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of Q(

√
2)

By
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Abstract

We construct a system of non-linear differential equations from
the uniformizing differential equations of an orbifold attached to cer-
tain Hilbert modular surface. Generic solutions of this system can be
given by the logarithmic derivatives of Hilbert modular forms.

1. Introduction

The theory of modular forms has a long history. It relates to many branches
of mathematics. In this paper, we shall study modular forms from an analytic
view points. Namely we shall construct a holonomic system of nonlinear differ-
ential equations which characterize symmetric Hilbert modular forms of Q(

√
2).

It is known that modular forms of one complex variable satisfy algebraic
ordinary differential equations. Algebraic differential equations are convenient
to study analytic properties of their solutions. Therefore, it is an interesting
problem to find algebraic differential equations satisfied by modular forms. The
first successful attempt was done by Jacobi, who gave a differential equation
for theta constants of genus one ([5]).

For certain modular forms, their logarithmic derivatives satisfy a system of
differential equations. Halphen first found such a system ([2]) and his method
was analyzed and generalized by several authors ([9], [3], [7]). Note that
Halphen’s systems is equivalent to Jacobi’s equation.

For modular forms of several variables, M. Sato showed that logarithmic
derivatives of theta constants of genus two satisfy a holonomic system of partial
differential equations ([12], [8]).

In the present paper we shall construct a holonomic system of partial dif-
ferential equations satisfied by logarithmic derivatives of Hilbert modular forms
of Q(

√
2). There are several approaches to find such holonomic systems. Sato

obtained his results by using differential relations of theta constants and the
heat equation satisfied by theta functions. Here, modular forms are regarded
as functions on the moduli spaces of certain geometric objects. The second
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approach is the one to use differential operators preserving modular properties
and the algebraic structure of the graded ring of modular forms.

In the present paper we shall use another method. An important feature
of modular forms is that they are obtained as the inverse functions of solutions
of certain linear differential equations. We shall use such differential equations
to obtain a holonomic system which characterizes modular forms. This method
was initiated by Jacobi. In the present paper we shall use the uniformizing dif-
ferential equations of Hilbert modular orbifold obtained by Sasaki and Yoshida
([11]). From the differential equations we shall deduce the holonomic system
satisfied by the logarithmic derivatives of Hilbert modular forms of Q(

√
2) (The-

orem 4.1). The holonomic system characterizes the Hilbert modular forms of
Q(

√
2). Namely, generic solutions of the holonomic system are given by loga-

rithmic derivatives of the Hilbert modular forms (for details, see Theorem 5.1
below).

Let us describe briefly the content of the present paper. In Section 2 we
shall discuss the structure of the ring of Hilbert modular forms for a certain
subgroup Γ of the Hilbert modular group SL(2,O) where O is the ring of
integers of Q(

√
2). It is an important fact due to Hirzebruch that the subring

consisting of the symmetric Hilbert modular forms of Q(
√

2) is isomorphic
to the polynomial ring of three variables. In Section 3 we shall recall the
result due to Sasaki and Yoshida ([11]). They described the inverse map of
H × H → H × H/〈Γ, τ 〉 by a system of linear differential equations of two
variables with rank four, where H is the upper half plane in the complex plane
and τ is the involution of interchanging the factors of H × H.

Section 4 is the main part of the present paper. We shall construct a system
of nonlinear differential equations for logarithmic derivatives of Hilbert modular
forms of Q(

√
2) by using Sasaki-Yoshida’s equations (Theorem 4.1). In Section

5 we shall show that generic solutions of our system of differential equations will
be given in terms of the logarithmic derivatives of symmetric Hilbert modular
forms of Q(

√
2) (Theorem 5.1). Also we shall describe degenerate solutions of

the system.
The author would like express his hearty thanks to the referee who gave

several important suggestions to improve the results in the present paper.

2. Ring structure of Hilbert modular forms

Let K be the real quadratic field Q(
√

2) and O be the ring of integers in
K. We consider the principal congruence subgroup Γ(2) of SL(2,O) for the
ideal (2) in O:

Γ(2) =
{

γ ∈ SL(2,O); γ ≡
(

1 0
0 1

)
mod (2)

}
.

The group SL(2,O)/Γ(2) is an extension of the symmetric group S4 by the
group of order 2 which is the center of SL(2,O)/Γ(2). The fundamental unit
of O is ε0 = 1 +

√
2. Then the non-trivial element in the center is represented
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by the matrix (
ε0 0
0 ε−1

0

)
= Dε0 .

Let Γ be the subgroup of SL(2,O) obtained by extending Γ(2) by Dε0 . Then
SL(2,O)/Γ is isomorphic to S4. Let H be the upper half plane in C. There are
two embedding of Q(

√
2) over Q into R:

ι : a �→ a, ι′ : a �→ a′.

Then Γ acts properly discontinuously on H × H in the following manner: for

(z1, z2) ∈ H × H and γ =
(

a b
c d

)
∈ Γ,

γ(z1, z2) = (γz1, γ
′z2) =

(
az1 + b

cz1 + d
,
a′z2 + b′

c′z2 + d′

)
.

Now let us define Hilbert modular forms for Γ.

Definition 2.1. A holomorphic function f on H ×H is a Hilbert mod-
ular form of weight k(∈ N) for Γ, if, for any γ ∈ Γ, f satisfies

f(γz1, γ
′z2) = (cz1 + d)k(c′z2 + d′)kf(z1, z2).

F. Hirzebruch [4] determined the ring of Hilbert modular forms for Γ by
studying the Hilbert modular surface attached to Γ.

Theorem 2.1. The ring of modular forms for the group Γ is isomorphic
to

C[x1, x2, x3, x4, c]/(x1 + x2 + x3 + x4, c
2 − C),

where C = x1x2x3x4(x1x2 +x3x4)(x1x3 +x2x4)(x1x4 +x2x3), xi (i = 1, . . . , 4)
is of weight 1 and c is of weight 5. Moreover xi’s are symmetric modular forms,
i.e. xi(z1, z2) = xi(z2, z1).

