On the modularity of a rigid Calabi-Yau threefold

By
You-Chiang Yi

Abstract

In this paper, we introduce the powerful, new method of Wiles into establishing that a Calabi-Yau threefold defined over the field \mathbb{Q} of rational numbers is modular, answering a question of Saito \& Yui [SY].

1. Introduction

In [W], Andrew Wiles proved Fermat's Last Theorem by verifying that every semistable elliptic curve over the field \mathbb{Q} of rational numbers is modular. Elliptic curves are dimension one Calabi-Yau varieties, and the conjecture that they are all modular (i.e. the Taniyama-Shimura Conjecture) has now been established for all elliptic curves over \mathbb{Q} by Wiles, Breuil, Conrad, Diamond, and Taylor [BCDT]. The question arises as to which higher-dimensional CalabiYau varieties are modular. Dimension two Calabi-Yau varieties are K3 surfaces and the modularity conjecture which asserts that every singular K3 surface is modular has been verified by Shioda and Inose in [SI]. For dimension three, it has been conjectured that every rigid Calabi-Yau threefold over \mathbb{Q} is modular by Masa-Hiko Saito and Noriko Yui in [SY]. In [V], a certain rigid Calabi-Yau threefold was proved modular by Verrill using the method of Faltings-Serre. Two different geometric proofs were given in [SY] and in [HSGS]. It was asked in [SY] whether one can prove that a Calabi-Yau threefold is modular by using the new, powerful method of Wiles'. In this paper, we answer this question by Saito \& Yui and establish the modularity of Verrill's threefold by using Skinner-Wiles [SW].

2. Calabi-Yau threefolds

Definition 2.1. A Calabi-Yau threefold is a smooth projective variety X of dimension 3 such that
(i) $H^{i}\left(X, \mathcal{O}_{X}\right)=0$ for $i=1,2$, and
(ii) the canonical bundle is trivial i.e. $K_{X}:=\wedge^{3} \Omega_{X}^{1} \simeq \mathcal{O}_{X}$.

We denote $X \times \mathbb{Q} \overline{\mathbb{Q}}$ by \bar{X} and define the Hodge number $h^{i, j}(X)$ to be $\operatorname{dim} H^{j}\left(\bar{X}, \Omega_{X}^{i}\right)$. The Hodge diamond is:

The complex conjugation operation and Serre duality on the Hodge cohomology groups imply the symmetry among Hodge numbers:

$$
h^{i, j}(X)=h^{j, i}(X) \quad \text { and } \quad h^{i, j}(X)=h^{3-j, 3-i}(X) .
$$

Moreover, condition (i) implies $h^{1,0}(X)=h^{2,0}(X)=0$ and condition (ii) implies $h^{3,0}(X)=1$. By the conditions (1), (2) and the symmetry among Hodge numbers the Hodge diamond of Calabi-Yau threefolds are as follows:

			1			
	0	0		0		
1		$h^{2,1}$	$h^{1,1}$		0	
	0		$h^{2,1}$		0	1
		0		0		
			1			

The n-th Betti number, $B_{n}(X)$, of X is defined to be the dimension of $H^{n}(\bar{X} \otimes \mathbb{C}, \mathbb{C})$ over \mathbb{C}, which is also equal to the dimension of $H_{e t t}^{n}\left(\bar{X}, \mathbb{Q}_{l}\right)$ over \mathbb{Q}_{l} for any l.

The Hodge decomposition asserts that

$$
H^{n}(X \otimes \mathbb{C}, \mathbb{C})=\oplus_{i+j=n} H^{j}\left(X \otimes \mathbb{C}, \Omega_{X \otimes \mathbb{C}}^{i}\right)
$$

It follows that

$$
B_{n}(X)=\sum_{i+j=n} h^{i, j}(X)=\sum_{i=0}^{n} h^{i, n-i}(X)
$$

By the Poincaré duality $B_{n}(X)=B_{2 \operatorname{dim}(X)-n}$, the Betti numbers of CalabiYau threefolds are as follows:

$$
\begin{aligned}
B_{0}= & B_{6}=1 \\
B_{1}= & B_{5}=0 \\
B_{2}= & B_{4}=h^{1,1} \\
& B_{3}=2\left(1+h^{2,1}\right)
\end{aligned}
$$

Define the Euler characteristic $E(X)$ of a Calabi-Yau threefold X to be

$$
E(X)=\sum_{i=0}^{6}(-1)^{i} B_{i}=2\left(h^{1,1}-h^{2,1}\right)
$$

where B_{i} is the i-th Betti number of X.
Definition 2.2. A smooth projective Calabi-Yau variety over \mathbb{Q} is rigid if $h^{2,1}(X)=0$ and so $B_{3}(X)=2$.

