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1. Introduction

In this short paper we will prove the following theorems.

Theorem 1.A. Let X be a simply connected finite complex. Then there
exist no essential phantom maps from ΩX to a target of finite type.

According to Theorem 8.7 of [3], this theorem is equivalent to the following
theorem.

Theorem 1.B. Let X be a simply connected finite complex. Then there
exists a rational equivalence

ΩX →
∏

α

S2nα+1 ×
∏

β

ΩS2nβ+1.

Corollary 1.C. Let X be a connected finite complex with finite funda-
mental group. Then there exist no essential phantom maps from ΩX to a target
of finite type.

These results give a negative answer to Question 4 of [3] at least for those
spaces with finite fundamental groups.

2. Proof

In this paper, all spaces are assumed to have basepoints and all maps and
homotopies are assumed to preserve them. In topological diagrams “commu-
tative” means “commutative up to homotopy”.

Let X and Y be spaces with minimal Sullivan models (ΛV, d) and (ΛW, d).
For a map f : X → Y , we denote by Λ(f) : (ΛW, d) → (ΛV, d) a Sullivan
representative for f , see §12 of [1]. The degree of a homogeneous element x of
ΛV is denoted by |x|.
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596 Kouyemon Iriye

Lemma 2.1. Let X be a simply connected finite complex and (ΛV, d)
be its minimal Sullivan model. If x ∈ V 2n is a non-zero element with dx = 0,
then there is a simply connected finite complex Y and a rational equivalence

ΩX → ΩY × S2n−1.

The minimal model of Y , (ΛW, d), is given by W = V/(x) and there is the
natural projection (ΛV, d) → (ΛW, d) of differential graded algebras.

Proof. By Corollary to Theorem 15.11 of [1], there is an element α ∈
π2n(X) with 〈x, H(α)〉 �= 0, where 〈−,−〉 denotes the Kronecker product and
H : π∗(X) ⊗ Q → H∗(X; Q) is the Hurewicz homomorphism. Then by the
same argument as in p. 781 of [2] there is a map g : X → BU(n) such that
g∗(α) ∈ π2n(BU(n)) ∼= Z is non-zero. Pulling back the fiber bundle S2n−1 →
BU(n − 1) → BU(n) along the map g : X → BU(n), we obtain a fibration

ΩX
f→ S2n−1 j→ Y ′ → X.

For n = 1 we must choose the map g : X → BU(1) carefully so that the above
Y ′ is simply connected as in p. 783 of [2].

Since the order of [j] ∈ π2n−1(Y ′) is finite, say k, j can be extended to a
map j′ : M2n−1(k) = S2n−1 ∪k e2n → Y ′. Put Y = Y ′ ∪j′ CM2n−1(k). As in
p.783-4 of [2] we construct a map h̄ : ΩX → ΩY . Then it is easy to see that
the composite of the maps

ΩX
∆→ ΩX × ΩX

h̄×f→ ΩY × S2n−1

is a rational equivalence, where ∆ is the diagonal map.
It is easy to see that Y has the desired minimal model.

Let ni, i = 1, . . . , m, be positive odd integers. We consider a finite com-
plex E = E(n1, . . . , nm) with the following property, which will be referred as
property (S):

There are maps fi : Sni → E for i = 1, . . . , m such that the composite of
maps

m∏

i=1

ΩSni

Q
Ωfi−→

∏

m

ΩE
µ→ ΩE

is a homotopy equivalence, where µ is the iterated multiplication of loops.

An example of such a space is a product of odd dimensional spheres.
The minimal model of E = E(n1, . . . , nm), a finite complex with the prop-

erty (S), is given by (Λ(x1, . . . , xm), d), where the degree of xi is ni. Let
x ∈ Λ(x1, . . . , xm) be an even dimensional decomposable element such that
dx = 0. We will kill the cohomology class represented by x and obtain another
finite complex with the property (S):
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Lemma 2.2. Let E and x be as above and |x| = 2n. Then there is a
fiber bundle

S2n−1 → E′ π→ E

such that
(i) the minimal model of E′ is given by

(Λ(x1, x2, . . . , xm, xm+1), d̄),

where d̄xi = dxi for i = 1, . . . , m and d̄xm+1 = x,
(ii) Ωπ : ΩE′ → ΩE has a cross section.
Therefore the composite of maps

ΩS2n−1 × ΩE → ΩE′ × ΩE′ µ→ ΩE′

is a homotopy equivalence, where the first map is the product of the loop maps
of the natural inclusion and the cross section. In particular, E′ has also the
property (S).

