The image of cycle map of the classifying space of the exceptional group F_{4}

By
Nobuaki Yagita

Abstract

The image of the cycle map $C H^{*}\left(B F_{4}\right)_{(3)} \rightarrow H^{*}\left(B F_{4}\right)_{(3)}$ is studied by using $B P^{*}$-theory and the motivic cohomology.

1. Introduction

Let X be a smooth algebraic variety over the complex number field \mathbb{C}. Let $C H^{*}(X)$ be its Chow ring and $B P^{*}(X)$ the Brown-Peterson cohomology localized at a prime p. Totaro [To1] defined the modified cycle map

$$
\overline{c l}: C H^{n}(X)_{(p)} \rightarrow\left(B P^{*}(X) \otimes_{B P^{*}} \mathbb{Z}_{(p)}\right)^{2 n}
$$

such that its composition with the Thom map $\left(B P^{*}(X) \otimes_{B P^{*}} \mathbb{Z}_{(p)}\right)^{2 n} \rightarrow$ $H^{2 n}(X)_{(p)}$ is the usual cycle map $c l: C H^{n}(X)_{(p)} \rightarrow H^{2 n}(X)_{(p)}$. Totaro conjectures that the above map \bar{c} is isomorphic for any $X=B G$ where G is a linear algebraic group (e.g. finite group) over \mathbb{C}. While $B G$ itself is not a smooth variety, it is a colimit of smooth varieties and we can define $C H^{*}(B G)$ naturally ([To1, 2]).

Totaro computed the Chow rings of classifying spaces of abelian groups and symmetric groups in [To1, 2], and he and Pandharipande [To2, P] determined the Chow rings of $B O(n), B S O(2 n+1)$ and $B S O(4)$. For these cases the cycle maps $\overline{c l}$ are of course isomorphisms. Vezzosi [Ve] has shown that $\overline{c l}$ is epimorphic for $X=B P G L_{3}(\mathbb{C}), p=3$. Surjectivity of $\overline{c l}$ are also shown in [Ya] for the cases $X=B G_{2}, B \operatorname{Spin}(7), B D_{8}$; the dihedral group of order 8 for $p=2$, and $B p_{+}^{1+2}$; the extraspecial p-group of order p^{3} and exponent p for odd primes.

In this paper, we consider the case that G is an algebraic group which corresponds the exceptional Lie group F_{4} and $p=3$. The mod 3 ordinary cohomology $H^{*}\left(B F_{4} ; \mathbb{Z} / 3\right)$ and its cohomology operations are completely determined by Toda [Toda]. The $B P$-theory $B P^{*}\left(B F_{4}\right)$ is computed by Kono-Yagita in $[\mathrm{K}-\mathrm{Y}]$. Using these results we get new information of the cycle map $\overline{c l}$, while our results are incomplete. The cohomology $H^{*}\left(B F_{4} ; \mathbb{Z} / 3\right)$ is generated by x_{i} of degree $i=4,8,9,20,21,25,26,36$ and 48.

[^0]Proposition 1.1. Let $X=B F_{4}$ and $p=3$. If $x_{8}^{2} \in \operatorname{Im}(c l)$, then $\bar{c} l$ is epic.

2. mod 3 cohomology and $B P$-theory

We recall $H^{*}\left(B F_{4} ; \mathbb{Z} / 3\right)$ and $B P^{*}\left(B F_{4}\right)$ which are used in the preceding section. The mod 3 cohomology is completely determined by Toda.

Theorem 2.1 ([Toda]). The cohomology $H^{*}\left(B F_{4} ; \mathbb{Z} / 3\right)$ is (additively) isomorphic to
$\mathbb{Z} / 3\left[x_{36}, x_{48}\right] \otimes\left(\mathbb{Z} / 3\left[x_{4}, x_{8}\right] \otimes\left\{1, x_{20}, x_{20}^{2}\right\}+\mathbb{Z} / 3\left[x_{26}\right] \otimes \Lambda\left(x_{9}\right) \otimes\left\{1, x_{20}, x_{21}, x_{25}\right\}\right)$, where the above two terms have the intersection $\left\{1, x_{20}\right\}$.

Remark. Toda also determines the multiplicative structure. See [Toda] for detail multiplicative relations ,e.g., $x_{21} x_{8}+x_{20} x_{9}=0$.

This theorem is proved by use of the fiber bundle

$$
\begin{equation*}
\Pi \longrightarrow B \operatorname{Spin}(9) \longrightarrow B F_{4} \tag{2.1}
\end{equation*}
$$

where $\Pi=F_{4} / \operatorname{Spin}(9)$ is the Cayley plane. Let T be the maximal torus of $\operatorname{Spin}(9) \subset F_{4}$, and $W(G)$ the Weyl group of G. Let $H^{*}(B T ; \mathbb{Z} / 3) \cong$ $\mathbb{Z} / 3\left[u_{1}, u_{2}, u_{3}, u_{4}\right]$. It is well-known that

$$
\left.H^{*}(B \operatorname{Spin}(9) ; \mathbb{Z} / 3) \cong H^{*}(B T ; \mathbb{Z} / 3)^{W(S p i n}(9)\right) \cong \mathbb{Z} / 3\left[p_{1}, p_{2}, p_{3}, p_{4}\right]
$$

