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Dihedral covers and an elementary arithmetic
on elliptic surfaces

By
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1. Introduction

Let X and Y be normal projective varieties defined over C, the complex
number field. We call X a cover of Y if there exists a finite surjective morphism
π : X → Y . The rational function field, C(X), is regarded as an algebraic
extension of that of Y , C(Y ), with deg π = [C(X) : C(Y )]. The branch locus
of a cover π : X → Y , denoted by ∆(X/Y ) or ∆π, is the subset of Y given by

∆π = {y ∈ Y | π is not locally isomorphic over y}.

It is well-known that ∆π is an algebraic subset of codimension 1 if Y is smooth
([19]). We call X a D2n-cover if (i) C(X)/C(Y ) is Galois and (ii) Gal(C(X)/
C(Y )) ∼= D2n, the dihedral group of order 2n. To present D2n, we use the
notation

D2n = 〈σ, τ | σ2 = τn = (στ )2 = 1〉,
and fix it throughout this article. Given aD2n-cover π : X → Y , we canonically
obtain the double cover, D(X/Y ), of Y by taking the C(X)τ -normalization of
Y , where C(X)τ is the fixed field of 〈τ 〉. X is an n-cyclic cover of D(X/Y ) by
its definition. We denote these covering morphisms by β1(π) : D(X/Y ) → Y
and β2(π) : X → D(X/Y ), respectively. In [13], the author gave a method to
deal with D2n-covers. He exploited it in order to study D2n-covers of P2 ([14],
[15], and [16]) in the following setting:

(i) Y is a surface obtained by a succession of blowing-ups from P2.

(ii) D(X/Y ) has an elliptic fibration ϕ : D(X/Y ) → P1 with section O
and β1(π) : D(X/Y ) → Y coincides with the quotient map induced by the
inversion homomorphism z �→ −z with respect to the group law.

(iii) X also has an elliptic fibration and β2(π) is the quotient map by the
translation-by-n-torsion element in the Mordell-Weil group.
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256 Hiro-o Tokunaga

The results obtained under the above setting are, for example, existence
theorems of D2p-covers (p: odd prime) of P2 branched along reduced plane
curves of degrees 4, 5 and 6 ([13], [15], [17], [18]), and several examples of Zariski
pairs ([1], [14], [16]). Many of them gave interesting examples in the study of
the complement to a plane algebraic curve. We here introduce terminologies to
describe D2n-covers with the above setting.

Definition 1.1. A D2n-cover of a surface satisfying the condition (ii)
is called an elliptic D2n-cover. An elliptic D2n-cover is called torsion type if X
is also an elliptic surface and β2(π) is the quotient map by the translation-by-
n-torsion element in the Mordell-Weil group. We call X non-torsion type if X
is not torsion type.

Remark 1.1. For an elliptic D2n-cover π : X → Y , it is of torsion type
if all the irreducible components of ∆β2(π) are those of fibers of ϕ, while it is
of non-torsion type if there exists a horizontal component in ∆β2(π).

All the previous results are by-products from the investigation of elliptic
D2n-covers of torsion type. In this article, we go on to study elliptic D2p-cover
(p: odd prime) of non-torsion type.

In the first half of this article, we reduce our problem on elliptic D2p-
covers to the problem in solving the equation px = s in the Mordell-Weil group
(Propositions 3.1 and 3.2). Hence the solvability of the equation px = s plays
an important role. In this article, as the first case, we study it in the case when
D(X/Y ) is a rational elliptic surface and s has the height ≤ 2. This will be
done in Section 4. As an application, we consider D2p-covers of P2 branched
along quintic curves (Theorem 6.2). It gives another proof for the main result
in [18].

Acknowledgement. Most of this work was done during the author’s
visit to Professor Alan Huckleberry under the support from SFB 237. The
author thanks Professor Huckleberry for his hospitality. The first proof for
Theorem 6.2 was given when the author was a postdoctoral fellow at Queen’s
University 1991–92. The author’s research that time was partly supported
by NSERC through Professor Noriko Yui’s grant. He also thanks her for her
encouragement and patience.

2. Preliminaries on elliptic surfaces

The references for this section are [6], [7], [8], [9] and [12].
A smooth surface E is said to be an elliptic surface over a smooth curve

C if there exists a morphism ϕ : E → C such that ϕ−1(v) is a smooth curve of
genus 1 for v ∈ C except finite points. We denote the subset of such exceptional
points by Sing(ϕ). We call ϕ−1(v), v ∈ R, a singular fiber. We also define the
subset, R, of Sing(ϕ) as follows:

R := {v ∈ Sing(ϕ) | ϕ−1(v) is reducible.}.



