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The image of cycle map of the classifying space
of the exceptional group F4

By

Nobuaki Yagita

Abstract

The image of the cycle map CH∗(BF4)(3) → H∗(BF4)(3) is studied
by using BP ∗-theory and the motivic cohomology.

1. Introduction

Let X be a smooth algebraic variety over the complex number field C.
Let CH∗(X) be its Chow ring and BP ∗(X) the Brown-Peterson cohomology
localized at a prime p. Totaro [To1] defined the modified cycle map

c̄l : CHn(X)(p) → (BP ∗(X) ⊗BP ∗ Z(p))2n

such that its composition with the Thom map (BP ∗(X) ⊗BP ∗ Z(p))2n →
H2n(X)(p) is the usual cycle map cl : CHn(X)(p) → H2n(X)(p). Totaro con-
jectures that the above map c̄l is isomorphic for any X = BG where G is a
linear algebraic group (e.g. finite group) over C. While BG itself is not a
smooth variety, it is a colimit of smooth varieties and we can define CH∗(BG)
naturally ([To1, 2]).

Totaro computed the Chow rings of classifying spaces of abelian groups and
symmetric groups in [To1, 2], and he and Pandharipande [To2, P] determined
the Chow rings of BO(n), BSO(2n+1) and BSO(4). For these cases the cycle
maps c̄l are of course isomorphisms. Vezzosi [Ve] has shown that c̄l is epimor-
phic for X = BPGL3(C), p = 3. Surjectivity of c̄l are also shown in [Ya] for the
cases X = BG2, BSpin(7), BD8 ; the dihedral group of order 8 for p = 2, and
Bp1+2

+ ; the extraspecial p-group of order p3 and exponent p for odd primes.
In this paper, we consider the case that G is an algebraic group which cor-

responds the exceptional Lie group F4 and p = 3. The mod 3 ordinary cohomol-
ogy H∗(BF4; Z/3) and its cohomology operations are completely determined
by Toda [Toda]. The BP -theory BP ∗(BF4) is computed by Kono-Yagita in
[K-Y]. Using these results we get new information of the cycle map c̄l, while
our results are incomplete. The cohomology H∗(BF4; Z/3) is generated by xi

of degree i = 4, 8, 9, 20, 21, 25, 26, 36 and 48.
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182 Nobuaki Yagita

Proposition 1.1. Let X = BF4 and p = 3. If x2
8 ∈ Im(cl), then c̄l is

epic.

2. mod 3 cohomology and BP -theory

We recall H∗(BF4; Z/3) and BP ∗(BF4) which are used in the preceding
section. The mod 3 cohomology is completely determined by Toda.

Theorem 2.1 ([Toda]). The cohomology H∗(BF4; Z/3) is (additively)
isomorphic to

Z/3[x36, x48]⊗(Z/3[x4, x8]⊗{1, x20, x
2
20}+Z/3[x26]⊗Λ(x9)⊗{1, x20, x21, x25}),

where the above two terms have the intersection {1, x20}.

Remark. Toda also determines the multiplicative structure. See [Toda]
for detail multiplicative relations ,e.g., x21x8 + x20x9 = 0.

This theorem is proved by use of the fiber bundle

(2.1) Π −→ BSpin(9) −→ BF4,

where Π = F4/Spin(9) is the Cayley plane. Let T be the maximal torus
of Spin(9) ⊂ F4, and W (G) the Weyl group of G. Let H∗(BT ; Z/3) ∼=
Z/3[u1, u2, u3, u4]. It is well-known that

H∗(BSpin(9); Z/3) ∼= H∗(BT ; Z/3)W (Spin(9)) ∼= Z/3[p1, p2, p3, p4],

where pi is the Pontrjagin class of degree 4i, which is the i-th elementary
symmetric function of variables u2

i . The Weyl group W (F4) is generated by
W (Spin(9)) and by R(ui) = ui − (u1 + u2 + u3 + u4)/2. The invariant ring for
F4 is also computed by Toda

H∗(BT ; Z/3)W (F4) ∼= Z/3[p1, p̄2, p̄5, p̄9, p̄12]/(r15) ⊂ Z/3[p1, p2, p3, p4],(2.2)

where p̄2 = p2 − p2
1, p̄5 = p4p1 + p3p̄2, p̄9 ≡ p3

3 mod(I),

p̄12 ≡ p3
4 mod(I), r15 ≡ p̄3

5 mod(I) with I = Ideal(p1, p̄2).

