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Abstract

T. Ikawa obtained in [5] the following characteristic ordinary differ-
ential equation

∇X∇X∇XX − K∇XX = 0, K = k2 − τ2

for the circular helix which corresponds to the case that the curvatures k
and τ of a time-like curve α on the Lorentzian manifold M are constant.

N. Ekmekçi and H. H. Hacısalihoğlu generalized in [4] T. Ikawa’s
this result, i.e., k and τ are variable, but k

τ
is constant.

In [1] H. Balgetir, M. Bektaş and M. Ergüt obtained a geometric
characterization of null Frenet curve with constant ratio of curvature and
torsion (called null general helix).

In this paper, making use of method in [1, 4, 5] , we obtained
characterizations of a curve with respect to the Frenet frame of ruled
surfaces in the 3-dimensional pseudo-Galilean space G1

3.

1. Preliminaries

The pseudo-Galilean geometry is one of the real Cayley-Klein geome-
tries (of projective signature (0, 0, +,−)). The absolute figure of the pseudo-
Galilean geometry is an ordered triple {w, f, I} where w is the a plane in
three-dimensional real projective space P3(R) (the absolute plane), f is a line
in w (the absolute line) and I is the fixed hyperbolic involution of points of f
([2]).

A vector X(x, y, z) is said to non isotropic if x �= 0. All unit non-isotropic
vectors are of the form (1, y, z). For isotropic vectors x = 0 holds. There are
four types of isotropic vectors: space-like (y2 − z2 > 0), time-like (y2 − z2 < 0)
and two types of lightlike (y = ±z) vectors. A non-lightlike isotropic vector is
a unit vector if y2 − z2 = ±1.
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A trihedron (To; e1, e2, e3) with a proper origin

To(xo, yo, zo) ∼ (1 : xo : yo : zo)

is orthonormal in pseudo-Galilean sense iff the vectors e1, e2, e3 are of following
form: e1 = (1, y1, z1), e2 = (0, y2, z2), e3 = (0, εz2, εy2) with y2

2 − z2
2 = δ, where

ε, δ is +1 or −1.
Such trihedron (To; e1, e2, e3) is called positively oriented if for its vectors

det(e1, e2, e3) = 1 holds, i.e., if y2
2 − z2

2 = ε.

2. Ruled surfaces in the Galilean space

A general equation of a ruled surface G1
3 is

(2.1) x(u, v) = r(u) + va(u), v ∈ IR; r, a ∈ C3,

where the curve r does not line in a pseudo-Euclidean plane and is called a
directix. The curve r is given by

(2.2) r(u) = (u, y(u), z(u)).

This means that the curve r is parametrized by the pseudo-Galilean arc length.
Further, the generator vector field is of the form

(2.3) a(u) = (1, a2(u), a3(u)).

Notice that under the given assumptions all tangent planes of ruled surfaces
are isotropic.

According to the absolute figure, we distinguish two types of ruled surfaces
in G1

3. More about ruled surface in G1
3 can be found in [3].

Type I: The equation of a ruled surface of type I in G1
3 is

(2.4)
{

x(u, v) = (u, y(u), z(u)) + v(1, a2(u), a3(u)),
y, z, a2, a3 ∈ C3, u ∈ I ⊆ IR, v ∈ IR.

The ruled surfaces of type I are non-conoidal and conoidal surfaces whose di-
rectional straight line at infinity is not the absolute line. The striction curve of
these surfaces does not lie in a pseudo-Euclidean plane.

The associated trihedron of a ruled surface of type I in G1
3 is defined by

T (u) = a(u), N(u) =
1

k(u)
a′(u), B(u) =

1
k(u)

(0, a′
3(u), a′

2(u)).

The curvature is given by k(u) =
√|a′2

2 − a′2
3 |.

Type II: The equation of ruled surface of type II in G1
3 is

(2.5)




x(u, v) = (0, y(u), z(u)) + v(1, a2(u), a3(u)),
y, z, a2, a3 ∈ C3, u ∈ I ⊆ IR, v ∈ IR,∣∣y′2 − z′2

∣∣ = 1, y′a′
2 − z′a′

3 = 0.
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A ruled surface of type II is a surface whose striction curve lies in a pseudo-
Euclidean plane.

The associated trihedron of ruled surface of type II in G1
3 is defined by

T (u) = a(u) = (1, a2(u), a3(u)),
N(u) = (0, z′(u), y′(u)),
B(u) = (0, y′(u), z′(u)),

where

k(u) =
a2(u)
z′(u)

, τ (u) =
y′′(u)
z′(u)

.

The Frenet’s formulas are in type I or type II as follows.

∇T (u)T (u) = k(u)N(u),
∇T (u)N(u) = τ (u)B(u),(2.6)
∇T (u)B(u) = τ (u)N(u).

The function

τ (u) =
det(a(u), a′(u), a′′(u))

k2(u)

is called the torsion of ruled surfaces.

3. The characterizations of curves on ruled surfaces

Definition 3.1. Let α be a curve of a ruled surface of type I or II and
{T (u), N(u), B(u)} be the Frenet frame on ruled surface of type I or II along
α. If both k and τ are positive constants along α, then α is called a circular
helix with respect to the Frenet frame.

Definition 3.2. Let α be a curve of a ruled surface of type I or II and
{T (u), N(u), B(u)} be the Frenet frame on ruled surface of type I or II along
α. A curve α such that

k(u)
τ (u)

= const

is called a general helix with respect to Frenet frame.