Let X be a rigid Calabi-Yau threefold over \mathbb{Q} with a suitable integral model. The action of $G_{\mathbb{Q}}$ on $H_{e t}^{3}\left(\bar{X}, \mathbb{Q}_{l}\right)$ yields a two dimensional l-adic Galois representation for any $l . X$ is called modular if the L-series of this Galois representation coincides with L-series of a modular (cusp) form f, necessary of weight 4 , on some $\Gamma_{0}(N)$, where N is a positive integer divisible by the primes of bad reduction. In other words, up to finitely many Euler factors,

$$
L\left(H_{e t t}^{3}\left(\bar{X}, \mathbb{Q}_{l}\right), s\right)=L(f, s) \text { for some } f \in S_{4}\left(\Gamma_{0}(N)\right)
$$

Conjecture 2.1 (The Modularity Conjecture). Any rigid Calabi-Yau threefold X defined over \mathbb{Q} is modular in the sense that, up to a finite Euler factors,

$$
L\left(H_{e t}^{3}\left(\bar{X}, \mathbb{Q}_{l}\right), s\right)=L(f, s) \text { for some } f \in S_{4}\left(\Gamma_{0}(N)\right)
$$

Conjecture 2.1 is due to [SY] and also a more general form was given by Serre [S].

Given a prime of good reduction $p, p \neq l$, for X, let $X\left(\mathbb{F}_{p}\right)$ denote the set of points of X which are rational over \mathbb{F}_{p}. The Lefschetz fixed point formula tell us that

$$
\# X\left(\mathbb{F}_{p}\right)=\sum_{j=0}^{6}(-1)^{j} \operatorname{Tr}\left(\operatorname{Frob}_{p} ; H_{e ̂ t}^{j}\left(\bar{X}, \mathbb{Q}_{l}\right)\right)
$$

where Frob_{p} is induced from the geometry Frobenius morphism of X at p. Define $t_{j}(p)=\operatorname{Tr}\left(\operatorname{Frob}_{p} ; H_{e t}^{j}\left(\bar{X}, \mathbb{Q}_{l}\right)\right)$. In view of the Hodge diamond of X and by using various dualities, we have

$$
t_{1}(p)=t_{5}(p)=0, t_{0}(p)=1, t_{6}(p)=p^{3} \text { and } t_{4}(p)=p t_{2}(p) .
$$

Thus

$$
\# X\left(\mathbb{F}_{p}\right)=1+p^{3}+(1+p) t_{2}(p)-t_{3}(p)
$$

whence

$$
t_{3}(p)=1+p^{3}+(1+p) t_{2}(p)-\# X\left(\mathbb{F}_{p}\right)
$$

Let $a_{p}=\operatorname{Tr}\left(\rho\left(\right.\right.$ Frob $\left.\left._{p}\right)\right)$, where ρ is the Galois representation induced by the action of $G_{\mathbb{Q}}$ on $H_{e t t}^{3}\left(\bar{X}, \mathbb{Q}_{l}\right)$. Thus, we have $a_{p}=t_{3}(p)$. It implies that

$$
a_{p}=1+p^{3}+(1+p) t_{2}(p)-\# X\left(\mathbb{F}_{p}\right) .
$$

We consider the perfect pairing

$$
H_{e t t}^{3}\left(\bar{X}, \mathbb{Q}_{l}\right) \times H_{e t t}^{3}\left(\bar{X}, \mathbb{Q}_{l}\right) \rightarrow H_{e t t}^{6}\left(\bar{X}, \mathbb{Q}_{l}\right) \cong \mathbb{Q}_{l}
$$

induced by Poincaré duality. It follows that

$$
\wedge^{2} H_{e t t}^{3}\left(\bar{X}, \mathbb{Q}_{l}\right) \cong H_{e ́ t}^{6}\left(\bar{X}, \mathbb{Q}_{l}\right) \cong \mathbb{Q}_{l} .
$$