Let us write the inclusion i : T ⊂ F4. The above elements correspond even
degree generators (except for x26)

(2.3) i∗(x4) = p1, i∗(x8) = p̄2, i∗(x20) = p̄5, i∗(x36) = p̄9, i∗(x48) = p̄12.

By using this fact, reduced power operations are also given by

P 1(x4) = −x8 + x2
4, P 1(x8) = x8x4, P 1(x20) = 0,(2.4)

P 3(x4) = 0, P 3(x8) = x20 − x2
8x4, P 3(x20) = x20(−x8 + x2

4)x4,

P 3x36 ≡ x48 mod(x4, x8), and so on.
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The other generators are defined by using the spectral sequence induced
from the fibering (2.1)

E∗,∗
2 = H∗(BF4; Z/3) ⊗ H∗(Π; Z/3) =⇒ H∗(BSpin(9); Z/3).

Let H∗(Π; Z/3) ∼= Z/3[w]/(w3) with |w| = 8. Then odd dimensional generators
and x26 are given by

d9(w) = x9, d17(x4w
2) = x21, d17(x8w

2) = x25, d17(x9w
2) = x26.

We also know the cohomology operations

(2.5) β(xi) = xi+1 (i = 8, 20, 25), P 1(x21) = x25, P 3(x9) = x21.

Now we consider the BP ∗(−)-theory. Let us write its coefficient ring by
BP ∗ = Z(p)[v1, . . . , vi, . . .] with |vi| = −2(pi − 1).

Theorem 2.2 ([K-Y]). The BP -cohomology BP ∗(BF4) has a filtration
whose graded ring is

grBP ∗(BF4) ∼= D ⊗ (BP ∗{1, 3x4} ⊕ BP ∗ ⊗ E ⊕ BP ∗/(3, v1, v2)[x26]{x26}),
where D = Z(3)[x36, x48] and E = Z(3)[x4, x8]{ab|a, b ∈ {x4, x8, x20}}.

This theorem is proved by use of the Atiyah-Hirzebruch spectral sequence

E2 = H∗(BF4) ⊗ BP ∗ =⇒ BP ∗(BF4).

There is no higher 3-torsion in H∗(BF4). Hence the integral cohomology can
be written as

H∗(BF4)(3) ∼= D ⊗ (Z(3){1, x4} ⊕ E ⊕ Z/3[x26]{x26, x21, x9, x9x21}).
The first nonzero differential is d2p−1 = v1⊗Q1. From (2.4) and (2.5), we have
Q1(x4) = x9, Q1(x21) = x26. Here we note that x4 is torsion free but x9 is
3-torsion. Hence we get

E∗,∗
2p

∼= D ⊗ (BP ∗{1, 3x4} ⊕ BP ∗ ⊗ E ⊕ BP ∗/(3, v1)[x26]{x26, x9}).
Since all odd dimensional elements are just v1-torsion, it is proved that the
next nonzero differential is d2p2−1 = v2 ⊗ Q2. We also know Q2x9 = x26 from
(2.5). Therefore we get

E∗,∗
2p2

∼= D ⊗ (BP ∗{1, 3x4} ⊕ BP ∗ ⊗ E ⊕ BP ∗/(3, v1, v2)[x26]{x26}).
Since this algebra is generated by even dimensional elements, it is also the E∞
-term of the spectral sequence. Thus we get the theorem.

3. Cohomology operations and representations

We will study elements in BP ∗(BF4) ⊗BP ∗ Z(3) which are represented by
Chern classes or their reduced power operations. At first we know the following
fact.
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Lemma 3.1. Let RP ⊂ A∗
3 be the subalgebra generated by reduced power

operations. Then the ring E/3 ⊂ H∗(BF4; Z/3) is generated as an RP -algebra
by x2

4, x
2
8 and x3

4.