�

�

�

�

�

�

�

�

Dihedral covers and an elementary arithmetic on elliptic surfaces 257

The classification of singular fibers was done by Kodaira in [7]. We use his
notation in [7] to describe the type of a singular fiber. Throughout this paper,
we always assume that ϕ : E → C satisfies the following conditions:

• No exceptional curve of the first kind is contained in any fiber. Namely,
ϕ is relatively minimal.

• ϕ : E → C has a section O; we identify O with its image.
• ϕ has at least one singular fiber.

For a singular fiber Fv, v ∈ R, we write it as follows:

Fv = Θv,0 +
rv−1∑
i=1

mv,iΘv,i,

where rv is the number of irreducible components, and Θv,0 is the compo-
nent with Θv,0O = 1. For a singular fiber of type In, we label its irreducible
components, Θv,i, in such a way that Θv,iΘv,i+1 = 1 (0 ≤ i ≤ n − 2) and
Θv,0Θv,n−1 = 1.

1. Double cover construction of elliptic surfaces

Let ϕ : E → C be an elliptic surfaces as above. Since ϕ has a section, the
generic fiber Eη is regarded as an elliptic curve over C(C), and we can define a
group law, O being the zero, in a usual manner. The inversion morphism with
respect to the group law induces a fiber preserving automorphism of E of order
2. We denote it by σϕ. Let E be the normal surface obtained by contracting
all irreducible components of singular fibers not meeting O. σϕ also induces an
involution on E , which we denote by σϕ. Now let Σ := E /〈σϕ〉 and Σ := E/〈σϕ〉
be the quotient surfaces by these involutions, respectively. Then E , E , Σ and
Σ satisfies the following properties:

1. Both Σ and Σ are smooth. Σ is a ruled surface over C and Σ is obtained
from Σ by a succession of blowing-ups, q : Σ→ Σ.

2. The branch locus of E → Σ is of the form ∆(E/Σ) = ∆0 + B, where
∆0 is a section and B is a triple section with only simple singularities (see [2]
for simple singularities).

3. The contracting morphism µ : E → E gives the canonical resolution
of the double cover E → Σ (see [5] for the canonical resolution). Hence the
following diagram commutes:

E ← E
↓ ↓
Σ ← Σ.

As for the above facts, see [6], [8] and [9] for details.

2. The Mordell-Weil group and Shioda’s height pairing

We denote the group of sections, the Mordell-Weil group, by MW(E /ϕ).
If there is no ambiguity for the fibration, we denote it by MW(E) for simplicity.
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Note that we can also consider MW(E) as a set of C(C) rational points on the
generic fiber. In our circumstances, these two groups are canonically identified.
We denote the Néron-Severi group of E by NS(E). Under our assumption, NS(E)
is torsion-free, and it has a lattice structure with respect to the intersection
pairing. Let T be the subgroup of NS(E) generated by O and all the irreducible
components of fibers. T is a sublattice of NS(E) and has a natural basis, O, a
fiber F , and Θv,i (v ∈ R, 1 ≤ i ≤ rv − 1). Let Tv be the subgroup generated
by Θv,i (1 ≤ i ≤ rv − 1). Then T has a decomposition

T ∼= ZO ⊕ ZF ⊕
⊕
v∈R

Tv.

Theorem 2.1 (Shioda [12]). There exists a natural map ψ̃ : NS(E) →
MW(E) such that it induces an isomorphism of groups,

ψ : NS(E)/T ∼= MW(E).
For a proof, see [12].
Let NSQ := NS(E)⊗Q, TQ := T ⊗Q. Then we have the orthogonal decom-

position NSQ = TQ ⊕ (TQ)⊥. Note that there will be no harm in considering
NSQ since NS(E) is torsion-free. Following to [12], we define φ : MW(E)→ NSQ

as follows:

φ : s ∈ MW(E) �→ s−O − (sO + χ(OE))F

+
∑
v∈R

(Θv,1, . . . ,Θv,rv−1)(−A−1
v )


 sΘv,1

·
sΘv,rv−1


 ∈ NSQ,(1)

where Av is the intersection matrix of Tv with respect to the basis Θv,1, . . . ,
Θv,rv−1. φ satisfies that (i) φ(s) ≡ s mod TQ and (ii) φ(s) ⊥ TQ. Moreover,
φ gives a group homomorphism from MW(E) to NSQ such that Ker(φ) =
MW(E)tor. See Lemmas 8.1 and 8.4 in [12] for details.