The action of Frob_{p} on $H_{e t t}^{6}\left(\bar{X}, \mathbb{Q}_{l}\right)$ is multiplication by p^{3}.
The action of Frob_{p} on $H_{e t t}^{3}\left(\bar{X}, \mathbb{Q}_{l}\right)$ therefore satisfies $\operatorname{det}\left(\rho\left(\operatorname{Frob}_{p}\right)\right)=p^{3}$. Therefore,

$$
\begin{equation*}
\operatorname{det}(\rho)=\epsilon^{3}, \tag{2.1}
\end{equation*}
$$

where ϵ is the cyclotomic character. Thus, if ρ is modular, it is associated to a form of weight 4 . Henceforth, we focus on the Calabi-Yau variety studied by Verrill [V]. Verrill's Calabi-Yau variety $\mathcal{Z}_{A_{3}}$ is the smooth model of the variety V given in inhomogeneous coordinates by

$$
V:(1+x+x y+x y z)(1+z+z y+z y x)=\frac{(t+1)^{2}}{t} x y z,
$$

where 2 and 3 are bad primes.
Theorem 2.1 ([V, Prop. 3.7]). The Calabi-Yau variety $\mathcal{Z}_{A_{3}}$ has Hodge numbers $h^{p, q}=0$ except the following:

$$
h^{0,0}=h^{3,0}=h^{0,3}=h^{3,3}=1, \quad h^{1,1}=h^{2,2}=50 .
$$

In particular, $\mathcal{Z}_{A_{3}}$ is rigid.
Theorem 2.2 ([V, Lemma 3.8]). Let $p \geq 5$ be a prime. For $k=0,2,4$, 6 , the action of Frob_{p} on $H_{e t}^{k}\left(\mathcal{Z}_{A_{3}}, \mathbb{Q}_{l}\right)$ is multiplication by $p^{\frac{k}{2}}$.

Consider the Barth-Nieto quintic given by the equations

$$
N=\left\{\sum_{i=0}^{5} x_{i}=\sum_{i=0}^{5} \frac{1}{x_{i}}=0\right\} \subset \mathbb{P}_{5}
$$

It has a smooth Calabi-Yau model, denoted by Y.
Lemma 2.1. Let $p \geq 5$ be a prime. The reduction of Y modulo is smooth over \mathbb{F}_{p}.

Proof. By an easy calculation(cf. [BN, (3.1), (9.1) and (9.3)]).
Theorem 2.3 ([HSGS, Thm. 2.1]). The Calabi-Yau variety Y has Hodge numbers $h^{p, q}=0$ except the following:

$$
h^{0,0}=h^{3,0}=h^{0,3}=h^{3,3}=1, \quad h^{1,1}=h^{2,2}=50 .
$$

In particular, Y is rigid.

Lemma 2.2 ([HSGS, Thm. 4.1 and Thm. 4.3]). Y and $\mathcal{Z}_{A_{3}}$ are birational equivalent over \mathbb{Q}.

Theorem 2.4 ([HSGS, Prop. 2.4]). Let $p \geq 5$ be a prime. For $k=$ $0,2,4,6$, the action of Frob_{p} on $H_{e t}^{k}\left(Y, \mathbb{Q}_{l}\right)$ is multiplication by $p^{\frac{k}{2}}$.

For $X=Y$ or $\mathcal{Z}_{A_{3}}$, the Lefschetz fixed point formula and the above theorems imply that

$$
a_{p}=1+50 p+50 p^{2}+p^{3}-\# X\left(\mathbb{F}_{p}\right) .
$$

The following table gives the first few a_{p} by computer calculation.

p	$\# X\left(\mathbb{F}_{p}\right)$	a_{p}
5	1620	6
7	3160	-16
11	7920	12
13	11260	38
17	20340	-126
19	25840	20
23	39600	168

3. Techniques of Skinner-Wiles

Suppose that $\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \mathrm{GL}_{2}(E)$ where E is a finite extension of \mathbb{Q}_{l}. We denote by $\bar{\rho}$ the residual representation and write $\bar{\rho}^{s s}$ for the semisimplification of $\bar{\rho}$.

Theorem 3.1 (Skinner-Wiles $[$ SW, p. 6]). Suppose that $\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ $\longrightarrow \mathrm{GL}_{2}(E)$ is a continuous representation, irreducible and unramified outside a finite set of primes, where E is a finite extension of \mathbb{Q}_{l}. Suppose also $\bar{\rho}^{s s} \simeq$ $1 \oplus \chi$ and that
(i) $\left.\chi\right|_{D_{l}} \neq 1$, where D_{l} is a decomposition group at l.
(ii) $\left.\rho\right|_{I_{l}} \simeq\left(\begin{array}{ll}* & * \\ 0 & 1\end{array}\right)$.
(iii) det; $\rho=\psi \epsilon^{k-1}$ for some $k \geq 2$ and is odd, where ϵ is the cyclotomic character and ψ is of finite order. Then ρ comes from a modular form.

