Cohomology operations in the space of loops on the exceptional Lie group E_{6}

By
Masaki NAKAGAWA

Let E_{6} be the compact 1-connected exceptional Lie group of rank 6. In [9] we determined the Hopf algebra structure of $H_{*}\left(\Omega E_{6} ; \mathbb{Z}\right)$ by the generating variety approach of R. Bott [1]. In this case, as a generating variety we can take EIII, the irreducible Hermitian symmetric space of exceptional type. Then as Bott pointed out in [1], $\S 6$, we can determine the action of the mod p Steenrod algebra \mathcal{A}_{p} on $H^{*}\left(\Omega E_{6} ; \mathbb{Z}_{p}\right)$ from that on $H^{*}\left(E I I I ; \mathbb{Z}_{p}\right)$ for all primes p.

In this paper, for ease of algebraic description, we compute the action of $\mathcal{A}_{p_{*}}$, the dual of \mathcal{A}_{p}, on $H_{*}\left(\Omega E_{6} ; \mathbb{Z}_{p}\right)$ for $p=2,3$ (For larger primes the description is easy). In the course of computation we also determine the action of \mathcal{A}_{3} on $H^{*}\left(E_{6} / T ; \mathbb{Z}_{3}\right)$, where T is a maximal torus of E_{6}.

The paper is constructed as follows: In Section 2 we recall some results concerning the cohomology of some homogeneous spaces of E_{6}. In Section 3 by considering the action of the Weyl group on E_{6} / T, we determine the cohomology operations in EIII. Using the results obtained, in Section 4 we shall determine the cohomology operations in ΩE_{6}.

Throughout this paper $\sigma_{i}\left(x_{1}, \ldots, x_{n}\right)$ denotes the i-th elementary symmetric function in the variables x_{1}, \ldots, x_{n}.

1. Preliminaries

Let T be a maximal torus of E_{6} and we use the root system $\left\{\alpha_{i}\right\}_{1 \leq i \leq 6}$ given in [2]. We denote the corresponding fundamental weights by $\left\{w_{i}\right\}_{1 \leq i \leq 6}$. As usual we may regard roots and weights as elements of $H^{1}(T ; \mathbb{Z}) \xrightarrow{\sim} H^{2}(B T ; \mathbb{Z})$. Then $\left\{w_{i}\right\}_{1 \leq i \leq 6}$ forms a basis of $H^{2}(B T ; \mathbb{Z})$ and $H^{*}(B T ; \mathbb{Z})=\mathbb{Z}\left[w_{1}, w_{2}, \ldots\right.$, w_{6}].

Let C_{1} (resp. C_{2}) be the centralizer of the 1-dimensional torus determined by $\alpha_{j}=0(j \neq 1)\left(\right.$ resp. $\left.\alpha_{j}=0(j \neq 2)\right)$. Then as is well known

$$
\begin{array}{ll}
C_{1}=T^{1} \cdot \operatorname{Spin}(10), & T^{1} \cap \operatorname{Spin}(10) \cong \mathbb{Z}_{4}, \\
C_{2}=T^{1} \cdot \operatorname{SU}(6), & T^{1} \cap \operatorname{SU}(6) \cong \mathbb{Z}_{2} .
\end{array}
$$

Let R_{i} denote the reflection to the hyperplane $\alpha_{i}=0$, then the Weyl groups $W(\cdot)$ of $E_{6}, C_{i}(i=1,2)$ are finite groups generated by these reflections:

$$
\begin{aligned}
& W\left(E_{6}\right)=\left\langle R_{i}(1 \leq i \leq 6)\right\rangle, \\
& W\left(C_{1}\right)=\left\langle R_{i}(i \neq 1)\right\rangle, \\
& W\left(C_{2}\right)=\left\langle R_{i}(i \neq 2)\right\rangle .
\end{aligned}
$$

Following [10], we introduce elements of $H^{2}(B T ; \mathbb{Z})$ by

$$
\begin{align*}
t_{6} & =w_{6}, \quad t_{i}=R_{i+1}\left(t_{i+1}\right)(2 \leq i \leq 5), \quad t_{1}=R_{1}\left(t_{2}\right), \\
c_{i} & =\sigma_{i}\left(t_{1}, \ldots, t_{6}\right), \quad t=\frac{1}{3} c_{1}=w_{2} \tag{1.1}
\end{align*}
$$

and denote by the same symbols for the images of t_{i} 's and t under the cohomology homomorphism induced by the natural map $E_{6} / T \longrightarrow B T$. Then we have the following isomorphism and the table of the action of $W\left(E_{6}\right)$ on these elememts:

$$
H^{*}(B T ; \mathbb{Z})=\mathbb{Z}\left[t_{1}, t_{2}, \ldots, t_{6}, t\right] /\left(c_{1}-3 t\right)
$$

	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}
t_{1}	t_{2}	$t-b_{1}+t_{1}$				
t_{2}	t_{1}	$t-b_{1}+t_{2}$	t_{3}			
t_{3}		$t-b_{1}+t_{3}$	t_{2}	t_{4}		
t_{4}				t_{3}	t_{5}	
t_{5}					t_{4}	t_{6}
t_{6}			$-t+a_{1}$			
t			t_{5}			

