On invariants of curves in centro-affine geometry

By

Ömer Pekşen and Djavvat Khadjiev

Abstract

Let GL(n, R) be the general linear group of $n \times n$ real matrices. Definitions of GL(n, R)-equivalence and the centro-affine type of curves are introduced. All possible centro-affine types are founded. For every centro affine type all invariant parametrizations of a curve are described. The problem of GL(n, R)-equivalence of curves is reduced to that of paths. A generating system of the differential field of invariant differential rational functions of a path is described. They can be viewed as centro-affine curvatures of a path. Global conditions of GL(n, R)equivalence of curves are given in terms of the centro-affine type and the generating differential invariants. Independence of elements of the generating differential invariants is proved.

1. Introduction

The fundamental theorem of curves in *n*-dimensional centro-affine geometry is obtained by Gardner and Wilkens [5]. In the paper they used Cartan's method [4] of moving frames in order to find the formulation of the local rigidity theorem for curves that is amenable to direct application to problems in control theory. They provide a method for constructing the centro-affine curvatures $\kappa_1(s), \ldots, \kappa_n(s)$. They have obtained explicit formulae for computing a centroaffine arclength in terms of an arbitrary parameter and the first curvature $\kappa_1(s)$. In this paper there are no explicit formulae for centro-affine curvatures $\kappa_2(s), \ldots, \kappa_n(s)$, but their orders are defined. A discussion of centro-affine plane curves, as well as a very brief discussion of centro-affine space curves, can be found in ([15], [13], [17]). A very detailed discussion of the centro-affine theory of plane curves can be found in Laugwitz [11]. The first comprehensive treatment of affine geometry is given in the seminal work of Blaschke [3]. For further developments of the subject, we refer the reader to [14], and the more modern texts [20], [12], commentaries [16], [17], and survey papers [19], [2],

¹⁹⁹¹ Mathematics Subject Classification(s). 53A15, 53A55

This work was supported by the Research Fund of Karadeniz Technical University. Project number: 20.111.003.4

Received February 25, 2004

[18]. Equi-affine invariants of 3-dimensional space curves are investigated by Izumiya and Sano [7]. For curvatures of curves in *n*-dimensional equi-affine geometry see ([6, pp. 170–172], [13]). But in all these works, equivalence of curves is investigated locally. The global SL(n)-equivalence of paths in \mathbb{R}^n and \mathbb{C}^n is considered by Khadjiev [8] and Suhtaeva [21]. Complete systems of global equi-affine invariants for plane and space paths are obtained by Angelis, Moons, Van Gool and Verstraelen [1]. The complete system of global differential and integral invariants for curves in *n*-dimensional equi-affine geometry is obtained by Khadjiev and Pekşen [9].

Our paper is concerned with the problem of the global equivalence of centro-affine curves. We introduce a centro-affine type of a curve. The centro-affine type of a curve coincides with the centro-affine arclength if it is finite. But curves with infinite centro-affine arclength have three different centro-affine types. We describe all possible invariant parametrizations of a curve for every centro-affine invariant differential rational functions of a path. We can consider elements of the generating system as curvatures of a path. Our curvatures coincide with $c_1(s), \ldots, c_n(s)$ functions of Gardner and Wilkens ([5, p. 398]). We give the explicit formulae of curvatures in terms of the centro-affine invariant parameter, the conditions of the global centro-affine equivalence of curves in terms of the centro-affine type and curvatures of a curve. We prove an independence of curvatures.

2. The centro-affine type of a curve and the theorem on reduction

Let R be the field of real numbers and I = (a, b) be an open interval of R.

Definition 2.1. A C^{∞} -map $x : I \to \mathbb{R}^n$ will be called an *I*-path (shortly, a path) in \mathbb{R}^n .

Definition 2.2. An I_1 -path x(t) and an I_2 -path y(r) in \mathbb{R}^n will be called *D*-equivalent if there exists a C^{∞} -diffeomorphism $\varphi: I_2 \to I_1$ such that $\varphi'(r) > 0$ and $y(r) = x(\varphi(r))$ for all $r \in I_2$. A class of *D*-equivalent paths in \mathbb{R}^n will be called a curve in \mathbb{R}^n , ([10, p. 9]). A path $x \in \alpha$ will be called a parametrization of a curve α .

Remark 1. There exist different definitions of a curve ([6, p. 2], [8]).

Let G = GL(n, R) be the general linear group of $n \times n$ regular matrices. G acts by $(g, x) \to gx$ on \mathbb{R}^n , where gx is the multiplication of a matrix g and a column vector $x \in \mathbb{R}^n$.

If x(t) is an *I*-path in \mathbb{R}^n then gx(t) is an *I*-path in \mathbb{R}^n for any $g \in G$.

Definition 2.3. Two *I*-paths x and y in \mathbb{R}^n will be called *G*-equivalent and written $x \stackrel{G}{\sim} y$ if there exists $g \in G$ such that y(t) = gx(t).