where p_{i} is the Pontrjagin class of degree $4 i$, which is the i-th elementary symmetric function of variables u_{i}^{2}. The Weyl group $W\left(F_{4}\right)$ is generated by $W(\operatorname{Spin}(9))$ and by $R\left(u_{i}\right)=u_{i}-\left(u_{1}+u_{2}+u_{3}+u_{4}\right) / 2$. The invariant ring for F_{4} is also computed by Toda

$$
\begin{align*}
& H^{*}(B T ; \mathbb{Z} / 3)^{W\left(F_{4}\right)} \cong \mathbb{Z} / 3\left[p_{1}, \bar{p}_{2}, \bar{p}_{5}, \bar{p}_{9}, \bar{p}_{12}\right] /\left(r_{15}\right) \subset \mathbb{Z} / 3\left[p_{1}, p_{2}, p_{3}, p_{4}\right] \tag{2.2}\\
& \quad \text { where } \bar{p}_{2}=p_{2}-p_{1}^{2}, \quad \bar{p}_{5}=p_{4} p_{1}+p_{3} \bar{p}_{2}, \quad \bar{p}_{9} \equiv p_{3}^{3} \bmod (I) \\
& \bar{p}_{12} \equiv p_{4}^{3} \bmod (I), r_{15} \equiv \bar{p}_{5}^{3} \bmod (I) \quad \text { with } I=\operatorname{Ideal}\left(p_{1}, \bar{p}_{2}\right)
\end{align*}
$$

Let us write the inclusion $i: T \subset F_{4}$. The above elements correspond even degree generators (except for x_{26})

$$
\begin{equation*}
i^{*}\left(x_{4}\right)=p_{1}, i^{*}\left(x_{8}\right)=\bar{p}_{2}, i^{*}\left(x_{20}\right)=\bar{p}_{5}, i^{*}\left(x_{36}\right)=\bar{p}_{9}, i^{*}\left(x_{48}\right)=\bar{p}_{12} \tag{2.3}
\end{equation*}
$$

By using this fact, reduced power operations are also given by

$$
\begin{align*}
& P^{1}\left(x_{4}\right)=-x_{8}+x_{4}^{2}, P^{1}\left(x_{8}\right)=x_{8} x_{4}, P^{1}\left(x_{20}\right)=0 \tag{2.4}\\
& P^{3}\left(x_{4}\right)=0, P^{3}\left(x_{8}\right)=x_{20}-x_{8}^{2} x_{4}, P^{3}\left(x_{20}\right)=x_{20}\left(-x_{8}+x_{4}^{2}\right) x_{4} \\
& P^{3} x_{36} \equiv x_{48} \bmod \left(x_{4}, x_{8}\right), \quad \text { and so on. }
\end{align*}
$$

The other generators are defined by using the spectral sequence induced from the fibering (2.1)

$$
E_{2}^{*, *}=H^{*}\left(B F_{4} ; \mathbb{Z} / 3\right) \otimes H^{*}(\Pi ; \mathbb{Z} / 3) \Longrightarrow H^{*}(B \operatorname{Spin}(9) ; \mathbb{Z} / 3)
$$

Let $H^{*}(\Pi ; \mathbb{Z} / 3) \cong \mathbb{Z} / 3[w] /\left(w^{3}\right)$ with $|w|=8$. Then odd dimensional generators and x_{26} are given by

$$
d_{9}(w)=x_{9}, d_{17}\left(x_{4} w^{2}\right)=x_{21}, d_{17}\left(x_{8} w^{2}\right)=x_{25}, \quad d_{17}\left(x_{9} w^{2}\right)=x_{26}
$$

We also know the cohomology operations

$$
\begin{equation*}
\beta\left(x_{i}\right)=x_{i+1}(i=8,20,25), \quad P^{1}\left(x_{21}\right)=x_{25}, \quad P^{3}\left(x_{9}\right)=x_{21} . \tag{2.5}
\end{equation*}
$$

Now we consider the $B P^{*}(-)$-theory. Let us write its coefficient ring by $B P^{*}=\mathbb{Z}_{(p)}\left[v_{1}, \ldots, v_{i}, \ldots\right]$ with $\left|v_{i}\right|=-2\left(p^{i}-1\right)$.

Theorem $2.2([\mathrm{~K}-\mathrm{Y}])$. The BP-cohomology $B P^{*}\left(B F_{4}\right)$ has a filtration whose graded ring is

$$
g r B P^{*}\left(B F_{4}\right) \cong D \otimes\left(B P^{*}\left\{1,3 x_{4}\right\} \oplus B P^{*} \otimes E \oplus B P^{*} /\left(3, v_{1}, v_{2}\right)\left[x_{26}\right]\left\{x_{26}\right\}\right)
$$

where $D=\mathbb{Z}_{(3)}\left[x_{36}, x_{48}\right]$ and $E=\mathbb{Z}_{(3)}\left[x_{4}, x_{8}\right]\left\{a b \mid a, b \in\left\{x_{4}, x_{8}, x_{20}\right\}\right\}$.
This theorem is proved by use of the Atiyah-Hirzebruch spectral sequence

$$
E_{2}=H^{*}\left(B F_{4}\right) \otimes B P^{*} \Longrightarrow B P^{*}\left(B F_{4}\right) .
$$

There is no higher 3-torsion in $H^{*}\left(B F_{4}\right)$. Hence the integral cohomology can be written as

$$
H^{*}\left(B F_{4}\right)_{(3)} \cong D \otimes\left(Z_{(3)}\left\{1, x_{4}\right\} \oplus E \oplus \mathbb{Z} / 3\left[x_{26}\right]\left\{x_{26}, x_{21}, x_{9}, x_{9} x_{21}\right\}\right) .
$$