Proof. We may assume that x represents an integral cohomology class
and that the map ∨fi : ∨Sni → E is a cofibration. Let p : E → E/ ∨ Sni

be the natural collapsing map. Then there is y ∈ H2n(E/ ∨ Sni ; Z) such that
p∗(y) = x. Since E/∨Sni is compact, by the same argument as in p. 781 of [2]
there is a map

g : E/ ∨ Sni → BU(n)

such that g∗(cn) = cy with c �= 0, where cn ∈ H2n(BU(n); Z) is the n-th Chern
class.

Pulling back the fiber bundle S2n−1 → BU(n − 1) → BU(n) along the
map g ◦ p : E → BU(n), we obtain a desired fiber bundle

S2n−1 → E′ π→ E.

The minimal model of E′ is clearly the one described in (i).
Since g ◦ p|∨Sni is the constant map to the base point, there are lifts

si : Sni → E′ of the maps fi : Sni → E for i = 1, . . . , m. Consider the
composite of maps

s : ΩE
g→

m∏

i=1

ΩSni

Q
Ωsi−→

∏

m

ΩE′ µ→ ΩE′,

where g : ΩE → ∏m
i=1 ΩSni is a homotopy inverse of the composite of maps

m∏

i=1

ΩSni

Q
Ωfi−→

∏

m

ΩE
µ→ ΩE.

Then Ωπ ◦ s is homotopic to the identity map. By making use of the covering
homotopy property we will obtain a cross section of Ωπ.
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Lemma 2.3. Let X be a simply connected finite complex. Then there
is a minimal model of X, (Λ(x1, x2, . . .), d), with the following properties:

(i) |xi| ≤ |xi+1| for all i,
(ii) if |x�−1| < |x�| = · · · = |xs| = n < |xs+1|, then a set of x�, . . . , xk,

k < s + 1, and some decomposable elements is a basis of the kernel of the
differential map d : ΛnV → Λn+1V .

Moreover, if |xi| is odd for 1 ≤ i ≤ m, then there is a simply connected
finite complex E with property (S) whose minimal model, (Λ(y1, y2, . . . , ym), d),
is isomorphic to (Λ(x1, . . . , xm), d) and a map f : X → E such that Λ(f)(yi) =
xi for i = 1, . . . , m. In particular,

Ωf : ΩX → ΩE �
m∏

i=1

ΩS|xi|

induces isomorphisms of rational homotopy groups up to dimension |xm| − 1.

Proof. The first assertion is easy to prove by changing the given genera-
tors of a minimal model of X.

We show the second assertion by induction on m. For m = 0 there is
nothing to be proved.

Let m ≥ 1 and |x�−1| < |x�| = · · · = |xm| = · · · = |xs| = 2n − 1 < |xs+1|.
By the property (ii), a set of x�, . . . , xk, and some decomposable elements
is a basis of the kernel of the differential map d : Λ2n−1V → Λ2nV . By the
induction hypothesis, we assume that there is a simply connected finite complex
E with property (S) whose minimal model, (Λ(y1, . . . , ym−1), d), is isomorphic
to (Λ(x1, . . . , xm−1), d) and a map f : X → E such that Λ(f)(yi) = xi for
i = 1, . . . , m − 1. Now the proof is divided into two cases.

Case I. m ≤ k. Since dxm = 0, it is easy to see that there is a map
f ′ : X → S2n−1 such that Λ(f ′)(ym) = xm, where ym is a generator of the
minimal model of S2n−1. Then f × f ′ : X → E × S2n−1 is a desired map.

Case II. k < m. Since dxm is in Λ(x1, . . . , xm−1) and Λ(y1, . . . , ym−1) is
mapped isomorphically onto Λ(x1, . . . , xm−1), Λ(f)−1(dxm) is an element of
Λ(y1, . . . , ym−1). Regarding dxm and Λ(f)−1(dxm) as k-invariants of X and
E, we consider the following commutative diagram.

X −−−−→ X(2n−2) dxm−−−−→ K(Q, 2n)
�f

�f(2n−2)

∥∥∥

E −−−−→ E(2n−2) Λ(f)−1(dxm)−−−−−−−−→ K(Q, 2n) −−−−→∏n
k=1 K(Q, 2k) � BU(n)(0),

where X(n) denotes the Postnikov approximation of X through dimension n
and the map K(Q, 2n) → ∏n

k=1 K(Q, 2k) � BU(n)(0) is the canonical inclusion
map. Then similarly to the proof of Lemma 2.1, it is easy to prove that there
is a map

g : E → BU(n)
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such that Λ(f)Λ(g)(cn) = cdxm with c �= 0 and that g ◦ f � ∗. Pulling back
the fiber bundle S2n−1 → BU(n − 1) → BU(n) along the map g we have a
fiber bundle

