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1. Introduction

Let P(x, D) be a differential operator of order m on 2, an open set in R"*!
with a system of local coordinates = (zg, 21, ...,2,) = (o, 2’). Let p(x, &) be
the principal symbol of P(z, D) and we assume that p admits at most double
characteristics. Let H, be the Hamilton vector field of p and let p € T*Q\ {0}
be a double characteristic of p. Then it is expected that the behavior of (null)
bicharacteristics, that is integral curves of H, on which p vanishes, near p plays
a definitive role in the correctness of the (microlocal) Cauchy problem for P.

To study the behavior of bicharacteristics we linearize H, at p which is a
singular point of H,: recall

dp(p)(X) = o(X, Hp(p)), X €T, T,

where o is the standard symplectic two form on 77:

o= d& Ndz; = dE A dx

=0

and (z,€) is a system of symplectic coordinates on T*(2. Then the linearization
of H, at p, called the Hamilton map (matrix) of p at p, denoted by F,(p) is
given by

1
5 Hessp(p)(X,Y) = o(X. F,(p)Y), XY €T,T°Q.

It is well known that F,(p) has only pure imaginary eigenvalues with a possible
exception of a pair of non zero real eigenvalues £ (see [3], [6]). If F,(p) has
a pair of non zero real eigenvalues we say that p is effectively hyperbolic at p
and the microlocal Cauchy problem is well posed for any lower order term (see
[12], [7], [4], [9]). We recall that p is effectively hyperbolic at p if and only if
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every bicharacteristic issuing from simple characteristics having a limit point p
arrive at p transversally to the doubly characteristic set, ¥ (see [13]). If F},(p)
has only pure imaginary eigenvalues and moreover if

(L1) Im Fy(p)? NKer Fy(p)® = {0}, peX,

then there is no bicharacteristic issuing from simple characteristics having a
limit point on 3. In this case, under some assumptions on the stability of the
symplectic structure of F,(p) when p varies in ¥, necessary and sufficient con-
ditions required on the lower order terms (Levi conditions) for the correctness
of the Cauchy problem of P, are known (see [3], [5]).

In this paper we study the case

(1.2) Im F,(p)> NKer F,(p)? # {0}, peEX.

In this case the behavior of bicharacteristics near p can not be determined
completely by Fj,. To determine the complete behavior of bicharacteristics we
need the third order term of the Taylor expansion of p around p.

To be more precise we fix the notation. We are working in a conic neighbor-
hood of a double characteristic p = (#, ). Without restrictions we may assume
that P(z, D) is of second order. We assume that p is hyperbolic with respect
to dxg, i.e., p(z, &, &) = 0 has only real zeros & for (x,¢') near p' = (z,€).

We introduce the following hypotheses: the doubly characteristic set

E={(,9) [ p(z,§) = dp(z,§) = 0}
is a smooth manifold near p such that
(1.3) dimT,¥ = dimKer F),(p), peEX

(the codimension of ¥ is equal to the rank of the Hessian of p at every point
on X) and

(1.4) rank 0|y, = constant, peEX
and finally
(15)  o(F(0) CiR,  KerFy(p)? NImFy(p)? #{0}, VpeX,

where o(F,(p)) denotes the spectrum of Fj(p). This implies that p is not
effectively hyperbolic and the Hamilton map F,(p) has a Jordan block of size
four at every p € 3.

Let S be a smooth real function vanishing on ¥ such that Hg(p) €
Im F,(p)® N Ker F,(p), p € ¥ then we prove that there is no bicharacteris-
tic issuing from simple characteristics admitting a limit point on ¥ if and only
if H2p(p) = 0 for every p € X. The same result has been proved in [10] when
the codimension of ¥ is 3. Actually in this case the assumptions (1.3) and (1.4)
are not needed. In this paper we prove this assertion in full generality.
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The proof of this equivalence is carried out by using another equivalence:
H?3 p vanishes on ¥ if and only if p can be factorized in the sense of Ivrii [4].
This equivalence has been proved in [13] under unnecessary restrictions and
was proved in full generality, removing these restrictions, by Bernardi-Bove-
Parenti [2]. Then to prove the equivalence it suffices to show that there is a
bicharacteristic issuing outside ¥ which admits a limit point on X if H2 p(p) # 0
at some p € ¥ since it was proved in [5] that no such bicharacteristic exists
if p admits an elementary decomposition. This generalization has been tried
in [1] also, but it seems that the proof there is insufficient. Here to prove the
existence of a bicharacteristic having a limit point on ¥ we employ a different
method from that in [10] and [1].

Every result in this paper is microlocal in its nature: the arguments take
place in a conical neighborhood of a point of ¥, which can be possibly shrunken,
during the course of the proof. For the sake of brevity there is no mention of
the neighborhood if there is no confusion. Without restrictions we may assume
that p(z, ) has the form

(1.6) p(x, &) = =& + q(,¢),

where q(z,£’) > 0 near p' = (z,&).
We recall Proposition 2.2 of [1]:

Proposition 1.1 ([1]).  Assume that p satisfies (1.3), (1.4) and (1.5).
Then there exist two smooth sections of TsT*Q), z1, zo such that

(1.7) z1(p) € Ker F,(p) N Im F,(p)?, Vp e X,

(1.8) z2(p) € Ker F,(p)? NIm F,(p)?, Vpex,

(1.9) Yw € (z1(p))° = o(w, Fp(p)w) > 0,

(1L10)  we (z1(p)7, olw, Fylp)w) = 0 — w € Ker Fy(p) @ (2(0)).

Let S(x,€) be a smooth real function defined on T*2, homogeneous of
degree 0, such that

(1.11) S(xz,&) =0, (x,8) €%,
(1.12) Hs(p) =0s(p)z2(p) +v(p),  0s(p)#0, peX

with v(p) € Ker F,(p) NIm F,(p).
We now state our result:

Theorem 1.1.  Assume that p satisfies (1.3), (1.4) and (1.5). Then the
following assertions are equivalent:

() Hip(p) =0, Vpes,

(ii) there is no null bicharacteristic of p issuing from a simple characteristic
having a limit point on 3.

To relate the result to correctness results of the Cauchy problem, we first
recall
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Definition (see [4], [5]). We say that p admits an elementary decom-
position if there exist A, p, @ real valued symbols in (z, ') smoothly depending
on zp, homogeneous of degree 1, 1, 2 respectively, Q(x,£’) > 0 such that with

A(xag) = 50 - )‘(xvf/) and M(.Z,g) = 50 - ﬂ(l’,f/)

(113) p(x,&) = —A(x,{)M(x,f)—i—Q(;v,g'),
(1.14) {A, M}(x,€)] < C[lA(x,€) — M(2,6)] + V/Q(x,€)],
(1.15) {A, Q}(x, &) < C'Q(x,£)

with some positive constants C, C’ where {f, g} denotes the Poisson bracket
of f and g.

For a class of operators admitting an elementary decomposition, Tvrii [4]
(see also [3]) derived an a priori estimate, assuming (Levi) conditions on lower
order terms, yielding the correctness of the Cauchy problem. Thus the next
result relates Theorem 1.1 to the correctness of the Cauchy problem:

Theorem 1.2 ([2], [13]).  Assume that p verifies (1.3), (1.4) and (1.5).
Then the following assertions are equivalent:

(i) Hep(p) =0, VpeX,

(ii) p admits an elementary decomposition.

Theorems 1.1 and 1.2 show

Theorem 1.3.  Assume that p verifies (1.3), (1.4) and (1.5). Then p
admits an elementary decomposition if and only if there is no bicharacteristic
of p issuing from a simple characteristic having a limit point on 3.

As mentioned above, this result holds without the assumptions (1.3) and
(1.4) if the codimension of ¥ is 3 (Theorem 2.1 in [10]).

As far as the correctness of the Cauchy problem near a double characteristic
is concerned, we may say that if there is no bicharacteristic having a limit point
on Y then the situation is fairly well understood while almost nothing is known
in the case if there is such a bicharacteristic.

To prove Theorem 1.1, assuming that the condition (i) is violated, we look
for a bicharacteristic (z(s),&(s)) such that

lim s*(x(s),&(s)) = v #0,

§—00

veKerFoNImF,,  0# FyeKerF,NImFE).

To put the above conditions in evidence, in Section 2, we choose symplectic
coordinates so that the line spanned by z(p):

z2(p) € Ker Fy(p)> NIm Fy(p)*, 0 # Fp(p)2(p) € Ker F,(p) NIm F(p)°

(actually z(p) is unique up to a multiple factor so that it is proportional to v)
is given by m;(z,£) = 0 on ¥ and the expression of p, in these coordinates,
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contains the sum of squares of m;. This suggests that our expecting solu-
tion satisfies approximately the Hamilton system with Hamiltonian p which
is obtained from p removing the terms mf In Section 3 we write down our
Hamilton system supposing that m,; were unknowns. We look for a solution
(z(s),&(s)) of the Hamilton system such that £(s) = O(s72), 2/(s) = O(s73)
and m;(z(s),&(s)) = O(s™*). To do so, in Section 4, we first transform the
thus obtained Hamilton system to another system by the change of indepen-
dent variable t = s~! and suitable change of unknowns. The resulting system
is a coupled system consists of a system which has the zero as an irregular
singularity and a system which has the zero as a regular singularity. The main
feature of the system is that all eigenvalues of the leading term of the irregular
singularity (the coefficient matrix of t=2) are pure imaginary and different from
zero. In Section 5 we show that if the condition (i) is not verified then there is
a unique, up to Ker F,,/ Ker F, NIm Fg, formal series solution in ¢ and log 1/t of
the Hamilton system. In Section 6 we prove the existence result of solutions to
the coupled system, modelled by this Hamilton system, by successive approx-
imations assuming the existence of a formal solution. Finally in Section 7 we
prove that there exists a solution which is asymptotically equal to this formal
series solution applying the results in Sections 5 and 6.