Table 1.
where $b_{1}=t_{1}+t_{2}+t_{3}, a_{1}=t_{4}+t_{5}+t_{6}$ and blanks indicate the trivial action.
Consider the two fibrations

$$
\begin{aligned}
S O(10) / T^{\prime} \cong C_{1} / T \xrightarrow{i} E_{6} / T \xrightarrow{p} E_{6} / C_{1}=E I I I, \\
S U(6) / T^{\prime \prime} \cong C_{2} / T \xrightarrow{j} E_{6} / T \xrightarrow{q} E_{6} / C_{2},
\end{aligned}
$$

where $T^{\prime}, T^{\prime \prime}$ are standard maximal tori of $S O(10), S U(6)$ respectively. By the classical results of R. Bott, both the fibre and the base have no odd dimensional cohomology in either case. Hence the Serre spectral sequences of these fibrations collapse for any coefficient ring Λ and we have

Lemma 1.1.

$$
\begin{gathered}
p^{*}: H^{*}(E I I I ; \Lambda) \longrightarrow H^{*}\left(E_{6} / T ; \Lambda\right), \\
q^{*}: H^{*}\left(E_{6} / C_{2} ; \Lambda\right) \longrightarrow H^{*}\left(E_{6} / T ; \Lambda\right)
\end{gathered}
$$

are split monomorphisms for any coefficient ring Λ.

The integral cohomology ring of E_{6} / T (resp. $\left.E I I I\right)$ is determined in [10], Theorem B (resp. Corollary C). The results are as follows:

Theorem 1.1.

(i)

$$
H^{*}\left(E_{6} / T ; \mathbb{Z}\right)=\mathbb{Z}\left[t_{1}, \ldots, t_{6}, t, \gamma_{3}, \gamma_{4}\right] /\left(\rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}, \rho_{5}, \rho_{6}, \rho_{8}, \rho_{9}, \rho_{12}\right)
$$

where t_{1}, \ldots, t_{6}, t are as in (1.1), $\gamma_{3} \in H^{6}, \gamma_{4} \in H^{8}$ and

$$
\begin{aligned}
& \rho_{1}=c_{1}-3 t, \quad \rho_{2}=c_{2}-4 t^{2}, \quad \rho_{3}=c_{3}-2 \gamma_{3}, \quad \rho_{4}=c_{4}+2 t^{4}-3 \gamma_{4}, \\
& \rho_{5}=c_{5}-3 t \gamma_{4}+2 t^{2} \gamma_{3}, \quad \rho_{6}=\gamma_{3}^{2}+2 c_{6}-3 t^{2} \gamma_{4}+t^{6}, \\
& \rho_{8}=3 \gamma_{4}^{2}-6 t \gamma_{3} \gamma_{4}-9 t^{2} c_{6}+15 t^{4} \gamma_{4}-6 t^{5} \gamma_{3}-t^{8}, \\
& \rho_{9}=t_{0}^{9}-3 t_{0} w^{2}, \quad \rho_{12}=w^{3}+15 t_{0}^{4} w^{2}-9 t_{0}^{8} w
\end{aligned}
$$

for

$$
\begin{aligned}
& c_{i}=\sigma_{i}\left(t_{1}, \ldots, t_{6}\right), t_{0}=t-t_{1}, \\
& w=\gamma_{4}+\left(-2 t_{1}-t_{0}\right) \gamma_{3}+2 t_{1}^{4}+6 t_{1}^{3} t_{0}+7 t_{1}^{2} t_{0}^{2}+3 t_{1} t_{0}^{3}+t_{0}^{4} .
\end{aligned}
$$

(ii)

$$
H^{*}(E I I I ; \mathbb{Z})=\mathbb{Z}\left[t_{0}, w\right] /\left(t_{0}^{9}-3 t_{0} w^{2}, w^{3}+15 t_{0}^{4} w^{2}-9 t_{0}^{8} w\right),
$$

where $t_{0} \in H^{2}, w \in H^{8}$ and the generator w can be chosen so that it coincides with the above w of (i) under the natural injection $p^{*}: H^{8}(E I I I ; \mathbb{Z}) \longrightarrow$ $H^{8}\left(E_{6} / T ; \mathbb{Z}\right)$.
2. The cohomology operations in $H^{*}\left(E I I I ; \mathbb{Z}_{p}\right)$ for $p=2,3$

The Case $p=2$. The mod 2 cohomology of $E I I I$ is easily obtained from Theorem 1.1. Furthermore the squaring operations in $H^{*}\left(E I I I ; \mathbb{Z}_{2}\right)$ are also determined in [6], Theorem 2.4. The results are as follows:

Theorem 2.1.

$$
H^{*}\left(E I I I ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\left[t_{0}, w\right] /\left(t_{0}^{9}+t_{0} w^{2}, w^{3}+t_{0}^{4} w^{2}+t_{0}^{8} w\right),
$$

where $\operatorname{deg}\left(t_{0}\right)=2, \operatorname{deg}(w)=8$ and

$$
\begin{aligned}
& S q^{2}\left(t_{0}\right)=t_{0}^{2} \\
& S q^{2}(w)=t_{0}^{5}+t_{0} w, \quad S q^{4}(w)=t_{0}^{6}, \quad S q^{8}(w)=w^{2}
\end{aligned}
$$

The Case $p=3$. The rest of this section and the next section are devoted to the determination of the reduced power operations in $H^{*}\left(E I I I ; \mathbb{Z}_{3}\right)$.

