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Homotopy genus of BU and the Bott map
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1. Introduction

The homotopy genus of a nilpotent finite CW-complex X is defined as
follows ([5], [7]):

{ [Y ] |Y �p X for each prime p }.
The homotopy genus of certain spaces are computed, for example, the order of
the homotopy genus of a classifying space of a compact connected Lie group is
uncountable infinite. But the homotopy genus of BU = BU(∞) is not known
yet. The purpose of this paper is to determine the homotopy genus of the
pair of BU and the Bott map of BU . The main theorem below says that it is
unique.

Theorem. Let X be a pointed of finite type simply connected CW-
complex equipped with a map λ : S2 ∧ X → X and a homotopy equivalences
hp : X(p) → BU(p) for each prime p such that they satisfy the following homo-
topy commutative diagram

(S2 ∧X)(p)
1∧hp−−−−→ (S2 ∧BU)(p)

λ(p)

� �β(p)

X(p) −−−−→
hp

BU(p),

where β : S2 ∧ BU → BU is the Bott map. Then we have a homotopy equiva-
lence h : X ∼→ BU which satisfies the following homotopy commutative diagram.

S2 ∧X 1∧h−−−−→ S2 ∧BU
λ

� �β

X −−−−→
h

BU
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2. The Bott map of BU

Let us recall the Bott map β : S2 ∧BU → BU . Let η and ξn be the Hopf
bundle of S2 and the universal bundle of BU(n). The Bott map

β : S2 ∧BU → BU

is defined as the classifying map of the virtual complex vector bundle (η−1)∧
lim(ξn−n) on S2∧BU , where 1 and n is of rank 1 and n trivial complex vector
bundle. It is well known that the Bott map gives the Bott periodicity of BU
which is

ãdβ : BU ∼→ Ω2BSU,

where ãdβ is the lift of adβ : BU → Ω2BU ([2]). We have the following as a
consequence of the Bott periodicity.

Proposition 2.1. Let g1 : S2 → BU represent a generator of π2(BU)
∼= Z. Then a generator of π2n(BU) ∼= Z (n > 1) is represented by :

gn = β(1 ∧ β)(1 ∧ 1 ∧ β) · · ·
· · · (1 ∧ · · · ∧ 1 ∧ β)(1 ∧ · · · ∧ 1 ∧ g1) : S2 ∧ · · · ∧ S2 = S2n → BU.

Corollary 2.1. Let X,λ be as in Theorem, ı : S2 → S2
(0) be the ratio-

nalization and g′1 : S2 → X(0) represent a generator of π2(X(0)) ∼= Q. Then we
have that a generator of π2n(X(0)) ∼= Q (n > 1) is represented by :

g′n = λ(0) ◦ (ı ∧ λ(0)) ◦ (1 ∧ ı ∧ λ(0)) ◦ · · ·
· · · ◦ (1 ∧ · · · ∧ 1 ∧ ı ∧ λ(0)) ◦ (1 ∧ · · · ∧ 1 ∧ ı ∧ g′1) : S2 ∧ · · · ∧ S2 = S2n → X(0).

3. Proof of Theorem

To prove Theorem we need to construct a homotopy equivalence by patch-
ing together the homotopy equivalences between localized spaces. The following
is the well-known pull-back theorem ([4]).

Lemma 3.1. Let X and Y be finite nilpotent spaces with a homotopy
equivalence hp : X(p) → Y(p) such that hp(0) � hq(0), for each prime p, q. Then
we have a homotopy equivalence h : X → Y such that h(p) � hp for each prime
p.

Proposition 3.1. Let X be of finite type pointed CW-complex with a
homotopy equivalence hn : Xn → BUn for each n such that hn+1|Xn � hn,
where Xn and BUn are n-skeleta of X and BU. Then we have a homotopy
equivalence h : X → BU such that h|Xn � hn for any n.

Proof. By Milnor’s short exact sequence ([6])

0 → lim←
1K̃−1(Xn) → K̃(X) → lim← K̃(Xn) → 0,
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we have a map h : X → BU such that h|Xn � hn. Since h∗ = lim← hn
∗ : π∗(X) →

π∗(BU) is an isomorphism, h is a homotopy equivalence by J.H.C. Whitehead
theorem.