2. Symplectic coordinates

Following [13], we choose special symplectic coordinates so that the con-
dition (i) in Theorem 1.1 comes clear. We assume that the condition (i) in
Theorem 1.1 is violated at some p € ¥. Then there is a neighborhood W of p
such that

(2.1) Hip(p) #0, pewWny.

Without restrictions we may assume that g = (0, e,). Let us denote z(P) =
(Tpy- s p), EP) = (&,...,&). We recall Lemma 4.1 in [13].

Lemma 2.1 ([13]).  Assume (1.5) at p. Then there is a symplectic local
coordinates (M, €M) around (0, esll)) such that

p
p(w,§) = =€ + > (w1 —x:)°qs(w,£W)
=1

P
+ 3 i@, €0)E2 4 1y (6N g (2P, €0 FD),

=1
where
(22) {{py{gp’g}}(o’egp+1)) = 07 ZTi(anst+1))71 =1
=1

and 141 (0, e0)) > 0, g(@®, €@V > 0, vanishing at (0, e’*).
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From the hypothesis (1.3) and the Morse lemma there are n;(z®), £P+1))
such that

h
g(z® Pty = Zni(x(p),g(pﬂ)){
i=1
where dn; (0, P +1)) are linearly independent. Note that (2.2) implies

(2.3) %ni(o,eg’“)) =0, i=1,...,h
p

Proposition 2.1.  Assume (1.5). For any small conic neighborhood V
of (0, ey,,) there exist p € V, 1 < p < n—1 and a symplectic local chart {U, (z,£)}
around p, such that

P

p(z, &) = —&5 + Z% 2, EW) (@im1 — ) + Zﬁ'(%f(l))ﬁg
i=1 i=1
(2.4) N
+rpp(a,60) Y n(a® P TD)2,
i=1
where
(2.5) inl-(:c(p),f(pﬂ)) =0 on ¥XNU
Oxyp
and
p
(2.6) Zri(x,ﬁ(l))_l =1 on YLNU.
i=1

Proof. As observed after Lemma 2.1, (2.4) holds in a conic neighborhood
V of (0,e,). Assume

(2.7) ini(fc(m,ép“)) =0, 1<i<h
Oy
at some (2,€) € VN Y. It is clear that (&,&) = (Z,...,2,,2%TD,0,...,0,

£ (p+1)) and hence the Taylor expansion of p around (Z, ) starts with

p
:750+Zq1 )(wio1 — x;)? Z (&,

+ T'p+1(i', é) Z dnz(x(p), £(p+l))2a
i=1

where dn; is the linear part of n; at (£,£). By (2.5) we have

o fe -
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and then it follows that
Fp = FT:’ ¢ Fg,

where E is a non negative quadratic form in (z(®+1), ¢®P+1)) and
~ p p A, A,
P=-g+ Z%’(%’ﬂ —z;)° + Zﬁf?» ¢ = (2,8, m=ri¢).
i=1 i=1

Since det(A — Fp) = A2(\) with

p p p
() =— | [T4g | (IIr) (Dot -1,
j=1 j=1 j=1

where P is considered in (2, £®)) space (see Proposition 2.2 in [11]) we have

?:1 rj_l < 1 otherwise 1(0) < 0 and hence F had a non zero real eigenvalue

contradicting (1.5). If Z§:1 r;l < 1 so that ¢(0) > 0, then

2 2 _

because the eigenvalue 0 is at most double. On the other hand from Theorem
1.3.8 in [3] it follows that

(2.8) Ker F2NIm Fz = {0}

and hence we have a contradiction to (1.5). Thus we conclude that
> @ =1
j=1

provided (2.7) holds. Thus if (2.5) holds in V' then nothing to be proved.
Assume that (2.5) is not fulfilled in V. Then there are an idex 7 and a point

(2,€) € V. N'Y such that
ini(fg(p) ety £
6$p ) )

where (2,€) = (&p,..., 2, #®t1,0,...,0,£@TD). By the translation of the
coordinates x — x—1 and a linear change of coordinates (P we may assume
that (£,£) = (0,e,) again and p takes the same form as (2.4) with

h
{gpa {fpa an}} (0,€n) #0.

Now we can repeat the proof of Lemma 2.1 in [11] and we conclude that, in
a new homogeneous symplectic coordinates around (%,&), p takes the form
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(2.4) with a larger p. Repeating the same arguments as above we conclude the
desired assertion unless we reach p =n — 1;

n—1 n—1
p=—-&+ > ailwiir—3:)”+ D> 1i&l +ran(Tn_1,7n, ).
=1 =1

Since n(xn—1, Ty, &,) is homogeneous of degree 1 in &, and dn # 0 at (0, e(l))

one can write
n(xn—la L, gn) = Oé(x)(xn - ¢(xn—1))€n

with ¢’(0) = 0. We show that ¢'(z,_1) vanishes identically. If not, say ¢'(¢) #
0, then the Taylor expansion of p around (e, ..., €, ¢(¢€),0,...,0,1) starts with

n—1 n—1
P=—&+Y ailma—z)’+ ) 1l +raa(@)(@n — ¢ (rn-1)*.
=1 =1

It is easy to check that

n—1
det(— H 4q; H ri ],
j=1

where P is considered in (2"~ £(=1) space and ¢, = rpo(i)¢'(€)? and
hence F is non singular. This together with (2.8) contradicts our assumption
and hence the assertion. O

Working in U we may assume that p verifies (2.5) and (2.6) on ¥. Making
a linear change of coordinates z;

Yo = o, Yi=Ti—1— Ty, izla"'ap7 Yi = Ty, i:p+17"'an7

one can write p in the form

P
p(z,&) = — (% + &) 2+Zq] (x,&) T +er (2, &)( ng) +rp(x,§’)§f)
7j=1
h P
+rpp(2,6)) 0 <xo - szw(”“),f(wl)) 7
Jj=1 s=1

where (2.5) and (2.6) still hold. We now explicitly write down Im F,(p)?
Ker F,(p) and Im F,(p)? N Ker F,(p)? for p € %.

Lemma 2.2. We have

Im £y, (p)* N Ker Fy(p) = (He,)-
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Proof. From (2.3) it is clear that F,(p) = Fp(p) ® Fr where

—(6o +&1) Jrzq]x +Z7”J —&1)* 1k

and F is non negative. From Theorem 1.4.6 in [3] it follows that Im Fj N
Ker F = {0} and hence it is enough to study Fp. To simplify notations we
denote Fp by F. By Theorem 1.4.6 in [3] the space R?P*2 is a direct sum

(2.9) R¥P2 =% "oV, 0 W,
where V; and W are subspaces of dimension 2 and 4 respectively which are
invariant under F'. Moreover one has

ImFNKer F = {0} in V.

By Theorem 1.4.6 in [3] again W is spanned by v, Fv, F?v, F3v, where Fiv # 0
for j <3 and F*v = 0. Then it is clear that

(2.10) Ker F2 N Im F? = span{F?v, F*v} = Ker F?,
Im F? N Ker F = span{ F?v}.

Let us denote

7T§ = (50 +£17§1 - §2a v 76}7—1 - fpagp)a
R = diag(—1,71,...,7p), D =diag(0,q1,...,qp)-

Then one can write P = (Rn§, 7€) + (Dx, z) and hence

72 —trRrD 0
0 —DinRr |-

It is clear that ‘rRmDX = 0 implies that X; = --- = X, = 0. It is also clear
from (2.10) that

F(Im F? N Ker F?) = Im F* N Ker F.
Let (X, =) € Ker F2 N Im F? and consider
F(X,Z) = ("nRrZ, -DX).
From (X, Z) € Ker F? NIm F? it follows that DX = 0 and hence
tnRr=E = (—(Z0 + Z1),0,...,0)

for D't R7= = 0. This proves the assertion. O
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We turn to Im F? N Ker F2. We now write
p—1
(2.11) D ri(@ )& — &) +rp(2, ) — & = (A, €)ém) E)
j=1
with £,y = (£1,...,&p) so that one has
p
(2.12) P=—& — 266 + Z q;(z, €)% + (A2, &)y £ )

j=1

Lemma 2.3. Let 0 # v € (Hy,...,H;, ) be such that v € Ker A(p).
Then
Im FP(IO)2 N Ker Fp(p)2 = <H50a U)

and Fy,(p)v is proportional to He,. Moreover zo = v satisfies (1.10).
Proof. Recall that

FP(p)w = _U(w Hﬁo)Hﬁo - U(UJ, H&l)Hﬁo - U(wv HEO)H£1

(2.13) +qu o(w, Hy,)Hy, + Fa(p)w.