Consider the continuous Galois representation $\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{Q}_{5}\right)$ induced by the action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on $H_{e t t}^{3}\left(\mathcal{Z}_{A_{3}}, \mathbb{Q}_{5}\right)$. To say $\mathcal{Z}_{A_{3}}$ is modular is equivalent to ρ being modular. To apply the theorem of Skinner-Wiles to verify that ρ is modular, we consider the following:

A : $a_{p} \equiv 1+p^{3}(\bmod 5)$.
$\mathbf{B}:\left.\rho\right|_{I_{5}} \simeq\left(\begin{array}{ll}* & * \\ 0 & 1\end{array}\right)$.
$\mathbf{C}: \rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{Q}_{5}\right)$ is irreducible.
Condition \mathbf{C} is a hypothesis to Theorem 3.1. As for its other hypotheses, first condition A says that the trace of Frobenius at $p \operatorname{Tr}\left(\rho\left(\operatorname{Frob}_{p}\right)\right) \equiv 1+$
$p^{3}(\bmod 5)=1+\epsilon\left(\operatorname{Frob}_{p}\right)^{3}(\bmod 5)$. By the Tchebotarev theorem, which says the Frobenius elements are dense, \mathbf{A} implies $\bar{\rho}^{s s} \simeq 1 \oplus \epsilon^{3}$. Moreover, $\chi=\epsilon^{3}$ satisfies hypothesis (i) of Theorem 3.1. Hypothesis (ii) is just condition B, and (iii) was established on (2.1). Therefore, to verify ρ is modular by Theorem 3.1 it suffices to prove \mathbf{A}, \mathbf{B} and \mathbf{C}.

First, we quote some lemmas to establish \mathbf{A}.
Let $D_{0}=\left\{x_{0} \cdots x_{5}=0\right\}$. Set $U:=N \backslash D_{0}$.
Lemma 3.1 ([HSGS, Prop. 2.13]). Let $p \geq 5$ be a prime. $\# Y\left(\mathbf{F}_{\mathbf{p}}\right)=$ $\# U\left(\mathbf{F}_{\mathbf{p}}\right)+50 p^{2}+50 p+20$.

Let $\rho_{1}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbb{Q}_{5}\right)$ be the representation induced by the action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on $H_{e t}^{3}\left(Y, \mathbb{Q}_{5}\right)$. The birational equivalence between Y and $\mathcal{Z}_{A_{3}}$ implies that $\operatorname{Tr}\left(\rho\left(\operatorname{Frob}_{p}\right)\right)=\operatorname{Tr}\left(\rho_{1}\left(\operatorname{Frob}_{p}\right)\right)$. Hence, by the formula $a_{p}=$ $1+50 p+50 p^{2}+p^{3}-\# Y\left(\mathbb{F}_{p}\right)$, to prove \mathbf{A} is equivalent to prove that $\# Y\left(\mathbf{F}_{p}\right)$ is divisible by 5 . Theorem 3.3 tell us that it suffice to prove that 5 divide $\# U\left(\mathbf{F}_{p}\right)$.

Theorem 3.2. $\# U\left(\mathbf{F}_{p}\right) \equiv 0(\bmod 5)$.
Proof. $U=\left\{\left(x_{0}, \ldots, x_{5}\right) \in \mathbb{P}_{5} \left\lvert\, \sum_{i=0}^{5} x_{i}=\sum_{i=0}^{5} \frac{1}{x_{i}}=0\right.\right.$ and $\left.x_{0} \cdots x_{5} \neq 0\right\}$ Consider the action of S_{6} on $U . U$ is the union of orbits of the action. To prove that each orbit is divisible by 5 is to prove that the order of the stabilizer of certain element in the orbit is not divisible by 5 . Suppose otherwise. Then the stabilizer has a cyclic subgroup of order 5 . Without loss of generality suppose this subgroup is generated by (12345). Other cases are proved similarly. The defining equations of N gives us the following system:

$$
\left\{\begin{array}{l}
x_{0}+5 x_{1}=0 \\
\frac{1}{x_{0}}+\frac{5}{x_{1}}=0
\end{array}\right.
$$

whence

$$
\left\{\begin{array}{l}
x_{0}+5 x_{1}=0 \\
5 x_{0}+x_{1}=0
\end{array}\right.
$$

The only solution is trivial, which is a contradiction.