Theorem 2.2 ([12, Theorem 8.4]). Let

〈s1, s2〉 = −φ(s1)φ(s2), s1, s2 ∈ MW(E).
Then it defines a symmetric bilinear form on MW(E) which induces the struc-
ture of a positive definite lattice on MW(E)/MW(E)tor.

For a proof, see [12].
The pairing in Theorem 2.2 is called the height pairing. For s1 s2 ∈

MW(E),
〈s1, s2〉 = χ(OE) + s1O + s2O − s1s2 −

∑
v∈R

Contrv(s1, s2),

〈s1, s1〉 = 2χ(OE) + 2s1O −
∑
v∈R

Contrv(s1, s1),

where the contribution terms Contrv(s1, s2) and Contrv(s1, s1) are given as in
[12, p. 229].
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Corollary 2.1. If pe (p : prime, e ≥ 1) divides the denominator of
〈s, s〉 for some s, then ϕ : E → C has at least one singular fiber Fv as follows :

pe 2 22 2e (e ≥ 3)
Type of Fv III, III∗, In (n: even), I∗n In (22 | n), I∗n In (2e | n)

3 3e (e ≥ 2) pe (p ≥ 5)
IV , IV ∗, In (3 | n) In (3e | n) In (pe | n)

Proposition 2.1. Let pe as in Corollary 2.1. Then

pe ≤ min(10χ(OE) + 2q − 1, 12χ(OE)),

where q is the irregularity of E .
Proof. Suppose that pe divides the denominator of 〈s, s〉 for some s ∈

MW(E). Then ϕ has a singular fiber described in Corollary 2.1, and pe ≤ the
topological Euler number of the corresponding Fv. By §12 in [7], 12χ(OE) is
equal to the sum of the topological Euler numbers of all singular fibers. Hence
pe ≤ 12χ(OE). On the other hand, a reducible singular fiber Fv gives rv − 1
independent elements in NS(E). Since

rank NS(E) ≤ 10χ(OE) + 2q,

we have

2 + pe − 1 ≤ rankT ≤ 10χ(OE) + 2q,

where T is the lattice introduced at the beginning of this section.

Corollary 2.2. If E is a rational elliptic surface, then 〈s, s〉 ∈ 1/(23 ·
3 · 5 · 7)Z for any s ∈ MW(E).

Proof. By Proposition 2.1, possible pairs (p, e) are (2, 1), (2, 2), (2, 3),
(3, 1), (3, 2), (5, 1) and (7, 1). We show that (3, 2) does not occur. Suppose that
it occurs. Then, by Corollary 2.1, ϕ has a singular fiber of type In (32 | n). Since
E is a rational elliptic surface, the configuration of singular fibers is {I9, 3I1} by
[11]. In this case, MW(E) ∼= Z/3Z. Hence 〈s, s〉 = 0 for any s ∈ MW(E).

3. Dihedral covers

In this section, we summarize some results on D2n-covers. We here con-
sider the case when n is an odd integer. We keep the notations introduced in
Introduction.

Proposition 3.1. Let n be an odd integer ≥ 3. Let Z be a smooth dou-
ble cover of a smooth projective variety Y and we denote its covering morphism
by f : Z → Y . Let σf be the covering transformation. Let D be an effective
divisor on Z such that
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(i) D and σ∗
fD have no common component,

(ii) if we let D =
∑

i aiDi be the irreducible decomposition, then ai > 0 for
all i, and the greatest common divisor of ai’s and n is 1, and

(iii) there exists a line bundle L such that D − σ∗
fD ≈ nL.

Then there exists a D2n-cover, π : X → Y such that (a) D(X/Y ) = Z,
f = β1(π) and (b) the branch locus of β2(π) is contained in Supp(D + σ∗

fD),
i.e., ∆π ⊂ ∆f ∪ f(Supp(D)).

Proposition 3.2. Let n be an odd integer ≥ 3. Let π : X → Y be a
D2n-cover such that both Y and D(X/Y ) are smooth. Let σ be the covering
transformation of β1(π). Then there exist an effective divisor D and a line
bundle L on D(X/Y ) satisfying the following four conditions :

(i) D and σ∗D have no common component.
(ii) If we let D =

∑
i aiDi be the irreducible decomposition, then 0 ≤ ai ≤

(n− 1)/2 for every i.
(iii) D − σD ∼ nL.
(iv) Supp(D + σ∗D) = ∆β2(π).