Proof. Recall E = Z(3)[x4, x8]{ab|a, b ∈ {x4, x8, x20}}. Hence it is gener-
ated as a ring by ab or abc with a, b ∈ {x4, x8, x20} and c ∈ {x4, x8}. Using
(2.4), we easily get the following diagram of reduced powers actions.

x2
4

P 1−−−−→ −x3
4 + x8x4

P 1−−−−→ x2
8 + x8x

2
4

P 1−−−−→ x2
8x4

P 3

� P 3 P 3

� P 3 P 3

�

x3
8, x20x4 x8x20, x20x

2
4 x20x4x8

P 1−−−−→ x20x
2
8

P 3

� P 3

�

x2
20 x2

20x4
P 1−−−−→ x2

20x8

Here a
P i

−→ b means
P i(a) = ±b mod(UL),

where UL is the subalgebra of E generated by elements which appeared upper
or left side than the position of b. For example,

x3
4

P 3−→ x3
8 follows from P 3(x3

4) = −x3
8 + x6

4.

In the diagram, all elements of form ab or abc appeared. Hence we get the
lemma.

Next we consider the Chern classes of complex representations. The rep-
resentation ring of Spin(8) and F4 are give by ([Yo, page 281])

R(Spin(8)) ∼= R(T )W (Spin(8)) = Z[a, b, c, d] ⊂ Z[z1, z
−1
1 , . . . , z4, z

−1
4 ] = R(T ),

R(F4) ∼= R(T )W (F4) = Z[a + b + c, ab + bc + ca, abc, d] ⊂ R(Spin(8)),

where a =
∑

1≤i≤4

z2
i + z−2

i , b =
∑

ε1ε2ε3ε4=1

zε1
1 zε2

2 zε3
3 zε4

4 ,

c =
∑

ε1ε2ε3ε4=−1

zε1
1 zε2

2 zε3
3 zε4

4 ,

d = 4 +
∑

1≤i<j≤4

z2εi
i z

2εj

j with εk = 1 or − 1.

Let us write H∗(BT ) ∼= Z[u1, u2, u3, u4]. Then the total Chern class of repre-
sentations is given by

1 + c1 + c2 + · · · = c(
∑

za1
1 za2

2 za3
3 za4

4 ) = Π(1 + a1u1 + a2u2 + a3u3 + a4u4).

Lemma 3.2. We can take the generator x36 ∈ H∗(BF4; Z/3) by a
Chern class.
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Proof. Recall x36 ≡ p3
3 mod(Ideal(p1, p̄2)). We consider the restriction to

the 3-dimensional torus (S1)3 = T3 with H∗(BT3; Z/3) = Z/3[u1, u2, u3]. Let
us write c(d)|T3 = c(p1, p2, p3). Since pi is the elementary symmetric function
of the variables u2

j , if we take u1 = u2 = u3 = u and u4 = 0, then

p1 = 0, p2 = 0, p3 = u6 in Z/3[u].

Hence we have c(p1, p2, p3){ui=u,1≤i≤3} = c(0, 0, u6) in Z/3[u].
The restriction of the representation d to T3 is

d|T3 = 4 +
∑

1≤i<j≤3

z2εi
i z

2εj

j + 2
∑

1≤i≤3

z2εi
i .

Hence letting z1 = z2 = z3 = z, we have

d|T3 = 4 + 3(z4 + z−4 + 2) + 2 × 3(z2 + z−2).

Thus letting u1 = u2 = u3 = u, we get

c(d)|T3 = ((1 + 4u)(1 − 4u))3((1 + 2u)(1 − 2u))6 = 1 − u18 in Z/3[u].

Therefore we get c(d)19|T3 ≡ −p3
3 mod(p1, p̄2). This means that x36 can be

represented by a Chern class.

Lemma 3.3. In H∗(BF4; Z/3), x3
4, x4x8 are represented by Chern

classes but x2
4, x2

8 are not.

Proof. Recall i∗(x4) = p1 and i∗(x8) = p2 − p2
1. We consider the restric-

tion to T2 = (S1)2 with H∗(BT2; Z/3) ∼= Z/3[u1, u2]. Moreover we consider
the representation with z3

i = 1, that is R(T )/(z3
i = 1) because we only consider

mod(3) cohomology. Let us write wi = zi + z−1
i . Then

a|T2 = z2
1 + z−2

1 + z2
2 + z−2

2 + 4 = w1 + w2 + 4,

b|T2 = c|T2 = 2
∑

ε1ε2=±1

zε1
1 zε2

2 = 2w1w2,

d|T2 = 4 +
∑

ε1ε2=±1

z2εi
i z

2εj

j + 4(z2
1 + z−2

1 + z2
2 + z−2

2 ) + 4

= 8 + w1w2 + 4(w1 + w2).