From Lemma 1.1

$$
p^{*}: H^{*}\left(E I I I ; \mathbb{Z}_{3}\right) \longrightarrow H^{*}\left(E_{6} / T ; \mathbb{Z}_{3}\right)
$$

is injective. Therefore the action of the reduced power operations \mathcal{P}^{i} on EIII is deduced from that on E_{6} / T.

From Theorem 1.1 the $\bmod 3$ cohomology of E_{6} / T is given by

$$
\begin{align*}
H^{*}\left(E_{6} / T ; \mathbb{Z}_{3}\right)= & \mathbb{Z}_{3}\left[t_{1}, \ldots, t_{6}, t, \gamma_{4}\right] \tag{2.1}\\
& /\left(c_{1}, c_{2}-t^{2}, c_{4}-t^{4}, c_{5}+t^{2} c_{3}, c_{3}^{2}-c_{6}+t^{6}, t^{8}, t_{0}^{9}, w^{3}\right)
\end{align*}
$$

where

$$
t_{0}=t-t_{1}, w \equiv \gamma_{4}+\left(-t_{1}+t_{0}\right) c_{3}-t_{1}^{4}+t_{1}^{2} t_{0}^{2}+t_{0}^{4} \quad \bmod 3
$$

Note that in $H^{*}\left(E_{6} / T ; \mathbb{Z}_{3}\right)$

$$
\begin{aligned}
t_{0}^{9} & \equiv c_{3} c_{6} \\
w^{3} & \equiv \gamma_{4}{ }^{3}-t^{6} c_{6}
\end{aligned}
$$

so that the relations t_{0}^{9}, w^{3} are replaced with $c_{3} c_{6}, \gamma_{4}{ }^{3}-t^{6} c_{6}$ respectively.
Therefore the problem is to determine the action of \mathcal{P}^{i} on γ_{4}. For this purpose we consider the action of the Weyl group $W\left(E_{6}\right)$ on $H^{*}\left(E_{6} / T ; \Lambda\right), \Lambda=$ \mathbb{Z} or \mathbb{Z}_{3} (for this account see also $[7, \S 3]$). From Table $1 R_{i}(i \neq 2)$ act trivially on t and $\left\{c_{n}\right\}_{1 \leq n \leq 6}$. Therefore they act trivially on γ_{4} by the definition of $\gamma_{4}, 3 \gamma_{4}=c_{4}+2 t^{4}$.

Next consider the action of R_{2} on $\left\{c_{n}\right\}_{1 \leq n \leq 6}, \gamma_{4}$. From now on we use the notation

$$
R=R_{2} \quad \text { and } \quad \bar{R}=R-i d
$$

We put

$$
b_{i}=\sigma_{i}\left(t_{1}, t_{2}, t_{3}\right) \quad \text { and } \quad a_{j}=\sigma_{j}\left(t_{4}, t_{5}, t_{6}\right) \in H^{*}\left(E_{6} / T ; \mathbb{Z}\right)
$$

so that

$$
\begin{equation*}
c_{n}=\sum_{i+j=n} b_{i} a_{j} . \tag{2.2}
\end{equation*}
$$

Substituting $c_{1}=3 t, c_{2}=4 t^{2}$ in $H^{*}\left(E_{6} / T ; \mathbb{Z}\right)$ into (2.2) we obtain

$$
\begin{align*}
& b_{1}=3 t-a_{1} \\
& b_{2}=4 t^{2}-3 a_{1} t+a_{1}^{2}-a_{2} \tag{2.3}\\
& b_{3}=c_{3}-4 a_{1} t^{2}+\left(3 a_{1}^{2}-3 a_{2}\right) t-a_{3}+2 a_{1} a_{2}-a_{1}^{3}
\end{align*}
$$

From (2.2), (2.3) we can write $c_{n}, n=4,5,6$ in terms of t, c_{3}, a_{j} 's. Applying the $\bmod 3$ reduction we obtain

$$
\begin{align*}
& c_{4} \equiv c_{3} a_{1}-a_{2}^{2}+a_{1} a_{3}-a_{1}^{4} \quad \bmod (3, t), \\
& c_{5} \equiv c_{3} a_{2}+a_{2} a_{3}-a_{1} a_{2}^{2}+a_{1}^{2} a_{3}-a_{1}^{3} a_{2} \bmod (3, t) \tag{2.4}\\
& c_{6} \equiv c_{3} a_{3}-a_{3}^{2}-a_{1} a_{2} a_{3}-a_{1}^{3} a_{3} \quad \bmod (3, t)
\end{align*}
$$

Since

$$
\begin{align*}
\sum_{i=0}^{3} R\left(b_{i}\right) & =R\left(\sum_{i=0}^{3} b_{i}\right)=R\left(\prod_{i=1}^{3}\left(1+t_{i}\right)\right)=\prod_{i=1}^{3}\left(1+R\left(t_{i}\right)\right) \\
& =\prod_{i=1}^{3}\left(1+t-b_{1}+t_{i}\right)=\sum_{i=0}^{3}\left(1+t-b_{1}\right)^{3-i} b_{i} \tag{2.5}
\end{align*}
$$

we have

$$
\begin{align*}
& \bar{R}\left(b_{1}\right)=-6 t+3 a_{1} \\
& \bar{R}\left(b_{2}\right)=-2 a_{1} t+a_{1}^{2} \tag{2.6}\\
& \bar{R}\left(b_{3}\right)=-4 t^{3}+6 a_{1} t^{2}+\left(-4 a_{1}^{2}+2 a_{2}\right) t-a_{1} a_{2}+a_{1}^{3}
\end{align*}
$$

