On the Stiefel-Whitney classes of the adjoint representation of E_{8}

By
Akihiro Ohsita

Introduction

Exceptional Lie groups G_{2}, F_{4} and $E_{l}(l=6,7,8)$ have been studied by many topologists, where the subscript refers to the rank and we agree to consider 1 -connected and compact ones tacitly. The cohomology of the classifying space of them is determined to a large extent. The mod 2 cohomology of $B E_{8}$, however, is left unknown. The ring structure of that of $B E_{7}$ is not determined yet.

It is known classically that an elementary abelian 2-subgroup, a 2 -torus in other words, of the maximal rank is useful. This rank is called the 2-rank of the Lie group. Note that a maximal 2 -torus does not necessarily give the 2 -rank (see [1], [11]). On the other hand, the 3-connected covering \widetilde{E}_{l} of E_{l} has been also utilized. In this paper we determine the image of the Stiefel-Whitney classes of the adjoint representaion of E_{8} in $H^{*}\left(B \widetilde{E}_{8} ; \boldsymbol{F}_{2}\right)$. In particular, we give some results on the image of $H^{*}\left(B E_{8} ; \boldsymbol{F}_{2}\right)$ in it. We denote the mod 2 cohomology of X simply by $H^{*}(X)$ and by A^{*} the mod 2 Steenrod algebra. If S is a non-empty subset of an algebra, $\langle S\rangle$ denotes the subalgebra generated by S.

The author is very grateful to Professor Akira Kono for his helpful advices during the preparation of this paper.

1. Cohomology of the classifying spaces of 3-connected cover

First we recall here facts related to $B E_{l}$ for later use. Let T^{l} be a maximal torus of E_{l}. Denote by q^{\prime} a generator of $H^{4}\left(B E_{l} ; \boldsymbol{Z}\right)$ and by $q^{\prime \prime}$ the induced map defined on $B T^{l}$. Let $B \widetilde{E}_{l}$ and $B \widetilde{T}^{l}$ be the homotopy fibres of these maps, respectively. We have the natural maps $\lambda_{l}: B T^{l} \rightarrow B E_{l}, \widetilde{\lambda}_{l}: B \widetilde{T}^{l} \rightarrow B \widetilde{E}_{l}$, $\pi_{l}: B \widetilde{E}_{l} \rightarrow B E_{l}$, and $\widehat{\pi}_{l}: B \widetilde{T}^{l} \rightarrow B T^{l}$. Let us denote by φ_{l} and $\widetilde{\varphi}_{l}$ the natural maps $B E_{l-1} \rightarrow B E_{l}$ and $B \widetilde{E}_{l-1} \rightarrow B \widetilde{E}_{l}$, respectively. The following diagrams are commutative.