For a proof, see [13, §2].

Corollary 3.1. Under the condition of Proposition 3.2, if n is an odd
prime p and ∆β2(π) �= ∅, then we can choose a divisor D in such a way that
a1 = 1.

For a proof, see [13, Corollary 2.3].

Corollary 3.2. Let D be an irreducible component of β1(π)(∆β2(π)).
Then β1(π)∗D is of the form D′+σ∗D′ for some irreducible divisor on D(X/Y ).
In other words, β2(π) is not branched along any irreducible divisor D with
D = σ∗D.

4. Elliptic D2p-covers of non-torsion type

Let ϕ : E → C be an elliptic surface over C. Note that we always assume
that ϕ satisfies the three conditions in Section 2.

Lemma 4.1. Let f : E → Σ be the double cover introduced in Section 2.
Let σf be the covering transformation of f . Let D be an irreducible horizontal
divisor on E such that (i) the intersection number of D and a fiber F is an odd
number d and (ii) D �⊂ ∆f . Then D �= σ∗

fD.

Proof. Suppose that D = σ∗
fD. Then there exists an irreducible divisor

D on Σ such that f∗D = D by the second assumption. Then

d = DF = f∗Df∗(f(F )) = 2Df(F ).

This is impossible.
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Let D be a divisor as in Lemma 4.1. By [12, §5], there exists a unique
section, s, on E such that

D ≈ s+ (d− 1)O + nF +
∑
v∈R

rv−1∑
i=1

bv,iΘv,i,(2)

where d, n and bv,i are integers defined as follows:

d = DF, n = (d− 1)χ(OE) +OD − sD,

and 
 bv,1

·
bv,rv−1


 = A−1

v


 DΘv,1 − sΘv,1

·
DΘv,rv−1 − sΘv,rv−1


 ,

where Av is the matrix introduced in Section 2, (1).

Proposition 4.1. Let p be an odd prime. Let Do be an irreducible
divisor satisfying the conditions in Lemma 4.1 and let s be the unique section
satisfying (2) for Do. Suppose that there exists an elliptic D2p-cover π : S → Σ
such that D(S/Σ) = E, β1(π) = f and the horizontal component of ∆β2(π) is
Do +σ∗Do. Then s is p-divisible in MW(E), i.e., there exists a section s1 such
that ps1 = s in MW(E).

Proof. Let D be the divisor on E as in Proposition 3.2. By Corollary 3.1,
we may assume that D is of the form D = Do + Ξ, where Ξ consists of only
vertical components. By Proposition 3.2, there exists a divisor D′ such that

D − σ∗
fD ∼ pD′.

Let s1 be the unique section corresponding to D′ as in (2). Then, by Abel’s
theorem on the generic fiber of E , we have ps1 = s− σ∗

fs on MW(E). Since σf

is induced by the inverse morphism with respect to the group law, we have

ps1 = 2s on MW(E).

Let k and l be integers such that 2k + pl = 1. Then, on MW(E),

s = (2k + lp)s = p(ks1 + ls).

Therefore s is p-divisible.

Corollary 4.1. Suppose that D is a section s. If 〈s, s〉 > 0, elliptic
D2p-covers as in Proposition 4.1 exist for only finitely many p.

Proof. Let s1 be a section such that ps1 = s. Then we have

〈s1, s1〉 =
1
p2
〈s, s〉.
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By Proposition 2.1, the denominator of 〈s1, s1〉 is bounded by χ(OE) and q(E).

From now on, we assume that C = P1. By the assumption in Section 2,
E is simply connected. In particular, NS(E) = Pic(E). Hence we may replace
algebraic equivalence by linear equivalence.

Proposition 4.2. Let D be an irreducible divisor as in Lemma 4.1 and
let s be the section corresponding to D as in (2). If s is p-divisible in MW(E),
then there exists an elliptic D2p-cover, S, of Σ such that ∆β2(π) = Supp(D1 +
σ∗D1), where D1 is an effective divisor of the form

D1 = D + Ξ,

where Ξ is an effective divisor whose irreducible components are vertical divisor
not meeting O.

Proof. Since s is p-divisible in MW(E), there exists s1 ∈ MW(E) such
that ps1 = s on MW(E). This implies

s ∼ ps1 − (p− 1)O + aF +
∑
v∈R

rv−1∑
i=1

cv,iΘv,i,

and we have

D ∼ ps1 + (d− p)O + (a+ n)F +
∑
v∈R

rv−1∑
i=1

(bv,i + cv,i)Θv,i.