To get the result of \mathbf{B}, we quote the following theorem from [CSS, p. 388, Thm. 1.8].

Theorem 3.3. Let R be a complete local noetherian ring with finite residue field k of characteristic $l \neq 2$. Choose a flat representation

$$
\bar{\rho}: D_{l} \rightarrow \mathrm{GL}_{2}(k)
$$

with $\operatorname{det} \bar{\rho}_{I_{l}}=\left.\omega\right|_{I_{l}}$ and a continuous lift $\rho: D_{l} \rightarrow \mathrm{GL}_{2}(R)$ which give rise to an element of $\mathcal{D}_{\bar{\rho}}^{f l}(R)$.

Let

$$
\phi_{2}: I_{l} \xrightarrow{\psi_{2}} \mathbf{F}_{l^{2}}^{\times} \hookrightarrow \mathrm{GL}_{2}\left(\mathbf{F}_{l}\right) \hookrightarrow \mathrm{GL}_{2}(k)
$$

be the map arising from a choice of an \mathbf{F}_{l}-basis of $\mathbf{F}_{l^{2}}$.
(i) If $\bar{\rho}$ is reducible, then there exist continuous unramified characters $\bar{\chi}_{i}$: $D_{l} \rightarrow k^{\times}$such that

$$
\bar{\rho} \simeq\left(\begin{array}{cc}
\omega \bar{\chi}_{1} & * \\
0 & \bar{\chi}_{2}
\end{array}\right) .
$$

Otherwise $\bar{\rho}$ is absolutely irreducible and $\left.\bar{\rho}\right|_{I_{l}} \simeq \phi_{2}\left(\right.$ and so $\left.\left.\bar{\rho}\right|_{I_{l}} \otimes \overline{\mathbb{F}}_{l} \simeq \psi_{2} \oplus \psi_{2}^{l}\right)$.
(ii) If $\bar{\rho}$ is reducible, then there exist continuous unramified characters χ_{i} : $D_{l} \rightarrow R^{\times}$such that

$$
\rho \simeq\left(\begin{array}{cc}
\epsilon \chi_{1} & * \\
0 & \chi_{2}
\end{array}\right) .
$$

In particular, $\left.\operatorname{det} \rho\right|_{I_{l}}=\left.\epsilon\right|_{I_{l}}$ and $\chi_{i} \bmod \boldsymbol{m}_{R}=\bar{\chi}_{i}$.
(iii) If $\bar{\rho}$ is irreducible, then $\left.\operatorname{det} \rho\right|_{I_{l}}=\left.\epsilon\right|_{I_{l}}$.

Since the variety $\mathcal{Z}_{A_{3}}$ has good reduction at 5 , the representation $\bar{\rho}$ is flat. Therefore, $\bar{\rho}$ is a reducible flat representation with $\operatorname{det} \bar{\rho}=\omega^{3}$ where ω is the reduction of 5 -adic cyclotomic character ϵ modulo 5 . Hence $\operatorname{det} \bar{\rho}^{-1}=\omega$. Applying theorem 3.4 (ii) to $\bar{\rho}^{-1}$ give us $\left.\rho^{-1}\right|_{D_{5}} \simeq\left(\begin{array}{cc}\epsilon \chi_{1} & * \\ 0 & \chi_{2}\end{array}\right)$, where χ_{i} : $D_{5} \rightarrow R^{\times}$are unramified characters. In particular, $\left.\chi_{i}\right|_{I_{5}}$ are trivial. Hence $\left.\rho\right|_{I_{5}}$ has the form $\left(\begin{array}{ll}* & * \\ 0 & 1\end{array}\right)$.

