Homotopy genus of $B U$ and the Bott map

By
Daisuke Kishimoto

1. Introduction

The homotopy genus of a nilpotent finite CW-complex X is defined as follows ([5], [7]):

$$
\left\{[Y] \mid Y \simeq_{p} X \text { for each prime } p\right\}
$$

The homotopy genus of certain spaces are computed, for example, the order of the homotopy genus of a classifying space of a compact connected Lie group is uncountable infinite. But the homotopy genus of $B U=B U(\infty)$ is not known yet. The purpose of this paper is to determine the homotopy genus of the pair of $B U$ and the Bott map of $B U$. The main theorem below says that it is unique.

Theorem. Let X be a pointed of finite type simply connected $C W$ complex equipped with a map $\lambda: S^{2} \wedge X \rightarrow X$ and a homotopy equivalences $h_{p}: X_{(p)} \rightarrow B U_{(p)}$ for each prime p such that they satisfy the following homotopy commutative diagram

where $\beta: S^{2} \wedge B U \rightarrow B U$ is the Bott map. Then we have a homotopy equivalence $h: X \xrightarrow{\sim} B U$ which satisfies the following homotopy commutative diagram.

Received July 30, 2004

2. The Bott map of $B U$

Let us recall the Bott map $\beta: S^{2} \wedge B U \rightarrow B U$. Let η and ξ_{n} be the Hopf bundle of S^{2} and the universal bundle of $B U(n)$. The Bott map

$$
\beta: S^{2} \wedge B U \rightarrow B U
$$

is defined as the classifying map of the virtual complex vector bundle $(\eta-\mathbf{1}) \wedge$ $\lim \left(\xi_{n}-\mathbf{n}\right)$ on $S^{2} \wedge B U$, where $\mathbf{1}$ and \mathbf{n} is of rank 1 and n trivial complex vector bundle. It is well known that the Bott map gives the Bott periodicity of $B U$ which is

$$
\widetilde{\mathrm{ad} \beta}: B U \xrightarrow{\sim} \Omega^{2} B S U,
$$

where $\widetilde{\operatorname{ad} \beta}$ is the lift of $\operatorname{ad} \beta: B U \rightarrow \Omega^{2} B U([2])$. We have the following as a consequence of the Bott periodicity.

Proposition 2.1. Let $g_{1}: S^{2} \rightarrow B U$ represent a generator of $\pi_{2}(B U)$ $\cong \mathbf{Z}$. Then a generator of $\pi_{2 n}(B U) \cong \mathbf{Z}(n>1)$ is represented by:

$$
\begin{aligned}
g_{n}=\beta(1 \wedge \beta) & (1 \wedge 1 \wedge \beta) \cdots \\
& \cdots(1 \wedge \cdots \wedge 1 \wedge \beta)\left(1 \wedge \cdots \wedge 1 \wedge g_{1}\right): S^{2} \wedge \cdots \wedge S^{2}=S^{2 n} \rightarrow B U
\end{aligned}
$$

Corollary 2.1. Let X, λ be as in Theorem, $\imath: S^{2} \rightarrow S_{(0)}^{2}$ be the rationalization and $g_{1}^{\prime}: S^{2} \rightarrow X_{(0)}$ represent a generator of $\pi_{2}\left(X_{(0)}\right) \cong \mathbf{Q}$. Then we have that a generator of $\pi_{2 n}\left(X_{(0)}\right) \cong \mathbf{Q}(n>1)$ is represented by:
$g_{n}^{\prime}=\lambda_{(0)} \circ\left(\imath \wedge \lambda_{(0)}\right) \circ\left(1 \wedge \imath \wedge \lambda_{(0)}\right) \circ \cdots$
$\cdots \circ\left(1 \wedge \cdots \wedge 1 \wedge \imath \wedge \lambda_{(0)}\right) \circ\left(1 \wedge \cdots \wedge 1 \wedge \imath \wedge g_{1}^{\prime}\right): S^{2} \wedge \cdots \wedge S^{2}=S^{2 n} \rightarrow X_{(0)}$.

3. Proof of Theorem

To prove Theorem we need to construct a homotopy equivalence by patching together the homotopy equivalences between localized spaces. The following is the well-known pull-back theorem ([4]).

Lemma 3.1. Let X and Y be finite nilpotent spaces with a homotopy equivalence $h_{p}: X_{(p)} \rightarrow Y_{(p)}$ such that $h_{p_{(0)}} \simeq h_{q_{(0)}}$, for each prime p, q. Then we have a homotopy equivalence $h: X \rightarrow Y$ such that $h_{(p)} \simeq h_{p}$ for each prime p.

Proposition 3.1. Let X be of finite type pointed CW-complex with a homotopy equivalence $h^{n}: X^{n} \rightarrow B U^{n}$ for each n such that $\left.h^{n+1}\right|_{X^{n}} \simeq h^{n}$, where X^{n} and $B U^{n}$ are n-skeleta of X and BU . Then we have a homotopy equivalence $h: X \rightarrow B U$ such that $\left.h\right|_{X^{n}} \simeq h^{n}$ for any n.