The first nonzero differential is $d_{2 p-1}=v_{1} \otimes Q_{1}$. From (2.4) and (2.5), we have $Q_{1}\left(x_{4}\right)=x_{9}, Q_{1}\left(x_{21}\right)=x_{26}$. Here we note that x_{4} is torsion free but x_{9} is 3 -torsion. Hence we get

$$
E_{2 p}^{*, *} \cong D \otimes\left(B P^{*}\left\{1,3 x_{4}\right\} \oplus B P^{*} \otimes E \oplus B P^{*} /\left(3, v_{1}\right)\left[x_{26}\right]\left\{x_{26}, x_{9}\right\}\right)
$$

Since all odd dimensional elements are just v_{1}-torsion, it is proved that the next nonzero differential is $d_{2 p^{2}-1}=v_{2} \otimes Q_{2}$. We also know $Q_{2} x_{9}=x_{26}$ from (2.5). Therefore we get

$$
E_{2 p^{2}}^{*, *} \cong D \otimes\left(B P^{*}\left\{1,3 x_{4}\right\} \oplus B P^{*} \otimes E \oplus B P^{*} /\left(3, v_{1}, v_{2}\right)\left[x_{26}\right]\left\{x_{26}\right\}\right)
$$

Since this algebra is generated by even dimensional elements, it is also the E_{∞} -term of the spectral sequence. Thus we get the theorem.

3. Cohomology operations and representations

We will study elements in $B P^{*}\left(B F_{4}\right) \otimes_{B P^{*}} \mathbb{Z}_{(3)}$ which are represented by Chern classes or their reduced power operations. At first we know the following fact.

Lemma 3.1. Let $R P \subset A_{3}^{*}$ be the subalgebra generated by reduced power operations. Then the ring $E / 3 \subset H^{*}\left(B F_{4} ; \mathbb{Z} / 3\right)$ is generated as an $R P$-algebra by x_{4}^{2}, x_{8}^{2} and x_{4}^{3}.

Proof. Recall $E=\mathbb{Z}_{(3)}\left[x_{4}, x_{8}\right]\left\{a b \mid a, b \in\left\{x_{4}, x_{8}, x_{20}\right\}\right\}$. Hence it is generated as a ring by $a b$ or $a b c$ with $a, b \in\left\{x_{4}, x_{8}, x_{20}\right\}$ and $c \in\left\{x_{4}, x_{8}\right\}$. Using (2.4), we easily get the following diagram of reduced powers actions.

$$
\begin{array}{ccc}
x_{4}^{2} \xrightarrow{P^{1}}-x_{4}^{3}+x_{8} x_{4} \xrightarrow{P^{1}} x_{8}^{2}+x_{8} x_{4}^{2} & P_{8} \\
P^{3} \downarrow P^{3} & P^{3} \downarrow P^{3} & P^{3} \downarrow \\
x_{8}^{3}, x_{20} x_{4} & x_{8} x_{20}, x_{20} x_{4}^{2} & x_{20} x_{4} x_{8} \xrightarrow{P^{1}} x_{20} x_{8}^{2} \\
P^{3} \downarrow & P^{3} \downarrow \\
x_{20}^{2} & x_{20}^{2} x_{4} & \\
& P^{1}
\end{array}
$$

Here $a \xrightarrow{P^{i}} b$ means

$$
P^{i}(a)= \pm b \quad \bmod (U L)
$$

where $U L$ is the subalgebra of E generated by elements which appeared upper or left side than the position of b. For example,

$$
x_{4}^{3} \xrightarrow{P^{3}} x_{8}^{3} \quad \text { follows from } \quad P^{3}\left(x_{4}^{3}\right)=-x_{8}^{3}+x_{4}^{6} .
$$

In the diagram, all elements of form $a b$ or $a b c$ appeared. Hence we get the lemma.

Next we consider the Chern classes of complex representations. The representation ring of $\operatorname{Spin}(8)$ and F_{4} are give by ([Yo, page 281])

$$
\begin{aligned}
& R(S p i n \\
&(8))\left.\cong R(T)^{W(S p i n}(8)\right) \\
& R\left(F_{4}\right) \cong R(T)^{W\left(F_{4}\right)}=\mathbb{Z}[a, b, c, d] \subset \mathbb{Z}\left[z_{1}, z_{1}^{-1}, \ldots, z_{4}, z_{4}^{-1}\right]=R(T), \\
& \text { where } \quad a=\sum_{1 \leq i \leq 4} z_{i}^{2}+z_{i}^{-2}, \quad b=\sum_{\epsilon_{1} \epsilon_{2} \epsilon_{3} \epsilon_{4}=1} z_{1}^{\epsilon_{1}} z_{2}^{\epsilon_{2}} z_{3}^{\epsilon_{3}} z_{4}^{\epsilon_{4}}, \\
& c=\sum_{\epsilon_{1} \epsilon_{2} \epsilon_{3} \epsilon_{4}=-1} z_{1}^{\epsilon_{1}} z_{2}^{\epsilon_{2}} z_{3}^{\epsilon_{3}} z_{4}^{\epsilon_{4}}, \\
& d=4+\sum_{1 \leq i<j \leq 4} z_{i}^{2 \epsilon_{i}} z_{j}^{2 \epsilon_{j}} \quad \text { with } \epsilon_{k}=1 \text { or }-1 .
\end{aligned}
$$

Let us write $H^{*}(B T) \cong \mathbb{Z}\left[u_{1}, u_{2}, u_{3}, u_{4}\right]$. Then the total Chern class of representations is given by

$$
1+c_{1}+c_{2}+\cdots=c\left(\sum z_{1}^{a_{1}} z_{2}^{a_{2}} z_{3}^{a_{3}} z_{4}^{a_{4}}\right)=\Pi\left(1+a_{1} u_{1}+a_{2} u_{2}+a_{3} u_{3}+a_{4} u_{4}\right)
$$

Lemma 3.2. We can take the generator $x_{36} \in H^{*}\left(B F_{4} ; \mathbb{Z} / 3\right)$ by a Chern class.