The mod 2 cohomology of these coverings is completely determined in [10] and [9]. For details, also refer to [8] or [18]. As is well known, $H^{*}\left(B T^{l}\right) \cong$ $\boldsymbol{F}_{2}\left[t_{1}, \ldots, t_{l}\right]$, where $\operatorname{deg} t_{i}=1$. Let c_{i} be the i-th elementary symmetric polynomial in t_{i}^{\prime} 's, and also its image in $H^{*}\left(B \widetilde{T}^{l}\right)$. Define elements $c_{5}^{\prime}, c_{7}^{\prime}, c_{9}^{\prime}$ by $c_{5}+c_{4} c_{1}, c_{7}+c_{6} c_{1}, c_{8} c_{1}+c_{7} c_{1}^{2}+c_{6} c_{1}^{3}$, respectively. Furthermore, we define some elements of $H^{*}\left(B T^{l}\right)$ as follows, where for generators γ_{i} we refer to the next theorem.
$I_{8}=c_{8}+c_{6} c_{1}^{2}+c_{4}^{2}+c_{4} c_{1}^{4}+c_{1}^{8}$,
$I_{12}=S q^{8} I_{8}=c_{8} c_{4}+c_{6}^{2}+c_{6} c_{4} c_{1}^{2}+c_{4}^{2} c_{1}^{4}+c_{4} c_{1}^{8}$,
$I_{14}=S q^{4} I_{12}=c_{8} c_{6}+c_{7}^{\prime 2}+c_{6}^{2} c_{1}^{2}+c_{6} c_{4} c_{1}^{4}+c_{6} c_{1}^{8}$,
$I_{15}=S q^{2} I_{14}=c_{8} c_{7}^{\prime}+c_{7}^{\prime} c_{6} c_{1}^{2}+c_{7}^{\prime} c_{4} c_{1}^{4}+c_{7}^{\prime} c_{1}^{8}$,
$I_{17}=\gamma_{17}+\gamma_{9} I_{8}+\gamma_{5} I_{12}+\gamma_{3} I_{14}+c_{7}^{\prime} c_{6} c_{4}$,
$I_{18}=S q^{2} I_{17}=\gamma_{9}^{2}+\gamma_{5}^{2} I_{8}+\gamma_{3}^{2} I_{12}+\gamma_{3} I_{15}+c_{7}^{\prime 2} c_{4}$,
$I_{20}=S q^{4} I_{18}=\gamma_{5}^{4}+\gamma_{5} I_{15}+\gamma_{3}^{4} I_{8}+\gamma_{3}^{2} I_{14}+I_{14} c_{6}+I_{12} c_{4}^{2}+c_{7}^{\prime 2} c_{6}$,
$I_{24}=S q^{2} I_{20}=\gamma_{9} I_{15}+\gamma_{5}^{4} I_{14}+\gamma_{3}^{4} I_{12}+\gamma_{3}^{8}+I_{14} c_{6} c_{4}+I_{12} c_{6}^{2}+I_{8} c_{4}^{4}+c_{7}^{\prime 2} c_{6} c_{4}$.
Ishitoya and Kono show the following result.
Theorem 1.1 ([9]). The following facts about the $\bmod 2$ cohomology of $B \widetilde{T}^{l}$ and $B \widetilde{E}_{l}(l=6,7,8)$ hold.
(i) $H^{*}\left(B \widetilde{T}^{l}\right)=\boldsymbol{F}_{2}\left[t_{1}, t_{2}, \ldots, t_{l}, \gamma_{3}, \gamma_{5}, \gamma_{9}, \gamma_{17}, v_{2^{j}+1}(j \geq 5)\right] /\left(c_{2}, c_{3}, c_{5}^{\prime}, c_{9}^{\prime}\right)$, where $\operatorname{deg} \gamma_{i}=2 i$ and $\operatorname{deg} v_{i}=i$.
(ii) $H^{*}\left(B \widetilde{E}_{6}\right)=$
$\boldsymbol{F}_{2}\left[y_{10}, y_{12}, y_{16}, y_{18}, \quad y_{24}, \quad y_{33}, y_{34}, \quad y_{2^{i}+1}(i \geq 6)\right]$, $H^{*}\left(B \widetilde{E}_{7}\right)=$
$\boldsymbol{F}_{2}\left[\quad y_{12}, y_{16}, \quad y_{20}, y_{24}, y_{28}, \quad y_{33}, y_{34}, y_{36}, \quad y_{2^{i}+1}(i \geq 6)\right]$, $H^{*}\left(B \widetilde{E}_{8}\right)=$
$\boldsymbol{F}_{2}\left[\quad y_{16}, \quad y_{24}, y_{28}, y_{30}, y_{31}, y_{33}, y_{34}, y_{36}, y_{40}, y_{48}, y_{2^{i}+1}(i \geq 6)\right]$, where $\operatorname{deg} y_{i}=i$.
(iii) If both $H^{*}\left(B \widetilde{E}_{l}\right)$ and $H^{*}\left(B \widetilde{E}_{l-1}\right)$ have the corresponding generator y_{i}, $\widetilde{\varphi}_{l}^{*}\left(y_{i}\right)=y_{i}$. Otherwise $\widetilde{\varphi}_{l}^{*}\left(y_{i}\right)=0$ unless it is mentioned below.

$$
\begin{aligned}
& \widetilde{\varphi}_{8}^{*}\left(y_{40}\right)=y_{28} y_{12}+y_{24} y_{16}+y_{20}{ }^{2}+y_{16} y_{12}{ }^{2}, \\
& \widetilde{\varphi}_{8}^{*}\left(y_{48}\right)=y_{28} y_{20}+y_{24}{ }^{2}+y_{24} y_{12}^{2}+y_{16}{ }^{3}+y_{12}{ }^{4}, \\
& \widetilde{\varphi}_{7}^{*}\left(y_{20}\right)=y_{10}{ }^{2}, \quad \widetilde{\varphi}_{7}^{*}\left(y_{36}\right)=y_{24} y_{12}+y_{18}{ }^{2}+y_{16} y_{10}{ }^{2} .
\end{aligned}
$$