Since $R\left(a_{j}\right)=a_{j}$ by Table 1

$$
\begin{equation*}
\bar{R}\left(c_{n}\right)=\sum_{i+j=n} \bar{R}\left(b_{i}\right) a_{j} \tag{2.7}
\end{equation*}
$$

From (2.6), (2.7) we can write $\bar{R}\left(c_{n}\right), n=3,4,5,6$ in terms of t, a_{j} 's. In particular

$$
\bar{R}\left(c_{4}+2 t^{4}\right)=3\left\{-4 a_{1} t^{3}+6 a_{1}^{2} t^{2}+\left(-4 a_{1}^{3}-2 a_{3}\right) t+a_{1}^{4}+a_{1} a_{3}\right\}
$$

which implies

$$
\begin{aligned}
\bar{R}\left(\gamma_{4}\right) & =-4 a_{1} t^{3}+6 a_{1}^{2} t^{2}+\left(-4 a_{1}^{3}-2 a_{3}\right) t+a_{1}^{4}+a_{1} a_{3} \\
& \equiv a_{1}^{4}+a_{1} a_{3} \quad \bmod (t)
\end{aligned}
$$

by the definition of γ_{4}. Applying the $\bmod 3$ reduction we obtain the following results:

	$\bar{R}(x) \bmod (t)$
t	a_{1}
c_{3}	$-a_{1} a_{2}-a_{1}^{3}$
c_{4}	a_{1}^{4}
c_{5}	$-a_{1} a_{2}^{2}+a_{1}^{2} a_{3}+a_{1}^{3} a_{2}$
c_{6}	$-a_{1} a_{2} a_{3}+a_{1}^{3} a_{3}$
γ_{4}	$a_{1} a_{3}+a_{1}^{4}$

Table 2.

3. The action of \mathcal{P}^{i} on γ_{4}

The purpose of this section is to determine $\mathcal{P}^{i}\left(\gamma_{4}\right)$ for $i=1,3$ (the other cases follow from the axioms of the reduced power operations).

From Lemma 1.1

$$
q^{*}: H^{*}\left(E_{6} / C_{2} ; \mathbb{Z}_{3}\right) \longrightarrow H^{*}\left(E_{6} / T ; \mathbb{Z}_{3}\right)
$$

is injective and we can identify $H^{*}\left(E_{6} / C_{2} ; \mathbb{Z}_{3}\right)$ with $\operatorname{Im} q^{*}$ and regard it as a subalgebra of $H^{*}\left(E_{6} / T ; \mathbb{Z}_{3}\right)$.

Notation. $\quad A=H^{*}\left(E_{6} / C_{2} ; \mathbb{Z}_{3}\right) \hookrightarrow B=H^{*}\left(E_{6} / T ; \mathbb{Z}_{3}\right)$
On the other hand the integral cohomology ring of E_{6} / C_{2} is determined in [5], Theorem 3.2. From this the following is easily obtained:

$$
\begin{equation*}
A=\mathbb{Z}_{3}\left[t, c_{3}, \gamma_{4}, c_{6}\right] /\left(c_{3}^{2}-c_{6}+t^{6}, t^{8}, c_{3} c_{6}, \gamma_{4}{ }^{3}-t^{6} c_{6}\right) \tag{3.1}
\end{equation*}
$$

An additive basis of A as a \mathbb{Z}_{3}-vector space for degree ≤ 20 is given by

deg	0	2	4	6	8	10	12	14	16	18	20
	1	t	t^{2}	t^{3}	t^{4}	t^{5}	t^{6}	t^{7}			
				c_{3}	$t c_{3}$	$t^{2} c_{3}$	$t^{3} c_{3}$	$t^{4} c_{3}$	$t^{5} c_{3}$	$t^{6} c_{3}$	$t^{7} c_{3}$
					γ_{4}	$t \gamma_{4}$	$t^{2} \gamma_{4}$	$t^{3} \gamma_{4}$	$t^{4} \gamma_{4}$	$t^{5} \gamma_{4}$	$t^{6} \gamma_{4}$
							c_{6}	$t c_{6}$	$t^{2} c_{6}$	$t^{3} c_{6}$	$t^{4} c_{6}$
								$c_{3} \gamma_{4}$	$t c_{3} \gamma_{4}$	$t^{2} c_{3} \gamma_{4}$	$t^{3} c_{3} \gamma_{4}$
									$\gamma_{4}{ }^{2}$	$t \gamma_{4}{ }^{2}$	$t^{2} \gamma_{4}{ }^{2}$

Table 3.
Now we regard \bar{R} as a homomorphism

$$
\bar{R}: B \longrightarrow B \longrightarrow B /(t)
$$

and restrict it to the subalgebra A (also denoted by \bar{R}). Then since the ideal $(t) \subset B$ generated by t is closed under the action of \mathcal{P}^{i}, we have the following commutative diagram:

Now let us determine the action of \mathcal{P}^{i} on γ_{4} for $i=1,3$. Using Tables 2 and $3 \bar{R}$ becomes a monomorphism on degree 12 . On the other hand in the expression $\bar{R}\left(\mathcal{P}^{1}\left(\gamma_{4}\right)\right) \equiv \mathcal{P}^{1}\left(\bar{R}\left(\gamma_{4}\right)\right)$, the right hand side is computed by Table 2 and the next lemma, which is easily obtained.