Theorem 3.1. Let α be a curve of a ruled surface of type I or II in
pseudo-Galilean space G1

3. α is a general helix with respect to the Frenet frame
{T (u), N(u), B(u)} if and only if

(3.1) ∇T (u)∇T (u)∇T (u)T (u) − K(u)∇T (u)T (u) = 3k′(u)∇T (u)N(u),

where K(u) = k′′(u)
k(u) + τ2(u).
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Proof. Suppose that α is general helix with respect to the Frenet frame
{T (u), N(u), B(u)}. Then from (2.6), we have

(3.2)
∇T (u)∇T (u)∇T (u)T (u) = (k′′(u)+k(u)τ (u))N(u)+(2k′(u)τ (u)+k(u)τ ′(u))B(u).

Now, since α is general helix with respect to the Frenet Frame

k(u)
τ (u)

= const

and this upon the derivation gives rise to

(3.3) k′(u)τ (u) = k(u)τ ′(u).

If we substitute the equations (3.3),

(3.4) N(u) =
1

k(u)
∇T (u)T (u),

and

(3.5) B(u) =
1

τ (u)
∇T (u)N(u)

in (3.2), we obtain (3.1).
Conversely let us assume that the equation (3.1) holds. We show that the

curve α is a general helix. Differentiating covariantly (3.4) we obtain

(3.6) ∇T (u)N(u) = − k′(u)
k2(u)

∇T (u)T (u) +
1

k(u)
∇T (u)∇T (u)T (u)

and so

∇T (u)∇T (u)N(u) =
(
− k′(u)

k2(u)

)′
∇T (u)T (u) − 2

k′(u)
k2(u)

∇T (u)∇T (u)T (u)(3.7)

+
1

k(u)
∇T (u)∇T (u)∇T (u)T (u).

If we use (3.1) in (3.7) and make some calculations, we have

(3.8) ∇T (u)∇T (u)N(u) =

[(
− k′(u)

k2(u)

)′
+

K(u)
k(u)

]
∇T (u)T (u) − 2

k′(u)
k2(u)

N(u)

+
k′(u)τ (u)

k(u)
B(u).

Also we obtain

(3.9) ∇T (u)∇T (u)N(u) = τ2(u)N(u) + τ ′(u)B(u)

since (3.8) and (3.9) are equal, routine calculations show that α is a general
helix.
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Theorem 3.2. Let α be a curve of ruled surface of type I or II in
pseudo-Galilean space G1

3. α is a general helix with respect to the Frenet frame
{T (u), N(u), B(u)} if and only if

(3.10) ∇T (u)∇T (u)∇T (u)T (u) − K(u)∇T (u)T (u) = 3λτ ′(u)∇T (u)N(u),

where K(u) = k′′(u)
k(u) + τ2(u) and λ = k(u)

τ(u) = const.

Proof. It is similar to the proof of Theorem 3.1.

Corollary 3.1. Let α be a curve of ruled surface of type I or II in
pseudo-Galilean space G1

3. α is a circular helix with respect to the Frenet frame
{T (u), N(u), B(u)} if and only if

(3.11) ∇T (u)∇T (u)∇T (u)T (u) = τ2(u)∇T (u)T (u).

Proof. From the hypotesis of corollary 3.1 and since α is a circular helix,
we can show easily (3.11).

Theorem 3.3. If α be a curve of ruled surface of type I or II in pseudo-
Galilean space G1

3. α is a general helix with respect to the Frenet frame {T (u),
N(u), B(u)}, then

(3.12) ∇T (u)∇T (u)∇T (u)T (u) − K̃(u)∇T (u)B(u) = 3k′(u)∇T (u)N(u)

where K̃(u) = k′′(u)
τ(u) + k(u)τ (u).

Proof. Suppose that α is a general helix with respect to the Frenet frame
{T (u), N(u), B(u)}. Then from (3.2) and (3.3)

(3.13) ∇T (u)∇T (u)∇T (u)T (u) = (k′′(u)+k(u)τ2(u))N(u)+(3k′(u)τ (u))B(u).

If we substitute the equations

(3.14) N(u) =
1

τ (u)
∇T (u)B(u)

and (3.5) in (3.13), we obtain (3.12).

Theorem 3.4. If α be a curve of ruled surface of type I or II in pseudo-
Galilean space G1

3. α is a general helix with respect to the Frenet frame {T (u),
N(u), B(u)}, then

(3.15) ∇T (u)∇T (u)∇T (u)T (u) − K̃(u)∇T (u)B(u) = 3λτ ′(u)∇T (u)N(u),

where K̃(u) = k′′(u)
τ(u) + k(u)τ (u) and λ = k(u)

τ(u) = const.

Proof. It is similar to the proof of Theorem 3.3.
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Corollary 3.2. Let α be a curve of ruled surface of type I or II in
pseudo-Galilean space G1

3. α is a circular helix with respect to the Frenet frame
{T (u), N(u), B(u)} if and only if

(3.16) ∇T (u)∇T (u)∇T (u)T (u) = k(u)τ (u)∇T (u)B(u).

Proof. From the hypotesis of Corollary 3.2 and since α is a circular helix,
we can show easily (3.16).

4. Example

In this section we give a example helix of ruled surfaces in 3-dimensional
pseudo-Galilean space G1

3 which it can be parametrized by

x(u, v) =
(

u, ash
u

p
, ach

u

p

)
+ v

(
1,

1
b
ach

u

p
,
1
b
sh

u

p

)
.

This is a ruled surfaces of type I which is obtained by revolving and si-
multaneously moving along the axis x with the constant speed a straight line
x = bv, y = v, z = a (see [2]). Its curvature and torsion are defined as the
following, respectively;

k(u) =
1
p

= const., τ(u) = − b

p
const.
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