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On the inclusion of some Lorentz spaces

By

A. Turan Gürkanli

Abstract

Let (X, Σ, µ) be a measure space. It is well known that lp(X) ⊆
lq(X) whenever 0 < p ≤ q ≤ ∞. Subramanian [12] characterized all
positive measures µ on (X, Σ) for which Lp(µ) ⊆ Lq(µ) whenever 0 <
p ≤ q ≤ ∞ and Romero [10] completed and improved some results of
Subramanian [12]. Miamee [6] considered the more general inclusion
Lp(µ) ⊆ Lq(ν) where µ and ν are two measures on (X, Σ).

Let L(p1, q1)(X, µ) and L(p2, q2)(X, ν) be two Lorentz spaces,where
0 < p1, p2 < ∞ and 0 < q1, q2 ≤ ∞. In this work we generalized these
results to the Lorentz spaces and investigated that under what conditions
L(p1, q1)(X,µ) ⊆ L(p2, q2)(X, ν) for two different measures µ and ν on
(X, Σ).

1. Introduction

Let (X, Σ, µ)be a measure space and let f be a measurable function on
X.For each y > 0 let

(1) λf (y) = µ{x ∈ X : f(x) > y}.
The function λf is called the distribution function of f. The rearrangement of
f is defined by

f∗(t) = inf {y > 0 : λf (y) ≤ t} = sup {y > 0 : λf (y) > t}, t > 0,

where inf φ = +∞. Also the average function of f is defined by

(2) f∗∗(t) =
1
t

t∫
0

f∗(s)ds, t > 0.

Note that λf (·), f∗(·) and f∗∗(·) are non-increasing and right continuous
on (0,∞), [2]. For p, q ∈ (0,∞) we define

‖f‖∗p,q = ‖f‖∗p,q,µ =
(

q

p

∫ ∞

0

[f∗(t)]q .t
q
p−1dt

) 1
q

‖f‖p,q = ‖f‖p,q,µ =
(

q

p

∫ ∞

0

[f∗∗(t)]q .t
q
p−1dt

) 1
q

.(3)

Received January 22, 2004



�

�

�

�

�

�

�

�

442 A. Turan Gürkanli

If 0 < p, q = ∞ we also define

(4) ‖f‖∗p,∞ = sup
t>0

t
1
p .f∗(t) and ‖f‖p,∞ = sup

t>0
t

1
p .f∗∗(t).

For 0 < p < ∞ and 0 < q ≤ ∞, the Lorentz space denoted by L(p, q)(X, µ)
(or shortly L(p, q)) is defined to be the vector space of all (equivalence classes
of) measurable functions f on X such that ‖f‖∗p,q < ∞. We know that ‖f‖p =
‖f‖∗p,p and so Lp(µ) = L(p, p)(X, µ) where Lp(µ) is the Lebesgue space. Also
L(p, q1) ⊂ L(p, q2) for q1 ≤ q2. In particular

L(p, q1) ⊂ Lp(µ) ⊂ L(p, q2) ⊂ L(p,∞)

for 0 < q1 ≤ p ≤ q2 ≤ ∞ ([2]). It is also known that if 1 < p < ∞ and
1 ≤ q ≤ ∞ then

(5) ‖f‖∗p,q ≤ ‖f‖p,q ≤ p

p − 1
‖f‖∗p,q

for each f ∈ L(p, q)(X, µ) ([11]). Moreover ‖f‖p,q is a complete norm on
L(p, q)(X, µ).

2. Main results

In this section we will accept that (X, Σ) is a measurable space and all
measures are defined on the σ−algebra Σ. Also if two measures µ and ν are
absolutely continuous with respect to each other (i.e µ << ν and ν << µ) then
we denote it by the symbol µ ≈ ν.

Lemma 2.1. Let 0 < p1, p2 < ∞ and 0 < q1, q2 ≤ ∞. Then the inclu-
sion L(p1, q1)(X, µ) ⊆ L(p2, q2)(X, ν) holds in the sense of equivalence classes
if and only if µ ≈ ν and L(p1, q1)(X, µ) ⊆ L(p2, q2)(X, ν) in the sense of indi-
vidual functions.