Since v € (Hy,,...,Hy,) N Ker A(p) it follows that Fp(p)v = —o(v, He,)He,.
Inserting this into w in (2.13) we obtain Fp(p)?v = 0. Thanks to (2.10), this
proves the first assertion. If w = (X,E) € (Hg,)? and o(w, Fp(p)w) = p,(w) =
0 then we have

P
> ai()XF + (A=), Ey) =0, BE(XTHY =0Ty =0
and hence X; = -+ = X, = 0, E(,) € Ker A(p) and (XP+D =F+D)) € Ker Fi.
This shows that
(X,E) = (0,0,Z(,),0) + (Xo,0, X P 0, 2P+ € Ker Fp @ (v).
This proves the second assertion. O

We make more precise looks on Ker A(p) for later use. Consider (A(z,
§)Ew) Ep))- It is easy to see that

P 2 2
(A2, €)w) Ew) Zaa( — lég 1) +<T1—Z—1—1)§f,

j=2 2

where

2
7
(2.14) a; =1; +1ri_1 — a'j—l’ 1<i<p-1, ap =Tp—1+Tp.
7
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We examine that

i1 1 1
(2.15) ai = 2 ( +-..+—).
(2

ai+1 ...ap i1 T])

Indeed assume (2.15) for ¢ + 1. Plugging (2.15) with ¢ + 1 into (2.14) to get
2
7

Qi+1

1 ri""f‘ 1 1
— ((T¢+T¢1)7p<_+...+_)_ri2>.
Aj41 Qi Ay T Ty

The induction hypothesis (2.15) with ¢ + 2;

a; =1T; +7i—1 —

1 1
ai+2...ap:'r'i+1...rp +._|_i

Ti+1 Tp
shows that
1 rioerp 1
a; = ((Ti+ri1)27—+(n+n )7 2)

Qi+1 Qj42 - Qp Ty

1 Tig1: T
= ((7”1 i) +7"i—17"i) .
41 Qi Ap

Thus we have

Qi ap = (ri i 1)Tig1 Ty F T 1TiGi2 Ay

1 1
=Tiy1- " Tp (7"1'4-7"1'71)4-7"7;,17“1' +- 4+ —
Ti+1 ’I“p

1 1 1
=Tis1e Ty + ==,

Tri—1 T Tp

which proves the assertion.
From (2.5) it is easy to see that

B 4t )
a’j(xvgl): i - .

’I"j Tp

We define ¢;(z,£') b

D N—1
Cj(xygl) = z;l;szj TS(J:7£)

s=j—1 Ts(.%‘,g/)_l

2<j<p

so that a;j(z, &) =rj—1(x, &) /cj(x,&"). We now summarize:

Lemma 2.4. We have

(A(z,€)¢p), € Zajmj 2,&)? + R(z, &€,



66 Tatsuo Nishitani

where mj(z,&') =& — ¢j(x,&)€—1 and
N o / r1($’§/)2 _
R(x,f)*rl(x,f)*lfmfo on .
In particular
Ker A(p) = ((1, c2(p), (c2¢3)(p); - - -5 (c2 -+ ¢p) (p)))
is given by mj(p) =0, j=1,...,p, for p e 3.

Proof. We just check the assertion for R. Note that

r nG+ety)
rnm—-l-—=r-1-— T
a2 > 4
(2.16) . Lo
) R
= = z, )
% et %
which vanishes on ¥ by (2.6). This proves the assertion. O
As observed above we can write
(2.17)
P P
plx,€) = =€ — 2681 + Y qi(@. &)t + > aj(x, & )m;(x,¢)?
j=1 j=2
P
+ R(2, &) +rppa(2,6) Y nj (130 —> a2, E“””) :
j=1 s=1

where my(x,&') =& and R =0 on ¥ hence

P 4 h
R=2> pim;(x,&)+2> vz +2> _ §n;(ag, T P )

j=1 =1 j=1
because ¥ is given by
Z:{1}1:---:1‘]):0’60:---:gp:()’
nj (o, 2PV €®PTD) = 0,1 < j < h}.
Since

0

P
8—%’”'7 o — Z:Ej7x(p+l)7§(p+l) = O on Ea

j=1

then one has

o P
a_xpnj <;v0 — Z P and g(p-%l))

s=1

P » h
= ajiwi Y bk + Y cjiniwo, aPT, (PHY).

i=1 i=1 i=1
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It is clear that b;; = 0. Putting z; = 0, 1 <4 < p one has

0
T%nj(fﬁo, (p+1 p+1 chznz T0, T (p+1) §(p+1))

and this proves that n;(zg, 2P+ ¢P+1)) 1 < j < h are independent of .
Let us denote them by n;(z®+1 ¢(P+1)) g0 that we have

p p
pla,€) = =5 — 266 + Y qi(@.8)at + > aj(x,&)m?
(2.18) . = =2
+ 37 by, €)ny (@PD, €PD)? 4 R, €)e,
j=1
where

P 4 h
R(.’L‘,f/) = 2Zﬁjm]‘ +2 Z’}/jl'j + 22(5j’l’bj.
j=1 j=1 j=1

Here we recall

Proposition 2.2 ([2]). Let S1, S2 be two smooth functions verifying
(1.11) and (1.12). Then there exists C # 0 such that

H3 pls = CHE, pls.

Let us define

1 P
2.19 o —
(2.19) o ;(01

so that (Hg(p)) = Ker A(p). Due to Lemma 2.3, S verifies (1.11) and (1.12).
Lemma 2.5.  The condition H2 p(p) # 0 implies that 31(p) # 0.
Proof. Recall that

1
Hg = — :
el 8@*2“’] ”

where L; are some vector fields. Note that Hsm;,2 < j<p, Hsz;, 1 <j<p
and Hgnj, 1 < j < h vanish on ¥ and hence they can be written as

p D h
Z a;m; + Z bj.%‘j + Z cing + dfl
j=2 j=1 j=1

Then the assertion is clear. O
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3. Hamilton system

We study the Hamilton system with the Hamiltonian p of (2.18). Let
n; (2P €PTD) =0, 1 < j < h so that (20,0,...,0,2P+1 0,...,0,PTD) ¢
Y. In what follows, since the homogeneity in £ is irrelevant in the study of
bicharacteristics, replacing (21, £P+1) by (z(P+1D) 4 P+ £lp+1) 4 ¢(p+1))
we are led to study the Hamilton system with Hamiltonian p where n;(0,0) = 0,
1 < 7 < h. Making a linear symplectic change of coordinates we may assume
that

nj (P @ty — 5 o+ O(n?), 1<j <k,
iy (P P = ¢+ O(n?), 1<j<k+¢

where 2k + ¢ = h and n? = |[z®@+D|2 4 |¢+D)2,
We start with

Lemma 3.1. One can write
D P h )
p=—& -2+ > GO+ mmi+ Y bind — & + B(x,8),
j=1 =2 j=1

where q;, rj, bj, B* € R and

m; =& — ;&1 — gj(x,§), U = x5 — d;é3,
ng=apy— €l 1<j<Kk,
Mgty = Eptj — enpiét, 1<j<k+/

with c¢;,dj,e; € R. Here gj(z,&) = O(p?), gj(x,0) = 0 with p = |(z,¢&')].
Moreover

p p
O(x,&) =Y ajol@,&)m] + ap (@, &)m; + Y Bjo(w, &) + B (z, )L,

=2 =1
h
+ Z ’on(l‘, gl)n_? + ’le(l'v gl)n] + 6('T’a 6/)7
j=1

Qjo = O(p)v ﬂjO = O(p)7 Y0 = O(p),
aji=0(p")O(E]), B =O0EO(EP), 71 = 0(n*) + 0(p)O([¢]?),
5 = 0(p")O([€]*) + O(p)O(€]*)

with m? = Z§:2 mj(x,&)?, 02 = 25:1 0w, &%
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Proof. Recall that we can write, changing the previous notations,

p p
p=—& =268 + > g, Oad + > ri(x,&)m(x, &)

Jj=1 Jj=1
h p

+ > by, &)y (@D, P2 4 2N "y (a, )i (,€)

Jj=1 j=1
D h
+2) 0w, e + 2 pyw, )iy | &,
j=1 j=1

where my = &1, My =& — ¢;(x,€)€j_1. Let us write

2
_ Jiga
617

r

2
- -~ ~ i
g 4 2y =1 (mj + T—]§f>
j

J
5. \%2 ¢

g7 + 20,267 = g (l‘j + j&f) - q—?ﬁi‘,
J J

2 2

~ - - u M
b + 24157} = b; <”j +3 €f> -
J J

Let g; be the sum of the quadratic and the cubic part of the Taylor expansion
of ¢;(z,&)&—1 — (vj(z, &) /r;(z,£))&F around 0 = (0,0) so that

i+ 62 = my(0,€) + OO, my =& — 61— (2.8,
J
where ¢; = ¢;(0). Taking d; = —0,(0)/¢;(0), e; = —;(0)/b;(0) one has
Y
T+ q%ff ={(2,€) + O(p)O(IEP), 4 ==, — dsé,
j
iy + E2EE =y (@D, £70) 4 O(n?) + O(p)O([€]?),
j
nj = Tpj — €€l 1<j<k,
Mg = Eprj — il 1<j<k+L
Then with 8* = —2v;(0) # 0 we can write

p=—8 —25& + > q;(z.8)[t; + O(p)O(|¢*))?