Proof. Recall $x_{36} \equiv p_{3}^{3} \bmod \left(\operatorname{Ideal}\left(p_{1}, \bar{p}_{2}\right)\right)$. We consider the restriction to the 3 -dimensional torus $\left(S^{1}\right)^{3}=T_{3}$ with $H^{*}\left(B T_{3} ; \mathbb{Z} / 3\right)=\mathbb{Z} / 3\left[u_{1}, u_{2}, u_{3}\right]$. Let us write $c(d) \mid T_{3}=c\left(p_{1}, p_{2}, p_{3}\right)$. Since p_{i} is the elementary symmetric function of the variables u_{j}^{2}, if we take $u_{1}=u_{2}=u_{3}=u$ and $u_{4}=0$, then

$$
p_{1}=0, \quad p_{2}=0, \quad p_{3}=u^{6} \quad \text { in } \mathbb{Z} / 3[u] .
$$

Hence we have $c\left(p_{1}, p_{2}, p_{3}\right)_{\left\{u_{i}=u, 1 \leq i \leq 3\right\}}=c\left(0,0, u^{6}\right)$ in $\mathbb{Z} / 3[u]$.
The restriction of the representation d to T_{3} is

$$
d \mid T_{3}=4+\sum_{1 \leq i<j \leq 3} z_{i}^{2 \epsilon_{i}} z_{j}^{2 \epsilon_{j}}+2 \sum_{1 \leq i \leq 3} z_{i}^{2 \epsilon_{i}} .
$$

Hence letting $z_{1}=z_{2}=z_{3}=z$, we have

$$
d \mid T_{3}=4+3\left(z^{4}+z^{-4}+2\right)+2 \times 3\left(z^{2}+z^{-2}\right) .
$$

Thus letting $u_{1}=u_{2}=u_{3}=u$, we get

$$
c(d) \mid T_{3}=((1+4 u)(1-4 u))^{3}((1+2 u)(1-2 u))^{6}=1-u^{18} \text { in } \mathbb{Z} / 3[u] .
$$

Therefore we get $c(d)_{19} \mid T_{3} \equiv-p_{3}^{3} \bmod \left(p_{1}, \bar{p}_{2}\right)$. This means that x_{36} can be represented by a Chern class.

Lemma 3.3. In $H^{*}\left(B F_{4} ; \mathbb{Z} / 3\right), x_{4}^{3}, x_{4} x_{8}$ are represented by Chern classes but x_{4}^{2}, x_{8}^{2} are not.

Proof. Recall $i^{*}\left(x_{4}\right)=p_{1}$ and $i^{*}\left(x_{8}\right)=p_{2}-p_{1}^{2}$. We consider the restriction to $T_{2}=\left(S^{1}\right)^{2}$ with $H^{*}\left(B T_{2} ; \mathbb{Z} / 3\right) \cong \mathbb{Z} / 3\left[u_{1}, u_{2}\right]$. Moreover we consider the representation with $z_{i}^{3}=1$, that is $R(T) /\left(z_{i}^{3}=1\right)$ because we only consider $\bmod (3)$ cohomology. Let us write $w_{i}=z_{i}+z_{i}^{-1}$. Then

$$
\begin{aligned}
a \mid T_{2} & =z_{1}^{2}+z_{1}^{-2}+z_{2}^{2}+z_{2}^{-2}+4=w_{1}+w_{2}+4 \\
b \mid T_{2} & =c \mid T_{2}=2 \sum_{\epsilon_{1} \epsilon_{2}= \pm 1} z_{1}^{\epsilon_{1}} z_{2}^{\epsilon_{2}}=2 w_{1} w_{2} \\
d \mid T_{2} & =4+\sum_{\epsilon_{1} \epsilon_{2}= \pm 1} z_{i}^{2 \epsilon_{i}} z_{j}^{2 \epsilon_{j}}+4\left(z_{1}^{2}+z_{1}^{-2}+z_{2}^{2}+z_{2}^{-2}\right)+4 \\
& =8+w_{1} w_{2}+4\left(w_{1}+w_{2}\right) .
\end{aligned}
$$

To simplify the notations, let us write $A=c\left(w_{1}+w_{2}\right)$ and $B=c\left(w_{1} w_{2}\right)$. Then it is immediate that

$$
\begin{aligned}
& A=\left(1-u_{1}^{2}\right)\left(1-u_{2}^{2}\right)=1-p_{1}+p_{2} \\
& B=\left(1-\left(u_{1}+u_{2}\right)^{2}\right)\left(1-\left(u_{1}-u_{2}\right)^{2}\right)=1+p_{1}+p_{1}^{2}-p_{2}
\end{aligned}
$$

Now we compute the total Chern class of representations of F_{4}.