Therefore we have(
D +

∑
v∈R

rv−1∑
i=1

(bv,i + cv,i)σ∗
fΘv,i

)
− σ∗

f

(
D +

∑
v∈R

rv−1∑
i=1

(bv,i + cv,i)σ∗
fΘv,i

)

∼ p(s1 − σ∗
fs1).

The left hand side contains some redundancy in the sum for (Θv,i − σ∗
fΘv,i),

but we can rewrite it in the form

(D + Ξ)− σ∗
f (D + Ξ),

where Ξ is an effective vertical divisor such that (i) the irreducible components
are those in fibers not meeting O by Corollary 3.2, and (ii) Ξ and σ∗

fΞ have no
common component.

Now put D1 = D+Ξ. Then by Proposition 3.1, we have the desired elliptic
D2p-cover.

5. Rational elliptic case

We keep the notations as before. In this section, we consider the case as
follows:
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(i) E is a rational elliptic surface.
(ii) D is a section s with sO = 0.
Note that s can not be a 2-torsion, since we assume D �⊂ ∆β1(π).

Lemma 5.1. Let m be the smallest natural number such that 〈s, s〉 ∈
(1/m)Z for all s ∈ MW(E). If E is a rational elliptic surface, then m is equal
to one of the following :

1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 20, 30.

Proof. The statement immediately follows from the Main Theorem in
[10]. Yet we here give another more elementary proof. By Corollary 2.2, m |
23 · 3 · 5 · 7. Let m = 2a3b5c7d. If m is not in the list in the statement, then
(a, b, c, d) belongs to the list below:

(0, 1, 0, 1) (0, 0, 1, 1) (0, 1, 1, 1) (1, 1, 0, 1) (1, 1, 0, 1) (1, 1, 1, 1)
(2, 0, 0, 1) (2, 1, 1, 0) (2, 1, 0, 1) (2, 0, 1, 1) (2, 1, 1, 1) (3, 1, 0, 0)
(3, 0, 1, 0) (3, 0, 0, 1) (3, 1, 1, 0) (3, 1, 0, 1) (3, 0, 1, 1) (3, 1, 1, 1)

We show that all the cases as above do not occur. If (a, b, c, d) is of the form
(a, b, 1, 1), then by Corollary 2.1, ϕ has both I5 and I7 singular fibers. The ir-
reducible components of these fibers give 10 independent elements in ⊕v∈RTv.
Since E is rational, rank NS(E) = 10. Hence rank⊕v∈RTv = rankT − 2 ≤
rank NS(E) − 2 = 8. This leads us to a contradiction. Hence this case does
not occur. Similarly we see that he remaining cases except (0, 1, 0, 1) do not
occur. We need to eliminate the case (0, 1, 0, 1). If this happens, then the
reducible singular fibers of ϕ are of types either IV , I7 or I3, I7. It implies
that rankT = 10. Let det NS(E) and detT be the determinant of the intersec-
tion matrices for NS(E) and T , respectively. Since rank NS(E) = rankT =
10, NS(E)/T is a finite group. These three quantities satisfy the equality
| detNS(E)|	 (NS(E)/T )2 = | detT |. This implies the case (0, 1, 0, 1) does not
occur, since | detT | = 21, det NS(E) = 1.

Theorem 5.1. Let π : S → Σ be an elliptic D2p covering. Suppose that
(i) E is a rational elliptic surface,
(ii) ∆β2(π) is of the form ∆β2(π) = s+ Ξ + σ∗(s+ Ξ), where s is a section

with sO = 0 and the irreducible components of Ξ consists of Θv,i’s (i > 0), and
(iii) 〈s, s〉 > 0.
Then p = 3, 5.

Proof. By Proposition 4.1, there exists s1 ∈ MW(E) such that ps1 = s in
MW(E). Let m be as above. Put 〈s1, s1〉 = n1/m and 〈s, s〉 = n2/m. Then
the equality p2〈s1, s1〉 = 〈s, s〉 implies p2 | n2. Since 0 < 〈s, s〉 ≤ 2χ(OE) = 2,
0 < n2 < 2m. By Lemma 5.1, we infer that p = 3, 5, 7. We prove that
p = 7 does not happen. Suppose that a D14-cover satisfying the condition (i),
(ii) and (iii) exists. In this case, 2m ≥ 49. Hence m = 30 by Lemma 5.1
and 〈s, s〉 = 49/30. By the list in [10] and [11], m = 30 occurs only if the
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configuration of singular fibers of E are either {I5, I3, I2, 2I1}, {I5, I3, I2, II}
or {I5, IV, I2, I1}. Since m = 30, s meets some Θv,i (i > 0) for every v ∈ R.
By the explicit formula for the height pairing in Section 2, we have

〈s, s〉 = 5
6
− k(5− k)

5
,

where k ∈ {1, 2, 3, 4}. This leads us to a contradiction.