Jj=1

+ ) ri(,§)[m; + 0(p")O(EN]

-

2

J

+ ) bi(@,8)In; + 0(n?) + 0(p)O(|E*)]* = B*& + O(p)O(IEP).

-

<
Il
_
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Note that
ri(z,&")[m; + O0(p*)O([€])]? = [r;(0) + O(p)][m; + O(p*)O([€])]*
= 1;(0)m3 + O(p)O(m?) + O(p*)O(m)O([¢]) + O(p°)O([¢[)

and

qj(z,&)[t; + O(p)O(IE1*)]* = [g;(0) + O(p)][E; + O(p)O(I€*)]?
= ¢;(0)£7 + O(p)O(£2) + O(p)O(NO([E[*) + O(p*)O([€]),
and
bj(w,€")[n; + O(n®) + O(p)O(I€*))* = b;(0)n + O(p)O(n?)
+0(p)O(n)O([E*) + O(p*)O(IE]*) + O(1).
This proves the assertion for ®(x,&’). O

Our Hamilton system is:
(3.1)
&g = —2§ — 21,

p
b1 =26 — 4 qrdi&ily — 2carams — 337}

k=1
14 h
0 o®
-2 Zrkmkﬁ—?j - 42 brer€ing + 6_517
0 o® .
Tj = 20jmy — 274 1Cj 4141 — QZrkmk o 2<i<p,

k=2 ¢, 85]

P
P 8gk 0P
§o =2 572 UL v
ng 0P

P
. 9 )
& = —2q;x5 + 2q;d;67 + ng,grkmké)?j - 87/ 1<j<p

x.+‘:25k+‘(f+‘—€k+‘52)—2ir»m» 99i + oo
pTJ JI\SPT) 761 P 7 za€p+j a£p+j>

1<i<k+Y,
p
Eprj = —2bj(Tpy; — ;D) +2 ) rimi—o— — ,
D] J\+pT] 761 ; (4 Zaxp+j 8xp+j
1<j<k,
0P
By =—2Y rimi-—— , k+e+1<yj,
s Z afp+j .
dg; o0

§p+J =2 Z szz

k+1<3.

3
OLp axpﬂ'
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It is easy to see that

Zﬁmmkw )O(0) + O(p)O(&])

+O( )O(n)O([¢]) + O(n?)
for 1 < j < p, where ﬁ,(cj) =0(p*) + O(|¢]) and

(3.2)

Zammk +0(€%) + 0(0)0(p)O(l¢])

+ 0( %) +0(m)O0(p)O([€]) + O(p*)O([€]) + O(p)O([€])
for 1 < j < p, where a,(cj)
2—2 = 2%k—p+5,0(&; — en—p+;€1)

(3.4) +0(m?) + 0(m)O(p)O(I€]) + O(p*)O(m)
+0(%) + 0(0)0(p)O([¢]) + O(n®) + O(n)O(p)O([€])
+0(p")O(I€]) + O(p)O(€]*)

for p+1 <7, where yp—pyj =0forp+k+£+1<jand

oP
Frle 27j—p0(T; — €5 pE7) + Vipa

+0(m?) + 0(m)O(p)O(I€]) + O(£2)
O(O)O([g]*) + O(n?) + O(m)O(I€[*) + O(p*)O(I€[*) + O(I€[*)

for p+1 < 7, where vj_p0 =0, vj_p1 =0 forp+k+1 < 7.
Suppose that m; are also unknowns and (z(s),&(s),m(s)) verifies (3.1).
From (3.1) one can write

(3.3) 0§

= O(p). Tt is also easy to see that

(3.5)

(3.6) 2rymy — 2rj1cjpimy = 5 4 rj(x, &, m), 2<j<p,

where we have set my,1 =0 and

6gk 0P
TJ_QZTkmkaé'] B—é_]

Similarly from (3.1) we can write

1 . .
(3.7) T :*ngJFSj(faf)a 2<j<p
q;
with
1 P g, 10®
3.8 sj=— |gd; &+ Y rmp— — = ——
( ) J q] 79761 kZ:Q 6.%'] 26.%']
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From (3.6) and (3.7) it follows that

Sj.

(39) 2rjmg = 2j41Cj 4141 = _qué}' trj+ o

Let us set

b5 =& —ci&—1 — g5(x, ), 2<j<p,
then it is easy to see by induction that

szz ¢Z+Z ¢jlge + (c2 - ¢5)&u, 2<)<p.

=2

Then if (x,&,m) satisfies (3.1) one has

(3.10)
1 &1 .
2rjm; = 20411y = 5 - > —(co-ci)de
4 = e
1 . d
_ qu(cz ¢)é1 +1; +ESJ
1 /d\*< 1
-~ (= —(co--¢i)ge, 2< <.
Here we rewrite d?g,/ds?. In the expression
d 89 ", dg
2.0i(1.€) = L zjﬂa

= =1

we substitute the right-hand side of the equation (3.1) into &; and fz to get

(311) @ i) = b €),  2<i<p
Let us put
(3.12) &) i 1
. (x = -
Cé

=2

Taking (3.10) into account, we introduce the following equations for m;:

2rym;(s) = 2rj41¢541m;541(5)

1 <1 )
:_que ZC_Z(CK...Cj)me(S)
(3.13) )
=g (e &) g+ s (a(s), £5),m(5))
1 (d



Non effectively hyperbolic operators, Hamilton map and bicharacteristics 73

If (x, &, m) verifies (3.1) and (3.13) then we have

—L_zizclz(w'“cj)(%)Z(We—qﬁz):(), 2<j<p
and hence we conclude that
mj(s) = ¢;(s),  2<j<p
provided
(3.14) (2,8) =0(s7Y), m; =0(s1).

Thus (x(s),£(s)) is a solution to the Hamilton system (3.1). Now our question
is reduced to look for (x,&,m) verifying (3.1) and (3.13) with (3.14).

4. Reduction of Hamilton system

We further simplify the equations (3.1) and (3.13). We make the change
of the independent variable s:

(4.1) 5= %

and put
zo(s) = tXo(t),  Gols) = 'So(t),  m(s) = t*M(2),
zi(s) =t2X;(t),  &(s) =1F;(1), 1<j<p,

(4.2)  wi(s) =2X;(t),  &(s) =1'Z5(t), p+1<j<p+k,
CEj(S):tBX]'(t), 5j(8)2t45j(t), p+k+1§]§p+k+€,
zi(s) =t'X;(t), &) =t'Ei(t), pHEk+L+1<]

and denote V' = (X, E), V() = (Xo,..., X}, Z0,...,5p) and for f(z,§,m) we
put

PtV M) = f(tXo, X 3 X i1, P X gt Xptgeg 1, -, 1 X

4= 200 43 3= 4= 4= 44
1520, t°E Bt 1y - Ptk kg1, - - -5 £ B, T M),

where X' = (X1,...,X,), 2/ = (Ey,...,Ep).
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Lemma 4.1.

((%I))L1 - o),

Tatsuo Nishitani

We have
od \*
6.’1,']'
® i
1<j<p, (%) =0@t", p+1<j<p+k,
J

ptk+l<j<p+k+{

p+k+0+1<7,

where by O(t°) we denote a term which is of the form

tR(t,V, M)

with a smooth function R(t,V, M).

Proof. Noting /# = O(t3), &*

and

=0(t?), pf = O(t), m* = O(t*), n* = O(t?)

o tel4
= _ Vg —— =0, =00t k+1<i
56 =0 ¥ g=0. €=0(),  prkr1<i
agj . 8gj .
W_ofl),  prisi =0 i
the assertion follows from (3.2), (3.3), (3.4) and (3.5). O
We study the Hamilton system (3.1). Let us set
d
D=t2.
tdt
Then since
Covy 41 d _
tD(t"'G) = t"7 (DG + LG), i —tD,
s
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thanks to Lemma 4.1 the equation (3.1) is transformed to

DXy = —Xo + 22, +t2¢0(t, V),
DX, = —3X1 + 250 + 2roco Mo + 36*ES + td1 (¢, V, M),
DXj = =3X; = 2r;M; + 2rjacim My +16;(8, V, M),
2<7j<p,
DZy = —4Z, + to(t, V, M),
D= = =25 +2¢; X; + t;(t, V, M),  1<j<p,
tDXp1j = =3t Xpyj = 204 5p4 +tdpy; (V. M), 1<j <k,
tDEpyj = —3tEp4; + 2b;Xpsj + 1y (8, V, M), 1<j <k,
DXpij = —3Xptj = 2b54(Eptj — exjE1) +tpe; (1, V, M),
E+1<j<k+¢
DX,pij = —4X,p5 +topy(t,V, M), k+0+1<j,
DEpyj = —4Ep4j + thp;(8, V. M), kE+1<3.