Let α be a curve in \mathbb{R}^n , that is, $\alpha = \{h_{\tau}, \tau \in Q\}$, where h_{τ} is a parametrization of α . Then $g\alpha = \{gh_{\tau}, \tau \in Q\}$ is a curve in \mathbb{R}^n for any $g \in G$.

Definition 2.4. Two curves α and β in \mathbb{R}^n will be called *G*-equivalent (or *G*-congruent) and written $\alpha \stackrel{G}{\sim} \beta$ if $\beta = g\alpha$ for some $g \in G$.

Remark 2. Our definition is essentially different from the definition ([6, p. 21]) of a congruence of curves for the group of euclidean motions. By the definition ([6, p. 21]), two curves with different lengths may be congruent.

Let x be an *I*-path in \mathbb{R}^n and x'(t) be the derivative of x(t). Put $x^{(0)} = x, x^{(n)} = (x^{(n-1)})'$. For $a_k \in \mathbb{R}^n, k = 1, \ldots, n$, the determinant det (a_{ij}) (where a_{ki} are coordinates of a_k) will be denoted by $[a_1a_2\ldots a_n]$. So $[x(t)x'(t)\ldots x^{(n-1)}(t)]$ is the determinant of the vectors $x(t), x'(t), \ldots, x^{(n-1)}(t)$.

Definition 2.5. An *I*-path x(t) in \mathbb{R}^n will be called substantial if both

$$\left[x(t)x'(t)\dots x^{(n-1)}(t)\right] \neq 0 \text{ and } \left[x^{(n)}(t)x'(t)\dots x^{(n-1)}(t)\right] \neq 0$$

for all $t \in I$. A curve will be called substantial if it contains a substantial path [5].

For $I = (a, b), q, p \in I$ and a substantional *I*-path x(t) put

$$l_x(q,p) = \int_q^p \left| \frac{\left[x^{(n)}(t) x'(t) \dots x^{(n-1)}(t) \right]}{\left[x(t) x'(t) \dots x^{(n-1)}(t) \right]} \right|^{\frac{1}{n}} dt$$

and $l_x(a,p) = \lim_{q \to a} l_x(q,p), \ l_x(q,b) = \lim_{p \to b} l_x(q,p)$. There are only four possible cases:

(i)
$$l_x(a, p) < +\infty, \ l_x(q, b) < +\infty;$$
 (ii) $l_x(a, p) < +\infty, \ l_x(q, b) = +\infty;$

(*iii*) $l_x(a, p) = +\infty$, $l_x(q, b) < +\infty$; (*iv*) $l_x(a, p) = +\infty$, $l_x(q, b) = +\infty$.

Suppose that the case (i) or (ii) holds for some $q, p \in I$. Then the number $l = l_x(a, p) + l_x(q, b) - l_x(q, p)$, where $0 \le l \le +\infty$, does not depend on q, p. In this case, we say that x belongs to the centro-affine type of (0, l). The cases (iii) and (iv) do not depend on q, p. In these cases, we say that x belongs to the centro-affine types of $(-\infty, 0)$ and $(-\infty, +\infty)$, respectively. There exist paths of all types (0, l) (where $0 \le l \le +\infty$), $(-\infty, 0)$ and $(-\infty, +\infty)$. The centro-affine type of a path x will be denoted by L(x).

Proposition 2.1.

(i) If $x \stackrel{G}{\sim} y$ then L(x) = L(y); (ii) Let α be a curve and $x, y \in \alpha$. Then L(x) = L(y).

Proof. It is obvious.

The centro-affine type of a path $x \in \alpha$ will be called the centro-affine type of the curve α and denoted by $L(\alpha)$. According to Proposition 2.1, $L(\alpha)$ is a *G*-invariant of a curve α .

Now we define an invariant parametrization of a substantial curve in \mathbb{R}^n . Let I = (a, b) and x(t) be a substantial *I*-path in \mathbb{R}^n . We define the centroaffine arc length function $s_x(t)$ for each centro-affine type as follows. We put $s_x(t) = l_x(a,t)$ for the case L(x) = (0,l), where $0 < l \leq +\infty$, and $s_x(t) =$ $l_x(t,b)$ for the case $L(x) = (-\infty, 0)$. Let $L(x) = (-\infty, +\infty)$. We choose a fixed point in every interval I = (a,b) of \mathbb{R} and denote it by a_I . Let $a_I = 0$ for $I = (-\infty, +\infty)$. We set $s_x(t) = l_x(a_I, t)$.

Since $s'_x(t) > 0$ for all $t \in I$, the inverse function of $s_x(t)$ exists. Let us denote it by $t_x(s)$. The domain of $t_x(s)$ is L(x) and $t'_x(s) > 0$ for all $s \in L(x)$.