We next consider the case when s is a torsion element. Note that the order
of s is ≥ 3 and sO = 0 always holds.

Theorem 5.2. Let π : S → Σ be an elliptic D2p-cover. Suppose that
(i) E is a rational elliptic surface,
(ii) ∆β2(π) is of the form ∆β2(π) = s+ Ξ + σ∗(s+ Ξ), where s is a section

as above and the irreducible components of Ξ consists of Θv,i’s (i > 0), and
(iii) s is a torsion element.
Then we have the following table:

Order of s 3 4 5 6
p p �= 3 any odd prime p �= 5 p �= 3.

Proof. Let ms be the order of s. By Proposition 4.1, s is p-divisible. If
(ms, p) = (3, 3) occurs, it implies that MW(E) has a torsion element of order
9. On the other hand, by [3] and [4], the possible values of ms are 2, 3, 4, 5, 6.
Hence the case (ms, p) = (3, 3) does not occur. The cases (ms, p) = (5, 5), (6, 3)
are also ruled out in the same manner.

Conversely, if gcd(ms, p) = 1, then s is p-divisible. By Proposition 4.2,
there exists an elliptic D2p-cover with desired properties.

In the rest of this section, we consider the solvability of the equation px = s
(p = 3, 5). To this purpose, we make use of the results in [10]. The case numbers
refers to those in the Main Theorem in [10].

Theorem 5.3. Suppose that there exists a section s satisfying that (i)
sO = 0, (ii) 〈s, s〉 > 0 and (iii) s is 3-divisible. Then MW(E) is one of the
following cases :

No. 20, 29, 31, 37, 40, 45, 47, 49, 50, 53, 55, 56, 59, 61.

Conversely, for each case in the above, there exists s satisfying (i), (ii) and
(iii).

Proof. Let m be the natural number in Lemma 5.1. Let s1 be a section
such that 3s1 = s. Put 〈s1, s1〉 = a/m, a ∈ Z>0. Then 9a/m = 〈s, s〉 ≤ 2 and
we have m ≥ 5. Hence by the Main Theorem in [10], there are 24 cases: No.
6, 8, 12, 15, 19, 20, 23, 25, 29, 33, 37, 40, 41, 44, 45, 47, 49, 50, 51, 53, 55, 56,
59, 61. We prove the statement by the case-by-case checking. We here explain
how we show it for three cases, since the remaining cases are similarly checked.
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No. 8. In this case, ϕ has a unique reducible singular fiber, Fv, of type I5.
Suppose that there exists s with (i), (ii) and (iii) and s meets Θv,k (1 ≤ k ≤ 4)
at Fv. By (ii) and (iii), 〈s, s〉 = 9/5. On the other hand, we have

〈s, s〉 = 2− k(5− k)
5

by the explicit formula. This lead us to a contradiction.
No. 20. Let s1 be a section such that 〈s1, s1〉 = 1/6. Let s be the section

given by 3s1. Then 〈s, s〉 = 3/2. On the other hand,

〈s, s〉 = 2 + 2sO − 2
3
a− 1

2
b,

where a ∈ {0, 1, 2} and b ∈ {0, 1}. This implies that sO = 0.
No. 56. Let s0 be a section such that 〈s0, s0〉 = 1/30. Put s1 = s0 and

s′1 = 2s0. Then section s := 3s1 and s′ := 3s′1 satisfy the three conditions.

Remark 5.1. The calculation for No. 32 in the Main Theorem in [10]
seems to be false. In fact,

〈s, s〉 = 2 + 2sO − 2
3
a− b,

where a, b ∈ {0, 1}, and no section attains 1/6. Also No. 70 seems to be
miscalculation. In this case, MW(E) ∼= Z/4Z.

Theorem 5.4. Suppose that there exists a section s satisfying that (i)
sO = 0, (ii) 0 < 〈s, s〉 and (iii) s is 5-divisible. Then MW(E) is either No. 55
or No. 56. Conversely, for each case in the above, there exists s with (i), (ii)
and (iii).

Proof. Let m be the natural number in Lemma 5.1. Then, likewise our
proof of Theorem 5.3, m ≥ 13. Hence possible cases are No. 31, 47, 55, 56.
We can check the statement by the case-by-case checking in the same manner
as in Theorem 5.3.