(4.3)

We turn to (3.13). In view of (3.3) one can write

00\ 5
(3_§-> =1°) " Rjn(t, V)M, +t°R(t,V)
J k=2

for 1 < j < p and then

(4.4) =4t = tR(t,V, M).
Note that
(4.5) [0(p)O(O)]F = t*Ru(t, Vi) + t° Ro(t, V)

because O(¢) = O(|(z1,...,2p)]) + O(|€[*). Thus one sees from (3.2)

d
(;) :t4R1(t;‘/(p))+t5R2(t,‘/,M), 1§j§p,
J

where and below R; may change from line to line. This shows that
st = t"Ry(t, Vi) + °Ra(t, V, M)

and hence one obtains

(4.6) t=4(tD)s’ = Ri(t, Vi), tDV{y)) + tRa(t, V, M, tDV,tDM),

where

(4.7) Ri(t,V),0) =0

75
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since
(4.8)
k k+1af
tD[t f(t,V7M)]—kt 5t (t,V,M)
of
k . k .
+1 E _6Vj(t’V’M)tDVJ+t E 3 j(, ; )tDM].

We finally show that one can write
(4.9) t4(tD)hE = Ru(t, Vi), tDViy)) + tRa(t, V,tDV),

where
Ry (t, V(p), 0) =0.

To examine this we first recall that

9
hy(,€') = agj Z+Z gj&
1= 0

It is clear from the definition of g; that

0
(4.10) 5 = O]

We see from (3.1), (3.3) and (3.4) that
= O0(I)]) +0(p)O(€) + O(p)O(n) + O([¢[*) + O(p*)O(I€])
for 0 < j < p and
;= 0(&) + O(p)O([€]) + O(p)O(X) + O(p)O(n) + O(|€]?)

for p + 1 < 4. Thus we have

99, g 4 5
<6$]‘i,i> =t'Ry(t,Vip)) + t°R2(t, V).

We turn to (9g;/9&;)E;. Tt is easy to see from (3.1), (3.2) and (3.5) that
& = O(z:) + O(p)O(f) + O(p)O(n) + O(I¢[*)
for 1 <. Since

89]-
9&;

we see that

. dg; ‘
=0(z]), 1<i<p, 8?:0(|g|), p+1<i,

9y, g 4 5
(85 52) =t Rl(t, ‘/(P)) +1 Rg(t,V).
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Combining these expressions one gets
he = t*Ry(t, Vi) + t° Ra(t, V),

which proves (4.9).
It is also easy to see that

2
(4.11) t=4 (%) (t*Z1) = 62, + 5DZE, + D*E, = L=,
and
2
(4.12) t=4 (di) (t*M) =t~ (tD)?(t* M) = (tD + 4t)>M.
S

Thus the equation (3.13) turns to

1 1
27’ij _2Tj+lcj+1Mj+1 = —T —(C["'Cj)(tD+4t)2M
q; —2 Cy
(4.13) 1
- 27,(02 wo ) LE1 + Ry (t, Vi), tDV(p))
J

+ tRo(t,V, M, tDV,tDM), 2 <7 <p,
where
(4.14) Ry (t, Vi) 0)=0.

We further rewrite (4.13) removing the D2Z; term in £=;. Let us denote
W = (V, M) and recall that

(4.15) DX, = —3X; + 25 + 2ropca My + 33°E2 + toy (t, W).
Noting (3.2) and (4.5) we get
(4.16) DEy = =251 + 2q1 X1 + t1(t, Vi) + t290(t, V, M).

From (4.16) we have

1 1
DX, = —D?=, + —DZ1 + 0(t,V,,,tDV,
(4.17) Pag T T g & Vo) )

+t0(t,V, M, tDV,tDM),

where 0(t,V(,),0) = 0. Equating (4.15) and (4.17) one obtains

1 1
2roco My = gzﬁal + q—DEl +3X; — 25,
1 1

— 3B*E} + 01(t, Vi), tDViy)) + t01(t, V, M, tDV,t DM).
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Using (4.16) we rewrite this as

1
2rocoMy = — L2 — 255 — 36*E3
(4.18) 2q:

+ 0a(t, Vipy, tDV{y)) + t0(t, V, M, tDV,tDM).
We insert (4.18) into (4.13) to get

2q17
2riMj = 2rjp1cia M + ; 2 (c3es -+ c;)My
J
1 -1
(4.19) _ LS ) D + 420,
2(]j =2 Cy

+ Ry (t, Vi), tDVyy)) + tRo(t, V, M, tDV,tDM).

For later use we give another less precise expression of (4.13). From (4.14)
one can write

Ri(t, V), tDV{,y) = tR:(t,V,DV)
and hence we can rewrite (4.13) in the form
1
2riM; —2rjpicipiMjp = ——
(4.20) 3 JH1IG+1M454+1 2,
+t0;(t,V,M,DV,DM).
If we have a solution (X,E, M) of (4.3) and (4.20) which is bounded as ¢t | 0

then (x,&,m), defined by (4.2), satisfies (3.1) and (3.13) with (3.14) and hence
(z,€) is a solution to the original Hamilton system.

(CQ R Cj)[,El

5. Formal solutions

We first look for a formal solution to (4.3) and (4.20). Let us define the
class of formal series in t and log 1/t in which we look for formal solutions:

Definition. For k € N we set

E=1t" Y t'(log1/t) F; | Fij € CV
0<5<i

The followings are checked immediately:
ey DEID-DE D,
o tPEL C Eptrs
e D&, C &,
0 EE; CEpyyg.
We further rewrite the equation (4.20). From (4.20) it follows that

2
02"'Cj 1 Cj+1

2 2
c4 B
+1 =
— e 22 P opEy
dr; 45 Gi+1 ap

+tfi(t, W,DW),  2<j<p.

(5.1)
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Let us set
Co cj 1 c?H Ciy1 C
Kj = — —+ 4+ + ,
59 drj |4 gin dp
( . ) 2 2 2
1 02 02 . Cp
K=—+ =+ -+
q1 q2 dp
so that

= 1
(65.3) M; =r;LE +tf;(t,W,DW), 2<j<p, drocokg = o K.
1

Note that f] has the form
p
(5.4) =" af) My + ) DM, + oD,
k=2

where a9, a%) are smooth in (¢, V, DV).
We now assume that (5.3), (4.15) and (4.16) hold. Then we have from
(4.18) and (5.3) that

1 _
<q — H) L= + 4T262tf2 *[,H1 —4=9 — GB*HQ + Qtfg
1

so that ;C\_q [6ﬂ* _1H2 + 4l€_1'— ] + tfg with f3 =K (47‘262f2 — 2f2) Here
we have set

tfo(t, W, DW) = 05(t, Vi), tDVy)) + t0a(t, V, M,t DV, tDM).
Thus one has
(5.5) Mj = k68" k"2 + 4n T Eo] + tfj(t, W, DW),  2<j<p

with f] =k f3 + f] where f} has the same form as (5.4).
Conversely assume that (4.15), (4.16) and (5.5) hold. From (5.5) and (4.18)
one has

1
2rocoka[66* K TIE2 + 4k T1Eg] + 2rocot fi = EﬁEl — 25y — 3022 + tfy

and hence

63k 'E + 4k Bo] = LE; — tf3.
Thus we get (5.3) from (5.5). We conclude that our problem is reduced to find
a solution (X, E, M) verifying (4.3) and (5.5).

Lemma 5.1.  Assume that (X,Z, M) € & satisfies (4.3) and (5.5) for-
mally and Z1(0) # 0. Then X(0), Z(0) and M(0) are uniquely determined.
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Proof. Let us set

X,= Y togl/typl,  Z,= 3 ti(logl/t) ol

0<j<i 0<5<i

M, = > tilog1/tym).

0<j<i

Equating the constant terms of both sides of (5.5) and recalling that £ =
6 + 5D + D? one has

(5.6) m((fo) = 6/@&‘16*((16}))) + 45_1@04(()%)
From DZ; = —2E5; + 2¢; X; + t1);(t, W) we have
(5.7) of) =B,  1<j<p

From DX, = — Xy + 25, + t2¢)0(t, W) and D=y = —4=y + tl[}()(t, W) it follows
that

0 0 1
(5.8) aéo) =0, 680) = 20[,(30).
Now DX, = —3X1 + 25y + 2raco My + 3ﬁ*5§ + toq (t, W) with (58) gives
(5.9) 365 = 2racamy + 36" (aby)?.

Then from (5.7), (5.6) and (5.9) it follows that

(5.10) o) — 1[i+§+m+%”@]:ﬁ
g

Yoo = B* q2 dp B*

for a(()t) # 0. Thus oz(()%)) is uniquely determined provided oz(()%)) # 0. The equation
(5.6) determines méjo), 2 < j < p uniquely. From DX; = —3X; — 2r;M; +

2Tj+1Cj+1Mj+1 + t¢j (t, W) it follows that

(3+1)

(5.11) (”732wﬂgﬂmm —2orm@ |, 2<ji<p.