Proof. Assume that L(p1, q1)(X, µ) ⊆ L(p2, q2)(X, ν)holds in the sense
of equivalent classes. Let f ∈ L(p1, q1)(X, µ) be any individual function.
This implies f ∈ L(p1, q1)(X, µ) in the sense of equivalent classes thus f ∈
L(p2, q2)(X, ν) in the sense of equivalent classes by the assumption. Hence we
have f ∈ L(p2, q2)(X, ν) in the sense of individual functions. This shows that

L(p1, q1)(X, µ) ⊆ L(p2, q2)(X, ν)

in the sense of individual functions. Now take any E ∈ Σ with µ(E) = 0. If
χE is the characteristic function of E then χE = 0 µ−almost everywhere. Also
the rearrangement of χE is

(6) χ∗
E(t) =

{
1, 0 < t < µ(E),
0, t ≥ µ(E).
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If p1, q1 ∈ (0,∞) we obtain

‖χE‖∗p1,q1
=


 q1

p1

∞∫
0

[
t

1
p1 .χ∗

E(t)
]q1

.
dt

t




1
q1

(7)

=


 q1

p1

µ(E)∫
0

[
t

1
p1 .χ∗

E(t)
]q1

.
dt

t




1
q1

+


 q1

p1

∞∫
µ(E)

[
t

1
p1 .χ∗

E(t)
]q1

.
dt

t




1
q1

=


 q1

p1

µ(E)∫
0

[
t

1
p1 .

]q1

.
dt

t




1
q1

=


 q1

p1

µ(E)∫
0

t
q1
p1

−1.dt




1
q1

=
(
µ(E)

q1
p1

) 1
q1 = µ(E)

1
p1 = 0.

Also for the case 0 < p1 < ∞ and q1 = ∞ we have

(8) ‖χE‖∗p1,∞ = sup
t>0

t
1

p1 .χ∗
E(t) = µ(E) = 0.

Then we have χE ∈ L(p1, q1)(X, µ) for 0 < p1 < ∞ and 0 < q1 ≤ ∞.Thus χE is
in the equivalent classes of 0 ∈ L(p1, q1)(X, µ). Since the equivalence classes of
0 (with respect to µ) is also an element of L(p2, q2)(X, ν) by the hypothesis,
then χE is in the equivalent classes of 0 ∈ L(p2, q2)(X, ν) with respect to ν.
That means ν(E) = 0. Thus ν << µ. Similarly one can prove that µ << ν.

The proof of the other side is clear.

Theorem 2.2. Let 0 < p1, p2 < ∞ and 0 < q1, q2 ≤ ∞.Then the inclu-
sion

L(p1, q1)(X, µ) ⊂ L(p2, q2)(X, ν)

holds in the sense of equivalence classes if and only if µ ≈ ν and there exists
C > 0 such that

‖f‖∗p2q2,ν
≤ C‖f‖∗p1q1,µ

for all f ∈ L(p1, q1)(X, µ)).

Proof. Assume that L(p1, q1)(X, µ) ⊆ L(p2, q2)(X, ν) holds in the sense
of equivalent classes. Define the unit operator I(f) = f from L(p1, q1)(X, µ)
into L(p2, q2)(X, ν). We shall show that I is closed. Let (fn) be a sequence
such that fn → f in L(p1, q1)(X, µ) and I(fn) = fn → g in L(p2, q2)(X, ν). It
is known that

(9) ‖f‖∗p1,∞ ≤ ‖f‖∗p1,q1
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and

(10) ‖f‖∗p1∞ = sup
t>0

t
1

p1 .f∗(t) = sup
y>0

y (λf (y))
1

p1 .

Let ε > 0 be given. Since fn → f in L(p1, q1)(X, µ), there exists n0 ∈ N such
that

(11) y(λfn−f )
1

p1 ≤ ‖fn − f‖∗p1,q1
< ε

1
p1 y

for all n ≥ n0. This implies (λfn−f ) < ε for all n ≥ n0. Then (fn) converges to
f in measure (with respect to µ). Hence there is a subsequence (fni

) ⊂ (fn)
such that (fni

) pointwise converges to f , µ− almost everywhere (a.e). Also
since (fn) converges to g in L(p2, q2)(X, ν) then it is easy to prove that (fni

)
converges to g in L(p2, q2)(X, ν). Then (fni

) converges to g in measure (with
respect to ν). Therefore one can find a subsequence (fnik

) ⊂ (fni
) such that

(fnik
) converges to g pointwise ν − a.e. Let M be the set of the points such

that (fnik
) doesn’t converge to g pointwise. Hence ν(M) = 0.Since by the

assumption L(p1, q1)(G, µ) ⊆ L(p2, q2)(G, ν) in the sense of equivalent classes
then µ ≈ ν by Lemma 2.1. Thus ν(M) = µ(M) = 0. Hence (fnik