Lemma 3.1. For $a_{j}=\sigma_{j}\left(t_{4}, t_{5}, t_{6}\right) \in H^{*}\left(E_{6} / T ; \mathbb{Z}_{3}\right)$ we have

$$
\begin{aligned}
& \mathcal{P}^{1}\left(a_{1}\right) \equiv a_{1}^{3}, \\
& \mathcal{P}^{1}\left(a_{2}\right) \equiv a_{2}^{2}+a_{1}^{2} a_{2}-a_{1} a_{3}, \\
& \mathcal{P}^{1}\left(a_{3}\right) \equiv a_{2} a_{3}+a_{1}^{2} a_{3} .
\end{aligned}
$$

Then by the injectivity of \bar{R} we obtain

$$
\mathcal{P}^{1}\left(\gamma_{4}\right) \equiv-c_{6}+t^{6} .
$$

Since $\bar{R}\left(t^{7} c_{3}\right) \equiv 0, \bar{R}$ does not become a monomorphism on degree 20. But similar computation yields

$$
\mathcal{P}^{3}\left(\gamma_{4}\right) \equiv-t^{4} c_{6}+m \cdot t^{7} c_{3}
$$

for some $m \in \mathbb{Z}_{3}$. Hence under the monomorphism p^{*}

$$
\begin{align*}
\mathcal{P}^{3}(w) & \equiv \mathcal{P}^{3}\left(\gamma_{4}+\left(-t_{1}+t_{0}\right) c_{3}-t_{1}^{4}+t_{1}^{2} t_{0}^{2}+t_{0}^{4}\right) \\
& \equiv m \cdot\left(t_{1}^{7}+t_{1}^{6} t_{0}-t_{1}^{4} t_{0}^{3}-t_{1}^{3} t_{0}^{4}+t_{1} t_{0}^{6}+t_{0}^{7}\right) c_{3} \tag{3.3}
\end{align*}
$$

On the other hand from Theorem 1.1 we can put

$$
\begin{align*}
\mathcal{P}^{3}(w) & \equiv k \cdot t_{0}^{6} w+l \cdot t_{0}^{2} w^{2} \\
& \equiv l \cdot t_{0}^{2} \gamma_{4}{ }^{2}+(k-l) \cdot t_{0}^{6} \gamma_{4}+\cdots \tag{3.4}
\end{align*}
$$

for some $k, l \in \mathbb{Z}_{3}$. From (3.3), (3.4) we deduce $k=l=m=0$ by the linearly independence of monomials in $H^{20}\left(E_{6} / T ; \mathbb{Z}_{3}\right)$.

Remark 1. In the above computations note that the following relations hold in $B /(t)$ which are derived from (2.1), (2.4):

$$
\begin{aligned}
a_{2}^{3} & \equiv a_{1}^{2} a_{2}^{2}-a_{1}^{3} a_{3}, \quad a_{1}^{7} \equiv 0, \\
a_{3}^{3} & \equiv a_{1}^{2} a_{2}^{2} a_{3}+a_{1}^{3} a_{3}^{2}-a_{1}^{4} a_{2} a_{3}-a_{1}^{6} a_{3} .
\end{aligned}
$$

Summarizing these we obtain the following results:

Proposition 3.1.

(i) The action of \mathcal{P}^{i} on γ_{4} is given by

$$
\begin{aligned}
& \mathcal{P}^{1}\left(\gamma_{4}\right)=-c_{6}+t^{6}, \quad \mathcal{P}^{2}\left(\gamma_{4}\right)\left(=-\mathcal{P}^{1} \mathcal{P}^{1}\left(\gamma_{4}\right)\right)=t^{2} c_{6}, \\
& \mathcal{P}^{3}\left(\gamma_{4}\right)=-t^{4} c_{6}, \quad \mathcal{P}^{4}\left(\gamma_{4}\right)=\gamma_{4}{ }^{3}=t^{6} c_{6} .
\end{aligned}
$$

(ii) The reduced power operations in $H^{*}\left(E I I I ; \mathbb{Z}_{3}\right)$ are given as follows:

$$
\begin{aligned}
& \mathcal{P}^{1}\left(t_{0}\right)=t_{0}^{3} \\
& \mathcal{P}^{1}(w)=-t_{0}^{6}, \quad \mathcal{P}^{2}(w)\left(=-\mathcal{P}^{1} \mathcal{P}^{1}(w)\right)=0, \quad \mathcal{P}^{3}(w)=0, \\
& \mathcal{P}^{4}(w)=w^{3}=0
\end{aligned}
$$

4. Cohomology operations in $H_{*}\left(\Omega E_{6} ; \mathbb{Z}_{p}\right)$ for $p=2,3$

In this section, using the results obtained so far we determine the cohomology operations in ΩE_{6}. Hereafter we use the notations and the results of [9] without specific references.

