J. Math. Kyoto Univ. (JMKYAZ)
44-1 (2004), 181-191

The image of cycle map of the classifying space
of the exceptional group F}

By
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Abstract
The image of the cycle map CH™*(BFy) sy — H*(BFy)s) is studied
by using BP*-theory and the motivic cohomology.

1. Introduction

Let X be a smooth algebraic variety over the complex number field C.
Let CH*(X) be its Chow ring and BP*(X) the Brown-Peterson cohomology
localized at a prime p. Totaro [Tol] defined the modified cycle map

c: CH"(X) ) — (BP*(X) ®@pp~ Z)™"

such that its composition with the Thom map (BP*(X) @pp+ Z))*" —
H?"(X)(p) is the usual cycle map ¢l : CH"(X) () — H*"(X)(y). Totaro con-
jectures that the above map ¢l is isomorphic for any X = BG where G is a
linear algebraic group (e.g. finite group) over C. While BG itself is not a
smooth variety, it is a colimit of smooth varieties and we can define CH*(BGQ)
naturally ([Tol, 2]).

Totaro computed the Chow rings of classifying spaces of abelian groups and
symmetric groups in [Tol, 2], and he and Pandharipande [To2, P] determined
the Chow rings of BO(n), BSO(2n+1) and BSO(4). For these cases the cycle
maps ¢l are of course isomorphisms. Vezzosi [Ve] has shown that ¢l is epimor-
phic for X = BPGL3(C), p = 3. Surjectivity of cl are also shown in [Ya] for the
cases X = BGoy, BSpin(7), BDs ; the dihedral group of order 8 for p = 2, and
Bpi” : the extraspecial p-group of order p? and exponent p for odd primes.

In this paper, we consider the case that G is an algebraic group which cor-
responds the exceptional Lie group F; and p = 3. The mod 3 ordinary cohomol-
ogy H*(BFy;Z/3) and its cohomology operations are completely determined
by Toda [Toda]. The BP-theory BP*(BF}) is computed by Kono-Yagita in
[K-Y]. Using these results we get new information of the cycle map cl, while
our results are incomplete. The cohomology H*(BFy;Z/3) is generated by x;
of degree i = 4,8,9,20, 21, 25,26,36 and 48.
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Proposition 1.1.  Let X = BFy and p = 3. If 2% € Im(cl), then cl is
epic.

2. mod 3 cohomology and BP-theory

We recall H*(BFy;Z/3) and BP*(BFy) which are used in the preceding
section. The mod 3 cohomology is completely determined by Toda.

Theorem 2.1 ([Toda]).  The cohomology H*(BFy;Z/3) is (additively)
isomorphic to

Z/3[x36, 148] @ (Z/ 3[4, 28] @ {1, w20, 250 } +7Z/3[26] @ A(9) ®{1, 20, T21, T25}),
where the above two terms have the intersection {1, z20}.

Remark. Toda also determines the multiplicative structure. See [Toda)]
for detail multiplicative relations ,e.g., x2128 + To9x9 = 0.

This theorem is proved by use of the fiber bundle
(2.1) IT — BSpin(9) — BFy,

where II = Fy/Spin(9) is the Cayley plane. Let T be the maximal torus
of Spin(9) C Fy, and W(G) the Weyl group of G. Let H*(BT;Z/3) =
Z/3[u1,uz, ug, ug]. It is well-known that

H*(BSpin(9); Z/3) = H*(BT;Z/3)" 5P"O) == 7./3[p1  py, ps, pal,

where p; is the Pontrjagin class of degree 44, which is the i-th elementary
symmetric function of variables u?. The Weyl group W (Fj) is generated by

W (Spin(9)) and by R(u;) = u; — (u1 + uz + ug + u4)/2. The invariant ring for
F, is also computed by Toda
(22) H*(BT7 Z/S)W(F4) = Z/?’[plvﬁQ,ﬁ5,]§9,]§12}/(T15) C Z/S[plap%p&péd,
where Py =ps —pi, Ds = pap1 + psp2, Po = p3 mod(I),
P12 = p3 mod(I), ri5 = ps mod(I) with I = Ideal(py,p2).