) converges
to the function g pointwise µ−a.e. Finally using the inequality

(12) |f(x) − g(x)| ≤
∣∣∣f(x) − fnik

(x)
∣∣∣ +

∣∣∣fnik
(x) − g(x)

∣∣∣
one can prove that f = g µ−a.e. Also it is clear that f = g ν−a.e. That
means the unit function I is closed. Hence by the closed graph theorem there
exists C > 0 such that

‖f‖∗p2,q2,ν ≤ C.‖f‖∗p1,q1,µ

for all f ∈ L(p1, q1)(G, µ).
The proof of the other direction is easy.
If 0 < p1, p2 < ∞ and q1 = q2 = ∞ then the proof is clear from (10).

Lemma 2.3. Let 0 < p < ∞ ,0 ≤ q ≤ ∞ and f ∈ L(p, q)(X, µ) be a
real valued measurable function. If there exists M > 0 such that ν(E) ≤ Mµ(E)
for all E ∈ Σ then we have the inequality

‖f‖∗p,q,ν ≤ M
1
p ‖f‖∗p,q,µ.

Proof. Since f ∈ L(p, q)(X, µ) is a measurable real valued function then

(13) Ey = {x ∈ X : f (x) > y} ∈ Σ

for all real number y. If we set k = Mµ , it easy to see that k is a measure.
Denote by ν (Ey) = λν

f (y) and k (Ey) = λk
f (y). We also denote the rearrange-

ments of f with respect to the measures k and ν by f∗,k and f∗,ν respectively.
Let A and B be such that

A =
{
y > 0 : λν

f (y) ≤ t
}

,(14)

B =
{
y > 0 : λk

f (y) ≤ t
}

.
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Since ν(Ey) ≤ Mµ(Ey) = k (Ey) we have λν
f (y) ≤ λk

f (y). Thus we obtain
B ⊆ A and

(15) f∗,k (t) = inf B
y

≥ inf A
y

= f∗,ν(t).

This implies

(16)
(

q

p

∫ ∞

0

t
q
p−1[f∗,ν(t)]qdt

) 1
q

≤
(

q

p

∫ ∞

0

t
q
p−1[f∗,k(t)]qdt

) 1
q

and

‖f‖∗p,q,ν ≤ ‖f‖∗p,q,k.

Also we write{
y > 0 : λk

f (y) ≤ t
}

= {y > 0 : k (Ey) ≤ t}(17)

= {y > 0 : Mµ (Ey) ≤ t} =
{

y > 0 : µ (Ey) ≤ t

M

}

and

(18) f∗,k (t) = f∗,µ

(
t

M

)
.

Combining (15) and (18) we find

f∗,k (t) = f∗,µ

(
t

M

)
> f∗,ν (t) .

This implies

‖f‖∗p,q,k =


q

p

∞∫
0

[
f∗,k(t)

]q
.t

q
p−1dt




1
q

(19)

=


q

p

∞∫
0

[
f∗,µ

(
t

M

)]q

.t
q
p−1dt




1
q

= M
1
p ‖f‖∗p,q,µ

for all f ∈ L(p, q)(X, µ), where k = Mµ. Consequently we have

(20) ‖f‖∗p,q,ν ≤ ‖f‖∗p,1,k = M
1
p ‖f‖∗p,q,µ.

Proposition 2.4. Let 0 < p < ∞ and 0 ≤ q ≤ ∞. The following
statements are equivalent :

(1) L(p, q)(X, µ) ⊆ L(p, q)(X, ν).
(2) µ ≈ ν and there exists M > 0 such that ν(E) ≤ Mµ(E) for all E ∈ Σ.
(3) L1(µ) ⊆ L1(ν).
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Proof. (1) ⇒ (2). By Theorem 2.2, there exists C > 0 such that

(21) ‖f‖∗p,q,v ≤ C‖f‖∗p,q,µ

for all f ∈ L(p, q)(X, µ). It follows from (7) in Lemma 2.1, and from (21) that

(ν(E))
1
p ≤ C. (µ(E))

1
p ,

and hence

(22) ν(E) ≤ M(µ(E)),

where M = Cp.
(2) ⇒ (1). It is known that the set S of simple functions are dense in

L(p, q)(X, µ) ([3]). Define the unit function I from S into L(p, q)(X, ν). By
Lemma 2.3, we have the inequality