Finally, in order to apply Theorem 3.1, we have to show that ρ is irreducible. Suppose that ρ were reducible, which means $\rho \simeq\left(\begin{array}{cc}\phi_{1} & * \\ 0 & \phi_{2}\end{array}\right)$, where the ϕ_{i} 's are characters. The fact that $\operatorname{det}(\rho)=\epsilon^{3}$ implies $\phi_{1}=\epsilon^{a} \psi_{1}$ and $\phi_{2}=\epsilon^{b} \psi_{2}$, where $a+b=3$ and $\psi_{i}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathbb{Q}_{5}^{*}$ are characters of finite order. Then, $\operatorname{Tr} \rho=\epsilon^{a} \psi_{1}+\epsilon^{3-a} \psi_{2}$ where $a=0$ or 1 . Consider the prime $p=7 . a_{7}=-16=7^{a} \psi_{1}\left(\right.$ Frob $\left._{7}\right)+7^{3-a} \psi_{2}\left(\right.$ Frob $\left._{7}\right)$. Thus $a_{7}=-16=$ $7^{a} \psi_{1}\left(\right.$ Frob $\left._{7}\right)+7^{3-a} \psi_{1}^{-1}\left(\right.$ Frob $\left._{7}\right)$. Because the only finite subgroup of \mathbb{Q}_{5}^{*} is C_{4}, $\psi_{1}\left(\mathrm{Frob}_{7}\right) \in\{ \pm 1, \pm i\}$, which is a contradiction to the former equality. This complete the proof of \mathbf{C}.

Acknowledgements. I would like to thank Professor Nigel Boston for his valuable advice, suggestions, and stimulating discussions.

Department of Mathematics
University of Illinois at Urbana-Champaign
Urbana, IL, 61801, USA
e-mail: yyi1@math.uiuc.edu

References

[BN] W. Barth and I. Nieto, Abelian surfaces of type $(1,3)$ and quartic surfaces with 16 skew lines. J. Algebraic Geom. 3 (1994), 173-222.
[Bat] V. Batyrev, Birational Calabi-Yau n-folds have equal Betti numbers, In:New trends in Algebraic Geometry, Proceedings Warwick Euroconference 1996 (K. Hulek, F. Catanese, Ch. Peters, M. Reid, eds.), pp. 1-11, London Math. Soc. Lecture Note Ser. 264, Cambridge Univ. Press, 1999.
[BCDT] C. Breuil, B. Conrad, F. Diamond and R. Taylor, On the modularity of elliptic curves over \mathbf{Q} : wild 3-adic exercises, Amer. Math. Soc. 14-4 (2001), 843-939.
[CSS] G. Cornell, J. H. Silbermann and G. Stevens, Modular forms and Fermat's Last Theorem, Springer-Verlag New York Inc., 1997.
[DF] D. S. Dummit and R. M. Foote, Abstract Algebra, 2nd ed., John Wiley \& Sons Inc., 1999.
[H] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer-Verlag, 1977.
[HSGS] K. Hulek, J. Spandaw, B. van Geeman and D. van Straten, The modularity of the Barth-Nieto quintic and its relatives, Adv. Geom. 1 (2001), 263-289.
[L] R. L. Long, Algebraic Number Theory, Marcel Dekker Inc., 1977.
[S] J.-P. Serre, Sur les représentations modulaires de degré 2 de $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$, Duke Math. J. 54 (1987), 179-230.
[SI] T. Shoida and H. Inose, On singular K3 surface, in Complex and Algebraic Geometry, Cambridge University Press, 1977, pp. 117-136.
[SW] C. M. Skinner and A. J. Wiles, Residually reducible representations and modular forms, Inst. Hautes Études Sci. Publ. Math. 89 (1999), 5-126 (2000).
[SY] M.-H. Saito and N. Yui, The modularity conjecture for rigid CalabiYau threefolds over \mathbb{Q}, J. Math. Kyoto Univ. 41-2 (2000), 403-419.
[V] R. Verrill, The L-series of certain rigid Calabi-Yau threefolds, J. Number Theory 81 (2000), 310-334.
[W] A. J. Wiles, Modular Elliptic Curves and Fermat's Last Theorem, Ann. of Math. (2) 141 (1995), 443-551.
[Y1] N. Yui, The arithmetic of certain Calabi-Yau varieties over number fields, In: The arithmetic and geometry of algebraic cycles, Proceedings of the NATO Advanced Study Institute, Banff, Canada, June 7-19, 1998 (B. Gordon, J. Lewis, s. Muller-Stach, Sh. Saito, N. Yui, eds.), pp. 515-560, NATO ASI Series. Series C. Mathematical and Physical Sciences, 548, Kluwer, Dordrecht, 2000.
[Y2] N. Yui, Arithmetic of certain Calabi-Yau varieties and mirror symmetry, Arithmetic algebraic geometry (Park City, UT, 1999), pp. 507-569, IAS/Park City Math. Ser., 9, Amer. Math. Soc., Providence, RI, 2001.
[Z] S. Zucker, Hodge theory with degenerating coefficients, L_{2} cohomology in the Poincaré metric, Ann. of Math. (2) 109-3 (1979), 415-476.