Proposition 2.2. Let I = (a, b) and x be a substantial I-path in \mathbb{R}^n . Then

(i) $s_{qx}(t) = s_x(t)$ and $t_{qx}(s) = t_x(s)$ for all $g \in G$;

(ii) the equalities $s_{x(\varphi)}(r) = s_x(\varphi(r)) + s_0$ and $\varphi(t_{x(\varphi)}(s+s_0)) = t_x(s)$ hold for any C^{∞} -diffeomorphism $\varphi : J = (c,d) \to I$ such that $\varphi'(r) > 0$ for all $r \in J$, where $s_0 = 0$ for $L(x) \neq (-\infty, +\infty)$ and $s_0 = l_x(\varphi(a_J), a_I)$ for $L(x) = (-\infty, +\infty)$.

Proof. (i). Let L(x) = (0, l), where $0 < l \le +\infty$. Then we have

$$s_{gx}(t) = \lim_{t_0 \to a^+} \int_{t_0}^t \left| \frac{\left[(gx)^{(n)}(t)(gx)'(t) \dots (gx)^{(n-1)}(t) \right]}{\left[(gx)(t)(gx)'(t) \dots (gx)^{(n-1)}(t) \right]} \right|^{\frac{1}{n}} dt$$
$$= \lim_{t_0 \to a^+} \int_{t_0}^t \left| \frac{\left[x^{(n)}(t)x'(t) \dots x^{(n-1)}(t) \right]}{\left[x(t)x'(t) \dots x^{(n-1)}(t) \right]} \right|^{\frac{1}{n}} dt$$
$$= s_x(t).$$

For the second part, we obtain $s_{gx}(t_{gx}(s)) = s$, $t_{gx}(s_{gx}(t)) = t$, $s_{gx}(t_{gx}(s)) = s_x(t_{gx}(s)) = s$, $t_{gx}(s_{gx}(t)) = t_{gx}(s_x(t)) = t$. Therefore $t_{gx}(s) = t_x(s)$. Proofs of (i) for centro-affine types $(-\infty, 0)$ and $(-\infty, +\infty)$ are similar.

For (*ii*) let $L(x) = (-\infty, +\infty)$. Then we have

$$s_{x(\varphi)}(r) = \int_{a_J}^{r} \left| \frac{\left[\frac{d^n}{dr^n} x(\varphi(r)) \frac{d}{dr} (x(\varphi(r))) \dots \frac{d^{n-1}}{dr^{n-1}} (x(\varphi(r))) \right]}{\left[x(\varphi(r)) \frac{d}{dr} (x(\varphi(r))) \dots \frac{d^{n-1}}{dr^{n-1}} (x(\varphi(r))) \right]} \right|^{\frac{1}{n}} dr$$
$$= \int_{a_J}^{r} \frac{d\varphi}{dr} \left| \frac{\left[\frac{d^n}{d\varphi^n} x(\varphi(r)) \frac{d}{d\varphi} (x(\varphi(r))) \dots \frac{d^{n-1}}{d\varphi^{n-1}} (x(\varphi(r))) \right]}{\left[x(\varphi(r)) \frac{d}{d\varphi} (x(\varphi(r))) \dots \frac{d^{n-1}}{d\varphi^{n-1}} (x(\varphi(r))) \right]} \right|^{\frac{1}{n}} dr$$
$$= l_x \left(\varphi \left(a_J \right), \varphi(r) \right) = l_x \left(a_I, \varphi(r) \right) + l_x \left(\varphi \left(a_J \right), a_I \right).$$

So $s_{x(\varphi)}(r) = s_x(\varphi(r)) + s_0$, where $s_0 = l_x(\varphi(a_J), a_I)$. This implies that $\varphi(t_{x(\varphi)}(s+s_0)) = t_x(s)$. For $L(x) \neq (-\infty, +\infty)$, it is easy to see that $s_0 = 0$.

Let α be a substantial curve and $x \in \alpha$. Then $x(t_x(s))$ is a parametrization of α .

Definition 2.6. The parametrization $x(t_x(s))$ of a substantial curve α will be called an invariant parametrization of α .

We denote the set of all invariant parametrizations of α by ϕ_{α} . Every $y \in \phi_{\alpha}$ is an *I*-path, where $I = L(\alpha)$.

Proposition 2.3. Let α be a substantial curve, $x \in \alpha$ and x be an *I*-path, where $I = L(\alpha)$. Then the following conditions are equivalent:

- (i) x is an invariant parametrization of α ;
- $\begin{array}{c} (ii) \left| \frac{\left[x^{(n)}(s)x'(t)...x^{(n-1)}(s) \right]}{\left[x(s)x'(s)...x^{(n-1)}(s) \right]} \right| = 1 \text{ for all } s \in L(\alpha); \\ (iii) s_x(s) = s \text{ for all } s \in L(\alpha). \end{array}$