(23) ‖f‖∗p,q,ν ≤ C‖f‖∗p,q,µ

for all f ∈ S. Thus I is continuous from S into L(p, q)(X, ν). Then I is
continuously extended to the space (L (p, q) (X, µ). Thus we have

‖f‖∗p,q,ν ≤ C‖f‖∗p,q,µ

for all f ∈ (L (p, q) (X, µ). That means L(p, q)(X, µ) ⊆ L(p, q)(X, ν).
(2) ⇒ (3). It is known that L1(µ) = L(1, 1)(X, µ) and L(1, 1)(X, ν) =

L1(ν).Take any simple function h(x) =
N∑

k=1

ak.χEk
(x) in L1(µ) with Ei and Ej

disjoint if i �= j. Using (22) we have

‖h‖∗1,1,ν = ‖h‖L1(ν) =
N∑

k=1

|ak| ν(Ek) ≤ M

N∑
k=1

|ak|µ(Ek)(24)

= M. ‖h‖L1(µ) = M ‖h‖∗1,1,µ < ∞.

Hence h is a simple function in L1(ν). Now let any f ∈ L1(µ) be given.
Since the set of simple functions is dense in L1(µ) then there exists a sequence
(fn) ⊂ L1(µ) of simple functions such that fn → f in L1(µ). Since (fn) is a
Cauchy sequence in L1(µ) then (fn) is also a Cauchy sequence in L1(ν) from
(24) and converges to a function g in L1(ν). Using the subsequence argument
similar as in the proof of Theorem 2.2. one can show that f = g. Thus
f ∈ L1(ν) and we have L1(µ) ⊆ L1(ν).

The proof of (3) ⇒ (2) is easy from Theorem 2.2.
(3) ⇒ (1). Let f ∈ L(p, q)(X, µ) be given. Since χ(0,∞).t

q
p−1. [f∗(t)]q ∈

L1(µ) and L1(µ) ⊆ L1(ν) we have χ(0,∞).t
q
p−1. [f∗(t)]q ∈ L1(ν). This implies

f ∈ L(p, q)(X, ν) and we have L(p, q)(X, µ) ⊆ L(p, q)(X, ν).
This completes the proof.
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Proposition 2.5. Let p1, p2, q1,q2 be real numbers with 0 < q1 ≤ p1 <
p2 ≤ q2 < ∞. The following statements are equivalent:

(1) L(p1, q1)(X, µ) ⊆ L(p2, q2)(X, µ).
(2) There exists a constant m > 0 such that µ(E) ≥ m for every µ−non-

null set E ∈ Σ.

Proof. (1) ⇒ (2). By Theorem 2.2, there exists C > 0 such that ‖f‖p2,q2≤ C‖f‖p1,q1
for all f ∈ L(p1, q1)(X, µ). Let E ∈ Σ be a µ−non-null set and

µ(E) < ∞. It follows from (7) as in the proof of Lemma 2.2, that

(25) (µ(E))
1

p2 ≤ C.(µ(E))
1

p1 .

Since p1 < p2 then 1
p1

− 1
p2

> 0. Thus we have

(26)
1
C

≤ (µ(E))
1

p1
− 1

p2 = µ(E)
p2−p1
p1.p2 .

If we set m = C
p1..p2
p1−p2 , we obtain µ(E) ≥ m.

(2) ⇒ (1). Let f ∈ L(p1, q1)(X, µ). For every n ∈ N we define

(27) En = {x ∈ X : |f(x)| > n}.

Since q1 ≤ p1 one writes L(p1, q1)(X, µ) ⊆ L(p1, p1)(X, µ) = Lp1(µ) and there
exists K > 0 such that

(28) ‖f‖p1
≤ K.‖f‖p1,q1

for all f ∈ L(p1, q1)(X, µ). It follows from (27) that

(29) np1 .µ(En) ≤
∫

En

|f |p1dµ ≤
∫
X

|f |p1dµ ≤
(
K‖f‖p1,q1

)p1

< ∞

for all n ∈ N. By the hypothesis either µ(En) = 0 or µ(En) ≥ m. Since the

sequence (En) is a non-increasing and
∞⋂

n=1
En = φ, thus µ(En) → 0. Therefore

there exists n0 ∈ N such that |f(x)| ≤ n0, µ−a.e. for all x ∈ X. From formula
(28) and the inequality

(30)
∫
X

|f |p2dµ =
∫
X

|f |p1 |f |p2−p1 .dµ ≤ np2−p1
0 .