Put

y1 =
1
2
(x4 − x3), y2 =

1
2
(x2 − x1), y3 =

1
2
(x4 + x3).

Then we can define the holomorphic mapping from H × H to P2(C):

π : (z1, z2) �→ (y1(z1, z2) : y2(z1, z2) : y3(z1, z2)).

This mapping π is factored through H × H/〈Γ, τ 〉 and gives an isomorphism
between H×H/〈Γ, τ 〉 and P2(C) \ {6 points}, where τ is the natural involution
which interchanges the factors of H × H. Let x = y1/y3 and y = y2/y3 be
an inhomogeneous coordinate of P2(C). The branch loci of π is given by D =
(1 − x2)(1 − y2)(1 − x2y2)(2 − x2 − y2) in C2 and the ramification index is
equal to two. The above six points are exactly six multiple points of D. The
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projective plane P2(C) equipped with the ramification locus D and the index
2 is called the Hilbert modular orbifold M associated with 〈Γ, τ 〉.

3. Uniformizing equation for the Hilbert modular orbifold M

Naturally H×H is a domain of P1(C)×P1(C) which can be considered as
a quadratic surface in P3(C):

ι : (z1, z2) �→ (1 : z1 : z2 : z1z2).

The conformal structure on P1(C) × P1(C) as a hypersurface in P3(C), pulled
back by the inverse map of π on the Hilbert modular orbifold M , can be
described by the linear differential equation of the form:

(3.1)




∂2u

∂x2
= l

∂2u

∂x∂y
+ a

∂u

∂x
+ b

∂u

∂y
+ pu

∂2u

∂y2
= m

∂2u

∂x∂y
+ c

∂u

∂x
+ d

∂u

∂y
+ qu.

The equation (3.1) must satisfy integrability conditions and the dimension of its
solution space is of four. Moreover there is a quadratic relation between any four
linearly independent solutions. That is to say, the linear differential equation
(3.1) has quadric property. Conversely, if we take four linearly independent
solutions of (3.1) suitably, the map

ϕ : (x, y) �→ (u1 : u2 : u3 : u4) = (1 : z1 : z2 : z1z2)

gives the inverse map of π. In what follows, we fix linearly independent solutions
as this. Coefficients of (3.1) were determined by Sasaki and Yoshida [11] after
R. Kobayashi and I. Naruki [6] derived the conformal structure on M induced
from ι ◦ π−1:

l = −2 − y2 − x2y2

xy(1 − x2)
,(3.2)

m = −2 − x2 − x2y2

xy(1 − y2)
,(3.3)

a = −3
2

∂

∂x
log

(1 − x2y2)(2 − x2 − y2)
1 − x2

(3.4)

+
l

2
∂

∂y
log

(1 − x2y2)2(2 − x2 − y2)2

(1 − y2)2(2 − y2 − x2y2)
,

b =
l

2
∂

∂x
log

(2 − y2 − x2y2)(1 − x2y2)(2 − x2 − y2)
(1 − x2)2

,(3.5)

c =
m

2
∂

∂y
log

(2 − x2 − x2y2)(1 − x2y2)(2 − x2 − y2)
(1 − y2)2

,(3.6)

d = −3
2

∂

∂y
log

(1 − x2y2)(2 − x2 − y2)
1 − y2

(3.7)
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+
m

2
∂

∂x
log

(1 − x2y2)2(2 − x2 − y2)2

(1 − x2)2(2 − x2 − x2y2)
,

p =
−2(x2 − y2)

(1 − x2)2(1 − y2)
,(3.8)

q =
−2(y2 − x2)

(1 − x2)(1 − y2)2
.(3.9)

For notational simplicity, we denote by fx (resp. fy) the partial derivative of a
function f with respect to x (resp. y). Put

e2θ = det(u, ux, uy, uxy) =

∣∣∣∣∣∣∣∣
u1 u2 u3 u4

u1,x u2,x u3,x u4,x

u1,y u2,y u3,y u4,y

u1,xy u2,xy u3,xy u4,xy

∣∣∣∣∣∣∣∣
which is called a normalization factor of (3.1). In [11], the normalization factor
is taken as

(3.10) e2θ = (1 − lm)−
7
2 (xy)−6.

Proposition 3.1. When the differential equation (3.1) has quadric
property, coefficients a, b, c and d can be written by l, m, and θ in the fol-
lowing form: 


b =

l

2

(
lx
l
− 3

4
ξx − θx

)

c =
m

2

(
my

m
− 3

4
ξy − θy

)
,

(3.11)




a =
1
4
ξx + θx − l

2

(
ly
l
− 1

4
ξy + θy

)

d =
1
4
ξy + θy − m

2

(
mx

m
− 1

4
ξx + θx

)
,

(3.12)

where ξ = log(1 − lm).

Proof. See [10].