First consider the case $p=2$: From [9], Theorem 1.1, the mod 2 homology of ΩE_{6} is given by

Theorem 4.1.

$$
H_{*}\left(\Omega E_{6} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\left[\sigma_{1}, \sigma_{2}, \sigma_{4}, \sigma_{5}, \sigma_{7}, \sigma_{8}, \sigma_{11}\right] /\left(\sigma_{1}^{2}\right)
$$

where $\operatorname{deg}\left(\sigma_{i}\right)=2 i$. Moreover $\sigma_{1}, \tilde{\sigma}_{5}=\sigma_{1} \sigma_{2}{ }^{2}+\sigma_{5}, \tilde{\sigma}_{7}=\sigma_{2} \sigma_{5}+\sigma_{7}, \tilde{\sigma}_{11}=$ $\sigma_{1} \sigma_{5}^{2}+\sigma_{2} \sigma_{7}+\sigma_{11}$ are primitive and $\tilde{\psi}\left(\sigma_{2}\right)=\sigma_{1} \otimes \sigma_{1}$.

From Theorem 4.1 the primitive elements of $H_{*}\left(\Omega E_{6} ; \mathbb{Z}_{2}\right)$ which appear in degree ≤ 22 are given by

deg	2	8	10	14	16	20	22
	σ_{1}	$\sigma_{2}{ }^{2}$	$\tilde{\sigma}_{5}$	$\tilde{\sigma}_{7}$	$\sigma_{2}{ }^{4}$	$\tilde{\sigma}_{5}^{2}$	$\tilde{\sigma}_{11}$

Table 4.
Let $S q_{*}^{i} \in \mathcal{A}_{2 *}$ be the dual of the squaring operation $S q^{i} \in \mathcal{A}_{2}$, that is

$$
\left\langle a, S q_{*}^{i}(\alpha)\right\rangle=\left\langle S q^{i}(a), \alpha\right\rangle
$$

where $a \in H^{*}, \alpha \in H_{*}$ and \langle,$\rangle is the Kronecker pairing (For the properties of$ $S q_{*}^{i}$, see $\left.[11, \S 3]\right)$.

Let us determine the squaring operations in $H_{*}\left(\Omega E_{6} ; \mathbb{Z}_{2}\right)$. By Theorem 4.1 we have only to determine the $S q_{*}^{i}()$ on the elements $\sigma_{1}, \sigma_{2}, \sigma_{4}, \tilde{\sigma}_{5}, \tilde{\sigma}_{7}, \sigma_{8}, \tilde{\sigma}_{11}$.
(1) Since $S q^{2}\left(a_{1}\right)=a_{1}^{2}=a_{2}, S q_{*}^{2}\left(\sigma_{2}\right)=\sigma_{1}$.
(2) By Theorem 4.1 we can put

$$
S q_{*}^{2}\left(\sigma_{4}\right)=k \cdot \sigma_{1} \sigma_{2}
$$

for some $k \in \mathbb{Z}_{2}$. On the other hand since $S q^{2}\left(a_{3}\right)=S q^{2}\left(a_{1}^{3}\right)=a_{1}^{4} \equiv b_{4}$ we have

$$
k=\left\langle a_{3}, S q_{*}^{2}\left(\sigma_{4}\right)\right\rangle=\left\langle S q^{2}\left(a_{3}\right), \sigma_{4}\right\rangle=\left\langle b_{4}, \sigma_{4}\right\rangle=1
$$

Thus

$$
S q_{*}^{2}\left(\sigma_{4}\right)=\sigma_{1} \sigma_{2}
$$

Since $S q^{4}\left(a_{2}\right)=a_{2}^{2} \equiv b_{4}$ we obtain

$$
S q_{*}^{4}\left(\sigma_{4}\right)=\sigma_{2}
$$

(3) Since $S q_{*}^{i}()$ sends primitive elements to primitive elements, we make use of a pattern of computation stated in [11], p. 476 for $\tilde{\sigma}_{5}, \tilde{\sigma}_{7}, \tilde{\sigma}_{11}$. So details are omitted.
(4) By Table 4 we can put

$$
S q_{*}^{2}\left(\sigma_{8}\right)=k \cdot \sigma_{1} \sigma_{2}^{3}+l \cdot \sigma_{1} \sigma_{2} \sigma_{4}+m \cdot \sigma_{2} \sigma_{5}+n \cdot \sigma_{7}
$$

for some $k, l, m, n \in \mathbb{Z}_{2}$. Dualizing this gives

$$
\begin{align*}
& S q^{2}\left(a_{7}\right)=b_{8}+c_{8}+d_{8}+k \cdot e_{8}, \tag{4.1}\\
& S q^{2}\left(b_{7}\right)=l \cdot e_{8}, \tag{4.2}\\
& S q^{2}\left(c_{7}\right)=m \cdot e_{8} \tag{4.3}\\
& S q^{2}\left(d_{7}\right)=n \cdot e_{8} . \tag{4.4}
\end{align*}
$$

Applying g_{s}^{*} on both sides of (4.4), then using Theorem 2.1

$$
\begin{aligned}
& \text { l.h.s. }=g_{s}^{*} S q^{2}\left(d_{7}\right)=S q^{2} g_{s}^{*}\left(d_{7}\right)=S q^{2}(d) \equiv S q^{2}\left(t_{0}^{3} w\right)=t_{0}^{8}, \\
& \text { r.h.s. }=n \cdot e \equiv n \cdot t_{0}^{8} .
\end{aligned}
$$