6. Application: D2p-covers of P2 branched along quintic curves

In this section, we apply the results in Section 5 to investigate D2p-covers
branched along reduced quintic curves. It gives a geometric interpretation of
p-divisibility of a section s.

Let 
 : S → P2 be a D2p-cover branched along a reduced quintic curve.
Since P2 is simply connected, ∆β1(π) �= ∅ and it is either a conic or a quartic.
We call the former type I and the latter type II. If 
 is of type II, ∆� is of the
form Q+ l, where l is a line and Q = ∆β1(�). By Corollary 3.2, l does not meet
Q transversely. As for their relative positions, it falls into one of the following:

The case Q ∩ l = {y1, y2}.
(i) l is bitangent to Q at y1 and y2.



�

�

�

�

�

�

�

�

266 Hiro-o Tokunaga

(ii) l is tangent to one point and the other is a singular point of Q.
(iii) Both of y1 and y2 are singular points of Q.
The case Q ∩ l = {y}.

(iv) l is a tangent line at y with multiplicity 4.
(v) y is a singular point of Q.
(vi) Q consists of four lines meeting at one point y and l is another line

through y.

In the following except Theorem 6.2, we always assume:

Assumption: Q �= four lines meeting at one point.

We apply the results in §4 to study D2p-covers of type II. To this purpose,
we introduce a rational elliptic surface, E(
), related with 
 : S → P2 in the
following manner:

Choose a general point x on Q. We call x the distinguished point. Let
lx be the tangent line at x (in the case when Q is four lines, lx is the compo-
nent containing x). Let q1 : (P2)x → P2 be the blowing-up at x. The strict
transform, lx, of lx meets the exceptional curve Ex of q1 at a point, y. Let
q2 : Σ0 → (P2)x be the blowing-up at y. Let E1 be the C(S)τ -normalization of
D(S/P2). E1 is a double cover of Σ0 branched at Ex and Q, where Ex and Q
are the strict transforms of Ex and Q in Σ0, respectively.

The canonical resolution

E0 ← E(
)
↓ ↓

Σ0 ← Σ

gives rise to a rational elliptic surface, E(
). Note that E(
) satisfies the three
conditions in Section 2, since (a) there is a section O coming from Ex, (b) it
has a singular fiber arising from lx and (c) Q has only simple singularities.
Moreover the covering transformation of E(
) → Σ coincides with the one
induced by the inversion morphism with respect to the group law with O as
the zero. Let π : S̃ → Σ be the C(S)-normalization of Σ. Then S̃ is an elliptic
D2p-cover with D(S̃/Σ) = E(
).

Lemma 6.1. Let q−1
2 (lx) be the strict transform of lx. Let Fx be the

fiber containing an irreducible component coming from q−1
2 (lx). Then Fx is

either I∗0 , I∗1 or I2.

Proof. By carrying out the canonical resolution, we can check
(i) Fx is I∗0 , if Q consists of 4 lines, lx and li (i = 1, 2, 3) such that the

three intersection points lx ∩ li (i = 1, 2, 3) are all distinct.
(ii) Fx is I∗1 , if Q consists of 4 lines, lx and li (i = 1, 2, 3), such that two of

the three intersection points lx∩ li (i = 1, 2, 3) coincide, i.e., Q has an ordinary
triple point and lx is a component through it.

(iii) Fx is I2, if Q contains a component of degree ≥ 2 and x is a general
point on this component.
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Theorem 6.1. Let 
 : S → P2 be a D2p-cover of P2 branched along a
reduced quintic curve. Suppose that 
 is of type II. Then p and the structure
of MW(E(
)) falls into one of the following :

p = 3: No. 20, 29, 27, 37, 40, 47, 49, 56, 58, 59, 61, 70, 74.
p = 5: No. 55, 56, 58, 61, 66, 70, 74.
p ≥ 7: No. 58, 61, 66, 70, 74.

Proof. By our construction of E(
), l gives rise to two sections, s+ and
s−. Since ∆� = Q+ l, any irreducible component of ∆β2(�) other than s+ and
s− is that of exceptional set of E(
)→ D(S/Σ). Since the strict transform of
Ex is contained in ∆β1(�), ∆β2(�) is of the form s+ + s− + vertical divisors.
Hence s± are torsions or MW(E(
)) belongs to the lists in Theorems 5.3 and
5.4. Moreover, E(
) has a singular fiber described in Lemma 6.1. Therefore
we have the statement.