(iv) For the case $l=8$,

$$
\widetilde{\lambda}_{8}^{*}\left(y_{i}\right)= \begin{cases}I_{i / 2}, & (i=16,24,28,30,34,36,40,48) \\ v_{i}, & \left(i=2^{j}+1, j \geq 5\right) \\ 0, & (i=31)\end{cases}
$$

(v) For the case $l=7$,

$$
\tilde{\lambda}_{7}^{*}\left(y_{i}\right)= \begin{cases}I_{i / 2}, & (i=12,16,20,24,28,34,36), \\ v_{i}, & \left(i=2^{j}+1, j \geq 5\right),\end{cases}
$$

where $I_{6}=\gamma_{3}^{2}+c_{4} c_{1}^{2}+c_{1}^{6}, \quad I_{10}=S q^{8} I_{6}=\gamma_{5}^{2}+c_{6} c_{1}^{4}+c_{4}^{2} c_{1}^{2}+c_{1}^{10}$.
(vi) For the case $l=6$,

$$
\tilde{\lambda}_{6}^{*}\left(y_{i}\right)= \begin{cases}I_{i / 2}, & (i=10,12,16,18,24,34) \\ v_{i}, & \left(i=2^{j}+1, j \geq 5\right),\end{cases}
$$

where $I_{5}=\gamma_{5}+c_{4} c_{1}+c_{1}^{5}, \quad I_{9}=S q^{8} I_{5}=\gamma_{9}+c_{4}{ }^{2} c_{1}+c_{1}^{9}$, and I_{6} denotes the image of the corresponding elements of $H^{*}\left(B \widetilde{T}^{7}\right)$.
(vii) The action of A^{*} on $H^{*}\left(B \widetilde{E}_{l}\right)$ satisfies the table below and $S q^{2^{j}} y_{2^{i}+1}=$ $0(j<i)$. These suffices to determine the action completely.

	$S q^{1} S q^{2}$	$S q^{4} S q^{8}$	$S q^{16}$	$S q^{32}$	$S q^{2^{2}}$
y_{16}	00	$0 \quad y_{24}$	$y_{16}{ }^{2}$	0	
y_{24}	00	$y_{28} 0$	$y_{24} y_{16}$	0	
y_{28}	$0 \quad y_{30}$	00	$y_{28} y_{16}$	0	
y30	$y_{31} \quad 0$	00	$y_{30} y_{16}$	0	
y_{31}	00	00	$y_{31} y_{16}$	0	
$y 33$	$y_{34} \quad 0$	00	$y_{33} y_{16}$	$y 65$	
y_{34}	$0 y_{36}$	00	$y_{34} y_{16}$	$y_{36} y_{30}+y_{33}{ }^{2}$	
y36	00	$y_{40} \quad 0$	$y_{36} y_{16}$	$y_{40} y_{28}+y_{34}{ }^{2}$	
y_{40}	0 0	$0 \quad y_{48}$	$y_{40} y_{16}$	$y_{48} y_{24}+y_{36}{ }^{2}$	
y_{48}	00	00	$\begin{aligned} & y_{40} y_{24}+y_{36} y_{28} \\ & +y_{34} y_{30}+y_{33} y_{31} \end{aligned}$	$\begin{aligned} & y_{48} y_{16}{ }^{2}+y_{40}{ }^{2}+y_{40} y_{24} y_{16} \\ & +y_{36} y_{28} y_{16}+y_{34} y_{30} y_{16}+y_{33} y_{31} y_{16} \end{aligned}$	
y_{12}	00	$y_{16} y_{20}$	0	0	
y_{20}	$0 \quad 0$	$y_{12}^{2} y_{28}$	$y_{36}+y_{24} y_{12}+y_{20} y_{16}$	0	
y_{10}	$0 \quad y_{12}$	$0 \quad y_{18}$	0	0	
y_{18}	$0 \quad y_{10}{ }^{2}$	$0 \quad 0$	$y_{34}+y_{24} y_{10}+y_{18} y_{16}$	0	
$y_{2}{ }^{i}+1$	0	0	0	$0(i \geq 6)$	$y_{2}{ }^{i+1}+1$

