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Solvability of a third-order two-point boundary
value problem in Banach Spaces

By

Shihuang Hong

Abstract

In this paper we discuss the two-point boundary value problem of
third order ordinary differential inclusions in ordered Banach Spaces. By
using a fixed point theorem due to Hong [8], we establish the existence of
solutions the mentioned above problems with discontinuous right hand
side.

1. Introduction

Many techniques arose in the studies of boundary value problems of third
order ordinary differential equations, for instance, differential inequality [1],
topological transversality [2], the shooting method [3], the lower and upper
solutions method [4], [5], analysis comparable to that of classical equations[6],
the Lyapunov-Schmidt procedure and the continuum theory for O-epi maps
[7] and so on. A common hypothesis has been used in the above cited works,
that is, the function f is assumed to be continuous. However, it is common
knowledge that many problems considered in the engineering and technology
lead to nonlinear ordinary differential equations of which are not supposed the
functions to be continuous. So, it is significant to study the boundary value
problems with discontinuous functions.

In this paper, we are concerned with the third-order two point boundary
value problem of third order differential inclusions in order Banach spaces

(1.1)
{ −u′′′(t) ∈ F (t, u(t), u′(t)), 0 ≤ t ≤ 1,

u(0) = u′(0) = u′(1) = θ,

where θ denotes zero element of E, F : [0, 1] × E × E → 2E with E a Banach
space. Our purpose is to establish existence of solutions for the problem (1.1)
via a fixed point theorem due to Hong [8].

Very recently, under the conditions of F being continuous and single valued
real number function, Feng and Liu [5] used the upper and lower solutions
method to prove some existence results of solutions to (1.1). The considerations
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of this paper differ from them in the sense that we do not assume that both
of lower and upper solutions of (1.1) exist in advance, besides, we omit the
continuity assumption for the map F in ordered Banach spaces.

2. Preliminaries

In this section, we introduce some definitions, notations and preliminaries
facts from multivalued analysis (for example, see [9]) which are used throughout
this paper.

Let (E, | · |) be a Banach space with a partially order “≤” introduced by a
cone P of E, that is, x ≤ y if and only if y − x ∈ P , x < y if and only if x ≤ y
and x �= y. Throughout this paper we always denote with θ the zero element
of E.

Take x0, y0 ∈ E and let K = {x ∈ E : x0 ≤ x} , K1 = {x ∈ E : x ≤ y0} be
given ordered sets of E. The ordered interval of E be written as [u, v] = {x ∈
E : u ≤ x ≤ v}.

C([0, 1], E) is a Banach space consisting of all continuous functions from
[0, 1] into E with the norm ‖x‖ = sup{|x(t)| : 0 ≤ t ≤ 1}. For any x, y ∈
C([0, 1], E), define x ≤ y if and only if x(t) ≤ y(t) for each t ∈ [0, 1], x < y
if and only if x ≤ y and there exists some t ∈ [0, 1] such that x(t) �= y(t).
Ck([0, 1], E) stands for the Banach space consisting of all functions x(t) be-
longing to C([0, 1], E) and x(k)(t) existing and continuous, where, k = 1, 2, 3.

For 0 < p < ∞, let Lp([a, b], E) denote the Banach space of measurable
functions x : [a, b] → E which are Bochner integrable with norm

‖x‖p =

(∫ b

a

|x(t)|pdt

)1/p

.

The partial order in Lp([a, b], E) is defined as x ≤ y iff x(t) ≤ y(t) a.e. for
t ∈ [a, b].

For D ⊂ Lp([0, 1], E), we denote D(t) = {x(t) : x ∈ D} and
∫ t

0
D(s)ds =

{∫ t

0
x(s)ds : x ∈ D} with t ∈ [0, 1]. We always denote with →̇ the weak

convergence, with lim(w) the weak limit and with cl(B) the closure of the set
B.

For two subsets M, N of E we write M ≤ N if

∀x ∈ M, ∃y ∈ N such that x ≤ y.

A multivalued operator T : M ⊂ E → 2E \ {∅} is said to be increasing
upwards if u, v ∈ M with u ≤ v and x ∈ Tu imply that there exists y ∈ Tv
such that x ≤ y. T is increasing downwards if u, v ∈ M , u ≤ v and y ∈ Tv
imply an existence of x ∈ Tu such that x ≤ y. If T is increasing upwards and
downwards we say that T is increasing.