$$
\begin{aligned}
& c(d)\left|T_{2}=A^{4} B, \quad c(a+b+c)\right| T_{2}=c\left(w_{1}+w_{2}+4+4 w_{1} w_{2}\right)=A B^{4}, \\
& c(a b+a c+c b) \mid T_{2}=c\left(4\left(w_{1}+w_{2}+4\right) w_{1} w_{2}+4 w_{1}^{2} w_{2}^{2}\right) \\
&=c\left(4\left(7 w_{1} w_{2}+4\left(w_{1}+w_{2}\right)+4\right)\right)=A^{16} B^{28}, \\
& c(a b c) \mid T_{2}=c\left(4\left(w_{1}+w_{2}+4\right) w_{1}^{2} w_{2}^{2}\right) \\
&=c\left(4\left(10 w_{1} w_{2}+16\left(w_{1}+w_{2}\right)+24\right)\right)=A^{64} B^{40}
\end{aligned}
$$

where we use $w_{i}^{2}=w_{i}+2$ and $w_{i}^{3}=3 w_{i}+2$.
All above Chern classes have the form for some C

$$
\begin{aligned}
A B C^{3} & =\left(1-p_{1}+p_{2}\right)\left(1+p_{1}+p_{1}^{2}-p_{2}\right) C^{3} \\
& =\left(1+\left(-p_{1}^{3}-p_{1} p_{2}\right)+\left(p_{1}^{2} p_{2}-p_{2}^{2}\right)\right) C^{3} .
\end{aligned}
$$

Thus the Chern class c_{8} is represented by only one generator

$$
p_{1}^{2} p_{2}-p_{2}^{2}=i^{*}\left(-x_{8}^{2}-x_{4}^{2} x_{8}\right) .
$$

For the Chern class c_{6}, we get two cases

$$
p_{1}^{3}-p_{1} p_{2}=i^{*}\left(-x_{4} x_{8}\right), \quad-p_{1} p_{2}=i^{*}\left(-x_{4}^{3}-x_{4} x_{8}\right) .
$$

The first (resp. second) case comes from the case $C^{3}=\left(1-p_{1}^{3}+\cdots\right)$ (resp. $\left.C^{3}=\left(1+p_{1}^{3}+\cdots\right)\right)$, e.g. $C=A^{3}\left(\right.$ resp. $\left.C=B^{3}\right)$.

Lemma 3.4. The element $3 x_{4} \in H^{*}\left(B F_{4}\right)_{(3)}$ is represented by a Chern class.

Proof. Consider the restriction to $S^{1}=T_{1}$ with $H^{*}\left(B T_{1}\right)_{(3)}$. The restriction of the representation d is $d \mid T_{1}=16+6\left(z_{1}^{2}+z_{1}^{-2}\right)$. Hence the total Chern class is

$$
c(d) \mid T_{1}=\left(1-4 u^{2}\right)^{6}=1-24 u^{2}+\cdots .
$$

This means that the element $3 x_{4}$ is represented by a Chern class in $H^{*}\left(B F_{4}\right)_{(3)}$.

4. Cycle maps

For an algebraic variety X over \mathbb{C}, Suslin-Voevodsky constructed the motivic cohomology $H^{*, *}(X)([\mathrm{Vo} 2])$. This cohomology has the properties that if X is smooth, then $H^{m, n}(X) \cong 0$ for $m>2 n$, and $H^{2 n, n}(X) \cong C H^{n}(X)$ the classical Chow ring of algebraic cycles modulo rational equivalence. There is the natural map (realization map)

$$
t_{\mathbb{C}}^{m, n}: H^{m, n}(X) \rightarrow H^{m}(X)
$$

such that $t_{\mathbb{C}}^{2 m, m}$ is the usual cycle map $c l: C H^{m}(X) \rightarrow H^{2 m}(X) . V$. Voevodsky defines ([Vo1, 2]) the cohomology (reduced and Bockstein) operations

$$
\begin{aligned}
\beta: H^{m, n}(X ; \mathbb{Z} / p) & \rightarrow H^{m+1, n}(X ; \mathbb{Z} / p), \\
P^{i}: H^{m, n}(X ; \mathbb{Z} / p) & \rightarrow H^{m+2(p-1) i, n+(p-1) i}(X ; \mathbb{Z} / p), \\
Q_{i}: H^{m, n}(X ; \mathbb{Z} / p) & \rightarrow H^{m+2 p^{i}-1, n+p^{i}-1}(X ; \mathbb{Z} / p)
\end{aligned}
$$

such that they commute with realization map $t_{\mathbb{C}}^{*, *}$. In particular mod p Chow ring $C H^{*}(X) / p$ is closed under the reduced power operations. We also know that ([H-K])

$$
H^{*, *}\left(B G L_{n}\right) \cong \mathbb{Z} / p\left[c_{1}, \ldots, c_{n}\right] \otimes H^{*, *}(p t) \quad \text { with } \operatorname{deg}\left(c_{i}\right)=(2 i, i)
$$

Hence the Chow ring of $B G$ also has Chern classes. Here $H^{*, *}(p t)$ is something complicated but the $\bmod p$ cohomology is just $H^{*, *}(p t ; \mathbb{Z} / p) \cong \mathbb{Z} / p[\tau]$ with $\tau \in H^{0,1}(p t ; \mathbb{Z} / p)$ ([Vo2], [Ya]).