Proof. (i) \Rightarrow (ii). Let $x \in \phi_{\alpha}$. Then there exists $y \in \alpha$ such that $x(s) = y(t_y(s))$. By Proposition 2.2, $s_x(s) = s_{y(t_y)}(s) = s_y(t_y(s)) + s_0 =$ $s + s_0$, where s_0 is as in Proposition 2.2. Since s_0 does not depend on s_0 , $\frac{ds_x(s)}{ds} = \left| \frac{\left[x^{(n)}(s)x'(t)...x^{(n-1)}(s) \right]}{\left[x(s)x'(s)...x^{(n-1)}(s) \right]} \right|^{\frac{1}{n}} = 1. \text{ Hence } \left| \frac{\left[x^{(n)}(s)x'(t)...x^{(n-1)}(s) \right]}{\left[x(s)x'(s)...x^{(n-1)}(s) \right]} \right| = 1 \text{ for all}$ $s \in L(\alpha)$

$$(ii) \Rightarrow (iii).$$
 Let $\left| \frac{[x^{(n)}(s)x'(t)...x^{(n-1)}(s)]}{[x(s)x'(s)...x^{(n-1)}(s)]} \right| = 1$ for all $s \in L(\alpha)$. By the

definition of $s_x(t)$, we have $\frac{ds_x(s)}{ds} = \left| \frac{\left[x^{(n)}(s)x'(t)...x^{(n-1)}(s) \right]}{\left[x(s)x'(s)...x^{(n-1)}(s) \right]} \right|^{\overline{n}} = 1$. Therefore $s_x(s) = s + c$ for some $c \in R$. In the case $L(x) \neq (-\infty, +\infty), s_x(s) = s + c$ and $s_x(s) \in L(\alpha)$ for all $s \in L(\alpha)$ implies c = 0, that is, $s_x(s) = s$. In the case $L(x) = (-\infty, +\infty), s_x(s) = l_x(a_I, s) = l_x(0, s) = s + c$ implies $0 = l_x(0, 0) = c$, that is, $s_x(s) = s$.

 $(iii) \Rightarrow (i)$. The equality $s_x(s) = s$ implies $t_x(s) = s$. Therefore x(s) = s. $x(t_x(s)) \in \phi_\alpha.$

Proposition 2.4. Let α be a substantial curve and $L(\alpha) \neq (-\infty, +\infty)$. Then there exists the unique invariant parametrization of α .

Proof. Let $x, y \in \alpha$, x be an I_1 -path and y be an I_2 -path. Then there exists a C^{∞} -diffeomorphism $\varphi: I_2 \to I_1$ such that $\varphi'(r) > 0$ and $y(r) = x(\varphi(r))$ for all $r \in I_2$. By Proposition 2.2 and $L(\alpha) \neq (-\infty, +\infty)$, we obtain $y(t_y(s)) =$ $x(\varphi(t_y(s)) = x(\varphi(t_{x(\varphi)}(s))) = x(t_x(s)).$

Let α be a substantial curve and $L(\alpha) = (-\infty, +\infty)$. Then it is easy to see that the set ϕ_{α} is not countable.

Proposition 2.5. Let α be a substantial curve, $L(\alpha) = (-\infty, +\infty)$ and $x \in \phi_{\alpha}$. Then $\phi_{\alpha} = \{y : y(s) = x(s+s'), s' \in (-\infty, +\infty)\}.$

Proof. Let $x, y \in \phi_{\alpha}$. Then there exist $h, k \in \alpha$ such that $x(s) = h(t_h(s))$, $y(s) = k(t_k(s))$, where h is an I_1 -path and k is an I_2 -path. Since $h, k \in \alpha$ there exists $\varphi : I_2 \to I_1$ such that $\varphi'(r) > 0$ and $k(r) = h(\varphi(r))$ for all $r \in I_2$. By Proposition 2.2, $y(s) = k(t_k(s)) = h(\varphi(t_k(s)) = h(\varphi(t_{h(\varphi)}(s))) = h(t_h(s-s_0)) = x (s-s_0)$.

Let $x \in \phi_{\alpha}$ and $s' \in (-\infty, +\infty)$. We prove $x(\psi) \in \phi_{\alpha}$, where $\psi(s) = s + s'$. By Proposition 2.3, $\left| \frac{[x^{(n)}(s)x'(t)...x^{(n-1)}(s)]}{[x(s)x'(s)...x^{(n-1)}(s)]} \right| = 1$ and $s_x(s) = s$. Put $z(s) = x(\psi(s))$. Since ψ is a C^{∞} -diffeomorphism of $(-\infty, +\infty)$ onto $(-\infty, +\infty)$, then $z = x(\psi) \in \alpha$. Using Proposition 2.2 and $s_x(s) = s$, we get $s_z(s) = s_{x(\psi)}(s) = s_x(\psi(s)) + s_1 = (s + s') + s_1$, where

$$s_1 = \int_{\psi(0)}^0 \left| \frac{\left[x^{(n)}(s) x'(t) \dots x^{(n-1)}(s) \right]}{\left[x(s) x'(s) \dots x^{(n-1)}(s) \right]} \right|^{\frac{1}{n}} ds.$$

This, in view of $\left| \frac{x^{(n)}(s)x'(t)...x^{(n-1)}(s)}{x(s)x'(s)...x^{(n-1)}(s)} \right| = 1$, implies $s_1 = -\psi(0) = -s'$. Then $s_z(s) = (s+s') - s' = s$. By Proposition 2.3, $z \in \phi_{\alpha}$.