The multivalued operator T : E → 2E is said to be measurable if for each
x ∈ E the distance between x and Tx is a measurable function.

The multivalued operator T has a fixed point if there is x ∈ E such that
x ∈ Tx. Let the multivalued operator T : [0, 1] × E → 2E . For each x ∈
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C([0, 1], E), the set of L1-selections ST,x of T is defined by

ST,x = {fx ∈ L1([0, 1], E) : fx(t) ∈ T (t, x(t)) a.e. for t ∈ [0, 1]}.

This may be empty. It is nonempty if and only if the function y : [0, 1] → R
defined by

y(t) = inf{|v| : v ∈ T (t, y(t))}
belongs to L1([0, 1], R) (see [10]).

Throughout this paper we always assume that the multivalued map T has
nonempty, weakly closed values and L1-selections ST,x is nonempty.

At the end of this section we give he following lemmas which are crucial
in the proof of our main theorems.

Lemma 2.1 ([8]). If the operator A : K → 2E satisfies the following
hypotheses:

(H1) A is increasing upwards and Ax is totally ordered subset for any x ∈ E.
(H2) If C = {xn} ⊂ K is countable and totally ordered subset and

C ⊂ cl ({x1} ∪ A(C)) ,

then C is weakly relatively compact.
(H3) {x0} ≤ Ax0.

Then A has at least one fixed point.

Lemma 2.2 ([8]). Suppose that the conditions (H2) and (H3) of Lemma
1 are satisfied. If the following condition is satisfied:

(H’1) A is increasing and Ax is totally ordered subset for any x ∈ E.
(H4) Ay0 ≤ {y0} with x0 < y0.

Then A has minimal and maximal fixed points x∗, x∗ ∈ [x0, y0].

Lemma 2.3 ([11]). Let p ∈ (0,∞). Suppose that M ⊂ Lp([0, 1], E) is
countable and exists some v ∈ Lp([0, 1], R+) with |u(t)| ≤ v(t) a.e. on [0, 1] for
all u ∈ M . If M(t) is relatively compact in E for a.e. t ∈ [0, 1], then M is
weakly relatively compact in Lp([0, 1], E).

Lemma 2.4 ([12]). Let D = {xn} ⊂ L1([0, 1], E). If there exists v ∈
L1([0, 1], R) such that |xn(t)| ≤ v(t) a.e. on [0, 1], then γ(D(t)) ∈ L1([0, 1], R+)
and

γ

({∫ t

0

xn(s)ds : n ≥ 1
})

≤ 2
∫ t

0

γ(D(s))ds.

Here γ is Kuratowskii’s measure of noncompactness on E.

Let X = C([0, 1], E), X+ = {x ∈ X : x(t) ≥ θ, 0 ≤ t ≤ 1}, then X+ is a
cone of X. Similarly [5], we can prove the following lemma.
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Lemma 2.5. If z ∈ C2([0, 1], E) satisfies{
z′′(t) ≥ θ, 0 ≤ t ≤ 1,
z(0) ≤ θ, z(1) ≤ θ,

then z ≤ θ.

Proof. Let X∗
+ denote the dual cone of X+, and for any g ∈ X∗

+, let
h(t) = g(z(t)). Then we have h ∈ C2([0, 1], R) and h′(t) = g(z′(t)), h′′(t) =
g(z′′(t)) for any t ∈ [0, 1]. In view of the above inequality we have{

h′′(t) ≥ 0, 0 ≤ t ≤ 1,
h(0) ≤ 0, h(1) ≤ 0.

We now prove h(t) ≤ 0 for all t ∈ [0, 1]. From the above inequality it follows
that h(t) is a convex function on [0, 1]. This implies that

h(t) = h(0(1 − t) + 1t) ≤ (1 − t)h(0) + th(1) ≤ 0, ∀t ∈ [0, 1].

Note that g ∈ X∗
+ is arbitrary, therefore we obtain z(t) ≤ θ for all t ∈ [0, 1].

This proof is completed.

3. Main results

Let us define that a function u ∈ C2([0, 1], E) is called the solution of
problem (1.1) if u(2) is abstractly continuous and u satisfies (1.1) on [0, 1].

Let v(t) = u′(t), H(t, v(t)) = F
(
t,
∫ t

0
v(s)ds, v(t)

)
, then (1.1) is equivalent

to

(3.1)
{ −v′′(t) ∈ H(t, v(t)), 0 ≤ t ≤ 1,

v(0) = v(1) = θ.