4. Construction of differential equations for Hilbert modular forms

First, we need to determine the differential equation of the form (3.1)
which the modular form y3 satisfies. Put w1(x, y) = y3(z1(x, y), z2(x, y)),
w2(x, y) = z1w1, w3(x, y) = z2w1 and w4(x, y) = z1z2w1, where z1(x, y) =
u2(x, y)/u1(x, y) and z2 = u3/u1, then wi(x, y)’s are multi-valued functions on
P2(C) \ D. Let us observe the behaviors of wi’s under analytic continuations.
Let π1(P2 \ D) be the fundamental group of P2 \ D, then (w1 : w2 : w3 : w4)
gives a projective monodromy representation of π1(P2 \D). For α ∈ π1(P2 \D)
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and the fixed base point (x, y), there exists γα =
(

a b
c d

)
∈ Γ corresponding

to α such that

z1(α(x, y)) =
az1(x, y) + b

cz1(x, y) + d
,

z2(α(x, y)) =
a′z2(x, y) + b′

c′z2(x, y) + d′
,

where, for a holomorphic function f around the point (x, y), f(α(x, y)) denotes
the analytic continuation of f along α. Hence, for wi’s, we have

w1(α(x, y)) = (cz1 + d)(c′z2 + d′)w1(z1, z2)
= dd′w1 + cd′w2 + dc′w3 + cc′w4,

w2(α(x, y)) = (az1 + b)(c′z2 + d′)w1(z1, z2)
= bd′w1 + ad′w2 + bc′w3 + ac′w4,

w3(α(x, y)) = (cz1 + d)(a′z2 + b′)w1(z1, z2)
= db′w1 + da′w2 + cb′w3 + ca′w4,

w4(α(x, y)) = (az1 + b)(a′z2 + b′)w1(z1, z2)
= bb′w1 + ab′w2 + ba′w3 + aa′w4.

Therefore the projective monodromy representation of π1(P2 \D) given by wi’s
is just the same as one given by ui’s. The following lemma is checked by direct
calculations.

Lemma 4.1. In (3.1), perform a change of the unknown u by multiply-
ing a factor eρ. Then the coefficients of the transformed equation, which are
denoted by the same letter with primes, are given in the following

l′ = l, m′ = m,(4.1)
a′ = a + 2ρx − lρy, c′ = c − mρy,(4.2)
b′ = b − lρx, d′ = d + 2ρy − mρx,(4.3)

p′ = p − aρx − bρy + (ρxx − ρ2
x) − l(ρxy − ρxρy),(4.4)

q′ = q − cρx − dρy + (ρyy − ρ2
y) − m(ρxy − ρxρy),(4.5)

e2θ′
= e4ρ+2θ.(4.6)

Applying this lemma to our case, we have

Proposition 4.1. Put eρ = w1/u1, then w1, w2 = z1w1, w3 = z2w1

and w4 = z1z2w1 are solutions of the differential equation of type (3.1) with
coefficients l′, m′, . . . , e2θ′

given in the above lemma.

Therefore in order to determine coefficients l′, m′, . . . , q′, we have to deter-
mine only the normalization factor

e2θ′
= det(w, wx, wy, wxy).
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Computing directly, we have

(4.7) e2θ′
=

∣∣∣∣∣∣∣∣
w1 z1w1 z2w1 z1z2w1

w1,x (z1w1)x (z2w1)x (z1z2w1)x

w1,y (z1w1)y (z2w1)y (z1z2w1)y

w1,xy (z1w1)xy (z2w1)xy (z1z2w1)xy

∣∣∣∣∣∣∣∣
= STw4

1,

where

(4.8) S = z1,xz2,y + z2,xz1,y

and

(4.9) T = z1,xz2,y − z2,xz1,y.

On the other hand, the differential equation which have w1, w2, w3 and w4 as
a set of independent solutions are also given in terms of determinants:∣∣∣∣∣∣∣∣∣∣

w w1 w2 w3 w4

wx w1,x w2,x w3,x w4,x

wy w1,y w2,y w3,y w4,y

wxy w1,xy w2,xy w3,xy w4,xy

wxx w1,xx w2,xx w3,xx w4,xx

∣∣∣∣∣∣∣∣∣∣
= 0,(4.10)

∣∣∣∣∣∣∣∣∣∣

w w1 w2 w3 w4

wx w1,x w2,x w3,x w4,x

wy w1,y w2,y w3,y w4,y

wxy w1,xy w2,xy w3,xy w4,xy

wyy w1,yy w2,yy w3,yy w4,yy

∣∣∣∣∣∣∣∣∣∣
= 0.(4.11)

Therefore we have

l′ = e−2θ′
det(w, wx, wy, wxx),(4.12)

m′ = e−2θ′
det(w, wx, wy, wyy),(4.13)

p′ = −e−2θ′
det(wx, wy, wxy, wxx),(4.14)

q′ = −e−2θ′
det(wx, wy, wxy, wyy),(4.15)

a′ = e−2θ′
det(w, wy, wxy, wxx),(4.16)

b′ = −e−2θ′
det(w, wx, wxy, wxx),(4.17)

c′ = e−2θ′
det(w, wy, wxy, wyy),(4.18)

d′ = −e−2θ′
det(w, wx, wxy, wyy).(4.19)

From (4.12) and (4.13), we have

(4.20) l′ = 2z1,xz2,x/S

and

(4.21) m′ = 2z1,yz2,y/S.
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Therefore we can write S as

(4.22) (1 − l′m′)S2 = T 2.

The following lemma is used to calculate the normalization factor e2θ′
.

Lemma 4.2. Let T−1 be the inverse of T , i.e.,

T−1(z1, z2) =

∣∣∣∣∣∣∣∣
∂x

∂z1

∂x

∂z2

∂y

∂z1

∂y

∂z2

∣∣∣∣∣∣∣∣
.

Then w4
1/T−2 is a symmetric Hilbert modular function. In particular, w4

1/T−2

can be regarded as a meromorphic function on P2(C).

Proof. First, we shall check behaviors of T−1 under actions of Γ. For any
γ ∈ Γ, we can check easily

T−1(γz1, γ
′z2) = (cz1 + d)2(c′z2 + d′)2T−1(z1, z2).

Hence w4
1/T−2 is a meromorphic function on H × H and Γ-invariant. More-

over, since T−1 is a skew-symmetric function, w4
1/T−2 is a symmetric func-

tion. Therefore w4
1/T−2 gives a meromorphic function on H × H/〈Γ, τ 〉 ∼=

P2(C) \ {6 points}, which extends to P2(C) automatically.