Note that $\left(\widetilde{\varphi}_{l}^{*}\left(y_{i}\right)\right)_{i}$ forms a regular sequence for each l if we exclude $\widetilde{\varphi}_{l}{ }^{*}\left(y_{i}\right)$ which is null. Thus $\operatorname{Ker} \widetilde{\varphi}_{7}{ }^{*}=\left(y_{28}\right)$ and $\operatorname{Ker} \widetilde{\varphi}_{8}{ }^{*}=\left(y_{30}, y_{31}\right)$. Also note that $\left(\widetilde{\lambda}_{l}^{*}\left(y_{i}\right)\right)_{i}$ does, and if $\widetilde{\lambda}_{l}^{*}\left(y_{i}\right)$ is non-zero and contained in $\left\langle t_{1}, \ldots, t_{l}\right\rangle$, then $i=16,24,28,30$ for $l=8, i=16,24,28$ for $l=7$, and $i=16,24$ for $l=6$.

Corollary 1.1. (i) $\operatorname{Ker} \widetilde{\varphi}_{7}^{*}=\left(y_{28}\right)$, and $\operatorname{Ker} \widetilde{\varphi}_{8}^{*}=\left(y_{30}, y_{31}\right)$.
(ii) $\operatorname{Ker} \widetilde{\lambda}_{6}^{*}=0, \operatorname{Ker} \widetilde{\lambda}_{7}^{*}=0$, and $\operatorname{Ker} \widetilde{\lambda}_{8}^{*}=\left(y_{31}\right)$.
(iii) $\operatorname{Im} \pi_{6}{ }^{*} \subset \boldsymbol{F}_{2}\left[y_{16}, y_{24}\right], \operatorname{Im} \pi_{7}{ }^{*} \subset \boldsymbol{F}_{2}\left[y_{16}, y_{24}, y_{28}\right]$, and $\operatorname{Im} \pi_{8}{ }^{*} \subset \boldsymbol{F}_{2}\left[y_{16}\right.$, $\left.y_{24}, y_{28}, y_{30}\right] \oplus\left(y_{31}\right)$.
(iv) In particular, $\operatorname{Ker} \widetilde{\varphi}_{8}{ }^{*} \cap \operatorname{Im} \pi_{8}{ }^{*} \subset y_{30} \cdot \boldsymbol{F}_{2}\left[y_{16}, y_{24}, y_{28}\right] \oplus\left(y_{31}\right)$.

Proof. The equalities are immediate. For the third inclusion notice that $\widetilde{\lambda}_{8}{ }^{*}\left(\operatorname{Im} \pi_{8}{ }^{*}\right) \subset \operatorname{Im} \widehat{\pi}_{8}{ }^{*} \cap \operatorname{Im} \widetilde{\lambda}_{8}{ }^{*}=\left\langle t_{1}, \ldots, t_{8}\right\rangle \cap \operatorname{Im} \widetilde{\lambda}_{8}{ }^{*}$. Thus $\operatorname{Im} \pi_{8}{ }^{*}$ is contained in $\left\langle y_{16}, y_{24}, y_{28}, y_{30}\right\rangle \oplus \operatorname{Ker} \widetilde{\lambda}_{8}{ }^{*}$. Other inclusions are proved similarly.

2. Stiefel-Whitney class of the adjoint representation of E_{8}

Let $A d_{E_{l}}$ be the adjoint representation of $E_{l}(l=6,7,8)$. It is known that $A d_{E_{8}}$ satisfies $\left.A d_{E_{8}}\right|_{E_{7}}=A d_{E_{7}} \oplus \mu \oplus$ (3-dimensional trivial representation), where $\mu: E_{7} \rightarrow U(56) \rightarrow O(112)$ is the realization of the 56 -dimensional complex representation. We refer, for example, to [1, Case 2 in page 52$]$.

As for the Stiefel-Whitney class of $A d_{E_{l}}$, the following facts are known. Firstly, $H^{*}\left(B E_{6}\right)$ is generated by x_{4} and $w_{32}(\lambda)$ as an A^{*}-algebra, where x_{4} is a generater of $H^{4}\left(B E_{6}\right)$ and λ is a representation of E_{6} whose degree is 54 . This fact is shown in [12, Theorem 6.21 and Remark following it].