Proof. By Milnor's short exact sequence ([6])

$$
0 \rightarrow \lim _{\leftarrow}^{1} \widetilde{K}^{-1}\left(X^{n}\right) \rightarrow \widetilde{K}(X) \rightarrow \lim _{\leftarrow} \widetilde{K}\left(X^{n}\right) \rightarrow 0
$$

we have a map $h: X \rightarrow B U$ such that $\left.h\right|_{X^{n}} \simeq h^{n}$. Since $h_{*}=\lim _{\leftarrow} h_{*}^{n}: \pi_{*}(X) \rightarrow$ $\pi_{*}(B U)$ is an isomorphism, h is a homotopy equivalence by J.H.C. Whitehead theorem.

It is easily seen that

$$
H^{*}\left(B U_{(p)} ; \mathbf{Q}\right) \cong H^{*}(B U ; \mathbf{Q}) \cong \mathbf{Q}\left[c_{1}, c_{2}, c_{3}, \ldots\right]
$$

where c_{n} is the n-th Chern class.
Lemma 3.2. Let $g_{n}: S^{2 n} \rightarrow B U, g_{n}^{\prime}: S^{2 n} \rightarrow X$ be as in Proposition 2.1 and Corollary 2.1. Then we have $\bar{g}_{n}: K(2 n, \mathbf{Q}) \rightarrow B U_{(0)}, \bar{g}^{\prime}{ }_{n}: K(2 n, \mathbf{Q}) \rightarrow$ $X_{(0)}$ such that $\bar{g}_{n} i \simeq g_{n(0)}$ and $\bar{g}^{\prime}{ }_{n} i \simeq g_{n(0)}^{\prime}$, where $i: S_{(0)}^{2 n} \rightarrow K(2 n, \mathbf{Q})$ is the rationalization of a generator of $\pi_{2 n}(K(2 n, \mathbf{Z})) \cong \mathbf{Z}$.

Proof. It is well know that

$$
\pi_{k}\left(S_{(0)}^{2 n}\right) \cong \begin{cases}\mathbf{Q}, & k=2 n, 4 n-1 \\ 0, & \text { otherwise }\end{cases}
$$

We construct a space K_{1} which is the rationalization of the adjunction space $S_{(0)}^{2 n} \cup e^{4 n}$, where the attaching map is a generator of $\pi_{4 n-1}\left(S_{(0)}^{2 n}\right)$. Then we have the following by [3, Proposition 13.12].

$$
\pi_{k}\left(K_{1}\right) \cong \begin{cases}\mathbf{Q}, & k=2 n, 6 n-1 \\ 0, & \text { otherwise }\end{cases}
$$

Since $\pi_{4 n-1}\left(B U_{(0)}\right)=\pi_{4 n-1}\left(X_{(0)}\right)=0$, we see that $g_{n(0)}, g_{n(0)}^{\prime}$ can be extended to maps $g_{n}^{1}: K_{1} \rightarrow B U_{(0)}, g_{n}^{1^{\prime}}: K_{1} \rightarrow X_{(0)}$ such that $g_{n}^{1} i \simeq g_{n(0)}, g_{n}^{1^{\prime}} i \simeq g_{n(0)}^{\prime}$. Inductively we construct a space K_{r} such that

$$
\pi_{k}\left(K_{r}\right) \cong \begin{cases}\mathbf{Q}, & k=2 n, 2(r+2) n-1 \\ 0, & \text { otherwise }\end{cases}
$$

and the maps $g_{n}^{r}: K_{r} \rightarrow B U_{(0)}, g_{n}^{r \prime}: K_{r} \rightarrow X_{(0)}$ such that $g_{n}^{r} i \simeq g_{n(0)}$, $g_{n}^{r \prime} i \simeq g_{n(0)}^{\prime}$ by the same way as the above. Let $\overline{g_{n}}=\lim _{\rightarrow} g_{n}^{r}, \overline{g_{n}}{ }^{\prime}=\lim _{\rightarrow} g_{n}^{r \prime}$. Since $\lim _{\rightarrow} K_{r}=K(\mathbf{Q}, 2 n)$ and $\left(g_{n}^{r} i\right)^{*}=g_{n}{ }_{(0)}^{*}: H^{2 n}\left(B U_{(0)} ; \overrightarrow{\mathbf{Q}}\right) \rightarrow H^{*}(\overrightarrow{K(\mathbf{Q}, 2 n)} ; \mathbf{Q})$, $\overrightarrow{\left(g_{n}^{r \prime} i\right)^{*}}=g_{n(0)}^{\prime *}: H^{2 n}\left(X_{(0)} ; \mathbf{Q}\right) \rightarrow H^{*}(K(\mathbf{Q}, 2 n) ; \mathbf{Q})$, the proof is completed.