Define a single valued operator L : Ω ⊂ X → X and a multivalued operator
N : X → 2X as follows:

(Lv)(t) = −v′′(t),
(Nv)(t) = {u : u(t) = gv(t) for gv ∈ SH,v} ,

where Ω = {v ∈ X : v′′ ∈ X, v(0) = v(1) = θ} and t ∈ [0, 1].
By the definition of L and N , equation(3.1) is equivalent to the following

operator inclusion:

(3.2) Lv ∈ Nv.

In order to apply Lemma 1 to prove that (3.2) has solutions, we impose
the following hypothesis on map F .

(h1) F (t, u, v) is a totally ordered subset in E for each u, v ∈ E and t ∈ [0, 1].
In addition, for each given t ∈ [0, 1] F is increasing upwards, i.e., for any
ui, vi ∈ E (i = 1, 2) with u1 ≤ u2, v1 ≤ v2, we have

F (t, u1, v1) ≤ F (t, u2, v2).
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(h2) There exists z0 ∈ C3([0, 1], E) such that

{−z′′′0 (t)} ≤ F (t, z0(t), z′0(t)), 0 < t < 1,

z0(0) = θ, z′0(0) ≤ θ, z′0(1) ≤ θ.

(h3) There exists w0 ∈ C3([0, 1], E) such that

F (t, w0(t), w′
0(t)) ≤ {−w′′′

0 (t)}, 0 < t < 1,

w0(0) = θ, w′
0(0) ≥ θ, w′

0(1) ≥ θ.

(h4) sup{|f(t)| : f(t) ∈ F (t, u, v)} ≤ b(t) a.e. on J for all u, v ∈ E. Here
b(t) ∈ L1([0, 1], R+).

(h5) For any t ∈ [0, 1], ui, vi ∈ C2([0, 1], E) (i = 1, 2), there exists a
Carathéodory function φ : [0, 1] × R+ → R+ satisfying that φ(t, ·) is non-
decreasing for fixed t ∈ [0, 1] and for all fi(t) ∈ F (t, ui(t), vi(t)) (i = 1, 2) and
almost every t ∈ J ,

|f1(t) − f2(t)| ≤ φ(t, max{|u1(t) − u2(t)|, |v1(t) − v2(t)|}).

In addition ρ(t) = 0 for every t ∈ [0, 1] is the unique solution in L1([0, 1], R+)
to the inequality

ρ(t) ≤ 2
∫ 1

0

G(t, s)φ(s, ρ(s))ds a.e. on [0, 1].

with

G(t, s) =
{

s(1 − t), 0 ≤ s ≤ t ≤ 1,
t(1 − s), 0 ≤ t ≤ s ≤ 1.

Now we can state and prove our main results.

Theorem 3.1. Assume that the operator F satisfies conditions (h1),
(h2), (h4) and (h5), then there exists a solution to (1.1).

Proof. For every η ∈ X, from the well known results of ordinary differ-
ential equations it follows that the boundary value problem{

Lv(t) = −v′′(t) = η, 0 ≤ t ≤ 1,
v(0) = v(1) = 0.

has an unique solution v satisfying

(3.3) v(t) = (L−1η)(t) =
∫ 1

0

G(t, s)η(s)ds

with G(t, s) given in (h5). Let A = L−1N , then

Ax = {L−1u : u ∈ Nx}.
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It is obvious that the existence of solutions to inclusion (3.2) is equivalent to
the existence of fixed points of the operator A. In order to prove that A has
fixed points, we seek to apply Lemma 2.1. It is sufficient to show that A
has nonempty, weakly closed values and the conditions (H1)-(H3) are satisfied.
First, Let η ∈ X, {ηn} ⊂ X, ηn → η and v = L−1η, vn = L−1ηn, then

v(t) =
∫ 1

0

G(t, s)η(s)ds, vn(t) =
∫ 1

0

G(t, s)ηn(s)ds.

Note that max
0≤t≤1

∫ 1

0
G(t, s)ds = 1

8 , we have

‖vn − v‖ = max
0≤t≤1

∣∣∣∣
∫ 1

0

G(t, s)(ηn(s) − η(s))ds

∣∣∣∣
≤ max

0≤t≤1

∫ 1

0

G(t, s)‖ηn(s) − η(s)‖ds ≤ 1
8
‖ηn − η‖.