Then (5.7) determines oz(()o), 2<5<p.
We turn to (pﬂ) aé’éﬂ) for j > 1. From (4.3) it is clear that

g™ =0 =1 BT =0, jARE L kAL
It is also clear that
(p+7) 26k+j( (0

e :——g—aWQ, k+1<j<k+¢

This proves the assertion. ]
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We now show that there exists a formal solution (X,E, M) € & verifying
=Z1(0) # 0 and (4.3), (5.5). If such a solution exists then (X (0),Z(0), M (0)) is
uniquely determined by Lemma 5.1. Taking this fact into account let us put

and

gt = Z ti(log 1/t)jFij ,
1<i,0<5 <
we substitute (X +X,Z+Z, M + M) for (X,=, M) in (5.5) to get the equation
for (X,=, M). Since ﬂ*a(%) = K we get

(5.12) M; = 12k;Z) + 4kjk~"Eo + a;E5 + tFj + tf;(t, W, DW),

where a; and F; are constants and f;(¢, W, DW) has the same form as (5.4)
and
£;(0,0,0) =0.
Hence if (X,Z, M) € &* verifies (5.12) then (X + X,= + =, M + M) satisfies
(5.5). _ _ _
We turn to the equation (4.3). Let us substitute (X + X, 24+ 2, M + M)
for (X,=Z, M) in (4.3). Then we have, thanks to ﬂ*a&)) =K,

DXy = —Xo + 251 + 126y + t2¢o(t, W),
DX; = —3X; + 250 + 2roco My + 6= + a1 =3
+tp o (t, W),
DXj = =3X; — 2r; Mj + 2rji1¢501 My + £35 4 165 (¢, W),
2<j<np,
DEg = =45 + tyo + typo(t, W),
DEj = —25; + 2¢; X; + ty; + t;(t, W),  1<j<p,
(5.13) { tDXpyj = =3tXpij — 261 Epsj + tBprj + tdpys (L W),
1<j<k
tDEptj = —3tEptj + 2b; Xpyj + typrj + tPpy (6, W),
1<j <k,

3

DXy = —3Xp4; — 2bks;Sps; + Abisjensjaly) B

+ ap BT+ t0pyj +topri (W), k+1<j<k+¢,
DXpij = =A4Xp1j +t0p1j T 1dpr (W), k+L+1<7,
DEpyj = —4Z,4; + typpy + thpei (6, W),  k+1<7,

where ¢;, 1; are polynomials in M such that ¢;(0,0) = 0, 1;(0,0) = 0 with
coefficients which are smooth in (¢,V). If (X,Z, M) € &£ verifies (5.13) then
(X + X, 24 =2, M 4+ M) satisfies (4.3).



82 Tatsuo Nishitani

Theorem 5.1.  There exists a formal solution (X,=, M) € &y verifying
Z1(0) # 0 and (4.3), (5.5).

We start with

Lemma 5.2.  Forany V = (X,E) € EY there is a unique M € E* such

that (X + X,E+E,M + M) satisfies (5.5) where M has the form
Mj 212/€j51+4ﬁj1€7150+tFj+0j, 2<j5<p
with a constant F; and
(5.14) Ci= > CUt(logl/t),
2<p,0<q<p—1
Ci) = OV [v < p<p-1).
Proof. Note that

[1]

= > mgt'llogl/t),  mij=my(aly) l¢<p<i-1).
2<i0<j<i

Then with 4 '
M, = Z mgf)tl(log 1/t)?

1<i,0<5 <
it is easy to see that (5.12) implies that
ml(f(} = 12/@3»0(1()}1) + 4/€_1I€j041()%) + 0p16q0F;
+GO () v<p<p—1Vyuv<p<p-1miv<p<p-1).
By induction we get the desired assertion. O

Substitute (X + X,Z + Z,M + M(X,=)) for (X,Z,M) in (5.5). Here
M(X,E) is given by Lemma 5.2. Let us denote

I_t = =) —
VI =t(Xo,.... X, 0, Bp) = Viy,s
II t = =
V= (Xp-‘rla'~'7Xp+k7‘:‘p+1a"'7‘:‘p+k)a
111 t = =
14 = (XP+/€+17"'7Xna‘:‘p+7€+la"'a':‘n)~

Then (5.13) becomes
DVI= AV 4+ Frt + Gi(t,V),
(5.15) 0=ApV" + Ft+Gry(t, V),
DVHT = A VI £ K= + Frppt + G (t, V),

where

(5.16) Gu(t,V)= > Gut'(logl/ty,

2<i,0< <
Guij = Guij(Vpg l g <p<i—1)
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and F,, K are constant vectors. Indeed tDW has the form (5.16) if W € &F.
Make more precise looks on A,. Let us study the linear part of the second
equation (5.13):

27"262M2 + 6/4551 - 3X1 + 250
By Lemma 5.2 it turns out to be

— 33X + 2raco (1269 + 4k KoZg] + 250 4 6KZ1 + Go + tF

1 1
—-3X,+6 (— - m> =+ 2671 (— — m> Zo 4 250 + 6kZ1 + Go + tFy
q1 q1

= —3X; +6q¢; ') + 25 1q 2y + Gy +tF,
where G verifies (5.16). We note that
—3Xj — QTJMJ + 2Tj+1Cj+1Mj+1 = _3X] + 247']‘51 + 8:"6_17']‘50 + tFJ + GJ

with G verifying (5.16) where 7; = 7j11¢j416j41 — rjk;. Thus we get the
expression of Aj:

—Xo + 25,4
—3X, + (6¢; 1)Z1 + 26 1gy ' Eo
(5.17) AVl = —3X; + 247,51 + 875715
—4%,

On the other hand, it is easy to see that

—2bg 41
O
—2bag,
(5.18) Ay = o
2by
0]
2by,
Turn to A;rr. We see that
(5.19)
—3Xptkt1 — 2b2p+15p 441
: _ 4b2k+1€2k+1048))
—3Xpikt — 202k 0Zpyrte .
—AXp ke : "
AIIIV”I — , K = 4b2k+l€(2)k+€aoo
_4X, .
—4Zp k41 1
; 0
47,
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Let us write

(5.20) HDV = AV +tF + G(t,V),
where
E O O A O 0]
H=| O O O |, A= O A O
O O E * O A

Lemma 5.3.  We have
o(A;) ={-6,0,1}, o(A;r) CiR\ {0}, o(Arr)={-3,—4}.
Proof. Tt is enough to show the first assertion. It is easy to see that

@ﬂAAQ(A+1XA+®‘A+ﬁ Dl’

Dy X+2
=A+ DA +D|(A+3)(A+2) — DDy,

where Dy = —diag(2¢1,2¢o, . .., 2q,) and

6qf1 0 --- 0

24 0 -+ 0
Di=-| .

247, 0 --- 0

From this we conclude that the eigenvalues are 0 and A:
A2 45X —6=0.
This proves the assertion.
Proof of Theorem 5.1. Note that (5.20) implies that
(5.21) H(iVij — (7 + 1D)Vij+1) = AVij + dadjol’ + Gij,

where G;; = 0 for 4 = 0,1. Then we have

(5.22) {(H — AV =0,

(H—A)Vig=Vi1 + F.
Choose Vi1 € Ker(H — A) so that

F+Vi; € Im(H — A).
Then we can take V7o # 0 so that

(H—-A)Vio=F+ "V
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since Ker(H — A) # {0} by Lemma 5.3. We turn to the case i > 2:
(5.23) (iH — A)Vij; = (j + D HVijs1 + Goy.
With j =4, (5.23) turns
((H—-AV;i=G;(Vpg lg<p<i-—1).
Since iH — A is non singular for ¢ > 2 by Lemma 5.3 one has
Vi = (iH — A)7'Gii(Vpg | ¢ < p <i = 1).
Recurrently one can solve V;; by
Vij = (iH = A) 7 (G + 1) HVij1 + Gij(Vpg [ ¢ < p < = 1)

for j=4i—1,i—2,...,0. This proves the assertion. O

6. A coupled system of ODEs

In this section we study the next system of ordinary differential equations

(tQ% - iA) u=—tKju+ Li(t)v + Q1 (t,u,v)

(6.1) + tRy(t,u,v) + tFy,

d
tav = —Kov+ Lu+ La(t)v + Qa(t, u,v)

+ tRQ(t, u, ’U) + tFy,

where Q;(t,u,v) and R;(t,u,v) are C! functions defined near (0,0,0) € R x
C™M x ™2 such that

(6.2)

{ 1Qj(t,u,v)| < Bjo(Jul* + [v]*),
| R (¢, u, 0)| < Bjo(lul +[v])

for (t,u,v) € {|t| < T1} x {|u| < C1T1} x {|v| < C1T1} and Lo(t) € C1((0,T7)),
Ly(t) € C*((0,T]) are Ny x Ny and Ny x Ny matrix valued function respectively
which verifies

1L ()l e o,1)s ItL ()l oo,y < B
while L is a constant Ny X Ny matrix. To simplify notations we write || f||7 for
Ilfllco,r7)- We assume that A is a constant nonsingular real diagonal matrix;

(6.3) A =diag(A, ..., ANy ), Aj € R\ {0}
and K; are real diagonal matrices;
K, = diag(ma1,...,min, ), Ky = diag(mai, ..., man,).
We also assume that
(6.4) |K1|, |K2| < 2m, m = min {m11,...,MiN,, M21, ..., Man, }

Our aim in this section is to prove:
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Theorem 6.1.  If m is sufficiently large then (6.1) has a solution (u,v)
such that w(0) = 0, v(0) = 0.

Let m > 0. For f € C([0,T]) with f(¢t) = O(t) as t | 0 we define

t ) ) —Ki
= e (D) S

and for h € C([0,T]) we set

so that

(6.5) <t2% - iA) H[f] = —tK H[f]+ |
and

(6.6) t%g[h] = —K>G[h] + h.