S2n−1 → E′ π→ E

and a lift f̃ : X → E′ of f . By Lemma 2.2 and its proof, E′ is a simply con-
nected finite complex with property (S) whose minimal model, (Λ(y1, . . . , ym),
d), is isomorphic to (Λ(x1, . . . , xm), d). Since

dΛ(f̃)(ym) = Λ(f̃)(dym) = Λ(f)(Λ(f)−1(dxm)) = dxm,

we have d(Λ(f̃)(ym) − xm) = 0, that is, Λ(f̃)(ym) − xm ∈ Ker[d : Λ2n−1V →
Λ2nV ]. By changing ym to ym +a�y� + · · ·+ak−1yk−1 with suitable a�, . . . , ak−1

∈ Q we may assume that z = Λ(f̃)(ym) − xm is decomposable and that
dz = 0. By dimensional reason z ∈ Λ(x1, . . . , x�−1). Since Λ(f̃) = Λ(f) :
Λ(y1, . . . , y�−1) → Λ(x1, . . . , x�−1) maps Λ(y1, . . . , y�−1) isomorphically onto
Λ(x1, . . . , x�−1), there is an element z′ ∈ Λ(y1, . . . , y�−1) such that Λ(f̃)(z′) = z.
Then we have Λ(f̃)(ym − z′) = xm. Thus the minimal model (Λ(y1, . . . ,
ym−1, ym − z′), d) is a desired model.

Proof of Theorem 1.B. Let (ΛV, d) = (Λ(x1, x2, . . .), d) be the minimal
model of X, where we assume that |xi| ≤ |xi+1| for all i. We also assume
that |xi| is odd for all 1 ≤ i ≤ m and that |xm+1| = 2n, where m ≥ 0.
Then there is a simply connected finite complex E0 with property (S) whose
minimal model, (Λ(y1, . . . , ym), d), is isomorphic to (Λ(x1, . . . , xm), d) and a
map f : X → E0 such that Λ(f)(yi) = xi for i = 1, . . . , m by Lemma 2.3. Since
even dimensional rational homotopy groups of a bouquet of odd dimensional
spheres are zero, there is a minimal model (Λ(y1, . . . , ym, z1, . . . , zs), d) which
represents S|x1| ∨ · · · ∨ S|xm| up to dimension 2n, where the degree of zi is odd
for all 1 ≤ i ≤ s. By Lemma 2.2 there is a tower of fibrations

Es → · · · → Ek → · · · → E0,

such that the minimal model of Ek is isomorphic to (Λ(y1, . . . , ym,
z1, . . . , zk), d) and that ΩEk+1 → ΩEk has a cross section for each k. By
pulling back this tower of fibrations along the map f : X → E0 we have a
tower of fibrations

Xs → · · · → Xk → · · · → X0 = X.

Then the minimal model of Xs is isomorphic to that of a wedge of appropriate
odd dimensional spheres up to dimension 2n except indecomposable elements of
dimension 2n. Therefore in the minimal model of Xs there is a decomposable
element w such that d(xm+1 + w) = 0. By Lemma 2.1 there is a simply
connected finite complex Y and a rational equivalence

ΩXs → ΩY × S2n−1.
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Let (ΛW, d) be the minimal model of Y , then dimW 2n = dimV 2n − 1. By
construction there is a map

ΩX → ΩXs

which induces monomorphisms of rational homotopy groups. Thus there is a
map

ΩX → ΩY × S2n−1

which induces monomorphisms of rational homotopy groups. For any positive
integer N , iterating this procedure we have a map

ΩX → ΩX ′ ×
∏

nα≤N

S2nα+1

such that it induces monomorphisms of rational homotopy groups and that the
even dimensional rational homotopy groups of X ′ are zero up to dimension
2N + 2. For X ′ there is a map

ΩX ′ →
∏

nβ≤N

ΩS2nβ+1

which induces isomorphisms of rational homotopy groups up to dimension 2N+
1 by Lemma 2.3. Thus we have a map

ΩX →
∏

nα≤N

S2nα+1 ×
∏

nβ≤N

ΩS2nβ+1

which induces monomorphisms of rational homotopy groups up to dimension
2N + 1. Removing redundant factors in the right-hand side, we have a map

ΩX →
∏

na

S2na+1 ×
∏

nb

ΩS2nb+1

which induces isomorphisms of rational homotopy groups up to dimension 2N+
1. Since N is arbitrary, the proof of Theorem 1.B is completed.

Proof of Corollary 1.C. Let X̃ be the universal covering space of X.
Since the fundamental group of X is finite, X̃ has also the structure of a
finite complex. By Theorem 1.A there exist no essential phantom maps from
ΩX � π0(X) × ΩX̃ to a target of finite type.
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