A note on the Stiefel-Whitney classses of representations of exceptional Lie groups

Dedicated to the memory of Professor Masahiro Sugawara

By

Akira Kono

Let E_{l} be the compact, 1-connected simple exceptional Lie group of rank $l(l=6,7,8)$. Consider the following real representations:

$$
\begin{aligned}
& \rho_{6}: E_{6} \hookrightarrow U(27) \rightarrow S O(54), \\
& \rho_{7}: E_{7} \hookrightarrow U(56) \rightarrow S O(112), \\
& \rho_{7}^{\prime}: E_{7} \rightarrow S O(133) \\
& \quad \text { and } \\
& \rho_{8}: E_{8} \rightarrow S O(248),
\end{aligned}
$$

where ρ_{7}^{\prime} and ρ_{8} are the adjoint representations (see Adams [1]). The purpose of this note is to show the following without using the structure of $H^{*}\left(B E_{l}\right)$ where $H^{*}()$ denotes the mod 2 cohomology ring:

Theorem 1. $\quad w_{2^{l-1}}\left(\rho_{l}\right)$ and $w_{64}\left(\rho_{7}^{\prime}\right)$ are not decomposable in $H^{*}\left(B E_{l}\right)$.
Let $p=p_{n}: \operatorname{Spin}(n) \rightarrow S O(n)$ be the universal covering and $C_{n}=\operatorname{ker} p_{n}$. The subgroup of $S O(n)$ which consists of diagonal matrices is denoted by $V(n)$ and $\tilde{V}(n)=p_{n}^{-1}(V(n))$. Put $p^{\prime}=p_{n}^{\prime}=\left.p_{n}\right|_{\tilde{V}(n)}, d(6)=10, d(7)=11$ and $d(8)=13$. E_{l} contains $\operatorname{Spin}(d(l))$ as a closed subgroup. Denote by $\Delta(l)$ the unique irreducible representation of $\tilde{V}(d(l))$ on which $C_{d(l)}$ acts non-trivially. Note that $\operatorname{dim} \Delta(l)=2^{l-1}$ and $\left.\Delta(l)\right|_{C_{d(l)}}$ is isomorphic to $2^{l-1} \epsilon$ where ϵ is the one dimensional non-trivial real representation of $C_{d(l)} \cong \mathbb{Z} / 2$ (see Quillen [3]). Note that (the center of $\left.E_{l}\right) \cap C_{d(l)}=\{0\}$. Therefore $\left.\rho_{l}\right|_{C_{d(l)}}$ and $\left.\rho_{7}^{\prime}\right|_{C_{d(7)}}$ are non trivial. Since $\operatorname{dim} \rho_{l}<2^{l}$, we have the following:

Lemma 1. $\left.\quad \rho_{l}\right|_{\tilde{V}(d(l))}=\Delta(l)+p^{\prime *} \mu_{l}$ where μ_{l} is a representation of $V(d(l))$.

On the other hand, since we may assume $C_{d(7)}$ contained in a maximal torus, $\left.\rho_{7}^{\prime}\right|_{C_{d(7)}}$ contains at least 7-dimensional trivial representation. Therefore we have

Lemma 2. $\left.\quad \rho_{7}^{\prime}\right|_{\tilde{V}(11)}=\Delta(7) \oplus p_{7}^{\prime *} \mu_{7}^{\prime}$ where μ_{7}^{\prime} is a representation of $V(d(7))$.

Denote the natural maps $B C_{d(l)} \subset B \tilde{V}(d(l)), B \tilde{V}(d(l)) \rightarrow B \operatorname{Spin}(d(l))$ and $B \operatorname{Spin}(d(l)) \rightarrow B E_{l}$ by i_{l}, j_{l} and k_{l}. Put $\xi_{l}=k_{l} \circ j_{l} \circ i_{l}$. Note that in $H^{*}\left(B C_{d(l)}\right)=\mathbb{Z} / 2[t]$ where $\operatorname{deg} t=1, \operatorname{Im} i_{l}^{*}=\mathbb{Z} / 2\left[t^{t^{l-1}}\right]$ (see Quillen [3]). Using Lemma 1 and Lemma 2, we have

$$
\begin{equation*}
w\left(\xi_{l}^{*} \rho_{l}\right)=1+t^{2^{l-1}} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
w\left(\xi_{l}^{*} \rho_{7}^{\prime}\right)=1+t^{64} \tag{1.2}
\end{equation*}
$$

where $w()$ denotes the total Stiefel-Whitney class. We have $\xi_{l}^{*} w_{2^{l-1}}\left(\rho_{l}\right)$ and $\xi_{l}^{*} w_{64}\left(\rho_{7}^{\prime}\right)$ are not decomposable in $\mathbf{I m} i_{l}^{*}$ and therefore we have Theorem 1.