We start with

Lemma 6.1.  Let f(t) € C1((0,T]) be such that f(t) = O(t) and tf'(t)
=0(1) ast | 0 and let h € C([0,T]). Assume m > 0. Then we have

HIfI(E) = = (@A) T f () + Ku (@A) T HIEF(E) + (i0) T H[E ] (),
IHIf1@)] <
GIA O] < - lIklleo.n)-

Proof. Let m > 0. Note that

) K1
- e () (o

Then the integration by parts gives

HIF) = ) (0 + R (i) et [ e (i)m et (5) o

s~ flle o,

1 tp p p
i [ 1\F 1 1
AN—1 —2A ipA
ran e [Fen () 5 (5)
t . . t —Ki 1
:—(iA)*lf(t)—FKl(iA)*l/O e TAFIA (s) ?sf(s)ds

P ()T
+(iA)_1/ e iATIA () — 52 f'(s)ds,
0

s 52
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which proves the first assertion. Since

e <,
we have
1 1 7K1 1
o< | () Lty g es)1ds
0 S S
1 1 1 Kl 1 _
<t flleco,g) e —d ——||t "fllewo.n

which is the second assertion. The third assertion is clear because

Ly 1
gl < [ (5)  Se9lds < Ciblog.

Using (6.5) and (6.6) we rewrite (6.1) as an integral equation:

(t)v + Q1(t, u,v) + tR1 (¢, u,v) + tF1],

Lu + La(t)v + Q2(t, u, v) + tRa(t, u, v) + tF3].
Let ug(t) =0, = 0 and define wu, (t), v, (t) successively by

un-‘rl(t) = H[Ll (t)vn + Ql (t; Un, Un) + tRl (t; Un, Un) + tF1]7
Unt1(t) = G[Lup + Lo(t)vn + Qo2(t, tn, vp) + tR2(E, Un, vy) + tF3].

Lemma 6.2.  There exist positive constants C', C* (C* < C) and T > 0
such that we have

(6.8) lun (1) < Ct, o, (1) <C*,  n=0,1,2,...
for0<t<T.
Proof.  Assume (6.8) holds for n and n — 1. Write
Unt1 = H[L1(t)vn] + H[Q1(t, un,vn)] + H[ERL (¢, Un, vp)] + H[EFL].
From Lemma 6.1 we see
(69) MR < -|F
Noting that
|Q1(t, un,v,)| < 2B;,C?*t?, [tRy (tn, vn)| < 2B10Ct?,

which follows from the inductive hypothesis and (6.2), we have from Lemma
6.1 that

9B (2t 2B,,Ct
(610)  [H[Qu(t,un,va)]] < ===, [H[tRa(t, un, v0)]| < _;ZC :
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We study H|[Li(t)v,]. By Lemma 6.1 one can write

(6.11) H[L1 (#)on] = =(iA) 7 Ly (t)vn + K (i)~ H[tLa (8)v,]
+ (iA) T H[EPLY (t)von] + (IA) T H[E Ly ()0),]
provided tv], = O(1) as t | 0 which will be examined below. Let us write

A=) Ag= L]+ | Lallr + 2(BuC + Ba)T,  k=0,1
so that one has

(6.12) (iA) ' Lyon | < ALy || 7C*t

while Lemma 6.1 gives

(6.13) | K1 (iA) T H[ELy (t)v,]] < ‘K1|)\%HLl(t)’Un”C([O,t]) < 2| Ly || 2 C*t
and

(614)  |GA)HIP LY (1)0)| < AL (ol < L (1) O
Recall that

tU;L = _KZUTL + Lun—l + LQ(t)Un—l + QQ(t, Un—1, Un—l)
+ tRQ(t, Upn—1, 'Un—l) + tF5.

This with the inductive hypothesis gives that

|tv! | < |Ks||on| 4+ |L|Ct + || La|| 2 C*t + 2B2oC?t? + 2ByoCt? + t|Fy|
< 2mlvp| + || L2|l7C*t + AgCt + t| P,

which shows that tv], = O(t) as ¢ | 0. Moreover thanks to Lemma 6.1, one gets
(6.15)
. — 1 * *
|(iA) P H[E Lo (o ]] < )\EHLIHT{QmC + AoC + ||L2|[rC" + [ Fa|}t

ALz
m

< 2M|L1||lrC*t + {I|L2||l7C™ + AoC + |F>|} t.

From (6.12), (6.13), (6.14) and (6.15) it follows that
A
[H[La(@)on]| < SMLallrCt + —{][tLy]|7C”

+ || L1 ||z (|| L2 || 7C* 4+ AoC + | F2) }t.

Combining the estimates (6.9), (6.10) and (6.16) we conclude that

(6.16)

1 -
[uni1(t)] < BN L1l 7C*t + E{|F1| +2C(B1oC + Byo)
+ ML 7C* + M Lallr ([ L2l 7C* + AoC + | Fa|) }t.
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Fix a C* > 0 and choose C' > 0 so that C/2 > 5A||Ly||rC*. Then if m is chosen
such that

1 ~
(6:17)  —{|F| +2C(Buo + Bio) + AlltLy[|rC*
+ A Lillr(| L2||7C* + AoC + |Fe|)} < C/2,

then we have
lun+1(t)] < Ct.

We turn to v, 41:
Un+1 = g[Lun] + g[LQ(t)vn} + Q[QQ(tv Unp, Un)] + g[tRQ(ta Un, Un)] + g[tFQ]
By Lemma 6.1 and the induction hypothesis one has
L L 1
glzu) < Eer, (gizawpn) < Lo, gm) < Limy.
m m m

Since
|Q2(tvumvn)| S 2B2002t2a |tR2(tvun7Un)| S 2BZOCt25

we have by Lemma 6.1 that

(6.15) onsal < {1LallrC* + |Bol + AoC.

Hence to conclude the proof it suffices to take m so that both (6.17) and
(6.19) Ll O + Bl + AoCY < C°

hold. O

Let us assume that

% : 8£j < Bji(|ul + |v]),
(6.20)

% % <B.1

ou |’ ov |~ 7

for (t,u,v) € {|t| < T1} x {|Ju| < C1T1} x {|v] < C1T1}. We now show

Lemma 6.3.  For large m we have

1
|Un - Un—l‘ < EAI{”un—l - U7L—2||C([0,t]) + ||Un—1 - U7L—2||C([0,t])}a

tlvy, = V1| < 241 {{[un—1 — un—2lleo.n) + llvn—1 — vn—2llc (o) }-
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Proof. 'We first note that from (6.20) and the induction hypothesis one
has

(6'21) ‘Qj(ta Upn—1, vn—l) - Qj (t, Un—2, Un—2)|
<2Bj1C{|un—1 — Un—2|t + |vn_1 — vp_2|}t.

Then Lemma 6.1 shows that

(6.22) |G[Q;(t, up—1,Vn-1) — Q;(t, Un—2, Vp_2)]|
< %{Hun—l —un—2lloqo.g) + [[vn-1 = va—2llcqo,) }-
Similarly from
(6.23) |tR;(t, upn—1,Vn-1) — tR;(t, Un—2,Vn_2)]
< 2Bj1t{|un71 — Up—2| + |Un—1 — Up—2|}

one gets

(624) ‘g[tR] (t, Un—1, ’Unfl) - tRj (t, Un—2, ’Un,Q)H

2B T
< #{Hun—l — Un—2|lc(o,)) + [Vn=1 — Vn—2llc(o.) }-

It is also clear that

L
625) 161000t — o)l < 2 o o)

L
(6.26) IG[L(un—1 — un—2)]| < |—m‘Hun,1 — nn—2llc(o.0)-
Since

Up — Un—1 = g[L(un—l - un—2)} + g[L2(t)(Un—1 - Un—2)]
+G[Q2(t, up—1,vn-1) — Q2(t, Up—2,Vp_2)]
+ G[tRa(t, up—1,Vn-1) — tR2(t, Up—_2, Up_2)]
from (6.22), (6.24), (6.25) and (6.26), the first assertion follows.
We turn to t(v), — v},_;). Recall that
t(’U;’L - U;’L—l) = _KQ(Un - Un—l) + L(un—l - un—Q) + L2(t)(vn—1 - Un—Z)
+ Q2(t, un—1,vn-1) — Q2(t, Up—2,Vn_2)
+tRy(t, up—1,vp—1) — tRo(t, Un—2,vp—2).
This shows that

t(vy, = v )| < |Kallvp — vnoa| + [ Ll[un—1 = tn—o| 4 || L2 7|vn-1 — vn2|
+ (2B21C + 2Bo))t{|tn—1 — tn_a| + [vn_1 — vy_a|}

< 2m|vy, — 1| + Ar{|un—1 — Un—2| + |vn—1 — vp—2l}.
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Here we apply the first assertion to estimate |v, — v,—1| and get
[t(vy, — v )| < 240 {||un—1 — un—2llc(o,) + 1vn—1 — va—2llcqo.m}s
which is the desired assertion. O

Proof of Theorem 6.1. We show that u,, v, converge to some u, v in
C([0,T]). Since |v,(t)] < C*t by Lemma 6.2 this proves that (u,v) verifies
(6.7). Let us write

Un+1 — Un = H[Ll(t)(vn - Un—l)] + H[Ql(ty U, Un) -1 (t, Up—1, Un—l)]
+ H[tRl (t7 U, ’U’n) - tRl (ta Un—1, ’Un—l)]

and set
Wi (t) = llun — un-1llcog) + 1vn — va—1llc(o.)-
From (6.21), (6.23) and Lemma 6.1 it follows that
|H[Q1(t,un; vn) - Ql(taun—la vn—l)” + |H[tR1(t7una vn) - tRl(tvun—lavn—l)”

2 .
< E(BMC + B11) Wi ().
By Lemmas 6.1 through 6.3 one can write

H[L1 () (vp — vn—1)] = _(iA)_lLl( )(Un — Un—1)
K A) LA () (0 — 00 1)) + (A P L (E) (0 — v 1)
+ (IA) TR Ly (8) (v, — o))

From Lemma 6.3 one obtains
(6:27) G L1 0)(on = vn-2)] < 2 Ll AniWo 1 (0)
while
K1 (8) " HEL (0 — vact)]| 4 1GA) T HIELE () (0 — v

1 A
(2masEalr + 2L ) o = v leqoay

ACILallr + [[#L3]|7) A
m

IN

anl (t)v

where the last inequality follows from Lemma 6.3. Finally we see that from
Lemmas 6.1 and 6.3

s 1
|(GA) T H[EP Ly () (v), — vy, 1)]| < A—||tL1(t)(U§L — v 1)lleqo.)
2/\A1

[ L lleWo—1(t)-
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Combining these estimates one gets

- AA
(B11C + B11)Wi(t) + 71(5||L1||T + [t L l7) Wi -1 (2).

