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Remarks on long range scattering for nonlinear
Schrödinger equations with Stark effects

By

Akihiro Shimomura and Satoshi Tonegawa

Abstract

In this paper, the global existence and asymptotic behavior in time
of solutions for the nonlinear Schrödinger equation with the Stark effect
in one or two space dimensions are studied. The nonlinearity is cubic
and quadratic in one and two dimensional cases, respectively, and it is
a summation of a gauge invariant term and non-gauge invariant terms.
This nonlinearity is critical between the short range scattering and the
long range one. A modified wave operator to this equation is constructed
for small final states. Its domain is a certain small ball in H2 ∩ FH2,
where F is the Fourier transform.

1. Introduction

We study the global existence and large time behavior of solutions for
the nonlinear Schrödinger equation with the Stark effect in one or two space
dimensions:

(1.1) i∂tu = −1
2
∆u+ (E · x)u+ F̃n(u), (t, x) ∈ R × R

n,

where n = 1, 2 and u is a complex valued unknown function of (t, x). Here
F̃n(u) and E · x are a nonlinearity and a linear potential, respectively. The
nonlinearity is given by

F̃n(u) = Gn(u) + Ñn(u),

Gn(u) = λ0|u|2/nu,(1.2)

Ñ1(u) = λ1u
3 + λ2ū

3, when n = 1,

Ñ2(u) = λ1u
2 + λ2ū

2 + λ3uū, when n = 2,

where λ0 ∈ R, λ1, λ2, λ3 ∈ C and E ∈ Rn \ {0}. We remark that the cubic
nonlinearity uū2 is excluded in one dimensional case. F̃n is a summation of the
gauge invariant nonlinearity Gn(u) and the non-gauge invariant one Ñn(u),
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and it is a critical power nonlinearity between the short range case and the
long range one in n space dimensions (n = 1, 2). The potential E · x is called
the Stark potential with a constant electric field E. In this paper, we prove
the existence of modified wave operators to the equation (1.1) for small final
states, and extend our previous results [10]. The domains of these modified
wave operators are H2 ∩ H0,2, which are larger than those in [10]. Namely,
the assumptions on final states are weakened. The method to estimate the
non-gauge invariant terms is essentially different from that in [10] (the detail
will be mentioned below).

The theory of scattering for the ordinary nonlinear Schrödinger equations
with critical power nonlinearities was studied, e.g., in [4, 5, 6, 7, 8, 9, 10, 11, 12].
We recall the result in [10] on the long range scattering for the equation (1.1).
Let U(t) be the free Schrödinger group, that is,

U(t) = eit∆/2.

The Schrödinger operator −(1/2)∆+E ·x is essentially self-adjoint on C∞
0 (Rn).

HE denotes the self-adjoint realization of that operator defined on C∞
0 (Rn) and

we define the unitary group UE generated by HE :

UE(t) = e−itHE .

F̃n(u) is a critical power nonlinearity between the short range scattering and
the long range one. In [10], the existence of the modified wave operator W̃+

was shown. The modified wave operator W̃+ for the equation (1.1) is defined
as follows. Let φ be a final state. Modifying the solution UE(t)φ for the linear
Schrödinger equation with the Stark potential, we construct a suitable modified
free dynamics A, which depends on φ, and we show the existence of a unique
solution u for the equation (1.1) which approaches A in L2 as t → ∞. The
mapping

W̃+ : φ �→ u(0)

is called a modified wave operator. The domain of the modified wave operator
in [10] is H2∩H0,2 and H2∩H0,3 in one and two space dimensions, respectively.
First we reduce our problem to the equation

(1.3) i∂tv = −1
2
∆v + Fn(t, v), (t, x) ∈ R × R

n,

where n = 1, 2,

Fn(t, v) = Gn(v) +Nn(t, v),

N1(t, v) = λ1v
3e−2i(tE·x−t3|E|2/3) + λ2v̄

3e4i(tE·x−t3|E|2/3),

N2(t, v) =λ1v
2e−i(tE·x−t3|E|2/3) + λ2v̄

2e3i(tE·x−t3|E|2/3)