Proposition 4.2. Normalization factor e2θ′
is equal to

(4.23) xy(x2 − 1)−1/2(y2 − 1)−1/2(x2y2 − 1)−3/2(x2 + y2 − 2)−3/2.

Proof. From (4.7) and (4.22), we have e2θ′
= T 2w4

1/
√

1 − l′m′. Here l′

and m′ are the same as l and m by Lemma 4.1. Hence 1−l′m′ = 2(1−x2y2)(x2+
y2 − 2)x−2y−2(1 − x2)−1(1 − y2)−1. Note that T is a Jacobian of ϕ whose
ramification index are equal to two on each component of D = (1 − x2)(1 −
y2)(1−x2y2)(2−x2−y2). Hence T 2w4

1 is equal to (x2−1)−1(y2−1)−1(x2y2−
1)−1(x2 + y2 − 2)−1 with some constant multiple. However difference of a
constant multiple is not essential. Therefore we obtain the desired equality.

We can determine rests of coefficients p′, q′ and e4ρ:

p′ = − 1
x2 − 1

, q′ = − 1
y2 − 1

,

e4ρ = (x2 − 1)−4(y2 − 1)−4(x2y2 − 1)2(x2 + y2 − 2)2.

Now we can deduce differential relations for logarithmic derivatives of a Hilbert
modular form w1(z1, z2).

Lemma 4.3. Put

(4.24) A1(z1, z2) =
∂

∂z1
log w1(z1, z2), A2(z1, z2) =

∂

∂z2
log w1(z1, z2).
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Then we have the following differential relations for Ai (i = 1, 2):

(4.25)
∂Ai

∂zi
− A2

i = p′
(

∂x

∂zi

)2

+ q′
(

∂y

∂zi

)2

,

and

(4.26) A2(z1, z2) = A1(z2, z1).

Proof. We substitute w2 = z1w1, w3 = z2w1, w4 = z1z2w1 in (4.14).
Then we have

(4.27) p′ = (z1,x)2
T

S

(
∂A1

∂z1
− A2

1

)
− (z2,x)2

T

S

(
∂A2

∂z2
− A2

2

)
.

In the similar way, we have

(4.28) q′ = −(z1,y)2
T

S

(
∂A1

∂z1
− A2

1

)
+ (z2,y)2

T

S

(
∂A2

∂z2
− A2

2

)

from (4.15). These are equivalent to

(4.29)
(

p′

q′

)
=

T

S

(
z2
1,x −z2

2,x

−z2
1,y z2

2,y

)
∂A1

∂z1
− A2

1

∂A2

∂z2
− A2

2


 .

Therefore we obtain

(4.30)




∂A1

∂z1
− A2

1

∂A2

∂z2
− A2

2


 =



(

∂x

∂z1

)2 (
∂y

∂z1

)2

(
∂x

∂z2

)2 (
∂y

∂z2

)2



(

p′

q′

)
.

As for the equality (4.26), it is obvious from that w1(z1, z2) = w1(z2, z1).

We introduce

Xi(z1, z2) =
∂

∂zi
log(x − 1) =

1
x − 1

∂x

∂zi
,(4.31)

Yi(z1, z2) =
∂

∂zi
log(x + 1) =

1
x + 1

∂x

∂zi
,(4.32)

Zi(z1, z2) =
∂

∂zi
log(y − 1) =

1
y − 1

∂y

∂zi
,(4.33)

Wi(z1, z2) =
∂

∂zi
log(y + 1) =

1
y + 1

∂y

∂zi
,(4.34)

for i = 1, 2. Then (4.25) can be written as

(4.35)
∂Ai

∂zi
= A2

i − XiYi − ZiWi.
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Moreover, since differentials by z1 and z2 are commutative, there exists a rela-
tion

(4.36)
∂

∂z2
A1(z1, z2) =

∂

∂z1
A2(z1, z2).

Next we need to derive differentiations of Xi and Yi by z1 and z2.

Lemma 4.4. Second order derivatives of z1 and z2 by x and y are given
by

z1,xy = −1
2

S

T
(z1,y(ly + l

Sy

S
) − z1,x(mx + m

Sx

S
)),(4.37)

z2,xy =
1
2

S

T
(z2,y(ly + l

Sy

S
) − z2,x(mx + m

Sx

S
)),(4.38)

z1,xx = z1,xa′ + z1,yb′ − 2z1,x
w1,x

w1
+ lz1,x

w1,y

w1
+ lz1,y

w1,x

w1
+ lz1,xy,(4.39)

z2,xx = z2,xa′ + z2,yb′ − 2z2,x
w1,x

w1
+ lz2,x

w1,y

w1
+ lz2,y

w1,x

w1
+ lz2,xy,(4.40)

z1,yy = z1,xc′ + z1,yd′ − 2z1,y
w1,y

w1
+ mz1,x

w1,y

w1
+ mz1,y

w1,x

w1
+mz1,xy,(4.41)

z2,yy = z2,xc′ + z2,yd′ − 2z2,y
w1,y

w1
+ mz2,x

w1,y

w1
+ mz2,y

w1,x

w1
+mz2,xy.(4.42)

Proof. First, differentiate l = 2z1,xz2,x/S by y. Then we have

Sly + lSy = 2z1,xz2,xy + 2z2,xz1,xy.

In the similar way, we have

Smx + mSx = 2z1,yz2,xy + 2z2,yz1,xy.