Theorem 2.1. Let α , β be substantial curves and $x \in \phi_{\alpha}$, $y \in \phi_{\beta}$. Then,

(i) for $L(\alpha) = L(\beta) \neq (-\infty, +\infty)$, $\alpha \stackrel{G}{\sim} \beta$ if and only if $x(s) \stackrel{G}{\sim} y(s)$;

(ii) for $L(\alpha) = L(\beta) = (-\infty, +\infty)$, $\alpha \stackrel{G}{\sim} \beta$ if and only if $x(s) \stackrel{G}{\sim} y(s+s')$ for some $s' \in (-\infty, +\infty)$.

Proof. (i) Let $\alpha \stackrel{G}{\sim} \beta$ and $h \in \alpha$. Then there exists $g \in G$ such that $\beta = g\alpha$. This implies $gh \in \beta$. Using Propositions 2.2 and 2.4, we get $x(s) = h(t_h(s)), y(s) = (gh)(t_{gh}(s))$ and $gx(s) = g(h(t_h(s))) = (gh)(t_h(s)) = (gh)(t_gh(s)) = y(s)$. Thus $x \stackrel{G}{\sim} y$. Conversely, let $x \stackrel{G}{\sim} y$, that is, there exists $g \in G$ such that gx = y. Then $\alpha \stackrel{G}{\sim} \beta$.

(*ii*) Let $\alpha \stackrel{G}{\sim} \beta$. Then there exist *I*-paths $h \in \alpha, k \in \beta$ and $g \in G$ such that k(t) = gh(t). We have $k(t_k(s)) = k(t_{gh}(s)) = k(t_h(s)) = (gh)(t_h(s))$. By Proposition 2.5, $x(s) = k(t_k(s+s_1)), y(s) = h(t_h(s+s_2))$ for some $s_1, s_2 \in (-\infty, +\infty)$. Therefore $x(s-s_1) = gy(s-s_2)$. This implies that $x(s) \stackrel{G}{\sim} y(s+s')$, where $s' = s_1 - s_2$. Conversely, let $x(s) \stackrel{G}{\sim} y(s+s')$ for some $s' \in (-\infty, +\infty)$. Then there exists $g \in G$ such that y(s+s') = gx(s). Since $y(s+s') \in \beta$, then $\alpha \stackrel{G}{\sim} \beta$.

Definition 2.7. Two *I*-paths x and y in \mathbb{R}^n , where $I = \mathbb{R}$, will be called (G, \mathbb{R}) -equivalent if there exists $g \in G$ and $s' \in \mathbb{R} = (-\infty, +\infty)$ such that y(s) = gx(s+s') for all $s \in (-\infty, +\infty)$.

Theorem 2.1 reduces the problem of the G-equivalence of substantial curves to that of paths for the case $L(\alpha) = L(\beta) \neq (-\infty, +\infty)$. But for the case

 $L(\alpha) = L(\beta) = (-\infty, +\infty)$, Theorem 2.1 reduces the problem of *G*-equivalence of substantional curves to the (G, R)-equivalence of paths.

3. The generating system of the differential field of invariant differential rational functions of a path and the problem of equivalence of curves

Let x(t) be an *I*-path in \mathbb{R}^n .

Definition 3.1. A polynomial $p(x, x', \ldots, x^{(k)})$ of x and a finite number of derivatives $x', \ldots, x^{(k)}$ of x with coefficients from R will be called a differential polynomial of x. It will be denoted by $p\{x\}$ [9].

We denote the set of all differential polynomials of x by $R\{x\}$. It is a differential R-algebra. It is also an integral domain. Therefore there exists a quotient field $R\langle x\rangle$ of $R\{x\}$ and every element of $R\langle x\rangle$ is of the form $f\langle x\rangle = \frac{p\{x\}}{q\{x\}}$, where $p\{x\}$ and $q\{x\} \neq 0$ are differential polynomials of x. Any element of $R\langle x\rangle$ will be called a differential rational function of x. The derivative operator of $R\{x\}$ can be extended uniquely to $R\langle x\rangle$ as $f'\langle x\rangle = \left(\frac{p\{x\}}{q\{x\}}\right)' = \frac{p'\{x\}q\{x\}-p\{x\}q'\{x\}}{(q\{x\})'}$. Let G be a subgroup of GL(n, R).

Definition 3.2. A differential rational function $f\langle x \rangle$ will be called *G*-invariant if $f\langle gx \rangle = f\langle x \rangle$ for all $g \in G$.

The set of all *G*-invariant differential rational functions of *x* will be denoted by $R\langle x \rangle^G$. It is a differential subfield of $R\langle x \rangle$.