Let us write the inclusion i : T' C Fj. The above elements correspond even
degree generators (except for za6)

(2.3)  i*(4) = p1, i"(x8) = P2, i"(¥20) = P5, 1" (w36) = Do, 1" (Tas) = P12
By using this fact, reduced power operations are also given by

(2.4) P'(z4) = —ws + 23, P'(xs) = wgzq, P'(20) =0,
P3(1’4) = 0, Ps(l'g) = T20 — $§$4, Pg(xgo) = 1'20(7.%8 +$i)l’4,

P33 = w48 mod(x4,28), and so on.
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The other generators are defined by using the spectral sequence induced
from the fibering (2.1)
Ey" = H*(BFy;Z/3) ® H*(II;Z/3) = H*(BSpin(9);Z/3).

Let H*(I1;Z/3) = Z/3[w]/(w?) with |w| = 8. Then odd dimensional generators
and xo4 are given by

do(w) = z9, di7(T4w?) = 221, di7(zsw?) = 225, di7(T9W?) = T26.
We also know the cohomology operations
(25) 6(%1) = Ti+1 (Z = 8, 20, 25), Pl(mgl) = T95, Pg((Eg) = T21.

Now we consider the BP*(—)-theory. Let us write its coefficient ring by
BP* = Zgy v, ..., v;,...] with |v;| = =2(p" — 1).

Theorem 2.2 ([K-Y]).  The BP-cohomology BP*(BF}) has a filtration
whose graded ring is

grBP*(BF)) = D @ (BP*{1,324} ® BP* ® E ® BP"/(3,v1,v2)[xa6){x26}),
where D = Zs)[x36, 24g] and E = Zz)[x4, v8]{abla,b € {x4, 28, 120} }.
This theorem is proved by use of the Atiyah-Hirzebruch spectral sequence
E, = H*(BF,) ® BP* = BP*(BF),).

There is no higher 3-torsion in H*(BF,). Hence the integral cohomology can
be written as

H*(BF4)(3) 2D (Z(3){1,.’£4} OFED Z/S[x%]{x%,wgl, $9,$9$21}).

The first nonzero differential is dzp—1 = v1 ® Q1. From (2.4) and (2.5), we have
Q1(x4) = x9, Q1(x21) = z26. Here we note that x4 is torsion free but zg is
3-torsion. Hence we get

Ey* 2 D@ (BP*{1,3z4} ® BP* ® E ® BP*/(3,v1)[wa6]{z26, 29}).

Since all odd dimensional elements are just wvi-torsion, it is proved that the
next nonzero differential is doy2_1 = v2 ® Q2. We also know Qa9 = 236 from
(2.5). Therefore we get

E*’* =D & (BP*{]., 31’4} D BP* RE® BP*/(S,’Ul, 1)2)[%26}{1'26}).

2p2

Since this algebra is generated by even dimensional elements, it is also the F,
-term of the spectral sequence. Thus we get the theorem.

3. Cohomology operations and representations

We will study elements in BP*(BF,) ®pp- Z3) which are represented by
Chern classes or their reduced power operations. At first we know the following
fact.
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Lemma 3.1.  Let RP C Aj be the subalgebra generated by reduced power
operations. Then the ring E/3 C H*(BFy;7Z/3) is generated as an RP-algebra
by 22,22 and x3.

Proof. Recall E = Zs)[x4, v3]{abla,b € {x4,28,720}}. Hence it is gener-
ated as a ring by ab or abc with a,b € {x4,xs, 22} and ¢ € {x4,z5}. Using
(2.4), we easily get the following diagram of reduced powers actions.

pl Pl pl
a:i — —a:i—l—a:gm _— a:%—l—a:gxi — x%m

1

3 2 2
T3, T20T4 TgT20, T20T4 T20T4x8 — T20T}
P3l P3l
2 2 pt 2
T20 Loola — Tyols

Pi
Here a — b means

Pi(a) =+b mod(UL),

where UL is the subalgebra of E generated by elements which appeared upper
or left side than the position of b. For example,

p3 - -
x5 —— a3 follows from P3(z3) = —x3 + 5.

In the diagram, all elements of form ab or abc appeared. Hence we get the
lemma. O

Next we consider the Chern classes of complex representations. The rep-
resentation ring of Spin(8) and F, are give by ([Yo, page 281])

R(Spin(8)) = R(T)VSPn®) = 7[a,b, ¢,d] C Zlz1, 27 Y, ..., 24, 25 1] = R(T),
R(Fy) = R(T)VI) = Zja + b+ ¢, ab + be + ca, abe, d] C R(Spin(8)),

where a = E 24z b= E 25 252 253 2t

1<i<4 €1€s€3€4=1
c= E 21t 252 25% 2",
€1€g€3€e4=—1
2¢; 2€; .
d=4+ E zielzjj with ¢, =1 or — 1.
1<i<j<4

Let us write H*(BT) = Z[uy, ug, us, ug]. Then the total Chern class of repre-
sentations is given by

l4+ci4+cg+--= C(Z 21t 252253 29%) = II(1 + a1u1 + agua + aszus + aata).