Therefore $n=1$. Similarly from (4.3), (4.2)

$$
\begin{aligned}
& g_{s}^{*} S q^{2}\left(c_{7}\right)=S q^{2} g_{s}^{*}\left(c_{7}\right)=S q^{2}\left(d^{\prime}\right) \equiv S q^{2}\left(t_{0}^{7}\right)=t_{0}^{8} \\
& g_{s}^{*} S q^{2}\left(b_{7}\right)=S q^{2} g_{s}^{*}\left(c_{7}\right)=S q^{2}\left(-d^{\prime}\right) \equiv S q^{2}\left(t_{0}^{7}\right)=t_{0}^{8}
\end{aligned}
$$

Therefore $m=1, l=1$. Finally applying g_{s}^{*} on both sides of (4.1), then

$$
\begin{aligned}
\text { l.h.s. } & =g_{s}^{*} S q^{2}\left(a_{7}\right)=S q^{2} g_{s}^{*}\left(a_{7}\right)=0 \\
\text { r.h.s. } & =g_{s}^{*}\left(b_{8}\right)+g_{s}^{*}\left(c_{8}\right)+g_{s}^{*}\left(d_{8}\right)+k \cdot g_{s}^{*}\left(e_{8}\right) \\
& =\left(e^{\prime}+e^{\prime \prime}\right)+\left(2 e^{\prime}+8 e^{\prime \prime}\right)+\left(-e^{\prime}-3 e^{\prime \prime}\right)+k \cdot\left(-e^{\prime}-3 e^{\prime \prime}\right) \\
& \equiv k \cdot t_{0}^{4} w .
\end{aligned}
$$

Therefore $k=0$. Thus

$$
S q_{*}^{2}\left(\sigma_{8}\right)=\sigma_{1} \sigma_{2} \sigma_{4}+\sigma_{2} \sigma_{5}+\sigma_{7}=\sigma_{1} \sigma_{2} \sigma_{4}+\tilde{\sigma}_{7}
$$

Similar computations give the results for $S q_{*}^{4}\left(\sigma_{8}\right), S q_{*}^{6}\left(\sigma_{8}\right), S q_{*}^{8}\left(\sigma_{8}\right)$.
Thus we obtain the following results:
Theorem 4.2. The squaring operations in

$$
H_{*}\left(\Omega E_{6} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\left[\sigma_{1}, \sigma_{2}, \sigma_{4}, \tilde{\sigma}_{5}, \tilde{\sigma}_{7}, \sigma_{8}, \tilde{\sigma}_{11}\right] /\left(\sigma_{1}^{2}\right)
$$

are given as follows:

$$
\begin{aligned}
S q_{*}^{2}\left(\sigma_{2}\right) & =\sigma_{1}, \\
S q_{*}^{2}\left(\sigma_{4}\right) & =\sigma_{1} \sigma_{2}, \quad S q_{*}^{4}\left(\sigma_{4}\right)=\sigma_{2}, \\
S q_{*}^{2}\left(\tilde{\sigma}_{5}\right) & =\sigma_{2}^{2}, \quad S q_{*}^{4}\left(\tilde{\sigma}_{5}\right)=0, \\
S q_{*}^{2}\left(\tilde{\sigma}_{7}\right) & =0, \quad S q_{*}^{4}\left(\tilde{\sigma}_{7}\right)=\tilde{\sigma}_{5}, \quad S q_{*}^{6}\left(\tilde{\sigma}_{7}\right)=0, \\
S q_{*}^{2}\left(\sigma_{8}\right) & =\sigma_{1} \sigma_{2} \sigma_{4}+\tilde{\sigma}_{7}, \quad S q_{*}^{4}\left(\sigma_{8}\right)=\sigma_{2} \sigma_{4}, \\
S q_{*}^{6}\left(\sigma_{8}\right) & =\sigma_{5}, \quad S q_{*}^{8}\left(\sigma_{8}\right)=\sigma_{4}, \\
S q_{*}^{2}\left(\tilde{\sigma}_{11}\right) & =\tilde{\sigma}_{5}^{2}, \quad S q_{*}^{4}\left(\tilde{\sigma}_{11}\right)=0, \quad S q_{*}^{6}\left(\tilde{\sigma}_{11}\right)=0, \\
S q_{*}^{8}\left(\tilde{\sigma}_{11}\right) & =\tilde{\sigma}_{7}, \quad S q_{*}^{10}\left(\tilde{\sigma}_{11}\right)=0 .
\end{aligned}
$$

The computations for $p=3$ are similar and therefore we exhibit the data and the results. From [9], Theorem 1.1, the mod 3 homology of ΩE_{6} is given by

Theorem 4.3.

$$
H_{*}\left(\Omega E_{6} ; \mathbb{Z}_{3}\right)=\mathbb{Z}_{3}\left[\sigma_{1}, \sigma_{3}, \sigma_{4}, \sigma_{5}, \sigma_{7}, \sigma_{8}, \sigma_{11}\right] /\left(\sigma_{1}^{3}\right)
$$

where $\operatorname{deg}\left(\sigma_{i}\right)=2 i$. Moreover $\sigma_{1}, \tilde{\sigma}_{4}=-\sigma_{1} \sigma_{3}+\sigma_{4}, \tilde{\sigma}_{5}=\sigma_{1}{ }^{2} \sigma_{3}-\sigma_{5}, \tilde{\sigma}_{7}=$ $-\sigma_{1} \sigma_{3}{ }^{2}+\sigma_{1}{ }^{2} \sigma_{5}+\sigma_{7}, \tilde{\sigma}_{8}=\sigma_{1}{ }^{2} \sigma_{3}{ }^{2}-\sigma_{3} \sigma_{5}-\sigma_{4}{ }^{2}+\sigma_{8}, \tilde{\sigma}_{11}=-\sigma_{3}{ }^{2} \sigma_{5}-\sigma_{1} \sigma_{5}{ }^{2}-$ $\sigma_{4} \sigma_{7}-\sigma_{11}$ are primitive and $\tilde{\psi}\left(\sigma_{3}\right)=-\sigma_{1}{ }^{2} \otimes \sigma_{1}$.