This indicates vn → v, i.e., L−1 : E → E is continuous. From the fact
that N has nonempty and weakly closed values (because F has nonempty and
weakly closed values), together with the continuity of L−1, it follows that A
has nonempty and weakly closed values.

Next, we show that the condition (H1) holds. To validate that A is increas-
ing upwards, we take x, y ∈ X with x ≤ y. Thus, for any u ∈ Ax, take ν ∈ Nx
satisfying u = L−1ν, in view of assumption (h1), there exists ξ ∈ Ny such that
ν ≤ ξ. Let v = L−1ξ, then v ∈ Ay and Lu ≤ Lv. Let p(t) = u(t) − v(t), then
p′′(t) ≥ θ for any t ∈ [0, 1]. In view of Lemma 2.5, we have u ≤ v. This implies
that A : X → 2X is increasing upwards.

Now we prove that Ax is totally ordered subset for any x ∈ E. In fact,
for any u, v ∈ Ax, there exist x, y ∈ Nx such that u = L−1x, v = L−1y.
(h1) guarantees that Nx is totally ordered. Without loss of generality, we can
assume x ≤ y. Hence, Lu ≤ Lv. Again applying Lemma 2.5, it can be see that
u ≤ v. This shows that Ax is totally ordered. Consequently, (H1) is satisfied.

Third, we shall prove that the condition (H3) holds. Let x0 = z′0, we claim
{x0} ≤ Ax0. Indeed, by the definition of z0, there exists β ∈ Nx0 such that

−x′′
0(t) ≤ β(t) for 0 ≤ t ≤ 1, x0(0) ≤ θ, x0(1) ≤ θ.

Denote y0 = L−1β, thus y0 ∈ Ax0 and Ly0 = β, that is

−y′′
0 (t) = β(t) for 0 ≤ t ≤ 1, y0(0) = y0(1) = θ.

Let p(t) = x0(t) − y0(t). The above two expressions imply

−p′′(t) ≤ θ for 0 ≤ t ≤ 1, p(0) ≤ θ, p(1) ≤ θ.

In virtue of Lemma 2.5, we get p(t) ≤ θ, hence, x0 ≤ y0.
Finally, we cheek condition (H2) in Lemma 2.1. In order to do this, we

consider any countable totally ordered subset C = {xn : n ≥ 1} ⊂ K such
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that C ⊂ cl({x1}∪A(C)). We shall prove that C is weakly relatively compact.
Since C is countable, we can find a countable set V = {vn : n ≥ 1} ⊂ A(C)
with C ⊂ cl({x1} ∪ V ). There exists xn ∈ C such that vn(t) ∈ (Axn)(t), i.e.,
there exists u ∈ Nxn, fxn

∈ SH,xn
such that

vn(t) = (L−1u)(t) =
∫ 1

0

G(t, s)fxn
(s) ds.

By means of the assumption (h4) we have

|vn(t)| ≤
∫ 1

0

G(t, s) |fxn
(s)| ds ≤

∫ 1

0

G(t, s)b(s)ds.

Obviously,
∫ 1

0
G(t, s)b(s)ds =: c(t) ∈ L1([0, 1], R+) and we obtain

(3.4) |vn(t)| ≤ c(t).

From C ⊂ cl({x1} ∪ V ) it follows that the left hand of (3.4) is also true with
any xn ∈ C instead of vn.

Next, let us take xn, xm ∈ C and for any fn ∈ F (t,
∫ t

0
xn(s)ds, , xn(t)),

fm ∈ F (t,
∫ t

0
xm(s)ds, , xm(t)), from the assumption (h5), we have

(3.5) |fn(t) − fm(t)| ≤ φ(t, max{|yn(t) − ym(t)|, |xn(t) − xm(t)|}).

where yk(t) =
∫ t

0
xk(s)ds (k = n, m). Note that |yn(t) − ym(t)| ≤ ∫ t

0
|xn(s) −

xm(s)|ds for each t ∈ [0, 1]. Load this into (3.5), we get

|fn(t) − fm(t)| ≤ φ

(
t, max

{∫ t

0

|xn(s) − xm(s)|ds, |xn(t) − xm(t)|
})

≤ φ

(
t, max

{∫ t

0

diam(C(s))ds, diam(C(t))
})

.

This yields

diam
(

F

(
t,

∫ t

0

C(s)ds, C(t)
))

≤ φ

(
t, max

{∫ t

0

diam(C(s))ds, diam(C(t))
})

.