Secondly, $H^{*}\left(B E_{7}\right)$ is generated by x_{4} and $w_{64}\left(A d_{E_{7}}\right)$ as an A^{*}-algebra, and also by x_{4} and $w_{64}(\mu)$. For these we refer to [14, Corollary 4.6, Proposition 6.1 and Corollary 6.9], and to [13, Proposition 2.11, Theorem 2.12 and Corollary 3.7].

Let A and B be the A^{*}-subalgebras of $H^{*}\left(B E_{7}\right)$ generated by x_{4} and $w_{64}(\mu)$, respectively. The image of A in $H^{*}\left(B \widetilde{E}_{7}\right)$ is trivial, and also in $H^{*}\left(B \widetilde{T}^{7}\right)$. Consequently, π_{7}^{*} assigns 0 to the Stiefel-Whitney classes $w_{i}\left(A d_{E_{7}}\right)$ and $w_{i}(\mu)$, if $i \leq 63$ or $65 \leq i \leq 95$.

Lemma 2.1. $\quad \pi_{6}{ }^{*} w_{32}(\lambda)=y_{16}{ }^{2}$ and $\pi_{7}{ }^{*} w_{64}\left(A d_{E_{7}}\right)=\pi_{7}{ }^{*} w_{64}(\mu)=y_{16}{ }^{4}$. In lower degrees, it holds that $\pi_{6}{ }^{*} w_{i}(\lambda)=0$ for $i<32$ and $\pi_{7}{ }^{*} w_{i}\left(A d_{E_{7}}\right)=$ $\pi_{7}^{*} w_{i}(\mu)=0$ for $i<64$.

Proof. It suffices to prove the first half. Firstly, we can assume that $\pi_{6}{ }^{*} w_{32}(\lambda)=\alpha y_{16}{ }^{2}$, where α is a scalar, by Corollary 1.1. We notice that $H^{*}\left(B T^{6}\right)$ is a finite $H^{*}\left(B E_{6}\right)$-module. In particular, $\widehat{\pi}_{6}{ }^{*}\left(H^{*}\left(B T^{6}\right)\right)$ is also finite. Suppose that $\alpha=0$. Then the image $\pi_{6}{ }^{*}\left(H^{*}\left(B E_{6}\right)\right)$ is trivial, and so in $H^{*}\left(B \widetilde{T}^{6}\right)$. This contradicts the fact above.

Secondly, we verify the case of $H^{*}\left(B \widetilde{E}_{7}\right) \cdot \pi_{7}^{*} w_{64}(\mu)$ is of the form $\alpha y_{16}{ }^{4}+$ $\beta y_{24}{ }^{2} y_{16}$, where $\alpha, \beta \in \boldsymbol{F}_{2}$. As a result, $S q^{8}\left(\pi_{7}^{*} w_{64}(\mu)\right)=\beta y_{28}{ }^{2} y_{16}+\beta y_{24}{ }^{3}$, which is null as we indicated above. Therefore $\beta=0$. If $\alpha=0$, we can show a contradiction similarly to the case of $H^{*}\left(B \widetilde{E}_{6}\right)$. The assertion on $\pi_{7}^{*} w_{64}\left(A d_{E_{7}}\right)$ is proved in the same manner.

Proposition 2.1. It holds that $\operatorname{Im} \pi_{6}{ }^{*}=\boldsymbol{F}_{2}\left[y_{16}{ }^{2}, y_{24}{ }^{2}\right]$ and $\operatorname{Im} \pi_{7}{ }^{*}=$ $\boldsymbol{F}_{2}\left[y_{16}{ }^{4}, y_{24}{ }^{4}, y_{28}{ }^{4}\right]$. In particular, $\operatorname{Im} \pi_{8}{ }^{*} \subset \boldsymbol{F}_{2}\left[y_{16}{ }^{4}, y_{24}{ }^{4}, y_{28}{ }^{4}\right] \oplus y_{30} \cdot \boldsymbol{F}_{2}\left[y_{16}, y_{24}\right.$, $\left.y_{28}\right] \oplus\left(y_{31}\right)$.

Proof. The first two are clear from Corollary 1.1 and Lemma 2.1. Since $\widetilde{\varphi}_{8}{ }^{*}\left(\operatorname{Im} \pi_{8}{ }^{*}\right)=\pi_{7}{ }^{*}\left(\operatorname{Im} \varphi_{8}{ }^{*}\right) \subset \operatorname{Im} \pi_{7}{ }^{*}, \operatorname{Im} \pi_{8}{ }^{*}$ is contained in $\boldsymbol{F}_{2}\left[y_{16}{ }^{4}, y_{24}{ }^{4}, y_{28}{ }^{4}\right]$ $\oplus \operatorname{Ker} \widetilde{\varphi}_{8}{ }^{*}$. Thus the last assertion follows from Corollary 1.1.