From Theorem 4.3 the primitive elements of $H_{*}\left(\Omega E_{6} ; \mathbb{Z}_{3}\right)$ which appear in degree ≤ 22 are given by

deg	2	8	10	14	16	18	22
	σ_{1}	$\tilde{\sigma}_{4}$	$\tilde{\sigma}_{5}$	$\tilde{\sigma}_{7}$	$\tilde{\sigma}_{8}$	$\sigma_{3}{ }^{3}$	$\tilde{\sigma}_{11}$

Table 5.
Using Proposition 3.1 we obtain
Theorem 4.4. The reduced power operations in

$$
H_{*}\left(\Omega E_{6} ; \mathbb{Z}_{3}\right)=\mathbb{Z}_{3}\left[\sigma_{1}, \sigma_{3}, \tilde{\sigma}_{4}, \tilde{\sigma}_{5}, \tilde{\sigma}_{7}, \tilde{\sigma}_{8}, \tilde{\sigma}_{11}\right] /\left(\sigma_{1}^{3}\right)
$$

are givern as follows:

$$
\begin{aligned}
\mathcal{P}_{*}^{1}\left(\sigma_{3}\right) & =\sigma_{1}, \\
\mathcal{P}_{*}^{1}\left(\tilde{\sigma}_{4}\right) & =0 \\
\mathcal{P}_{*}^{1}\left(\tilde{\sigma}_{5}\right) & =0 \\
\mathcal{P}_{*}^{1}\left(\tilde{\sigma}_{7}\right) & =\tilde{\sigma}_{5}, \quad \mathcal{P}_{*}^{2}\left(\tilde{\sigma}_{7}\right)=0 \\
\mathcal{P}_{*}^{1}\left(\tilde{\sigma}_{8}\right) & =0, \quad \mathcal{P}_{*}^{2}\left(\tilde{\sigma}_{8}\right)=0 \\
\mathcal{P}_{*}^{1}\left(\tilde{\sigma}_{11}\right) & =\sigma_{3}{ }^{3}, \quad \mathcal{P}_{*}^{2}\left(\tilde{\sigma}_{11}\right)=0, \quad \mathcal{P}_{*}^{3}\left(\tilde{\sigma}_{11}\right)=0 .
\end{aligned}
$$

Remark 2. The Hopf algebra structure of $H_{*}\left(\Omega E_{6} ; \mathbb{Z}_{p}\right)$ over $\mathcal{A}_{p_{*}}$ for $p=2,3$ is already determined in [8], [3] and [4] without using the generating variety. Therefore our contribution is to make the description of $H_{*}\left(\Omega E_{6} ; \mathbb{Z}_{p}\right)$ for $p=2,3$ explicit in terms of $H_{*}\left(\Omega E_{6} ; \mathbb{Z}\right)$.

Department of General Education
Takamatsu National College of Technology 355 Chokushi-cho, Takamatsu 761-8058, Japan
e-mail: nakagawa@takamatsu-nct.ac.jp

References

[1] R. Bott, The space of loops on a Lie group, Michigan Math. J. 5 (1958), 35-61.
[2] N. Bourbaki, Groupes et Algèbre de Lie IV-VI, Masson, Paris, 1968.
[3] H. Hamanaka, Homology ring mod 2 of free loop groups of exceptional Lie groups, J. Math. Kyoto Univ. 36 (1996), 669-686.
[4] H. Hamanaka and S. Hara, The mod 3 homology of the space of loops on the exceptional Lie groups and adjoint action, J. Math. Kyoto Univ. 37 (1997), 441-453.
[5] K. Ishitoya, Integral cohomology ring of the symmetric space EII, J. Math. Kyoto Univ. 17 (1977), 375-397.
[6] __ Squaring operations in the Hermitian symmetric spaces, J. Math. Kyoto Univ. 32 (1992), 235-244.
[7] A. Kono and K. Ishitoya, Squaring oparations in the 4-connective fiber spaces over the classifying spaces of the exceptional Lie groups, Publ. RIMS. Kyoto Univ. 21 (1985), 1299-1310.
[8] A. Kono and K. Kozima, The mod 2 homology of the space of loops on the exceptional Lie group, Proc. Roy. Soc. Edinburgh Sect. A 112 (1989), 187-202.
[9] M. Nakagawa, The space of loops on the exceptional Lie group E_{6}, Osaka J. Math. 40 (2003), 429-448.
[10] H. Toda and T. Watanabe, The integral cohomology ring of F_{4} / T and E_{6} / T, J. Math. Kyoto Univ. 14 (1974), 257-286.
[11] T. Watanabe, Cohomology oparations in the loop space of the compact exceptional group F_{4}, Osaka J. Math. 16 (1979), 471-478.