Fixed t ∈ [0, 1], for any given ε > 0, there exists a finite number of subsets
D1(t), D2(t), . . . , Dl(t) of C(t) such that

C(t) ⊂
l⋃

i=1

Di(t), diamDi(t) ≤ γ(C(t)) + ε.

Since

F

(
t,

∫ t

0

C(s)ds, C(t)
)
⊂

l⋃
i=1

F

(
t,

∫ t

0

Di(s)ds, Di(t)
)

.
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By the monotonicity of φ(s, ·) we have

diam
(

F

(
t,

∫ t

0

Di(s)ds, Di(t)
))

≤ φ

(
t, max

{∫ t

0

diam(Di(s))ds, diam(Di(t))
})

≤ φ

(
t, max

{∫ t

0

[γ(C(s)) + ε]ds, γ(C(t)) + ε

})
(i = 1, 2, . . . , l).

This yields

γ

(
F

(
t,

∫ t

0

C(s)ds, C(t)
))

≤ φ

(
t, max

{∫ t

0

[γ(C(s)) + ε]ds, γ(C(t)) + ε

})
.

Letting ε → 0, we have

γ

(
F

(
t,

∫ t

0

C(s)ds, C(t)
))

≤ φ

(
t, max

{∫ t

0

γ(C(s))ds, γ(C(t))
})

.

If γ(C(t)) ≤ ∫ t

0
γ(C(s))ds, then γ(C(t)) = 0 by Gronwall inequality. This

implies that C(t) is relatively compact on [0, 1]. In virtue of Lemma 2.3, we
obtain that C is weakly relatively compact. If γ(C(t)) >

∫ t

0
γ(C(s))ds, then

max
{∫ t

0

γ(C(s))ds, γ(C(t))
}

= γ(C(t)).

Hence,

(3.6) γ

(
F

(
t,

∫ t

0

C(s)ds, C(t)
))

≤ φ (t, γ(C(t))) .

For any vn(t) ∈ V (t), there exists u ∈ Nxn, fxn
∈ SH,xn

with xn ∈ C such
that

vn(t) = (L−1u)(t) =
∫ 1

0

G(t, s)fxn
(s) ds.

By this expression and Lemma 2.4 we have

γ(V (t)) = γ

({∫ 1

0

G(t, s)fxn
(s) ds : n ≥ 1

})

≤ 2
∫ 1

0

G(t, s)γ({fxn
(s) : n ≥ 1})ds

for every t ∈ [0, 1]. While by means of (3.6) we get

γ(C(t)) ≤ γ(V (t)) ≤ 2
∫ 1

0

G(t, s)φ(s, γ(C(s)))ds.
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By virtue of the character of φ, we obtain

γ(C(t)) = 0

for any t ∈ [0, 1]. This implies that C(t) is relatively compact for almost every
t ∈ J . In view of Lemma 2.3, we obtain that C is weakly relatively compact.
Consequently, (H2) holds.

To sum up, Lemma 2.1 guarantees that the operator A has a fixed point
which is clearly a solutions of (3.2). This proof is completed.

Theorem 3.2. Assume that the operator F satisfies conditions (h1),
(h2) and (h4) and the following condition

(h’5) For any t ∈ [0, 1], ui, vi ∈ C2([0, 1], E) (i = 1, 2), there exists a function
φ : R+ → R+ satisfying that φ(·) is nondecreasing, φ(r+) ≤ r(∀r > 0) and for
all fi(t) ∈ F (t, ui(t), vi(t))(i = 1, 2) and almost every t ∈ J ,

|f1(t) − f2(t)| ≤ φ(max{‖u1(t) − u2(t)‖, ‖v1(t) − v2(t)‖}).

then there exists a solution to (1.1) in K.

Proof. We only want to prove that C is weakly relatively compact. Sup-
pose, on the contrary, γ(C) > 0. In the same way as the proof of Theorem 3.1,
we may obtain

γ(C(t)) ≤ γ(V (t)) ≤ 2
∫ 1

0

G(t, s)φ(γ(C)+)ds.

This implies that

γ(C) ≤ 2
∫ 1

0

G(t, s)φ(γ(C)+)ds < φ(γ(C)+) ≤ γ(C),

a contradiction. Hence, γ(C) = 0, i.e., C is relatively compact. This proof is
completed.

The next result is dual to that of Theorem 3.1 (Theorem 3.2).