By extending Quillen's [Q] arguments, Levine and Morel defined the algebraic cobordism theory $\Omega^{*}(-)$ as the universal theory in theories having transfers and Chern classes [L-M1, 2] (We say that $h^{*}(X)$ is a theory having transfers and Chern classes if this theory satisfies the axioms A1 to A4 in [L-M 1]). Given a theory $h^{*}(-)$ having transfers and Chern classes, the universality induces the existence of the natural map

$$
\rho_{h}: \Omega^{*}(-) \rightarrow h^{*}(-) .
$$

The theories $H^{2 *, *}(X)=\oplus_{n} H^{2 n, n}(X) \cong C H^{*}(X)$,
$M G L^{2 *, *}(X)=\oplus_{n} M G L^{2 n, n}(X)$ (motivic cobordism theory defined by V . Vedodsky) and $M U^{*}(X)$ are typical examples of theories having transfers and Chern classes. In particular, Levine and Morel proves that

$$
\rho_{M U}: \Omega^{2 n}(p t) \cong M U^{2 n}(p t), \quad \rho_{C H} \otimes_{\Omega^{*}} \mathbb{Z}:\left(\Omega^{*}(X) \otimes_{\Omega^{*}} \mathbb{Z}\right)^{2 n} \cong C H^{n}(X)
$$

Hence the Totaro's cycle map $\overline{c l}$ is represented as

$$
\begin{aligned}
\rho_{M U} \otimes_{\Omega^{*}} \mathbb{Z} \circ\left(\rho_{C H} \otimes_{\Omega^{*}} \mathbb{Z}\right)^{-1}: C H^{n}(X) & \rightarrow\left(\Omega^{*}(X) \otimes_{\Omega^{*}} \mathbb{Z}\right)^{2 n} \\
& \rightarrow\left(M U^{*}(X) \otimes_{M U^{*}} \mathbb{Z}\right)^{2 n} .
\end{aligned}
$$

Moreover they conjecture that $\rho_{M G L}$ are always isomorphisms.
Let $K^{0}(X)$ be the Grothendieck group of algebraic vector bundles over X. Let $\tilde{K}(1)^{*}(X)$ be the integral K-theory, that is, $\tilde{K}(1)^{*}=\mathbb{Z}_{(p)}\left[v_{1}, v_{1}^{-1}\right]$. Then they showed that

$$
\tilde{K}(1)^{*} \otimes K^{0}(X) \cong \Omega^{*}(X) \otimes_{\Omega^{*}} \tilde{K}(1)^{*} .
$$

Remark. Hopkins and Morel announced the existence of AtiyahHirzebruch spectral sequences for generalized motivic theories. Then we have $M G L^{2 *, *}(X) \otimes_{M U^{*}} \mathbb{Z} \cong C H^{*}(X)$ and $\tilde{K}(1)^{*} \otimes K^{0}(X) \cong M G L^{2 *, *}(X) \otimes_{M U^{*}}$ $\tilde{K}(1)^{*}$. Hence we can also prove all our results bellow using $M G L^{2 *, *}(-)$ instead of $\Omega^{*}(X)$.

Lemma 4.1. The element x_{4}^{2} is in the image of the cycle map cl.
Proof. Merkurjev showed ([To2]) that the Grothendieck group $K^{0}(B G)$ of algebraic vector bundles is isomorphic to the usual K-theory $K(B G)$. We also recall the Conner-Floyd relation

$$
\begin{aligned}
\Omega^{*}(B G)_{(p)} \otimes_{\Omega_{(p)}^{*}} \tilde{K}(1)^{*} & \cong \tilde{K}(1)^{*} \otimes K^{0}(B G) \\
& \cong \tilde{K}(1)^{*}(B G) \cong B P^{*}(B G) \otimes_{B P^{*}} \tilde{K}(1)^{*}
\end{aligned}
$$

Let $x=\left[x_{4}^{2}\right] \in B P^{*}\left(B F_{4}\right)$. Since $0 \neq x \in B P^{*}\left(B F_{4}\right) \otimes_{B P^{*}} \tilde{K}(1)^{*}$, there is an element x^{\prime} in $\Omega^{*}\left(B F_{4}\right)_{(3)}$ such that

$$
\rho_{B P}\left(x^{\prime}\right)=v_{1}^{s} x \quad \text { for } \quad s \geq 0
$$

Take the smallest s. Then x^{\prime} is an $M U_{(3)}^{*}$-module generator and $x^{\prime} \neq 0 \in$ $\Omega\left(B F_{4}\right)^{*} \otimes_{\Omega^{*}} \mathbb{Z}_{(3)} \cong C H^{*}\left(B F_{4}\right)_{(3)}$.

Suppose $s \geq 1$. Then $\left|x^{\prime}\right|=\left|v_{1}^{s} x_{4}^{2}\right| \leq 4$. But it is known from Totaro (Corollary 3.5 in [To2]) that

$$
C H^{i}(B G)_{(p)} \cong\left(B P^{*}(B G) \otimes_{B P^{*}} \mathbb{Z}_{(p)}\right)^{2 i} \quad \text { if } i \leq 2
$$

This is a contradiction and $s=0$. Hence we see that $\rho_{B P}\left(x^{\prime}\right)=x$ in $B P^{*}\left(B F_{4}\right)$ and so $\operatorname{cl}\left(x^{\prime}\right)=x_{4}^{2}$ in $H^{*}\left(B F_{4}\right)_{(3)}$.