Let i be a non-negative integer less than 7 for a while. Note that $\widetilde{\varphi}_{8}{ }^{*}\left(\pi_{8}{ }^{*}\right.$ $\left.\left(w_{2^{i}}\left(A d_{E_{8}}\right)\right)\right)=0$ because of Proposition 2.1 and the decomposition of $\left.A d_{E_{8}}\right|_{E_{7}}$.

Thus $\pi_{8}{ }^{*}\left(w_{2^{i}}\left(A d_{E_{8}}\right)\right)$ is lying in $\operatorname{Ker} \widetilde{\varphi}_{8}{ }^{*}$. Corollary 1.1 implies $\pi_{8}{ }^{*}\left(w_{2^{i}}\left(A d_{E_{8}}\right)\right)$ $=0$ for $i \leq 5$ and $\pi_{8}^{*}\left(w_{64}\left(A d_{E_{8}}\right)\right)$ is expressed in the form $\alpha y_{31} y_{33}$. Therefore, applying $S q^{1}$, we deduce that $\alpha=0$ since $\pi_{8}{ }^{*}\left(w_{2^{i}}\left(A d_{E_{8}}\right)\right)=0$ for $i \leq 5$.

Lemma 2.2. $\quad \pi_{8}{ }^{*} w_{2^{i}}\left(A d_{E_{8}}\right)=0$ for $i<7$. Therefore $\pi_{8}{ }^{*} w_{i}\left(A d_{E_{8}}\right)=0$ for $i<128$.

Now we begin to show $\widetilde{\varphi}_{8}{ }^{*}\left(\pi_{8}{ }^{*}\left(w_{128}\left(A d_{E_{8}}\right)\right)\right)=y_{16}{ }^{8}$. In this time we need an additional fact. The root space decomposition of E_{7} shows $\left.A d_{E_{7}}\right|_{T^{7}}=\xi \oplus(7-$ dimensional trivial representation), where ξ is a representation of T^{7} of degree 126. Thus $\lambda_{7}^{*}\left(w_{i}\left(A d_{E_{7}}\right)\right)=0$ for $i \geq 127$. In particular, $\widetilde{\lambda}_{7}^{*} \pi_{7}^{*}\left(w_{128}\left(A d_{E_{7}}\right)\right)=$ 0 . Corollary 1.1 then implies $\pi_{7}^{*}\left(w_{128}\left(A d_{E_{7}}\right)\right)=0$. Since $\widetilde{\varphi}_{8}{ }^{*}\left(\pi_{8}{ }^{*}\left(w_{128}\left(A d_{E_{8}}\right)\right)\right)$ $=\pi_{7}^{*}\left(w_{128}\left(A d_{E_{7}} \oplus \mu\right)\right)$, we obtain $\widetilde{\varphi}_{8}^{*}\left(\pi_{8}^{*}\left(w_{128}\left(A d_{E_{8}}\right)\right)\right)=y_{16}{ }^{8}$.

Theorem 2.1. $\quad \pi_{8}{ }^{*} w_{128}\left(A d_{E_{8}}\right)=y_{16}{ }^{8}$.
Proof. We can assume that $\pi_{8}{ }^{*} w_{128}\left(A d_{E_{8}}\right)=y_{16}{ }^{8}+\alpha y_{30}{ }^{2} y_{28} y_{24} y_{16}+$ $y_{31}{ }^{2}\left(\beta y_{33}{ }^{2}+\gamma y_{30} y_{36}+\delta y_{34} y_{16}{ }^{2}\right)+y_{31} y_{33}\left(\varepsilon y_{30} y_{34}+p\right)+\zeta y_{31} y_{65} y_{16}{ }^{2}$, where α, β, γ, $\delta, \varepsilon, \zeta \in \boldsymbol{F}_{2}$ and $p \in\left\langle y_{16}, y_{24}, y_{28}, y_{36}, y_{40}, y_{48}\right\rangle$. Since $S q^{1} \pi_{8}{ }^{*} w_{128}\left(A d_{E_{8}}\right)=0$ and $S q^{1} \pi_{8}{ }^{*} w_{128}\left(A d_{E_{8}}\right)=\gamma y_{31}{ }^{3} y_{36}+\varepsilon y_{30} y_{31} y_{34}{ }^{2}+\varepsilon y_{31}{ }^{2} y_{33} y_{34}+y_{31} y_{34} p, \gamma=$ $\varepsilon=0$ and $p=0$. We apply $S q^{2}$ and then we conclude $\alpha=\beta=\delta=0$. Lastly, applying $S q^{16}$, we obtain $\zeta=0$.