Sl

|un+1 - Un| <

We turn to v,41 — v, Recall that

Un+1 — Up = g[L(un - un—l)] + g[LQ(t)(Un - Un—l)]
+ g[QQ(tv Un, U’n) - QQ(ta Upn—1, Un—l)]
+ g[tRQ(ta Un, Un) - tRQ(t7 Un—1, U’n—l)]'

From (6.22) and (6.24) it is easy to see that

L|+||L 2 -
|vn+1 - ’Un‘ < wwn(t) + E(BQIC + BQI)TWn(t)

1
< — AW, (1),
m
We now assume that m is large so that we have
W1 (t) < W, (t) + Wi—1(t)}, 0<t<T

with 0 < 6 < 1/2. It is easy to check that

n—2
(6.28) Wa(t) <Y (20)F(Wy + W7).
1

e
Il

This proves that {uy, }, {v,} converges in C([0, T]) to some u(t), v(t) € C([0,T1]).
|

7. Proof of Theorem 1.1

In this section we prove Theorem 1.1. To prove the existence of a bichar-
acteristic which falls into the doubly characteristic set, we show that we can
apply Theorem 6.1 to conclude this. Let us set

1
q2
C3 1
q3 q3
C3Cy Cy 1
U B
=3 61.4 q4 g4
3+ Cp 1

dp dp
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and
q
ro + —rgcg —73C3
q2
q1 2
—T2C5C3 T3 —T4Cy
3
q1 2
—T9C5C3C4 0 T4 —7r5Cs
B=2 qa

q1 2
—T2C5C3 -+ Cp
a2

Tp—1 —TpCp

so that one can express the equation (4.19) as

BM = —A(tD + 4t)>M + Ry (t, Vi), tDVp)) + tRo(t, V, M, t DV, tDM)

and hence

(7.1)

(tD +4t)*M = —A™'BM + Ry(t, V), tDVy))

+tRy(t, V, M,tDV,tDM),

where and below R; may change from line to line.

93

Lemma 7.1.  Every eigenvalue of A~'B is positive and A™'B is diag-

onalizable.

Proof. Note that

q2 0
—C342 q3
. 0 —C4q3 Q4
AT =2
dp—1
—CpQdp—1 (Gp

and then one can see easily that A71B is

2
G272 + q172C5 —Qa73c3
2
—(QaTaC3 q37T3 + qar3cs  —q3T4cy

—qp—-1TpCp
2
—Qp—1Tp—1Cp  QpTp + Gp—1TpCy
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which is a tridiagonal matrix. We show that this is symmetrizable and hence
diagonalizable. Indeed if we take

3
]
T4

Tp

Tp—1
then it is easy to see that D™1(A~'B)D is equal to

2

G272 + qiT2C5  —(Q2/T2T3C3
2

—Q24/T273C3 Q373 + qaT3C3

—qp—1+/Tp—1TpCp
2
—Qp—1/Tp—1TpCp  QpTp T qp—1TpCp

which is symmetric. We now show that this is positive definite. To see this
write D™Y(A™1B)D as

qa272 —(g24/T273C3
2
—Q2+/T273C3 Q373 + qar3Cy

—Ap—1+/ 7”10—17"100217
—Qp—1/Tp—1TpCp  QpTp + Qp—17pC,
2
qir2c; 0

0 0

+ =H, + H».

@)

By induction on the size of matrix, we see that the k-th principal minor of Hy
is equal to

(g2 art1)(r2 - Tit1)

and hence H, is positive definite. Since Hs is non negative definite we conclude

that D~1(A~1B)D is positive definite. This proves the assertion. O
Let us set

(7.2) N=(@D+4)M

and denote

(7.3) u=""N,M), v, ="V tDVI VI tpyHL o, =4V tDVIT)
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and v = (v, vp). Then one can rewrite (7.1) and ( 7.2) as

O —-A"'B

(7.4)  (tD+4t)u = ( FR

) u+ Ryi(t,ve) + tR2(t, u, v).

Lemma 7.2.  The matriz
( O —-A7'B )
1 0

is diagonalizable and the all eigenvalues are non zero pure imaginary.

Proof. Easy. O

By Lemma 7.2 there is a nonsingular matrix 7" such that

0O —A"'B .
T‘1<I 0 >T:z’ =i\,
A2(p-1)

where \; € R\ {0}. Denoting T~ 'u by u again the equation (7.4) becomes
(7.5) (tD + 4t)u = iNju + @1 (t,vg) + tPa(t, u, v).

We turn to the equation (4.3) which can be written as
(7.6) tDVH = 3tV 4 A VI 4 10 (1, V, M)

and

7.7
( ) DVIH:A111V111+Q[[[(V1)+t\I/[[[(t,V,M),

{DVI = AV 4+ A M+ Q (V) + W, (¢, V, M),

where Ay, A; are constant matrices and Q) are quadratic forms. Since Aj; is
diagonalizable and every eigenvalue of Ay is non zero pure imaginary there is
a nonsingular constant matrix S such that

H1
SilAUS:Z‘ = iAs.
K2k
Denoting S~'V!! by VI again we get
(7.8) tDVH = 3tV I 4 iAoV 4 40 (¢, V, M).

Applying tD to (7.8) we obtain

(7.9) tD(tDVI) = —3t(tDVI) + iAo (tDVIL) 4 t W), (¢, u, v).
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Combining (7.8) and (7.9) we get with v, = (VI tDV!) again

(7.10) tDvy = —3tvy, + itAovy + tU (¢, u,v).

We now multiply (7.7) by ¢ and then apply D to get

711) { D(tDVT) = A;(tDVT) + /LN~+ Or(t, VI, tDVT) +~t\i/1(t,u,v),
DDV = Ap ((DV) 4+ Qupr (8, VI DV + #0114 (t, u, v).

Combining (7.7) and (7.11) one gets

(7.12) Dvg = Avg + Au+ Q(t,v,) + 10,4 (¢, u,v).

We now denote (u,vp) by u and v, by v to get

(7.13) {tD“ = —tKu +iAu+ @1(t,v) + t@2(t, u, v),

Dv = Aju+ Asv + Q(t,v) + tV(t, u,v),
where A; are constant matrices and
(MO (4 O
A—( 0 AQ)’ K—(o 31)'
Proof of Theorem 1.1. By Theorem 5.1 there exists a non trivial formal
solution to (7.13):

u= Z u;;t' (log 1/t)7, v = Z vt (log 1/t)7.

0<j<i 0<j<i

This shows that for any m € N there is a N = N(m) such that

uN = Z uijti (log 1/t)j, UN = Z vijti(log 1/t)j

0<j<is<N 0<j<is<N
verifies (7.13) modulo O(#™*1), that is

tDuy — [—tKuN + iAupn + (I)l(t, ’UN) + t@g(t,uN,’UN)] = O(tm+1),
Doy — [AlvN + Asupn + Q(t,UN) + t\Il(t,uN,vN)] = O(tm+1).

We look for a solution in the form
< unN ) + tm ( u > )
UN v

)
O(t,uy +t"u, oy +t"v) = B(t,un,von) + 7 E Uj%(tauNqu)
J

Note that one can write

oD
+t" Zvj%(t,u]v, vn) + 2 R(t, u,v)
j

= ®(t,un,vn) + "Ly (H)u + " Lo(t)v + 2" R(t, u,v).
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It is clear that L;(t) = C; + O(tlog1/t) so that L;(t) and tL’(t) are bounded
in (0,7]. Since

tD(E™u) = t™(tD + mt)u,  D(t™) = t™(D + m)v

substituting (uy+t™u, vy +t™v) into (7.13) and dividing the resulting equation
by t™ one has

(7.14) (tD —iMNu = —t(mI + K)u+ L1 (t)v + tRy(t, u,v) + tFy,
' Dv = —mwv + Lu + Ly(t)v + tRa(t, u,v) + tFs,

where L is a constant matrix. Since it is clear that (6.4) is verified for large

m, we can now apply Theorem 6.1 to conclude that there exist u, v verifying
(7.14). |
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