To simplify the notations, let us write A = c(w1 + w2) and B = c(w1w2).
Then it is immediate that

A = (1 − u2
1)(1 − u2

2) = 1 − p1 + p2,

B = (1 − (u1 + u2)2)(1 − (u1 − u2)2) = 1 + p1 + p2
1 − p2.
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Now we compute the total Chern class of representations of F4.

c(d)|T2 = A4B, c(a + b + c)|T2 = c(w1 + w2 + 4 + 4w1w2) = AB4,

c(ab + ac + cb)|T2 = c(4(w1 + w2 + 4)w1w2 + 4w2
1w

2
2)

= c(4(7w1w2 + 4(w1 + w2) + 4)) = A16B28,

c(abc)|T2 = c(4(w1 + w2 + 4)w2
1w

2
2)

= c(4(10w1w2 + 16(w1 + w2) + 24)) = A64B40,

where we use w2
i = wi + 2 and w3

i = 3wi + 2.
All above Chern classes have the form for some C

ABC3 = (1 − p1 + p2)(1 + p1 + p2
1 − p2)C3

= (1 + (−p3
1 − p1p2) + (p2

1p2 − p2
2))C

3.

Thus the Chern class c8 is represented by only one generator

p2
1p2 − p2

2 = i∗(−x2
8 − x2

4x8).

For the Chern class c6, we get two cases

p3
1 − p1p2 = i∗(−x4x8), −p1p2 = i∗(−x3

4 − x4x8).

The first (resp. second) case comes from the case C3 = (1 − p3
1 + · · · ) (resp.

C3 = (1 + p3
1 + · · · )), e.g. C = A3 (resp. C = B3).

Lemma 3.4. The element 3x4 ∈ H∗(BF4)(3) is represented by a Chern
class.

Proof. Consider the restriction to S1 = T1 with H∗(BT1)(3). The restric-
tion of the representation d is d|T1 = 16 + 6(z2

1 + z−2
1 ). Hence the total Chern

class is
c(d)|T1 = (1 − 4u2)6 = 1 − 24u2 + · · · .

This means that the element 3x4 is represented by a Chern class in H∗(BF4)(3).

4. Cycle maps

For an algebraic variety X over C, Suslin-Voevodsky constructed the mo-
tivic cohomology H∗,∗(X)([Vo2]). This cohomology has the properties that if
X is smooth, then Hm,n(X) ∼= 0 for m > 2n, and H2n,n(X) ∼= CHn(X) the
classical Chow ring of algebraic cycles modulo rational equivalence. There is
the natural map (realization map)

tm,n
C

: Hm,n(X) → Hm(X)
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such that t2m,m
C

is the usual cycle map cl : CHm(X) → H2m(X). V. Voevodsky
defines ([Vo1, 2]) the cohomology (reduced and Bockstein) operations

β : Hm,n(X; Z/p) → Hm+1,n(X; Z/p),

P i : Hm,n(X; Z/p) → Hm+2(p−1)i,n+(p−1)i(X; Z/p),

Qi : Hm,n(X; Z/p) → Hm+2pi−1,n+pi−1(X; Z/p)

such that they commute with realization map t∗,∗
C

. In particular mod p Chow
ring CH∗(X)/p is closed under the reduced power operations. We also know
that ([H-K])

H∗,∗(BGLn) ∼= Z/p[c1, . . . , cn] ⊗ H∗,∗(pt) with deg(ci) = (2i, i).

Hence the Chow ring of BG also has Chern classes. Here H∗,∗(pt) is something
complicated but the mod p cohomology is just H∗,∗(pt; Z/p) ∼= Z/p[τ ] with
τ ∈ H0,1(pt; Z/p) ([Vo2], [Ya]).

By extending Quillen’s [Q] arguments, Levine and Morel defined the al-
gebraic cobordism theory Ω∗(−) as the universal theory in theories having
transfers and Chern classes [L-M1, 2] ( We say that h∗(X) is a theory having
transfers and Chern classes if this theory satisfies the axioms A1 to A4 in [L-M
1]). Given a theory h∗(−) having transfers and Chern classes, the universality
induces the existence of the natural map

ρh : Ω∗(−) → h∗(−).