Theorem 3.3. Assume that the operator F satisfies conditions (h3),
(h4) and (h5) ((h’5)) and the following condition

• F (t, u, v) is a totally ordered subset in E for each u, v ∈ E and t ∈ [0, 1].
In addition, for each given t ∈ [0, 1] F is increasing downwards,
then there exists a solution to (1.1) in K1.

In the light of Lemma 2.2, we can obtain the existence theorem of maximal
and minimal solutions to (1.1):

Theorem 3.4. Let the conditions (h2)–(h5)((h’5)) hold with x0 = z′0 <
w′

0 = y0. Moreover, if
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(h) F (t, u, v) is a totally ordered subset in E for each u, v ∈ E and t ∈ [0, 1].
In addition, for each given t ∈ [0, 1] F is increasing.
Then (1.1) has maximal and minimal solutions on [x0, y0].

In what follows, we consider existence of multiple solutions for (1.1)

Theorem 3.5. Let the conditions (h), (h2)–(h5)((h’5)) hold with x0 =
z′0 > w′

0 = y0. Then (1.1) has at least two solutions.

Proof. In view of Theorem 3.1 (Theorem 3.2) and Theorem 3.3 we im-
mediately get that problem (1.1) has solutions x∗ ∈ K and y∗ ∈ K1. From our
assumptions it follows K ∩ K1 = ∅, which yields x∗ �= y∗. Therefore problem
(1.1) has two solutions. This proof is completed.

4. An example

Consider the two point boundary value problem of infinite system for non-
linear scalar third order differential inclusions

(4.1)
{ −u′′′

j (t) ∈ Fj(t, u(t), u′(t)), 0 ≤ t ≤ 1,
uj(0) = u′

j(0) = u′
j(1) = θ,

where Fj = [min{fj , gj}, max{fj , gj}] with

fj(t, u(t), v(t)) =
t + 1
j2

+
1

32(j + 1)2
[sin vj+1(t) + cos uj(t)],

gj(t, u(t), v(t)) =
t + 1
j2

+
1

32(j + 1)2
[cos vj+1(t) + sinuj(t)].

Here, j = 1, 2, . . .. Let E = l1 = {u1, u2, . . . , uj , . . .) :
∞∑

j=1

|uj | < ∞} with norm

|u| =
∞∑

j=1

|uj |, cone P = {u ∈ l1 : uj ≥ 0, j = 1, 2, . . .}, f = (f1, f2, . . . , fj , . . .)

and multivalued operator F (t, u(t), u′(t)) stand for the totally ordered subset
of infinite rectangle F1(t, u(t), u′(t))×F2(t, u(t), u′(t))×· · ·×Fj(t, u(t), u′(t))×
· · · . Clearly, F has nonempty, weakly closed values and the hypothesis (h) is
satisfied. Conclusion. If (4.1) is regarded as a boundary value problem of form
(1.1), then it admits a solution in P . Accordingly, (4.1) admits at least two
solutions.

Proof. We shall show that all conditions of Theorem 3.5 are satisfied.
Let z0 = θ = (0, 0, . . .), w0(t) = (−t3, . . . ,− t3

j2 , . . .) and b(t) = π2t
6 + π2

3 − 1,
then z′0 > w′

0 and (h2), (h3) and (h4) hold. Let φ(x) = x, then for any
t ∈ [0, 1], u1, u2, v1, v2 ∈ X and any h1 ∈ F (t, u1, v1), h2 ∈ F (t, u2, v2), denote
h1 = (f1

1 , f1
2 , . . .), h2 = (f2

1 , f2
2 , . . .) with f1

j ∈ Fj(t, u1, v1), f2
j ∈ Fj(t, u2, v2) for
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j = 1, 2, . . . , we have

|h1(t) − h2(t)| =
∞∑

j=1

|f1
j (t, u1(t), v1(t)) − f2

j (t, u2(t), v2(t))|

≤ 1
32

∞∑
j=1

16|v1
j+1(t) − v2

j+1(t)| +
∞∑

j=1

16|u1
j(t) − u2

j (t)|

≤ 1
32

(16|v1(t) − v2(t)| + 16|u1(t) − u2(t)|)
≤ max{|v1(t) − v2(t)|, |u1(t) − u2(t)|}
≤ max{‖v1 − v2‖, ‖u1 − u2‖} = φ(max{‖v1 − v2‖, ‖u1 − u2‖}),

where wi = (wi
1, w

i
2, . . .) with i = 1, 2 and w = u, v. Consequently, (h’5) is

satisfied.
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