Remark 2. The fact that $w_{128}\left(\rho_{8}\right)$ is not decomposable in $H^{*}\left(B E_{8}\right)$ is also obtained by Mimura and Nishimoto using $\varphi^{*}\left(w\left(\rho_{8}\right)\right)$ where $\varphi: B \operatorname{Spin}(16)$ $\rightarrow B E_{8}$ (Talk in Naha 2004).

Consider the following commutative diagram

where ρ and ρ^{\prime} are mod 2 reductions. Note that ρ is epic and ρ^{\prime} is isomorphic. Since $i_{l}^{*}=0, \xi_{l}^{*}=i_{l}^{*} \circ j_{l}^{*} \circ k_{l}^{*}=0$. Therefore we have

$$
H^{4}\left(\xi_{l} ; \mathbb{Z}\right)=0
$$

Therefore there exists $\tilde{\xi}_{l}: B C_{d(l)} \rightarrow \widetilde{B E}_{l}$ such that $\pi_{l} \circ \tilde{\xi}_{l} \simeq \xi_{l}$ where π_{l} : $\widetilde{B E}_{l} \rightarrow B E_{l}$ is the 4 -connected cover. In Ohsita [2] $\pi_{l}^{*}\left(w\left(\rho_{l}\right)\right)$ and $\pi_{7}^{*}\left(w\left(\rho_{7}^{\prime}\right)\right)$ are determined. To determine $\pi_{l}^{*}\left(w\left(\rho_{l}\right)\right) l=6,7$ and $\pi_{7}^{*}\left(w\left(\rho_{7}^{\prime}\right)\right)$ the structures of $H^{*}\left(B E_{6}\right)$ and $H^{*}\left(B E_{7}\right)$ are used. In this section we determine $\pi_{6}^{*} w\left(\rho_{6}\right)$ and $\pi_{7}^{*} w\left(\rho_{7}\right)$ without using $H_{\tilde{\xi}}^{*}\left(B E_{6}\right)$ and $H^{*}\left(B E_{7}\right)$. For symbols and notation see Ohsita [2]. Since $\xi_{l}^{*} \neq 0, \tilde{\xi}_{l}^{*} \neq 0$. Note that $\operatorname{Im} \pi_{6}^{*} \subset \mathbb{Z} / 2\left[y_{16}, y_{24}\right]$ and $\operatorname{Im} \pi_{7}^{*} \subset$ $\mathbb{Z} / 2\left[y_{16}, y_{24}, y_{28}\right]$ where $\left|y_{j}\right|=j, S q^{8} y_{16}=y_{24}$ and $S q^{4} y_{24}=y_{28}$. Therefore $\tilde{\xi}_{l}^{*} y_{16}=t^{16}$. By (1.1), $\pi_{6}^{*} w_{j}\left(\rho_{6}\right)=0 \quad 1 \leq j \leq 31$ and $\pi_{6}^{*} w_{32}\left(\rho_{6}\right)=y_{16}^{2}$. By (1.1), $\pi_{7}^{*} w_{j}\left(\rho_{7}\right)=0 \quad 1 \leq j \leq 63$ and $\pi_{7}^{*} w_{64}\left(\rho_{7}\right)=y_{16}^{4}+\beta y_{16} y_{24}^{2}$ for some $\beta \in \mathbb{Z} / 2$. Applying $S q^{8}$ we have $0=\beta\left(y_{24}^{3}+y_{16} y_{28}^{2}\right)$ and therefore $\beta=0$. Using (1.2), we can prove $\pi_{7}^{*} w\left(\rho_{7}^{\prime}\right)=y_{16}^{4}$ similarly. Note that $\left.\rho_{7}^{\prime}\right|_{T^{7}}$ contains 7 -dimensional trivial representation and therefore $w_{128}\left(\left.\rho_{7}^{\prime}\right|_{T^{7}}\right)=0$. Using this fact we have $\pi_{7}^{*} w_{128}\left(\rho_{7}^{\prime}\right)=0$.

Department of Mathematics
 Kyoto University
 Kyoto 606-8502, Japan
 e-mail: kono@math.kyoto-u.ac.jp

References

[1] J. F. Adams, Lectures on exceptional Lie groups, Chicago Univ. Press, 1996.
[2] A. Ohsita, On the Stiefel-Whitney class of the adjoint representation of E_{8}, J. Math. Kyoto Univ. 44 (2004), 679-684.
[3] D. Quillen, The mod 2 cohomology ring of extra-special 2-groups and the spinor groups, Math. Ann. 194 (1971), 197-212.