Therefore we obtain (4.37) and (4.38). From (4.16), (4.17), (4.18) and (4.19),
we have

a′ = − 1
T

(
z1,yz2,xx − 2T

w1,x

w1
− lz1,yz2,xy + lT

w1,y

w1
− z2,yz1,xx + lz2,yz1,xy

)
,

(4.43)

b′ =
1
T

(
z1,xz2,xx − lz1,xz2,xy − lT

w1,x

w1
− z2,xz1,xx + lz2,xz1,xy

)
,(4.44)

c′ = − 1
T

(
z1,yz2,yy − mz1,yz2,xy + mT

w1,y

w1
− z2,yz1,yy + mz2,yz1,xy

)
,(4.45)

d′ =
1
T

(
z1,xz2,yy + 2T

w1,y

w1
− mz1,xz2,xy − mT

w1,x

w1
− z2,xz1,yy + mz2,xz1,xy

)
.

(4.46)

Therefore we obtain (4.39) and (4.40) (resp. (4.41) and (4.42)) from (4.43) and
(4.44) (resp. (4.45) and (4.46)).
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Lemma 4.5. The derivatives ∂x
∂zi

and ∂y
∂zi

satisfy the following relations :

−2xy(y2 − 1)
∂x

∂z1

∂x

∂z2
= (2 − x2 − x2y2)

(
∂x

∂z1

∂y

∂z2
+

∂x

∂z2

∂y

∂z1

)
,(4.47)

−2xy(x2 − 1)
∂y

∂z1

∂y

∂z2
= (2 − y2 − x2y2)

(
∂x

∂z1

∂y

∂z2
+

∂x

∂z2

∂y

∂z1

)
.(4.48)

Proof. From (4.8) and (4.20), we have the equality

(4.49) (z1,xz2,y + z2,xz1,y)l = 2z1,xz2,x.

From (3.2), we obtain the equality (4.47). The second equality (4.48) can be
obtained in the similar way.

Remark 1. These two relations (4.47) and (4.48) are equivalent to

2xy(x2 − 1)(y2 − 1)
∂x

∂z1

∂y

∂z1

= − (y2 − 1)(2 − y2 − x2y2)
(

∂x

∂z1

)2

− (x2 − 1)(2 − x2 − x2y2)
(

∂y

∂z1

)2

,

(4.50)

2xy(x2 − 1)(y2 − 1)
∂x

∂z2

∂y

∂z2

= − (y2 − 1)(2 − y2 − x2y2)
(

∂x

∂z2

)2

− (x2 − 1)(2 − x2 − x2y2)
(

∂y

∂z2

)2

.

(4.51)

The discriminant of these quadratic relations are equal to

(4.52) −8D = −8(x2 − 1)(y2 − 1)(x2y2 − 1)(x2 + y2 − 2).

Therefore, we have

C

(
A1, A2, x, y,

∂x

∂z1
,

∂y

∂z1
,

∂x

∂z2
,

∂y

∂z2

)
= C

(
A1, A2, x, y,

∂x

∂z1
,

∂x

∂z2

)
(
√

D),

which is a quadratic extension field of C(A1, A2, x, y, ∂x
∂z1

, ∂x
∂z2

).

Using Lemma 4.4 and Lemma 4.5, we obtain the following differential
relations.

Proposition 4.3. Second order derivatives of x and y by z1 and z2 are
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given by

∂2x

∂z2
i

= 2
∂x

∂zi
Ai +

(
∂x

∂zi

)2 3x

x2 − 1
+
(

∂y

∂zi

)2
x

y2 − 1
,(4.53)

∂2y

∂z2
i

= 2
∂y

∂zi
Ai +

(
∂x

∂zi

)2
y

x2 − 1
+
(

∂y

∂zi

)2 3y

y2 − 1
,(4.54)

∂2x

∂z1∂z2
=

∂x

∂z1

∂x

∂z2

x

x2 − 1
+

1
2

(
∂x

∂z1

∂y

∂z2
+

∂x

∂z2

∂y

∂z1

)
y

y2 − 1
,(4.55)

∂2y

∂z1∂z2
=

∂y

∂z1

∂y

∂z2

y

y2 − 1
+

1
2

(
∂x

∂z1

∂y

∂z2
+

∂x

∂z2

∂y

∂z1

)
x

x2 − 1
.(4.56)

Proof. We shall prove (4.53) and (4.55) and rests can be deduced in the
similar way. First,

∂2x

∂z2
1

=
∂x

∂z1

∂

∂x

(z2,y

T

)
+

∂y

∂z1

∂

∂y

(z2,y

T

)

=
∂x

∂z1

1
T

(
z2,xy − z2,y

Tx

T

)
+

∂y

∂z1

1
T

(
z2,yy − z2,y

Ty

T

)

=
1

T 2

(
z2,yz2,xy − z2

2,y

Tx

T
− z2,xz2,yy + z2,xz2,y

Ty

T

)
.

From (4.38) and (4.42),

∂2x

∂z2
1

=
1
T 2

[
(z2,x)2

(
−c′ − m

w1,y

w1

)
+ (z2,y)2

(
1
2

(
ly + l

Sy

S

)
− Tx

T

)

+ z2,xz2,y

(
−1

2

(
mx + m

Sx

S

)
+

Ty

T
− d′ + 2

w1,y

w1
− m

w1,x

w1

)]
.

From (4.7) and (4.22), we have

(4.57)
Tx

T
= θx − 2

w1,x

w1
+

1
4
ξx,

Sx

S
=

Tx

T
− 1

2
ξx.

Substituting (3.11), (3.12) and (4.57), we obtain

∂2x

∂z2
1

=
(

∂x

∂z1

)2(
2
w1,x

w1
+

1
2
ly +

1
2
lθy − 1

8
lξy − θx − 1

4
ξx

)

+ 2
∂x

∂z1

∂y

∂z1

w1,y

w1
+
(

∂y

∂z1

)2(
−my

2
+

3
8
mξy +

m

2
θy

)

= 2
∂x

∂z1
A1 +

(
∂x

∂z1

)2 3x

x2 − 1
+
(

∂y

∂z1

)2
x

y2 − 1
.
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As for (4.55),

∂2x

∂z1∂z2
=

∂x

∂z2

∂

∂x

(z2,y

T

)
+

∂y

∂z2

∂

∂y

(z2,y

T

)

=
1

T 2

(
−z1,y

(
z2,xy − z2,y

Tx

T

)
+ z1,x

(
z2,yy − z2,y

Ty

T

))

=
S

T 2

(
−1

2
mx +

1
4
mξx +

1
4
lmy +

1
4
mly − 1

4
lmξy

)

=
(

∂x

∂z1

∂y

∂z2
+

∂x

∂z2

∂y

∂z1

)(
1
2

2x2y2 − y2 + x2 − 2
y(y2 − 1)(x2 − 1)

)
.