The theories H2∗,∗(X) = ⊕nH2n,n(X) ∼= CH∗(X),
MGL2∗,∗(X) = ⊕nMGL2n,n(X) (motivic cobordism theory defined by V.
Vedodsky) and MU∗(X) are typical examples of theories having transfers and
Chern classes. In particular, Levine and Morel proves that

ρMU : Ω2n(pt) ∼= MU2n(pt), ρCH ⊗Ω∗ Z : (Ω∗(X) ⊗Ω∗ Z)2n ∼= CHn(X).

Hence the Totaro’s cycle map c̄l is represented as

ρMU ⊗Ω∗ Z ◦ (ρCH ⊗Ω∗ Z)−1 : CHn(X) → (Ω∗(X) ⊗Ω∗ Z)2n

→ (MU∗(X) ⊗MU∗ Z)2n.

Moreover they conjecture that ρMGL are always isomorphisms.
Let K0(X) be the Grothendieck group of algebraic vector bundles over X.

Let K̃(1)∗(X) be the integral K-theory, that is, K̃(1)∗ = Z(p)[v1, v
−1
1 ]. Then

they showed that

K̃(1)∗ ⊗ K0(X) ∼= Ω∗(X) ⊗Ω∗ K̃(1)∗.

Remark. Hopkins and Morel announced the existence of Atiyah-
Hirzebruch spectral sequences for generalized motivic theories. Then we have
MGL2∗,∗(X) ⊗MU∗ Z ∼= CH∗(X) and K̃(1)∗ ⊗ K0(X) ∼= MGL2∗,∗(X) ⊗MU∗

K̃(1)∗. Hence we can also prove all our results bellow using MGL2∗,∗(−)
instead of Ω∗(X).
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Lemma 4.1. The element x2
4 is in the image of the cycle map cl.

Proof. Merkurjev showed ([To2]) that the Grothendieck group K0(BG)
of algebraic vector bundles is isomorphic to the usual K-theory K(BG). We
also recall the Conner-Floyd relation

Ω∗(BG)(p) ⊗Ω∗
(p)

K̃(1)∗ ∼= K̃(1)∗ ⊗ K0(BG)

∼= K̃(1)∗(BG) ∼= BP ∗(BG) ⊗BP ∗ K̃(1)∗.

Let x = [x2
4] ∈ BP ∗(BF4). Since 0 
= x ∈ BP ∗(BF4)⊗BP ∗ K̃(1)∗, there is

an element x′ in Ω∗(BF4)(3) such that

ρBP (x′) = vs
1x for s ≥ 0.

Take the smallest s. Then x′ is an MU∗
(3)-module generator and x′ 
= 0 ∈

Ω(BF4)∗ ⊗Ω∗ Z(3)
∼= CH∗(BF4)(3).

Suppose s ≥ 1. Then |x′| = |vs
1x

2
4| ≤ 4. But it is known from Totaro

(Corollary 3.5 in [To2]) that

CHi(BG)(p)
∼= (BP ∗(BG) ⊗BP ∗ Z(p))2i if i ≤ 2.

This is a contradiction and s = 0. Hence we see that ρBP (x′) = x in BP ∗(BF4)
and so cl(x′) = x2

4 in H∗(BF4)(3).

Remark. By arguments similar to the above proof, we can see that
there is x′ ∈ Ω∗(BF4) such that

ρBP (x′) = vs
1[x

2
8] for some 0 ≤ s ≤ 2.

However it does not seem easy to prove s = 0.

Remark. We still know that 3x4, x4x8 and x2
4x8 + x2

8 are in Im(cl).
Hence 3x2

8 ∈ Im(cl).

Lichtenbaum defined the cohomology H∗,∗
L (X; Z) by using the étale topol-

ogy, while H∗,∗(X; Z) is defined by using Nisnevich topology. There is a natural
map Hm,n(X) → Hm,n

L (X). We say that the condition B(n, p) holds if

B(n, p) : Hm,n(X; Z(p)) ∼= Hm,n
L (X; Z(p)) for all m ≤ n + 1

and all smooth X. Merkurjev-Suslin [M-S] and Voevodsky proved that B(n, p)
holds for n ≤ 2 or p = 2 respectively. (Indeed, the Milnor conjecture is equiva-
lent to hold B(n, p = 2)). M. Rost [R] proves that B(3, 3), B(4, 3) are correct.