The following is an easy consequence of Wu formulae.
Corollary 2.1. $\quad \boldsymbol{F}_{2}\left[y_{16}{ }^{8}, y_{24}{ }^{8}, y_{28}{ }^{8}, y_{30}{ }^{8}, y_{31}{ }^{8}\right] \subset \operatorname{Im} \pi_{8}{ }^{*} \subset \boldsymbol{F}_{2}\left[y_{16}{ }^{8}, y_{24}{ }^{8}\right.$, $\left.y_{28^{8}}, y_{30}{ }^{8}, y_{31}{ }^{8}\right]+Q$, where $Q \subset y_{30} \cdot \boldsymbol{F}_{2}\left[y_{16}, y_{24}, y_{28}\right] \oplus\left(y_{31}\right)$.

> Depertment of Human Sciences Osaka University of Economics 2-2-8 Osumi, Higashiyodogawaku Osaka 533-8533, Japan e-mail: ohsita@osaka-ue.ac.jp

References

[1] J. F. Adams, 2-tori in E_{8}, Math. Ann. 278 (1987), 29-39.
[2] , Lectures on Exceptional Lie Groups, Chicago Univ. Press, 1996.
[3] A. Borel and J.-P. Serre, Sur certain sous-groupes des groupes de Lie compacts, Comm. Math. Helv. 27 (1953), 128-139.
[4] A. Borel, Sur l'homologie et la cohomologie des groupes de Lie compacts connexes, Amer. J. Math. 76 (1954), 273-342.
[5] N. Bourbaki, Groupes et Algébres de Lie IV-VI, Hermann, 1968.
[6] M. Harada and A. Kono, Cohomology mod p of the 4 -connective cover of the classifying space of simple Lie groups, Adv. Stud. Pure Math. 9 (1986), 109-122.
[7] , Cohomology mod p of the 4-connective fibre space of the classifying space of classical Lie groups, Proc. Japan Acad. Ser. A Math. Sci. 60 (1984), 63-65.
[8] K. Ishitoya and H. Toda, On the cohomology of irreducible symmetric spaces of exceptional type, J. Math. Kyoto Univ. 17 (1977), 225-243.
[9] K. Ishitoya and A. Kono, Squaring operations in the 4-connective fibre spaces over the classifying spaces of the exceptional Lie groups, Publ. RIMS Kyoto Univ. 21 (1985), 1299-1310.
[10] H. Kachi, Homotopy groups of compact Lie groups E_{6}, E_{7}, and E_{8}, Nagoya J. Math. 32 (1968), 109-139.
[11] A. Kono, On the 2-rank of compact Lie groups, J. Math. Kyoto Univ. 17 (1977), 1-18.
[12] A. Kono and M. Mimura, Cohomology mod 2 of the classifying space of the compact connected Lie group of type E_{6}, J. Pure Appl. Algebra 6 (1975), 61-81.
[13] , On the cohomology $\bmod 2$ of the classifying space of $\operatorname{AdE} E_{7}, \mathrm{~J}$. Math. Kyoto Univ. 18 (1978), 535-541.
[14] A. Kono, M. Mimura and N. Shimada, On the cohomology mod 2 of the classifying space of the 1-connected exceptional Lie group E_{7}, J. Pure and Appl. Algebra 8 (1976), 267-283.
[15] D. Quillen, The spectrum of an equivariant cohomology ring I, II, Ann. of Math. 94 (1971), 549-572, 573-602.
[16] _ The mod 2 cohomology ring of extra-special 2-groups and the spinor groups, Math. Ann. 194 (1971), 197-212.
[17] H. Toda, Cohomology of the classifying space of exceptional Lie groups, Manifolds, Tokyo, 1973, 265-289.
[18] T. Watanabe, The integral cohomology ring of the symmetric space E VII, J. Math. Kyoto Univ. 15 (1975), 363-385.