Definition 3.3. A subset S of $R\langle x \rangle^G$ will be called a generating system of $R\langle x \rangle^G$ if the smallest differential subfield containing S is $R\langle x \rangle^G$.

Theorem 3.1. The system

$$\frac{\left[x^{(n)}x'\dots x^{(n-1)}\right]}{\left[xx'\dots x^{(n-1)}\right]}, \frac{\left[xx'\dots x^{(i-1)}x^{(n)}x^{(i+1)}\dots x^{(n-1)}\right]}{\left[xx'\dots x^{(n-1)}\right]}, i = 1,\dots, n-1,$$

is a generating system of $R\langle x \rangle^G$.

Proof. For the proof, see ([8, p. 79])

Theorem 3.2. Let α, β be substantial curves in \mathbb{R}^n and $x \in \phi_{\alpha}, y \in \phi_{\beta}$. Then,

(i) for
$$L(\alpha) = L(\beta) \neq (-\infty, +\infty), \ \alpha \overset{G}{\sim} \beta$$
 if and only if

$$sgn \frac{[x^{(n)}(s)x'(s) \dots x^{(n-1)}(s)]}{[x(s)x'(s) \dots x^{(n-1)}(s)]} = sgn \frac{[1y^{(n)}(s)y'(s) \dots y^{(n-1)}(s)]}{[y(s)y'(s) \dots y^{(n-1)}(s)]},$$
(3.1)
$$\frac{[x(s)x'(s) \dots x^{(i-1)}(s)x^{(n)}(s)x^{(i+1)}(s) \dots x^{(n-1)}(s)]}{[x(s)x'(s) \dots x^{(n-1)}(s)]} = \frac{[y(s)y'(s) \dots y^{(i-1)}(s)y^{(n)}(s)y^{(i+1)}(s) \dots y^{(n-1)}(s)]}{[y(s)y'(s) \dots y^{(n-1)}(s)]}$$

for all $s \in L(\alpha) = L(\beta)$ and $i = 1, \ldots, n-1$.

(ii) for $L(\alpha) = L(\beta) = (-\infty, +\infty)$, $\alpha \stackrel{G}{\sim} \beta$ if and only if there exists $b \in (-\infty, +\infty)$ such that

$$\begin{split} sgn \frac{\left[x^{(n)}(s)x'(s) \dots x^{(n-1)}(s)\right]}{\left[x(s)x'(s) \dots x^{(n-1)}(s)\right]} &= sgn \frac{\left[y^{(n)}(s+b)y'(s+b) \dots y^{(n-1)}(s+b)\right]}{\left[y(s+b)y'(s+b) \dots y^{(n-1)}(s+b)\right]},\\ \frac{\left[x(s)x'(s) \dots x^{(i-1)}(s)x^{(n)}(s)x^{(i+1)}(s) \dots x^{(n-1)}(s)\right]}{\left[x(s)x'(s) \dots x^{(n-1)}(s)\right]}\\ &= \frac{\left[y(s+b)y'(s+b) \dots y^{(i-1)}(s+b)y^{(n)}(s+b)y^{(i+1)}(s+b) \dots y^{(n-1)}(s+b)\right]}{\left[y(s+b)y'(s+b) \dots y^{(n-1)}(s+b)\right]} \end{split}$$

for all $s \in (-\infty, +\infty)$ and $i = 1, \ldots, n-1$.

 $\begin{array}{l} Proof. \quad (i) \mbox{ Let } \alpha \overset{G}{\sim} \beta. \mbox{ By claim } (i) \mbox{ of Theorem 2.1, } x \overset{G}{\sim} y. \mbox{ By Proposition} \\ 2.3, \end{tabular} \left| \frac{[x^{(n)}x' \dots x^{(n-1)}]}{[xx' \dots x^{(n-1)}]} \right| = \left| \frac{[y^{(n)}y' \dots y^{(n-1)}]}{[yy' \dots y^{(n-1)}]} \right| = 1. \mbox{ This, in view of } x \overset{G}{\sim} y, \mbox{ yields the} \\ \mbox{formulae (3.1). Now suppose that (3.1) holds. By Proposition 2.3, we have} \\ \left| \frac{[x^{(n)}x' \dots x^{(n-1)}]}{[xx' \dots x^{(n-1)}]} \right| = \left| \frac{[y^{(n)}y' \dots y^{(n-1)}]}{[yy' \dots y^{(n-1)}]} \right| = 1. \mbox{ Using (3.1), we obtain} \\ \\ \frac{[x^{(n)}(s)x'(s) \dots x^{(n-1)}(s)]}{[x(s)x'(s) \dots x^{(n-1)}(s)]} = \frac{[y^{(n)}(s)y'(s) \dots y^{(n-1)}(s)]}{[y(s)y'(s) \dots y^{(n-1)}(s)]}, \\ \\ \frac{[x(s)x'(s) \dots x^{(i-1)}(s)x^{(n)}(s)x^{(i+1)}(s) \dots x^{(n-1)}(s)]}{[x(s)x'(s) \dots x^{(n-1)}(s)]} \\ = \frac{[y(s)y'(s) \dots y^{(i-1)}(s)y^{(n)}(s)y^{(i+1)}(s) \dots y^{(n-1)}(s)]}{[y(s)y'(s) \dots y^{(n-1)}(s)]}. \end{array}$