Using (4.47), we have the equality (4.55).

We can obtain the system of differential equations which Ai, Xi, Yi, Zi

and Wi satisfy.

Theorem 4.1. Functions defined by (4.24), (4.31), (4.32), (4.33) and
(4.34)

Ai(z1, z2) =
∂

∂zi
log w1(z1, z2),

Xi(z1, z2) =
∂

∂zi
log(x − 1) =

1
x − 1

∂x

∂zi
,

Yi(z1, z2) =
∂

∂zi
log(x + 1) =

1
x + 1

∂x

∂zi
,

Zi(z1, z2) =
∂

∂zi
log(y − 1) =

1
y − 1

∂y

∂zi
,

Wi(z1, z2) =
∂

∂zi
log(y + 1) =

1
y + 1

∂y

∂zi

satisfy the following system of differential equations (we call this system HMS ):

∂Ai

∂zi
= A2

i − XiYi − ZiWi,(4.58)

∂A2

∂z1
=

∂A1

∂z2
= −1

3
X1Y2 − 1

3
Z1W2 − 1

6
S1T2 − 1

6
S2T1,(4.59)

∂Xi

∂zi
= 2XiAi +

3
2
XiYi +

1
2
X2

i +
1
2
ZiWi +

1
2

XiZiWi

Yi
,(4.60)

∂X1

∂z2
=

∂X2

∂z1
(4.61)

= −1
2
X1X2 +

1
2
X1Y2 +

1
4
X1(Z2 + W2) +

1
4
X2(Z1 + W1),

∂Yi

∂zi
= 2YiAi +

3
2
XiYi +

1
2
Y 2

i +
1
2
ZiWi +

1
2

YiZiWi

Xi
,(4.62)

∂Y1

∂z2
=

∂Y2

∂z1
(4.63)



�

�

�

�

�

�

�

�

470 Toshiyuki Mano

= −1
2
Y1Y2 +

1
2
X1Y2 +

1
4
Y1(Z2 + W2) +

1
4
Y2(Z1 + W1),

∂Zi

∂zi
= 2ZiAi +

3
2
ZiWi +

1
2
Z2

i +
1
2
XiYi +

1
2

ZiXiYi

Wi
,(4.64)

∂Z1

∂z2
=

∂Z2

∂z1
(4.65)

= −1
2
Z1Z2 +

1
2
Z1W2 +

1
4
Z1(X2 + Y2) +

1
4
Z2(X1 + Y1),

∂Wi

∂zi
= 2WiAi +

3
2
WiZi +

1
2
W 2

i +
1
2
YiXi +

1
2

WiYiXi

Zi
,(4.66)

∂W1

∂z2
=

∂W2

∂z1
(4.67)

= −1
2
W1W2 +

1
2
Z1W2 +

1
4
W1(X2 + Y2) +

1
4
W2(X1 + Y1),

X1Y2 − X2Y1 = 0,(4.68)
Z1W2 − Z2W1 = 0,(4.69)

3S1(Z2 + W2) + 3S2(Z1 + W1) = 4(2X1Y2 − Z1W2 + S1T2 + S2T1),(4.70)
3T1(X2 + Y2) + 3T2(X1 + Y1) = 4(−X1Y2 + 2Z1W2 + S1T2 + S2T1),(4.71)

where i = 1, 2 and Si = 2XiYi/(Xi + Yi), Ti = 2ZiWi/(Zi + Wi).

Proof. We have already derived the equality (4.58). Equalities (4.60)–
(4.67) can be derived from Proposition 4.3. The algebraic relation (4.68) is
nothing but

(4.72) X1/Y1 = X2/Y2 = (x + 1)/(x − 1)

and we obtain (4.69) in the same way. Another two relations (4.70) and (4.71)
are given by rewriting (4.47) and (4.48) in Lemma 4.5. Derivation of the dif-
ferential relation (4.59) is not so direct. Since differentiations of the Hilbert
modular function x(z1, z2) by z1 and z2 must be commutative, we have

∂3x

∂z2
1∂z2

=
∂

∂z2

(
2

∂x

∂z1
A1 +

3x

x2 − 1

(
∂x

∂z1

)2

+
x

y2 − 1

(
∂y

∂z1

)2
)

(4.73)

=
∂

∂z1

(
x

x2 − 1
∂x

∂z1

∂x

∂z2
+

y

2(y2 − 1)

(
∂x

∂z1

∂y

∂z2
+

∂x

∂z2

∂y

∂z1

))

from (4.53) and (4.55). This relation is not trivial and gives the equation which
contain ∂A1

∂z2
. That equation is equal to (4.59). Also from (4.54) and (4.56), we

obtain the same equation.

Theorem 4.2. Whole differential and algebraic equations in HMS are
compatible with each others, and the equations (4.68 − 4.71) are algebraically
independent. Particularly, HMS is essentially a nonlinear differential system
of sixth order.
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Proof. We can check it by direct calculations.

5. Initial value problems for HMS

In this section, we shall give generic solutions of HMS. This will be done
by constructing the solution for initial conditions at any given points. First,
we shall prove that the differential system HMS has the following remarkable
properties.