Remark. By arguments similar to the above proof, we can see that there is $x^{\prime} \in \Omega^{*}\left(B F_{4}\right)$ such that

$$
\rho_{B P}\left(x^{\prime}\right)=v_{1}^{s}\left[x_{8}^{2}\right] \quad \text { for some } 0 \leq s \leq 2 .
$$

However it does not seem easy to prove $s=0$.
Remark. We still know that $3 x_{4}, x_{4} x_{8}$ and $x_{4}^{2} x_{8}+x_{8}^{2}$ are in $\operatorname{Im}(c l)$. Hence $3 x_{8}^{2} \in \operatorname{Im}(c l)$.

Lichtenbaum defined the cohomology $H_{L}^{*, *}(X ; \mathbb{Z})$ by using the étale topology, while $H^{*, *}(X ; \mathbb{Z})$ is defined by using Nisnevich topology. There is a natural map $H^{m, n}(X) \rightarrow H_{L}^{m, n}(X)$. We say that the condition $B(n, p)$ holds if

$$
B(n, p) \quad: \quad H^{m, n}\left(X ; \mathbb{Z}_{(p)}\right) \cong H_{L}^{m, n}\left(X ; \mathbb{Z}_{(p)}\right) \quad \text { for all } m \leq n+1
$$

and all smooth X. Merkurjev-Suslin [M-S] and Voevodsky proved that $B(n, p)$ holds for $n \leq 2$ or $p=2$ respectively. (Indeed, the Milnor conjecture is equivalent to hold $B(n, p=2))$. M. Rost $[\mathrm{R}]$ proves that $B(3,3), B(4,3)$ are correct.

Moreover Suslin-Voevodsky proves $H_{L}^{m, n}(X ; \mathbb{Z} / p) \cong H_{e t}^{m}\left(X ; \mu_{p}^{\otimes n}\right)$. On the other hand, it is well known $H_{e t}^{m}\left(X ; \mu_{p}^{\otimes n}\right) \cong H_{e t}^{m}(X ; \mathbb{Z} / p) \cong H^{m}(X ; \mathbb{Z} / p)$.

Suppose that $B(n, p)$ condition holds. Then we have isomorphisms

$$
H^{n, n}(X ; \mathbb{Z} / p) \cong H_{L}^{n, n}(X ; \mathbb{Z} / p) \cong H_{e t}^{n}\left(X ; \mu_{p}^{\otimes n}\right) \cong H^{n}(X ; \mathbb{Z} / p)
$$

The composition of these isomorphisms also represents the realization map $t_{\mathbb{C}}^{n, n}$.

Remark. Quite recently, V. Voevodsky announced the proof that $B(n, p)$ hold for all $n \geq 0$ and all primes p ([Vo3]).

Here we recall some useful fact about multiplying τ. Write $H^{i}\left(X, H_{\mathbb{Z} / 2}^{j}\right)$ the Zarisky cohomology of X with the coefficient in presheaf $H_{e t}^{j}(V ; \mathbb{Z} / 2)$ for open subset V of X. From the result of Voevodsky we have a long exact sequence (Lemma 2.4 in [Or-Vi-Vo])

$$
H^{m, n-1}(X ; \mathbb{Z} / 2) \xrightarrow{\tau} H^{m, n}(X ; \mathbb{Z} / 2) \rightarrow H^{m-n}\left(X ; H_{\mathbb{Z} / 2}^{n}\right) \rightarrow H^{m+1, n-1}(X ; \mathbb{Z} / 2)
$$

In particular we get
Lemma 4.2 (Lemma 2.4 in [Or-Vi-Vo]). Let X be smooth. Then τ : $H^{n, n-1}(X ; \mathbb{Z} / 2) \rightarrow H^{n, n}(X ; \mathbb{Z} / 2)$ is injective.

Remark. If $B(n, p)$ condition is satisfied, then the facts similar to Lemma 4.2 hold for odd primes p. This is also explained by the Bloch-Ogus spectral sequence

$$
E_{2}^{i, j} \cong H^{i}\left(X ; H_{\mathbb{Z} / 2}^{j}\right) \Longrightarrow H_{e t}^{i+j}(X ; \mathbb{Z} / 2),
$$

where $E_{2}^{i, j}=0$ unless $0 \leq i \leq j$ (Theorem 1.3 in [To3]). See also [Vo3].
Lemma 4.3. Suppose that $B(3, p)$ holds. Let x be an element in $H^{4}(B G ; \mathbb{Z})$ such that $p x \in \operatorname{Im}(c l)$. Then we can take $x^{\prime} \in H^{4,3}(B G ; \mathbb{Z} / p)$ with $t_{\mathbb{C}}\left(x^{\prime}\right)=x$.

Proof. Let $\{p x\}=a \in H^{4,2}(B G)=C H^{2}(B G)$. We consider in the coefficient \mathbb{Z} / p^{2}. Let $\tau_{p^{2}}$ be a \mathbb{Z} / p^{2}-module generator of $H^{0,1}\left(p t ; \mathbb{Z} / p^{2}\right)$. Then $\tau_{p^{2}}^{2} a=p x \in H^{4,4}\left(B G ; \mathbb{Z} / p^{2}\right)$ defining $x \in H^{4,4}(B G ; \mathbb{Z} / p)$ since so in the topological case. But the map $\tau: H^{4,3}(B G ; \mathbb{Z} / p) \rightarrow H^{4,4}(B G ; \mathbb{Z} / p)$ is injective from Remark of Lemma 4.2. This means $\tau a=0 \in H^{4,3}(B G ; \mathbb{Z} / p)$. Hence there is an element $x^{\prime} \in H^{4,3}\left(B G ; \mathbb{Z} / p^{2}\right)$ so that $\tau_{p^{2}} a=p x^{\prime}$. We get $t_{\mathbb{C}}\left(x^{\prime}\right)=x$ since $\tau_{p^{2}}\left(p x^{\prime}\right)=p x$.