Lemma 3.2.  We can take the generator xss € H*(BFy;7Z/3) by a
Chern class.
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Proof. Recall 236 = p3 mod(Ideal(py,p2)). We consider the restriction to
the 3-dimensional torus (S1)® = T3 with H*(BT3;7Z/3) = Z/3[u1, ua, u3). Let
us write ¢(d)|T5 = ¢(p1,p2,ps3). Since p; is the elementary symmetric function
of the variables u?, if we take u; = us = uz = uw and u4 = 0, then

b1 = 07 b2 = 07 b3 = uﬁ in Z/g[u]

Hence we have c(p1,p2, P3) {fu;=u,1<i<3} = ¢(0,0, u8) in Z/3[u].
The restriction of the representation d to T3 is

dfy=da+ 3, A0t ) A

1<i<j<3 1<i<3
Hence letting z1 = 2o = 23 = 2z, we have
ATy =4+3(" + 271 +2) +2 x 322+ 272).
Thus letting u; = us = ug = u, we get
c(d)| Ty = (1 +4u)(1 — 4u))*((1 + 2u)(1 — 2u))® =1 — u*® in Z/3[u).

Therefore we get c(d)19|T3s = —p3 mod(p1, p2). This means that w36 can be
represented by a Chern class. O

Lemma 3.3. In H*(BFy;7Z/3), 3, xaxs are represented by Chern
classes but x5, 3 are not.

Proof. Recall i*(x4) = p; and i*(xg) = pa — p2. We consider the restric-
tion to Th = (S1)? with H*(BTy;Z/3) = Z/3[uy,ua]. Moreover we consider

the representation with 23 = 1, that is R(T) /(23 = 1) because we only consider

mod(3) cohomology. Let us write w; = z; + z; *. Then
alTy =22 + 272+ 22+ 252 + 4= w; +wy + 4,

b|Ts = Ty =2 Z 21t 252 = 2wy we,
6162::‘:1
d|Ty =4+ Z z?”zjéj +A4(B 4+ 27 22 %)+ 4
6162::‘:1
=8+ wiwsg + 4(’11}1 + ’LUQ).

To simplify the notations, let us write A = ¢(wy + we) and B = c(wiws).
Then it is immediate that

A=(1-ui)(l-u3)=1~p1+ps,
B = (1= (u1+u2)*)(1 = (w1 —u2)®) =1+p1+pi = pa
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Now we compute the total Chern class of representations of Fj.

c(d)|Ty = A*B, cla+b+ )Ty = c(wy + wy + 4 + dwiws) = AB?,
c(ab + ac + cb)|Ty = c(4(w1 + wa + 4)wiwy + dwiw])

= c(4(Twiwy + 4(w1 + wo) +4)) = A B8

c(abe)|Ty = c(4(wy + wo + 4)wiw?)

(4(

= c(4(10wywy + 16(wy + wo) + 24)) = A% B0

where we use w? = w; + 2 and w? = 3w; + 2.

.=

All above Chern classes have the form for some C'
ABC? = (1 —p1 +p2)(1 + p1 + pi — p2)C?
= (1+ (=p{ — pip2) + (pip2 — 13))C°.
Thus the Chern class cg is represented by only one generator
piv2 = p3 =i (—af — wizs).
For the Chern class cg, we get two cases
Py —pipa =i (—waxs),  —pipa = i*(—a] — z47s).

The first (resp. second) case comes from the case C3 = (1 — p + ---) (resp.
C3=(1+pi+--)),eg C=A3 (resp. C = B3). O

Lemma 3.4.  The element 3x4 € H*(BFy)s) is represented by a Chern
class.

Proof. Consider the restriction to S* = T} with H*(BT})(s). The restric-
tion of the representation d is d|Ty = 16 + 6(27 + 2 %). Hence the total Chern
class is

c(d)|Ty = (1 —4u?)® =1 — 240> + - - - .