Proposition 5.1. Given a set of solutions {Fi(z1, z2)} (F = A, X, Y, Z,
W and i = 1, 2) of HMS, {FT

i (z1, z2)} are also solutions of HMS, where

FT
1 (z1, z2) = F2(z2, z1),(5.1)

FT
2 (z1, z2) = F1(z2, z1).(5.2)

Moreover, for any γ =
((

a1 b1

c1 d1

)
,

(
a2 b2

c2 d2

))
∈ SL(2, C) × SL(2, C), put

Aγ
i (z1, z2) =

1
(cizi + di)2

Ai

(
a1z1 + b1

c1z1 + d1
,
a2z2 + b2

c2z2 + d2

)
− ci

cizi + di
,(5.3)

Gγ
i (z1, z2) =

1
(cizi + di)2

Gi

(
a1z1 + b1

c1z1 + d1
,
a2z2 + b2

c2z2 + d2

)
,(5.4)

where G = X, Y, Z, W . Then {F γ
i (z1, z2)} (F = A, X, Y, Z, W and i = 1, 2) are

also solutions of HMS.

Proof. The first assertion of the proposition is obvious. The second part
is proved by direct calculations. For example,

∂

∂zi
Aγ

i (z1, z2) =
−2ci

(cizi + di)2
Ai(γ(z1, z2))

+
1

(cizi + di)4
∂Ai

∂zi
(γ(z1, z2)) +

c2
i

(cizi + di)2

=
−2ci

(cizi + di)2
Ai +

c2
i

(cizi + di)2

+
1

(cizi + di)4
(A2

i − XiYi − ZiWi).

On the other hand,

(Aγ
i )2 − Xγ

i Y γ
i − Zγ

i W γ
i

=
1

(cizi + di)4
A2

i −
2ci

(cizi + di)2
Ai +

c2
i

(cizi + di)2

− 1
(cizi + di)4

XiYi − 1
(cizi + di)4

ZiWi.
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We can construct solutions with six parameters of HMS from the particular
solution in the previous section by using Proposition 5.1. We shall prove that
these solutions are generic solutions of HMS. We consider initial value problems
of HMS for generic initial conditions.

Theorem 5.1. Take complex numbers A0
i , X0

i , Y 0
i , Z0

i , W 0
i , (i = 1, 2)

satisfying the algebraic relations (4.68), (4.69), (4.70) and (4.71). We assume
that

(5.5) x0y0
(
(x0)2 − 1

) (
(y0)2 − 1

) (
(x0)2(y0)2 − 1

) (
(x0)2 + (y0)2 − 2

) 
= 0

and

(5.6) x0
1x

0
2y

0
1y

0
2(x0

1y
0
2 − x0

2y
0
1) 
= 0,

where x0 = (X0
1+Y 0

1 )/(X0
1−Y 0

1 ), y0 = (Z0
1+W 0

1 )/(Z0
1−W 0

1 ), x0
1 = 2X0

1Y 0
1 /(X0

1

−Y 0
1 ), x0

2 = 2X0
2Y 0

2 /(X0
2 −Y 0

2 ), y0
1 = 2Z0

1W 0
1 /(Z0

1 −W 0
1 ) and y0

2 = 2Z0
2W 0

2 /(Z0
2

−W 0
2 ). Then, for any (z0

1 , z0
2) ∈ C × C, there exists

γ =
((

a1 b1

c1 d1

)
,

(
a2 b2

c2 d2

))
∈ SL(2, C) × SL(2, C)

such that the set of solutions given by transformations in Proposition 5.1 from
our special solution in Theorem 4.1 satisfies the initial conditions

Aγ
i (z0

1 , z0
2) = A0

i

Xγ
i (z0

1 , z0
2) = X0

i

Y γ
i (z0

1 , z0
2) = Y 0

i

Zγ
i (z0

1 , z0
2) = Z0

i

W γ
i (z0

1 , z0
2) = W 0

i

or

Aγ◦T
i (z0

1 , z0
2) = (Aγ

i )T (z0
1 , z0

2) = A0
i

Xγ◦T
i (z0

1 , z0
2) = (Xγ

i )T (z0
1 , z0

2) = X0
i

Y γ◦T
i (z0

1 , z0
2) = (Y γ

i )T (z0
1 , z0

2) = Y 0
i

Zγ◦T
i (z0

1 , z0
2) = (Zγ

i )T (z0
1 , z0

2) = Z0
i

W γ◦T
i (z0

1 , z0
2) = (W γ

i )T (z0
1 , z0

2) = W 0
i .

Proof. Under the assumptions (5.5) and (5.6), there are relations

2x0y0(x02 − 1)(y02 − 1)x0
i y

0
i(5.7)

= − (y02 − 1)(2 − y02 − x02y02)x02
i − (x02 − 1)(2 − x02 − x02y02)y02

i ,
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for i = 1 and 2. Take (z1, z2) ∈ H × H satisfying x0 = x(z1, z2) and y0 =
y(z1, z2). From (5.7) and Remark 1, we have

(5.8)
y0
1

x0
1

=
∂y

∂z1
(z1, z2)

/ ∂x

∂z1
(z1, z2)

or

(5.9)
y0
1

x0
1

=
∂y

∂z1
(z2, z1)

/ ∂x

∂z1
(z2, z1) =

∂y

∂z2
(z1, z2)

/ ∂x

∂z2
(z1, z2).

1. The case of (5.8)
By the assumption y0

1/x0
1 
= y0

2/x0
2, we have

(5.10)
y0
2

x0
2

=
∂y

∂z2
(z1, z2)

/ ∂x

∂z2
(z1, z2).

