatorname{rank} H^{4 i+2}(X ; \mathbf{Z}) \\
& = \begin{cases}n!/ 2, & G=U \\
2^{n-1} n!, & G=S p \\
2^{m-2} m!, & G=S O, n=2 m \\
2^{m-1} m!, & G=S O, n=2 m+1\end{cases}
\end{aligned}
$$

By Propositions 2.1, 1 and Lemma 4.2, we see that $E_{\infty}^{*,-1}(G(n) / T) \cong$ $E_{3}^{*,-1}(G(n) / T) \cong H^{*}\left(H^{*}\left(G(n) / T ; \mathbf{Z}_{2}\right) ; S q^{2}\right)$. Then the Poincaré series of $E_{\infty}^{*,-1}(G(n) / T)$ are as follows by Propositions 3.1, 3.2 and 3.3, where degrees
are taken by $*$.

$$
\begin{aligned}
& P_{t}\left(E_{\infty}^{*,-1}(G(n) / T)\right) \\
& \quad= \begin{cases}\left(1+t^{6}\right) \cdots\left(1+t^{8 m-10}\right)\left(1+t^{4 m-2}\right), & G=U, n=2 m, \\
\left(1+t^{6}\right) \cdots\left(1+t^{8 m-2}\right), & G=U, n=2 m+1, \\
\left(1+t^{2}\right) \cdots\left(1+t^{4 n-2}\right), & G=S p, \\
\left(\left(1+t^{6}\right) \cdots\left(1+t^{8 m-10}\right)\left(1+t^{4 m-2}\right)\right)^{2}, & G=S O, n=4 m, \\
\left(\left(1+t^{6}\right) \cdots\left(1+t^{8 m-10}\right)\right)^{2}\left(1+t^{4 m-2}\right)\left(1+t^{8 m-2}\right), G=S O, n=4 m+1, \\
\left(\left(1+t^{6}\right) \cdots\left(1+t^{8 m-2}\right)\right)^{2}, & G=S O, n=4 m+2, \\
\left(\left(1+t^{6}\right) \cdots\left(1+t^{8 m-2}\right)\right)^{2}\left(1+t^{4 m+2}\right), & G=S O, n=4 m+3 .\end{cases}
\end{aligned}
$$

By substituting $t=1, \sqrt{-1}, e^{\sqrt{-1} \pi / 4}$ with the Poincaré series above we completes the proof.

Table 1. $K O^{*}$-groups of $G(n) / T$

i	
0	$s \mathbf{Z} \oplus t_{3} \mathbf{Z}_{2}$
-1	$t_{0} \mathbf{Z}_{2}$
-2	$s \mathbf{Z} \oplus t_{0} \mathbf{Z}_{2}$
-3	$t_{1} \mathbf{Z}_{2}$
-4	$s \mathbf{Z} \oplus t_{1} \mathbf{Z}_{2}$
-5	$t_{2} \mathbf{Z}_{2}$
-6	$s \mathbf{Z} \oplus t_{2} \mathbf{Z}_{2}$
-7	$t_{3} \mathbf{Z}_{2}$

$U(n) / T$

n	t_{0}	t_{1}	t_{2}	t_{3}
$8 k$	$2^{4 k-2}+(-1)^{k} 2^{2 k-1}$	$2^{4 k-2}$	$2^{4 k-2}-(-1)^{k} 2^{2 k-1}$	$2^{4 k-2}$
$8 k+1$	$2^{4 k-2}+(-1)^{k} 2^{2 k-1}$	$2^{4 k-2}$	$2^{4 k-2}-(-1)^{k} 2^{2 k-1}$	$2^{4 k-2}$
$8 k+2$	$2^{4 k-1}+(-1)^{k} 2^{2 k-1}$	$2^{4 k-1}-(-1)^{k} 2^{2 k-1}$	$2^{4 k-1}-(-1)^{k} 2^{2 k-1}$	$2^{4 k-1}+(-1)^{k} 2^{2 k-1}$
$8 k+3$	$2^{4 k-1}+(-1)^{k} 2^{2 k-1}$	$2^{4 k-1}+(-1)^{k} 2^{2 k-1}$	$2^{4 k-1}-(-1)^{k} 2^{2 k-1}$	$2^{4 k-1}-(-1)^{k} 2^{2 k-1}$
$8 k+4$	$2^{4 k}$	$2^{4 k}+(-1)^{k} 2^{2 k}$	$2^{4 k}$	$2^{4 k}-(-1)^{k} 2^{2 k}$
$8 k+5$	$2^{4 k}$	$2^{4 k}+(-1)^{k} 2^{2 k}$	$2^{4 k}$	$2^{4 k}-(-1)^{k} 2^{2 k}$
$8 k+6$	$2^{4 k+1}+(-1)^{k} 2^{2 k}$	$2^{4 k+1}+(-1)^{k} 2^{2 k}$	$2^{4 k+1}-(-1)^{k} 2^{2 k}$	$2^{4 k+1}-(-1)^{k} 2^{2 k}$
$8 k+7$	$2^{4 k+1}-(-1)^{k} 2^{2 k}$	$2^{4 k+1}+(-1)^{k} 2^{2 k}$	$2^{4 k+1}+(-1)^{k} 2^{2 k}$	$2^{4 k+1}-(-1)^{k} 2^{2 k}$