Theorem 6.2. Let 
 : S → P2 be a D2p-cover of P2 branched along a
quintic curve. If π is of type II, then the branch locus, Q + l, of 
 falls into
one of the following :

p Q Q ∩ l Type No. of MW(E(
))
1 3 Q1 (i) 20
2 3 Q1 (iv) 20
3 3 Q2 (i) 40
4 3 Q2 (iv) 40
5 3 Q3 (i) 61
6 3 Q4 (ii), a3 37
7 3 Q5 (i) 29
8 3 Q5 (iv) 29
9 3 Q6 (ii), a6 47
10 3 Q7 (v), a4 56
11 3 Q8 (i) 49
12 3 Q8 (iv) 49
13 3 Q9 (ii), a3 59
14 3 Q12 (i) 53
15 5 Q7 (ii), a2 56
16 p �= 3 Q10 (iii), a2 + a5 66
17 arbitrary Q11 (iii), a3 + a3 58
18 arbitrary Q13 (v), a7 70
19 arbitrary Q14 (iii), a3 + a3 74
20 arbitrary Q15 ordinary 4-ple point See Remark 6.1 (ii) below.

The second column refers to its type (see the table below), the third refers
to the relative position between Q and l, the number being the one introduced
in this section, and the singularities of Q in Q ∩ l.
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Irreducible components Singularities
Q1 irreducible 2a2

Q2 irreducible 2a2 + a1

Q3 irreducible 3a2

Q4 irreducible a3 + a2

Q5 irreducible a5

Q6 irreducible a6

Q7 irreducible a4 + a2

Q8 irreducible e6
Q9 a cuspidal cubic and a line a3 + a2 + a1

Q10 a cuspidal cubic and a line a5 + a2

Q11 two conics 2a3

Q12 two conics a3 + a1

Q13 two conics a7

Q14 a conic and two lines 2a3 + a1

Q15 four lines meeting at one point an ordinary 4-ple point

Remark 6.1. (i) The above table for the possible branch loci was ob-
tained in [17]. Since it has never been published anywhere, we put it here.

(ii) If Q = Q15, the minimal resolution of D(S/P2) is not a rational elliptic
surface. In fact, the minimal resolution of D(S/P2) is a ruled surface over a
curve of genus 1.

Proof. If Q �= Q15, one can make use of Theorem 6.1. We only show that
the branch loci of D2p-covers of type II corresponding to No. 20 and No. 70
belong to the above table, since the remaining cases are proved in the same
manner.

p = 3, No. 20. Let 
 : S → P2 be a D6-cover of type II such that
MW(E(
)) is No. 20. Since we choose a general point as x, the reduced
fibers of E(
) are of types 2I3, I2 and the singular fiber Fx is of type I2.
Since MW(E(
)) has no 2-torsion, Q is irreducible. Q has 2a2 singularities by
Table 6.2 in [9]. Let l be the line component of ∆�. Let s+ and s− be the
sections arising from l. Since both s+ and s− are 3-divisible and s±O = 0,
〈s+, s+〉 = 〈s−, s−〉 = 3/2. On the other hand, for any s ∈ MW(E(
)),

〈s, s〉 = 2 + 2sO − 2
3
a− 1

2
b,

where a ∈ {0, 1, 2} and b ∈ {0, 1}. Hence we have a = 0, b = 1 for s±. This
implies l does not pass through the singularity of Q, i.e., l is either a bitangent
or a hyperflex tangent. These are the cases 1 and 2, respectively.

p = arbitrary, No. 70. Let 
 : S → P2 be a D2p-cover of type II such
that MW(E(
)) is No. 70. In this case, Q is not 4 lines by Lemma 6.1. By
choosing a general point on a non-linear component as x, we can assume that
the configuration of fibers of E(
) is I8 I2, 2I1 and the singular fiber Fx is of
type I2. As MW(E(
)) ∼= Z/4Z, it has only one 2-torsion. Hence Q consists
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of two components. By Table 6.2 in [9], Q has an a7-singularity. Hence we
infer that Q consists of two conics intersecting at one point y. Let l be the
line component of ∆�. Let s+ and s− be the sections arising from l. Since
MW(E(
)) ∼= Z/4Z and s± are not 2-torsions, they must be 4-torsions. Hence
〈s+, s+〉 = 〈s−, s−〉 = 0. By the similar argument to the previous case, s+

(resp. s−) meets Θv,2 (resp. Θv,6) at the I8 fiber. This implies that l is the
tangent line at y.
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