Let us consider the matrix

$$A_x(t) = \left\| x(t)x'(t)\dots x^{(n-1)}(t) \right\|.$$

By the substantiality of $x \det A_x(t) = [x(t)x'(t) \dots x^{(n-1)}(t)] \neq 0$ for all t in I. Therefore there exists the matrix $A_x^{-1}(t)$. We consider the matrices

$$A'_{x}(t) = \left\| x'(t)x^{(2)}(t)\dots x^{(n)}(t) \right\|$$
 and $A^{-1}_{x}(t)A'_{x}(t) = \|c_{ij}(t)\|$

It is easily obtained that

$$1. c_{j+1j}(t) = 1 \text{ for all } t \text{ in } I, j: 1 \le j \le n-1;$$

$$2. c_{ij}(t) = 0 \text{ for all } t \text{ in } I, j \ne n, i \ne j+1, 1 \le i \le n;$$

$$3. c_{i+1n}(t) = \frac{[x(t)x'(t)...x^{(i-1)}(t)x^{(n)}(t)x^{(i+1)}(t)...x^{(n-1)}(t)]}{[x(t)x'(t)...x^{(n-1)}(t)]} \text{ for all } t \text{ in } I, 0 \le i \le n-1.$$

Similarly, for $A_y^{-1}(t)A_y'(t) = ||d_{ij}(t)||$ we have

$$1. d_{j+1j}(t) = 1 \text{ for all } t \text{ in } I, j: 1 \le j \le n-1;$$

610

2.
$$d_{ij}(t) = 0$$
 for all t in $I, j \neq n, i \neq j+1, 1 \leq i \leq n;$
3. $d_{i+1n}(t) = \frac{[y(t)y'(t)...y^{(i-1)}(t)y^{(n)}(t)y^{(i+1)}(t)...y^{(n-1)}(t)]}{[y(t)y'(t)...y^{(n-1)}(t)]}$ for all t in $I, 0 \leq 1$

 $i\leq n-1.$

We obtain from (3.1) that $c_{ij}(t) = d_{ij}(t)$ for all t in I, i, j = 1, ..., n. Then

$$A_x^{-1}(t)A_x'(t) = A_y^{-1}(t)A_y'(t).$$

We have

$$(A_y A_x^{-1})' = A'_y A_x^{-1} + A_y (A_x^{-1})' = A'_y A_x^{-1} + A_y (-A_x^{-1} A'_x A_x^{-1})$$

= $A_y (A_y^{-1} A'_y - A_x^{-1} A'_x) A_x^{-1} = 0.$

Therefore $A_y(t)A_x^{-1}(t)$ does not depend on t. Put $g = A_y(t)A_x^{-1}(t)$. As det $A_x(t) \neq 0$ for all t in I, and $A_y(t) \neq 0$ for all t in I, then det $g \neq 0$. We have $A_y(t) = gA_x(t)$. Therefore y(t) = gx(t) for all t in I. Thus $x \stackrel{G}{\sim} y$. The proof of (*ii*) follows similarly from claim (*ii*) of Theorem 2.1.

Let T be one of the sets (0, l) (where $l \leq +\infty$), $(-\infty, 0)$, $(-\infty, +\infty)$.

Theorem 3.3. Let $h_1(s), \ldots, h_n(s)$ be C^{∞} -functions on T, where $|h_1(s)| = 1$ for all $s \in T$. Then there exists an invariant parametrization x of a substantial curve such that

(3.2)
$$\frac{\frac{[x^{(n)}(s)x(s)x'(s)\dots x^{(n-1)}(s)]}{[x(s)x'(s)\dots x^{(n-1)}(s)]} = h_1(s),}{\frac{[x(s)x'(s)\dots x^{(i-1)}(s)x^{(n)}(s)x^{(i+1)}(s)\dots x^{(n-1)}(s)]}{[x(s)x'(s)\dots x^{(n-1)}(s)]} = h_{i+1}(s)$$

for all $s \in T$ and $i = 1, \ldots, n-1$.