Proof of Theorem. Since $h_{p}: X_{(p)} \rightarrow B U_{(p)}$ is a homotopy equivalence, we have

$$
g_{1(p)}^{\prime}{ }^{*} h_{p}{ }^{*}\left(c_{1}\right)=k_{p} g_{1(p)}{ }^{*}\left(c_{1}\right) \text { for } k_{p} \in \mathbf{Z}_{(p)}^{\times} .
$$

It is well known that

$$
\beta_{(0)}{ }^{*}\left(s_{k}\right)=k e \otimes s_{k-1},
$$

where s_{k} is the k-th power sum in $\left\{c_{n}\right\}$ and $e=g_{1(0)}{ }^{*}\left(c_{1}\right)$. Then we see that

$$
g_{n(0)}{ }^{*}\left(s_{n}\right)=\left(k_{p}\right)^{n} g_{n(0)}^{\prime}{ }^{*} h_{p(0)}{ }^{*}\left(s_{n}\right) \in H^{2 n}\left(S_{(0)}^{2 n} ; \mathbf{Q}\right) .
$$

It is well known that there exists the inverse of the localized Adams operator $\psi_{(p)}^{m}: \widetilde{K}(\cdot)_{(p)} \rightarrow \widetilde{K}(\cdot)_{(p)}$, when $p \nmid m$. Denote $k_{p}= \pm a / b$ such that $a>0$, $b>0$ and $p \nmid a$. Let $h_{p}^{\prime}: X_{(p)} \rightarrow B U_{(p)}$ be $\left(\psi_{(p)}^{a}\right)^{-1} \psi_{(p)}^{b} \psi_{(p)}^{\operatorname{sgn} k_{p}}\left(h_{p}\right)$, then we have h_{p}^{\prime} is a homotopy equivalence and $h_{p_{(0)}}^{\prime}{ }^{*}\left(s_{n}\right)=\left(k_{p}\right)^{n} h_{p_{(0)}}{ }^{*}\left(s_{n}\right)$ ([1]). Then we have

$$
g_{n(0)}{ }^{*}\left(s_{n}\right)=g_{n(0)}^{\prime}{ }^{*} h_{p(0)}^{\prime}{ }^{*}\left(s_{n}\right) \in H^{2 n}\left(S_{(0)}^{2 n} ; \mathbf{Q}\right) .
$$

Since $\prod s_{n}: B U_{(0)} \rightarrow \Pi K(\mathbf{Q} ; 2 n)$ is a homotopy equivalence, we have

$$
g_{n(0)} \simeq h_{p(0)}^{\prime} g_{n(0)}^{\prime} .
$$

By Lemma 3.2 we have $\overline{g_{n}} i \simeq h_{p_{(0)}}^{\prime} \overline{g_{n}^{\prime}} i$. Therefore we have $\overline{g_{n}} \simeq h_{p_{(0)}^{\prime}}^{\prime} \overline{g_{n}^{\prime}}$. Since $\prod \overline{g_{n}^{\prime}}: K(2 n, \mathbf{Q}) \simeq X_{(0)}$, we obtain for each prime p and q,

$$
h_{p_{(0)}}^{\prime} \simeq\left(\prod \overline{g_{n}}\right)\left(\prod \overline{g_{n}^{\prime}}\right)^{-1} \simeq h_{q_{(0)}^{\prime}}^{\prime}
$$

By Lemma 3.1 and Proposition 3.1 we obtain a homotopy equivalence $h: X \xrightarrow{\sim}$ $B U$. Since $\left[S^{2} \wedge X, B U\right]_{*} \cong\left[S^{2} \wedge B U, B U\right]_{*} \cong \widetilde{K}^{-2}(B U)$ is a free abelian group, we see that $h \lambda \simeq \beta(1 \wedge h)$ by $(h \lambda)_{(0)} \simeq(\beta(1 \wedge h))_{(0)}$.

> Department of Mathematics
> Kyoto University
> Kyoto 606-8502, Japan
> e-mail: kishi@math.kyoto-u.ac.jp

References

[1] J. F. Adams, Vector fields on spheres, Ann. of Math. 75 (1962), 603-632.
[2] M. F. Atiyah, K-theory, Benjamin, 1967.
[3] Y. Félix, S. Halperin and J.-C. Thomas, Rational Homotopy Theory, Graduate Texts in Mathematics 205, 2001.
[4] P. Hilton, G. Mislin and J. Roitberg, Localization of Nilpotent Groups and Spaces, North-Holland Mathematics Studies 15, 1975.
[5] C. McGibbon, The Mislin genus of a space, CRM Proc. Lecture Notes 6 (1994), 75-102.
[6] J. W. Milnor, On axiomatic homology theory, Pacific J. Math. 12 (1962), 337-341.
[7] A. Zabrodsky, Hopf spaces, North-Holland Mathematics Studies 22, 1976.