From Lemma 3.4, we know that there is an element $x^{\prime} \in H^{4,3}\left(B F_{4} ; \mathbb{Z} / 3\right)$ such that $t_{\mathbb{C}}\left(x^{\prime}\right)=x_{4}$. So there is an element

$$
x_{26}^{\prime}=Q_{1} Q_{2} x^{\prime} \in H^{26,13}\left(B F_{4} ; \mathbb{Z} / 3\right) \quad \text { with } t_{\mathbb{C}}\left(x_{26}^{\prime}\right)=x_{26} .
$$

Proof of Proposition 1.1. From the above arguments, $x_{26} \in \operatorname{Im}(c l)$. From Lemma 3.2, x_{36} is represented by a Chern class. Since $C H^{*}(B G)$ has Chern classes, we get $x_{36} \in \operatorname{Im}(c l)$. Since $P^{3} x_{36}=x_{48}$ and $C H^{*}(X)$ is closed under the reduced power operations, we get $x_{48} \in \operatorname{Im}(c l)$ and so $D=\mathbb{Z}\left[x_{36}, x_{48}\right] \subset$ $\operatorname{Im}(c l)$. From Lemmas 3.3 and 3.4, we know $x_{4}^{3}, 3 x_{4} \in \operatorname{Im}(c l)$, which are Chern classes. From Lemma 4.1, we also know $x_{4}^{2} \in \operatorname{Im}(c l)$.

Therefore from Lemma 3.1,

$$
E=\mathbb{Z}_{(3)}\left[x_{4}, x_{8}\right]\left\{a b \mid a, b \in\left\{x_{4}, x_{8}, x_{20}\right\}\right\} \subset \operatorname{Im}(c l) \quad \text { if } x_{8}^{2} \in \operatorname{Im}(c l)
$$

Thus from Theorem 2.2, we know that $\bar{c} l$ is epic if x_{8}^{2} is in $\operatorname{Im}(c l)$.

Department of Mathematics Faculty of Education Ibaraki University Mito, Ibaraki, Japan e-mail: yagita@mx.ibaraki.ac.jp

References

[H-K] P. Hu and I. Kriz, Some remarks on real and algebraic cobordism, K-theory 22 (2001), 335-366.
[L-M 1] M. Levine and F. Morel, Coborsime algébrique I, C. R. Acad. Sci. Paris 332 (2001), 723-728.
[L-M 2] , Coborsime algébrique II, C. R. Acad. Sci. Paris 332 (2001), 815-820.
[K-Y] A. Kono and N. Yagita, Brown-Peterson and ordinary cohomology theories of classifying spaces for compact Lie groups, Trans. of AMS. 339 (1993), 781-798.
[Or-Vi-Vo] D. Orlov, A. Vishik and V. Voevodsky, An exact sequence for Milnor's K-theory with appications to quadratic forms, www.math.unic.edu/ K-theory/0454 (2000).
[P] R. Pandharipande, Equivariant Chow rings of $O(k), S O(2 k+1)$, and $S O(4)$, J. Reine Angew. Math. 496 (1998), 131-148.
[Q] D. Quillen, Elementary proofs of some results of cobordism theory using Steenrod operations, Adv. Math. 7 (1971), 29-56.
[R] M. Rost, Chain lemma for splitting fields of symbols, preprints (1997).
[Toda] H. Toda, Cohomology mod 3 of the classifying space $B F_{4}$ of the exceptional group F_{4}, J. Math. Kyoto Univ. 13 (1973), 97-115.
[To1] B. Totaro, Torsion algebraic cycles and complex cobordism, J. Amer. Math. Soc. 10 (1997), 467-493.
[To2] , The Chow ring of classifying spaces, Proc. of Symposia in Pure Math. "Algebraic K-theory" (1997: University of Washington, Seattle) 67 (1999), 248-281.
[To3] , Non-injectivity of the map from the Witt group of a variety to the Witt group of the function field, www.math.unic.edu/ K theory/0595 (2002).
[Ve] G. Vezzosi, On the Chow ring of the classifying stack of $P G L_{3, C}$, J. Reine Angew. Math. 523 (2000), 1-54.
[Vo1] V. Voevodsky. The Milnor conjecture, www.math.unic.edu/Ktheory/0170 (1996).
[Vo2] V. Voevodsky (Noted by Weibel), Voevodosky's Seattle lectures: Ktheory and motivic cohomology, Proc. of Symposia in Pure Math. "Algebraic K-theory" (1997: University of Washington, Seattle) 67 (1999), 283-303.
[Vo3] V. Voevodsky, On motivic cohomology with \mathbb{Z} / l-coefficients, www.math.unic.edu/ K-theory/639 (2003).
[Ya] N. Yagita, Chow ring of classifying spaces of extraspecial p-groups, Contemporary Math. 293 (2002), 397-409.
[Yo] I. Yokota, Groups and representations (in Japanese), Shoukabou, 1973.

[^0]: 2000 Mathematics Subject Classification(s). Primary 55P35, 57T25; Secondary 55R35, 57T05 Received April 26, 2003
 Revised September 30, 2003