This means that the element 3z, is represented by a Chern class in H*(BFy)s).
|

4. Cycle maps

For an algebraic variety X over C, Suslin-Voevodsky constructed the mo-
tivic cohomology H**(X)([Vo2]). This cohomology has the properties that if
X is smooth, then H™"(X) =2 0 for m > 2n, and H?™"(X) = CH"(X) the
classical Chow ring of algebraic cycles modulo rational equivalence. There is
the natural map (realization map)

7o (X)) — H™(X)
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such that t2""" is the usual cycle map cl : CH™(X) — H?*™(X). V. Voevodsky
defines ([Vol, 2]) the cohomology (reduced and Bockstein) operations

B+ H™"(X;Z[p) — H™ 1" (X; Z/p),
P' H™™(X;Z[p) — HM 2= Dint@e=Di(X: 7,/p),
Qi s H™™(X;Z/p) — H™ /' 1m0 = (X 7,/p)

such that they commute with realization map t[{:’*. In particular mod p Chow
ring CH*(X)/p is closed under the reduced power operations. We also know
that ([H-K])

H**(BGL,) 2 Z/pler,. .. ca) @ H**(pt)  with deg(ci) = (2i,4).

Hence the Chow ring of BG also has Chern classes. Here H**(pt) is something
complicated but the mod p cohomology is just H**(pt;Z/p) = Z/p[r] with
v e HO\(pt; Z/p) ([Vo2], [Yal).

By extending Quillen’s [Q] arguments, Levine and Morel defined the al-
gebraic cobordism theory Q*(—) as the universal theory in theories having
transfers and Chern classes [L-M1, 2] ( We say that h*(X) is a theory having
transfers and Chern classes if this theory satisfies the axioms Al to A4 in [L-M
1]). Given a theory h*(—) having transfers and Chern classes, the universality
induces the existence of the natural map

pr: V(=) = (=)

The theories H***(X) = @, H*»"(X) = CH*(X),

MGL?**(X) = ®,MGL*""(X) (motivic cobordism theory defined by V.
Vedodsky) and MU*(X) are typical examples of theories having transfers and
Chern classes. In particular, Levine and Morel proves that

pyu Q2" (pt) = MU (pt), pon @o- Z: (Q(X) ®q- Z)*" = CH"(X).
Hence the Totaro’s cycle map ¢l is represented as

pyu @ox Lo (pon ©o- )~ : CHM(X) — (4(X) ©o- Z)™"
— (MU*(X) @umu- Z)*.

Moreover they conjecture that ppr;gr are always isomorphisms.

Let K°(X) be the Grothendieck group of algebraic vector bundles over X.
Let K(1)*(X) be the integral K-theory, that is, K(1)* = Zyp) [v1,v7*]. Then
they showed that

K(1)*® K°(X) = Q" (X) ®q- K(1)*.

Remark. Hopkins and Morel announced the existence of Atiyah-
Hirzebruch spectral sequences for generalized motivic theories. Then we have
MGL**(X) @pu- Z = CH*(X) and K(1)* @ K°(X) = MGL**(X) ®pu-
K(1)*. Hence we can also prove all our results bellow using MGL**(—)
instead of *(X).
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Lemma 4.1.  The element 3 is in the image of the cycle map cl.

Proof. Merkurjev showed ([To2]) that the Grothendieck group K°(BG)
of algebraic vector bundles is isomorphic to the usual K-theory K(BG). We
also recall the Conner-Floyd relation

Q*(BG) ) @0y, K(1)* 2 K(1)* ® K°(BG)
>~ K(1)*(BG) = BP*(BG) ®pp- K(1)*.

Let z = [v3] € BP*(BF}). Since 0 # x € BP*(BF,) ®@pp- K(1)*, there is
an element z’ in Q*(BF})s) such that

ppp(r’)=vix  for s>0.

Take the smallest s. Then z’ is an M U(*3)-module generator and x’ # 0 €
Q(BF4)* K= Z(g) = CH*(BF4)(3)

Suppose s > 1. Then |z/| = |viz3| < 4. But it is known from Totaro
(Corollary 3.5 in [To2]) that

CH'(BG) () = (BP*(BG) ®pp- L))*  if i<2.

This is a contradiction and s = 0. Hence we see that pgp(z’) = x in BP*(BF})
and so cl(2') = x} in H*(BFy)3). O

Remark. By arguments similar to the above proof, we can see that
there is 2’ € Q*(BF}) such that

ppp(z’) = vi[z2] for some 0 < s < 2.
However it does not seem easy to prove s = 0.