∫
X

|f |p1dµ

we have f ∈ L(p2, p2)(X, µ). This implies L(p1, q1)(X) ⊆ L(p2, p2)(X, µ).
Finally by the assumption 0 < q1 ≤ p1 < p2 ≤ q2 < ∞ we obtain

L(p1, q1)(X, µ) ⊆ L(p1, p1)(X) ⊆ L(p2, p2)(X, µ) ⊆ L(p2, q2)(X, µ).
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Proposition 2.6. Let assume that 0 < q1 ≤ q2 ≤ ∞.
(1) If µ(X) < ∞ then L(p1, q1) (X, µ) ⊂ L(p2, q2)(X, µ) whenever 0 <

p1 < p2 < ∞ if and only if any collection of disjoint measurable sets of positive
measure is finite.

(2) If µ(X) = ∞ then L(p1, q1) (X, µ) ⊂ L(p2, q2)(X, µ) whenever 0 <
q1 ≤ p1 < p2 ≤ q2 < ∞ if and only if for any sequence (En) disjoint mea-
surable sets of positive measure, the sequence (µ (En)) is bounded away from
zero.

Proof. (1) Let µ(X) < ∞ and 0 < p1 < p2 < ∞. It is known that [3],
L(p1, q1) (X, µ) ⊂ L(p2, q2)(X, µ). If we get

(31) r1 = min {p1, q1} , r2 = max {p2, q2} ,

we obtain r1 ≤ p1 < p2 ≤ r2 and r1 ≤ q1 < q2 ≤ r2. Hence we have

(32) L(r1, r1)(X, µ) ⊂ L(p1, q1)(X, µ) ⊂ L(p2, q2)(X, µ) ⊂ L(r2, r2)(X, µ).

Then for given any sequence (En) disjoint measurable sets of positive measure
is finite by Proposition in [12]

The proof of the converse is clear again by Proposition in [12].
(2) Suppose µ(X) = ∞. If a sequence (En) of disjoint measurable sets

such that µ (En) > 0 and the sequence (µEn) is bounded away from zero then
Lp1(µ) ⊆ Lp2(µ) by Proposition in [12]. Thus

(33) Lp1(µ) = L(p1, p1) (X, µ) ⊂ L(p2, p2)(X, µ) = Lp2(µ) ⊂ L(p2, q2)(X, µ).

Since q1 ≤ p1 < p2 ≤ q2 then we have

L(p1, q1)(X, µ) ⊂ L(p1, p1)(X, µ) = Lp1(µ) ⊂ L(p2, p2)(X, µ)(34)
= Lp2(X, µ) ⊂ L(p2, q2)(X, µ).

Conversely assume that L(p1, q1)(X, µ) ⊂ L(p2, q2)(X, µ) and (En) is
collection of disjoint measurable sets of positive measure. If one applies the
proof technic in (i) of this Proposition shows that the sequence (µ (En)) is
bounded away from zero by Proposition in [12].

Proposition 2.7. Let X be a metrisable locally compact abelian group
with Haar measure µ and µ (X) = ∞. If 0 ≤ q1 ≤ p1 < p2 ≤ q2 < ∞ then
the inclusion

(35) L (p1, q1) (X, µ) ⊆ L (p2, q2) (X, µ)

is not satisfied.

Proof. Let d be a metric on X and (xn)n∈N be a sequence in X such
that d(xi, xj) ≥ 2r for i �= j, where 0 < r < 1. Get the open balls An =
xn + B(0, rn), n ∈ N. It is easy to see that (An)n∈N is a disjoint sequence.
Since X is locally compact group then there exists compact subsets En ⊂
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An with µ (En) < ∞ for all n ∈ N. Thus the sequence (En)n∈N is disjoint.
Since lim

n→∞µ (An) = 0 and µ (En) ≤ µ (An) for all n ∈ N, then we obtain

lim
n→∞µ (En) = 0. Hence the inclusion L (p1, q1) (X, µ) ⊆ L (p2, q2) (X, µ) does
not satisfy by Proposition 2.6.

Example: It is known that the Lebesgue measure of the set of real num-
bers µ (R) = ∞. Define

An = n +
(
− 1

2n
,

1
2n

)

for all n ∈ N. The sequence of measurable sets (An)n∈N is disjoint and µ (An) =
1

2n−1 > 0 for all n ∈ N. But

lim
n→∞µ (An) = lim

n→∞
1

2n−1
= 0.

Hence if we take X = R with the absolute value metric in the Proposition 2.7
we see that the inclusion (35) is not true.
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