It is easily seen that

H∗(BU(p);Q) ∼= H∗(BU ;Q) ∼= Q[ c1, c2, c3, . . . ],

where cn is the n-th Chern class.

Lemma 3.2. Let gn : S2n → BU, g′n : S2n → X be as in Proposition 2.1
and Corollary 2.1. Then we have ḡn : K(2n,Q) → BU(0), ḡ′n : K(2n,Q) →
X(0) such that ḡni � gn(0) and ḡ′ni � g′n(0), where i : S2n

(0) → K(2n,Q) is the
rationalization of a generator of π2n(K(2n,Z)) ∼= Z.

Proof. It is well know that

πk(S2n
(0)) ∼=

{
Q, k = 2n, 4n− 1,
0, otherwise.

We construct a space K1 which is the rationalization of the adjunction space
S2n

(0) ∪ e4n, where the attaching map is a generator of π4n−1(S2n
(0)). Then we

have the following by [3, Proposition 13.12].

πk(K1) ∼=
{

Q, k = 2n, 6n− 1,
0, otherwise.

Since π4n−1(BU(0)) = π4n−1(X(0)) = 0, we see that gn(0), g′n(0) can be extended

to maps g1
n : K1 → BU(0), g1

n
′ : K1 → X(0) such that g1

ni � gn(0), g1
n
′
i � g′n(0).

Inductively we construct a space Kr such that

πk(Kr) ∼=
{

Q, k = 2n, 2(r + 2)n− 1,
0, otherwise

and the maps gr
n : Kr → BU(0), gr

n
′ : Kr → X(0) such that gr

ni � gn(0),
gr

n
′i � g′n(0) by the same way as the above. Let ḡn = lim→ gr

n, ḡn
′ = lim→ gr

n
′. Since

lim→ Kr = K(Q, 2n) and (gr
ni)∗ = gn

∗
(0) : H2n(BU(0);Q) → H∗(K(Q, 2n);Q),

(gr
n
′i)∗ = g′n

∗
(0) : H2n(X(0);Q) → H∗(K(Q, 2n);Q), the proof is completed.

Proof of Theorem. Since hp : X(p) → BU(p) is a homotopy equivalence,
we have

g′1(p)
∗
hp
∗(c1) = kpg1(p)

∗(c1) for kp ∈ Z×(p).

It is well known that

β(0)
∗(sk) = ke⊗ sk−1,
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where sk is the k-th power sum in {cn} and e = g1(0)
∗(c1). Then we see that

gn(0)
∗(sn) = (kp)ng′n(0)

∗
hp(0)

∗(sn) ∈ H2n(S2n
(0);Q).

It is well known that there exists the inverse of the localized Adams operator
ψm

(p) : K̃( · )(p) → K̃( · )(p), when p � m. Denote kp = ±a/b such that a > 0,

b > 0 and p � a. Let h′p : X(p) → BU(p) be (ψa
(p))
−1ψb

(p)ψ
sgn kp

(p) (hp), then we have
h′p is a homotopy equivalence and h′p(0)

∗(sn) = (kp)nhp(0)
∗(sn) ([1]). Then we

have

gn(0)
∗(sn) = g′n(0)

∗
h′p(0)

∗(sn) ∈ H2n(S2n
(0);Q).

Since
∏
sn : BU(0) →

∏
K(Q; 2n) is a homotopy equivalence, we have

gn(0) � h′p(0)
g′n(0).

By Lemma 3.2 we have ḡni � h′p(0)
ḡ′ni. Therefore we have ḡn � h′p(0)

ḡ′n. Since∏
ḡ′n : K(2n,Q) � X(0), we obtain for each prime p and q,

h′p(0)
�

(∏
ḡn

) (∏
ḡ′n

)−1

� h′q(0)
.

By Lemma 3.1 and Proposition 3.1 we obtain a homotopy equivalence h : X ∼→
BU . Since [S2∧X,BU ]∗ ∼= [S2∧BU,BU ]∗ ∼= K̃−2(BU) is a free abelian group,
we see that hλ � β(1 ∧ h) by (hλ)(0) � (β(1 ∧ h))(0).
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