$$
S p(n) / T
$$

n	t_{0}	t_{1}	t_{2}	t_{3}
$2 k$	$2^{2 k-2}+2^{k-1}$	$2^{2 k-2}$	$2^{2 k-2}-2^{k-1}$	$2^{2 k-2}$
$2 k+1$	$2^{2 k-1}+2^{k-1}$	$2^{2 k-1}-2^{k-1}$	$2^{2 k-1}-2^{k-1}$	$2^{2 k-1}+2^{k-1}$

$$
S O(n) / T
$$

n	t_{0}	t_{1}	t_{2}	t_{3}
$8 k$	$2^{4 k-2}+(-1)^{k} 2^{2 k-1}$	$2^{4 k-2}$	$2^{4 k-2}-(-1)^{k} 2^{2 k-1}$	$2^{4 k-2}$
$8 k+1$	$2^{4 k-2}+(-1)^{k} 2^{2 k-1}$	$2^{4 k-2}$	$2^{4 k-2}-(-1)^{k} 2^{2 k-1}$	$2^{4 k-2}$
$8 k+2$	$2^{4 k-2}+(-1)^{k} 2^{2 k-1}$	$2^{4 k-2}$	$2^{4 k-2}-(-1)^{k} 2^{2 k-1}$	$2^{4 k-2}$
$8 k+3$	$2^{4 k-1}+(-1)^{k} 2^{2 k-1}$	$2^{4 k-1}-(-1)^{k} 2^{2 k-1}$	$2^{4 k-1}-(-1)^{k} 2^{2 k-1}$	$2^{4 k-1}+(-1)^{k} 2^{2 k-1}$
$8 k+4$	$2^{4 k}$	$2^{4 k}-(-1)^{k} 2^{2 k}$	$2^{4 k}$	$2^{4 k}+(-1)^{k} 2^{2 k}$
$8 k+5$	$2^{4 k}+(-1)^{k} 2^{2 k}$	$2^{4 k}$	$2^{4 k}-(-1)^{k} 2^{2 k}$	$2^{4 k}$
$8 k+6$	$2^{4 k}$	$2^{4 k}+(-1)^{k} 2^{2 k}$	$2^{4 k}$	$2^{4 k}-(-1)^{k} 2^{2 k}$
$8 k+7$	$2^{4 k+1}-(-1)^{k} 2^{2 k}$	$2^{4 k+1}+(-1)^{k} 2^{2 k}$	$2^{4 k+1}+(-1)^{k} 2^{2 k}$	$2^{4 k+1}-(-1)^{k} 2^{2 k}$

Department of Mathematics
Kyoto University
Kyoto 606-8502, Japan
e-mail : kishi@kusm.kyoto-u.ac.jp
Department of Mathematics
Kyoto University
Kyoto 606-8502, Japan
e-mail : kono@kusm.kyoto-u.ac.jp
Faculty of Human Sciences
Osaka University of Economics
Osaka 533-8533, Japan
e-mail : ohsita@osaka-ue.ac.jp

References

[1] R. Bott and H. Samelson, Application of the theory of Morse to symmetric spaces, Amer. J. Math. 80 (1958), 964-1029.
[2] M. Fujii, KO-groups of projective spaces, Osaka J. Math. 4 (1967), 141149.
[3] S. G. Hogger, On KO theory of Grassmannians, Quart. J. Math. Oxford (2) 20 (1969), 447-463.
[4] S. Hara and A. Kono, KO-theory of complex Grassmannians, J. Math. Kyoto Univ. 31 (1991), 827-833.
[5] , KO-theory of Hermitian symmetric spaces, Hokkaido Math. J. 21 (1992), 103-116.
[6] A. Kono and K. Ishitoya, Squaring operations in mod 2 cohomology of quotients of compact Lie groups by maximal tori, Lecture Notes in Math. 1298 (1987), 192-206.
[7] J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. Math. 81 (1965), 211-264.
[8] H. Toda, On the cohomology ring of some homogeneous spaces, J. Math. Kyoto Univ. 15 (1975), 185-199.

[^0]: Received November 28, 2003