Take γ =
((

a1 b1

c1 d1

)
,

(
a2 b2

c2 d2

))
∈ SL(2, C) × SL(2, C) which satisfies con-

ditions

(5.11) zi =
aiz

0
i + bi

ciz0
i + di

,

(5.12) A0
i (ciz

0
i + di)2 + ci(ciz

0
i + di) − ∂w1

∂zi
(z1, z2)

/
w1(z1, z2) = 0,

and

(5.13) (ciz
0
i + di)2 =

1
x0

i

∂x

∂zi
(z1, z2),

for i = 1 and 2. Then for this γ, we have

Aγ
i (z0

1 , z0
2) = A0

i

Xγ
i (z0

1 , z0
2) = X0

i

Y γ
i (z0

1 , z0
2) = Y 0

i

Zγ
i (z0

1 , z0
2) = Z0

i

W γ
i (z0

1 , z0
2) = W 0

i .

2. The case of (5.9)
In the same as the previous case, we have

(5.14)
y0
2

x0
2

=
∂y

∂z1
(z1, z2)

/ ∂x

∂z1
(z1, z2).
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Take γ =
((

a1 b1

c1 d1

)
,

(
a2 b2

c2 d2

))
∈ SL(2, C) × SL(2, C) as

z1 =
a1z

0
2 + b1

c1z0
2 + d1

, z2 =
a2z

0
1 + b2

c2z0
1 + d2

,(5.15)

(c1z
0
2 + d1)2 =

1
x0

2

∂x

∂z1
(z1, z2), (c2z

0
1 + d2)2 =

1
x0

1

∂x

∂z2
(z1, z2),(5.16)

A0
2(c1z

0
2 + d1)2 + c1(c1z

0
2 + d1) − ∂w1

∂z1
(z1, z2)

/
w1(z1, z2) = 0,(5.17)

and

(5.18) A0
1(c2z

0
1 + d2)2 + c2(c2z

0
1 + d2) − ∂w1

∂z2
(z1, z2)

/
w1(z1, z2) = 0.

Then for this γ, we have

Aγ◦T
i (z0

1 , z0
2) = A0

i

Xγ◦T
i (z0

1 , z0
2) = X0

i

Y γ◦T
i (z0

1 , z0
2) = Y 0

i

Zγ◦T
i (z0

1 , z0
2) = Z0

i

W γ◦T
i (z0

1 , z0
2) = W 0

i .

Finally, we shall give reductions and special solutions of HMS. First, we
reduce HMS to an ordinary differential equation by restricting to the diagonal
part z1 = z2 = t. In HMS, we assume that A1(t, t) = A2(t, t), X1(t, t) =
X2(t, t), Y1(t, t) = Y2(t, t), Z1(t, t) = Z2(t, t), W1(t, t) = W2(t, t) and that
Xi(t, t) = Yi(t, t) = 0, then we have an ordinary differential system:

(5.19)




d

dt
A(t) = A(t)2 − Z(t)W (t)

d

dt
Z(t) = 2Z(t)A(t) + 2Z(t)W (t)

d

dt
W (t) = 2W (t)A(t) + 2Z(t)W (t).

The system (5.19) is changed to

(5.20)




ω′
1 = ω1ω2 + ω1ω3 − ω2ω3

ω′
2 = ω1ω2 + ω2ω3 − ω1ω3

ω′
3 = ω1ω3 + ω2ω3 − ω1ω2

by the transformation

ω1(t) = A(t),(5.21)
ω2(t) = Z(t) + A(t),(5.22)
ω3(t) = W (t) + A(t).(5.23)
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This system was solved by Halphen in terms of elliptic modular forms ([2]).
Next, we assume that Xi(z1, z2) = Yi(z1, z2) and Zi(z1, z2) = Wi(z1, z2).

Then HMS is reduced to

∂Ai

∂zi
= A2

i − X2
i − Z2

i ,(5.24)

∂A2

∂z1
=

∂A1

∂z2
= −X1X2,(5.25)

∂Xi

∂zi
= 2XiAi + 2X2

i + Z2
i ,(5.26)

∂X2

∂z1
=

∂X1

∂z2
= X1X2,(5.27)

∂Zi

∂zi
= 2ZiAi + 2Z2

i + X2
i ,(5.28)

∂Z2

∂z1
=

∂Z1

∂z2
= Z1Z2,(5.29)

(5.30) X1X2 = Z1Z2 =
1
2
(X1Z2 + X2Z1).

We can solve this system (5.24)–(5.30) directly. Put Pi = Xi + Ai and Qi =
Yi + Ai. Then the system is changed to

∂Ai

∂zi
= −A2

i + 2(Pi + Qi)Ai − P 2
i − Q2

i ,(5.31)

∂A2

∂z1
=

∂A1

∂z2
= −(P1 − A1)(P2 − A2),(5.32)

∂Pi

∂zi
= P 2

i ,(5.33)

∂P2

∂z1
=

∂P1

∂z2
= 0,(5.34)

∂Qi

∂zi
= Q2

i ,(5.35)

∂Q2

∂z1
=

∂Q1

∂z2
= 0,(5.36)

and algebraic equation (5.30) demands Pi = Qi (i = 1, 2) or P1 = Q1 = A1.
Then we have the following solutions:

1. Ai = Pi = Qi = 0 (i = 1, 2),

2. A1 = 0, A2 =
1
z2

, Pi = Qi = 0,

3. Ai =
1

z1 + z2
, Pi = Qi = 0,

4. A1 = 0, A2 =
ω

z2
, P1 = Q1 = 0, P2 = − 1

z2
, Q2 = 0 (ω = e2πi/3),

5. A1 = 0, A2 =
ω2

z2
, P1 = Q1 = 0, P2 = − 1

z2
, Q2 = 0,
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6. A1 = 0, A2 =
ω + ω2zω2−ω

2

z2(1 + zω2−ω
2 )

, P1 = Q1 = 0, P2 = − 1
z2

, Q2 = 0.

The general solutions of the system (5.24)–(5.30) are obtained by the transfor-
mations in the Proposition 5.1.
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