Moreover Suslin-Voevodsky proves Hm,n
L (X; Z/p) ∼= Hm

et (X; µ⊗n
p ). On the

other hand, it is well known Hm
et (X; µ⊗n

p ) ∼= Hm
et (X; Z/p) ∼= Hm(X; Z/p).

Suppose that B(n, p) condition holds. Then we have isomorphisms

Hn,n(X; Z/p) ∼= Hn,n
L (X; Z/p) ∼= Hn

et(X; µ⊗n
p ) ∼= Hn(X; Z/p).

The composition of these isomorphisms also represents the realization map tn,n
C

.
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Remark. Quite recently, V. Voevodsky announced the proof that
B(n, p) hold for all n ≥ 0 and all primes p ([Vo3]).

Here we recall some useful fact about multiplying τ . Write Hi(X, Hj
Z/2)

the Zarisky cohomology of X with the coefficient in presheaf Hj
et(V ; Z/2) for

open subset V of X. From the result of Voevodsky we have a long exact
sequence (Lemma 2.4 in [Or-Vi-Vo])

Hm,n−1(X; Z/2) τ→ Hm,n(X; Z/2) → Hm−n(X; Hn
Z/2) → Hm+1,n−1(X; Z/2).

In particular we get

Lemma 4.2 (Lemma 2.4 in [Or-Vi-Vo]). Let X be smooth. Then τ :
Hn,n−1(X; Z/2) → Hn,n(X; Z/2) is injective.

Remark. If B(n, p) condition is satisfied, then the facts similar to
Lemma 4.2 hold for odd primes p. This is also explained by the Bloch-Ogus
spectral sequence

Ei,j
2

∼= Hi(X; Hj
Z/2) =⇒ Hi+j

et (X; Z/2),

where Ei,j
2 = 0 unless 0 ≤ i ≤ j (Theorem 1.3 in [To3]). See also [Vo3].

Lemma 4.3. Suppose that B(3, p) holds. Let x be an element in
H4(BG; Z) such that px ∈ Im(cl). Then we can take x′ ∈ H4,3(BG; Z/p)
with tC(x′) = x.

Proof. Let {px} = a ∈ H4,2(BG) = CH2(BG). We consider in the co-
efficient Z/p2. Let τp2 be a Z/p2-module generator of H0,1(pt; Z/p2). Then
τ2
p2a = px ∈ H4,4(BG; Z/p2) defining x ∈ H4,4(BG; Z/p) since so in the topo-

logical case. But the map τ : H4,3(BG; Z/p) → H4,4(BG; Z/p) is injective from
Remark of Lemma 4.2. This means τa = 0 ∈ H4,3(BG; Z/p). Hence there is
an element x′ ∈ H4,3(BG; Z/p2) so that τp2a = px′. We get tC(x′) = x since
τp2(px′) = px.

From Lemma 3.4, we know that there is an element x′ ∈ H4,3(BF4; Z/3)
such that tC(x′) = x4. So there is an element

x′
26 = Q1Q2x

′ ∈ H26,13(BF4; Z/3) with tC(x′
26) = x26.

Proof of Proposition 1.1. From the above arguments, x26 ∈ Im(cl). From
Lemma 3.2, x36 is represented by a Chern class. Since CH∗(BG) has Chern
classes, we get x36 ∈ Im(cl). Since P 3x36 = x48 and CH∗(X) is closed under
the reduced power operations, we get x48 ∈ Im(cl) and so D = Z[x36, x48] ⊂
Im(cl). From Lemmas 3.3 and 3.4, we know x3

4, 3x4 ∈ Im(cl), which are Chern
classes. From Lemma 4.1, we also know x2

4 ∈ Im(cl).
Therefore from Lemma 3.1,

E = Z(3)[x4, x8]{ab|a, b ∈ {x4, x8, x20}} ⊂ Im(cl) if x2
8 ∈ Im(cl).

Thus from Theorem 2.2, we know that c̄l is epic if x2
8 is in Im(cl).
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