Proof. Let C(s) be the matrix $||c_{ij}(s)||$, where $c_{j+1j}(s) = 1$ for all $s \in T$, $1 \leq j \leq n-1$; $c_{ij}(s) = 0$ for all $s \in T$, $j \neq n$, $i \neq j+1$, $1 \leq i \leq n$; $c_{in}(s) = h_i(s)$, $i = 1, \ldots, n$. It is known from the theory of differential equations that there exists a solution of the differential equation

such that det $A_x(s) \neq 0$ for all $s \in T$, where $A_x(s) = ||x(s)x'(s) \dots x^{(n-1)}(s)||$ is the matrix of column vectors x(s), $x'(s), \dots, x^{(n-1)}(s)$ and $A'_x(s) =$ $||x'(s)x''(s) \dots x^{(n)}(s)||$ is the matrix of column vectors $x'(s), x''(s), \dots, x^{(n)}(s)$. Let $A_x(s)$ be such solution of the differential equation (3.3). From (3.3) we have $A_x^{-1}(s)A'_x(s) = C(s)$. From this equation we get the equalities (3.2)

Remark 3. The functions

$$\frac{\left[x(s)x'(s)\dots x^{(i-1)}(s)x^{(n+1)}(s)x^{(i+1)}(s)\dots x^{(n)}(s)\right]}{\left[x(s)x'(s)\dots x^{(n)}(s)\right]},$$

where i = 1, ..., n, equal to the functions $c_1(s), ..., c_n(s)$ of Gardner and Wilkens ([5, p. 398]).

DEPARTMENT OF MATHEMATICS KARADENIZ TECHNICAL UNIVERSITY 61080, TRABZON, TURKEY e-mail: peksen@ktu.edu.tr djavvat@yahoo.com

References

- E. De Angelis, T. Moons, L. Van Gool and P. Verstraelen, Complete systems of affine semi-differential invariants for plane and space curves, In: Dillen, F.(ed.) et al., Geometry and topology of submanifolds, VIII, Proceedings of the international meeting on geometry of submanifolds, Brussels, Belgium, July 13–14, 1995 and Nordfjordeid, Norway, July 18– August 7, 1995. Singapore: World Scientific, 1996, 85–94.
- [2] W. Barthel, Zur affinen Differentialgeometrie -Kurventheorie in der allgemeinen Affingeometrie, Proceedings of the Congress of Geometry, Thessaloniki (1987), 5–19.
- [3] W. Blaschke, Affine Differentialgeometrie, Berlin, 1923.
- [4] E. Cartan, La théorie des groupes finis et continus et la géométrie différentielle, Gauthier-Villars, Paris, 1951.
- [5] R. B. Gardner and G. R. Wilkens, The fundamental theorems of curves and hypersurfaces in centro-affine geometry, Bull. Belg. Math. Soc. 4 (1997), 379–401.
- [6] H. W. Guggenheimer, *Differential Geometry*, McGraw-Hill, New York, 1963.
- [7] S. Izumiya and T. Sano, Generic affine differential geometry of space curves, Proceedings of the Royal Society of Edinburg 128A (1998), 301– 314.
- [8] D. Khadjiev, The Application of Invariant Theory to Differential Geometry of Curves, Fan Publ., Tashkent, 1988.
- [9] D. Khadjiev and Ö. Pekşen, The complete system of global differential and integral invariants for equi-affine curves, Differential Geometry and its Applications 20 (2004), 167–175.
- [10] W. Klingenberg, A Course in Differential Geometry, Springer-Verlag, New York, 1978.
- [11] D. Laugwitz, Differentialgeometrie in Vectorraumen, Friedr. Vieweg & Sohn, Braunschweig, 1965.
- [12] K. Nomizu and T. Sasaki, Affine Differential Geometry, Cambridge Univ. Press, 1994.

- [13] H. P. Paukowitsch, Begleitfiguren und Invariantensystem minimaler Differentiationsordnung von Kurven im reellen n-dimensionalen affinen Raum, Mh. Math. 85-2 (1978), 137–148.
- [14] E. Salkowski, Affine Differentialgeometrie, W. de Gruyter, Berlin, 1934.
- [15] P. A. Schirokow and A. P. Schirokow, Affine Differentialgeometrie, Teubner, Leipzig, 1962.
- [16] U. Simon and W. Burau, Blaschkes Beitrage zur affinen Differentialgeometrie, In: W. Blaschke (ed.), Gesammelte Werke IV (1985), 11–34.
- [17] U. Simon, Entwicklung der affinen Differentialgeometrie nach Blaschkes, In: W. Blaschke (ed.), Gesammelte Werke IV (1985), 35–88.
- [18] _____, Recent developments in affine differential geometry, Diff. Geom. and its Applications, Proc. Conf. Dubrovnik/Yugosl. 1988, 1989, 327–347.
- [19] U. Simon, H. L. Liu, M. Magid and Ch. Scharlach, *Recent developments in affine differential geometry*, In: Geometry and Topology of Submanifolds VIII, World Scientific, Singapore, 1966, 1–15 and 293–408.
- [20] B. Su, Affine Differential Geometry, Science Press, Beijing, Gordon and Breach, New York, 1983.
- [21] A. M. Suhtaeva, On the equivalence of curves in Cⁿ with respect to the action of groups SL(n, C) and GL(n, C), Dokl. Akad. Nauk of SSRUz, N6 (1987), 11–13.