Remark. We still know that 3z4, 2425 and z3xg + 22 are in Im(cl).
Hence 3x2 € Im(cl).

Lichtenbaum defined the cohomology H;*(X;Z) by using the étale topol-
ogy, while H**(X;Z) is defined by using Nisnevich topology. There is a natural
map H™™(X) — H;""(X). We say that the condition B(n, p) holds if

B(n,p) : H™"(X;Z)) = H""(X;Z)) forallm <n+1

and all smooth X. Merkurjev-Suslin [M-S] and Voevodsky proved that B(n,p)
holds for n < 2 or p = 2 respectively. (Indeed, the Milnor conjecture is equiva-
lent to hold B(n,p = 2)). M. Rost [R] proves that B(3,3), B(4, 3) are correct.
Moreover Suslin-Voevodsky proves H;""(X;Z/p) = HZ} (X; ™). On the
other hand, it is well known HJ}(X;u3™) = H} (X;Z/p) = H™(X;Z/p).
Suppose that B(n,p) condition holds. Then we have isomorphisms

H™™(X;Z/p) = H}""(X;Z/p) = HJ\(X; p3™) = H™ (X Z/p).

The composition of these isomorphisms also represents the realization map ¢5".
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Remark. Quite recently, V. Voevodsky announced the proof that
B(n,p) hold for all n > 0 and all primes p ([Vo3]).

Here we recall some useful fact about multiplying 7. Write H*(X, H% /2)

the Zarisky cohomology of X with the coefficient in presheaf H7,(V;Z/2) for
open subset V of X. From the result of Voevodsky we have a long exact
sequence (Lemma 2.4 in [Or-Vi-Vo))

Hm7n_1(X; 7./2) N H™"™(X;72/2) - H" "™(X; H%/Q) — H"H_l’n_l(X; 7]2).
In particular we get

Lemma 4.2 (Lemma 2.4 in [Or-Vi-Vo|).  Let X be smooth. Then T :
H"=Y(X;7/2) — H""(X;7Z/2) is injective.

Remark. If B(n,p) condition is satisfied, then the facts similar to
Lemma 4.2 hold for odd primes p. This is also explained by the Bloch-Ogus
spectral sequence

Ey =~ HY(X; H}

7/2) = H(X;2/2),

where Ey? = 0 unless 0 < i < j (Theorem 1.3 in [To3]). See also [Vo3].

Lemma 4.3.  Suppose that B(3,p) holds. Let x be an element in
H*(BG;7Z) such that pr € Im(cl). Then we can take ' € H*3(BG;Z/p)
with tc(a') = x.

Proof. Let {pz} = a € H**(BG) = CH?(BG). We consider in the co-
efficient Z/p?. Let 7,2 be a Z/p?*-module generator of H%!(pt;Z/p*). Then
Tp22a = px € HY(BG;Z/p?) defining x € H**(BG;Z/p) since so in the topo-
logical case. But the map 7 : H*3(BG;Z/p) — H**(BG;Z/p) is injective from
Remark of Lemma 4.2. This means 7a = 0 € H*3(BG;Z/p). Hence there is
an element «/ € H*3(BG;Z/p?) so that T,2a = pz’. We get tc(z’) = z since
T2 (pa’) = pa. O

From Lemma 3.4, we know that there is an element 2’ € H*3(BFy;7Z/3)
such that tc(z’) = z4. So there is an element

{EIQG = QlQQZ’/ S H26’13(BF4; Z/?)) with tc({E/QG) = T26.

Proof of Proposition 1.1.  From the above arguments, o € Im(cl). From
Lemma 3.2, x3¢ is represented by a Chern class. Since CH*(BG@G) has Chern
classes, we get x3¢ € Im(cl). Since P3x36 = 148 and CH*(X) is closed under
the reduced power operations, we get x4 € Im(cl) and so D = Z[xsg, x48] C
Im(cl). From Lemmas 3.3 and 3.4, we know 3, 3z4 € Im(cl), which are Chern
classes. From Lemma 4.1, we also know z3 € Im(cl).

Therefore from Lemma 3.1,

E = Zs)[r4, x8]{abla,b € {x4, 75,290} } C Im(cl) if 23 € Tm(cl).

Thus from Theorem 2.2, we know that cl is epic if 2 is in Im(cl). O
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