+ λ3vv̄e
i(tE·x−t3|E|2/3),
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Gn(v) is defined by (1.2). By a suitable change of variables (see Proposition 2.1
below), our problem is equivalent to constructing modified wave operators for
the equation (1.3). In [10], we constructed a modified free dynamics of the form
B = va + v1, where

va(t, x) =(U(t)e−i|·|2/2te−iS(t,−i∇)φ)(x)

=
1

(it)n/2
φ̂

(x
t

)
ei|x|2/2t−iS(t,x/t),

S(t, x) = λ0|φ̂(x)|2/n log t and v1 is a faster decaying term mentioned below.
This modified free dynamics va was introduced by Ozawa [8] for the ordinary
nonlinear Schrödinger equation with a nonlinearity λ|u|2u in one space dimen-
sion. In order to overcome difficulties caused by the gauge invariant nonlinearity
Gn(v) which is a long range interaction (see Barab [1]), we introduced the prin-
cipal term va of the asymptotics B with a phase shift so that Lva − Gn(va)
decays faster than G(va), where L = i∂t + (1/2)∆. In order to treat the non-
gauge invariant nonlinearity Nn(t, v), we construct a second correcting term
v1 such that v1 and Lv1 − Nn(t, va) decay faster than va and Nn(t, va), re-
spectively (more precisely, the L2-norms of Lva −Gn(va) and Lv1 −Nn(t, va)
are integrable over the interval [1,∞), while those of G(va) and Nn(t, va) are
not). So we see that LB − Fn(t, B) = (Lva − Gn(va)) + (Lv1 − Nn(t, va)) +
(faster decaying terms) and its L2-norm is integrable over the interval [1,∞).
By the Cook-Kuroda method, we obtained a unique solution v of the equa-
tion (1.3) which approaches the profile B. Since v1 decays faster than va, the
solution v approaches the modified free dynamics va.

In this paper, we prove the existence of modified wave operators for the
equation (1.1), which is equivalent to that for the equation (1.3), without con-
structing a second correcting term such as the function v1 in [10] mentioned
above. The domain of the modified wave operator in this paper is slightly
larger than that in [10]. As in [10], we introduce the principal term va in order
to overcome difficulties caused by the gauge invariant nonlinearity Gn(v) (see
Lemma 3.2). In order to treat the non-gauge invariant nonlinearity Nn(t, v),
we show that ∥∥∥∥∫ ∞

t

U(t− s)Nn(s, va(s)) ds
∥∥∥∥

L2
x

,

which appears in the associated integral equation, is integrable over the interval
[1,∞). More precisely, we prove that it decays at a suitable rate in time (see
Lemma 3.3). Hence we see that∥∥∥∥∫ ∞

t

U(t− s)(Lva(s) − Fn(s, va(s))) ds
∥∥∥∥

L2
x

decays suitably in time and we can directly construct a unique solution u which
approaches the asymptotic profile va. The method in this paper is more precise
than that in [10], because we do not construct an approximation in order to
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overcome the effect from Nn(t, v). This is the reason why we can extend the
domain of the modified wave operator.

Before stating our main results, we introduce several notations.

Notation. We denote the Schwartz space on R
n by S. Let S ′ be the set

of tempered distributions on Rn. For w ∈ S ′, we denote the Fourier transform
of w by ŵ. For w ∈ L1(Rn), ŵ is represented as

ŵ(ξ) = (2π)−n/2

∫
Rn

w(x)e−ix·ξ dx.

For s,m ∈ R, we introduce the weighted Sobolev spaces Hs,m corresponding
to the Lebesgue space L2 as follows:

Hs,m ≡ {ψ ∈ S ′ : ‖ψ‖Hs,m ≡ ‖(1 + |x|2)m/2(1 − ∆)s/2ψ‖L2 <∞}.

and put Hs = Hs,0.
C denotes a constant and so forth. They may differ from line to line, when

it does not cause any confusion.

Our result is as follows.

Theorem 1.1. Let n = 1 or 2. Assume that φ ∈ H2 ∩ H0,2 and that
‖φ‖H2∩H0,2 is sufficiently small. Then the equation (1.1) has a unique solution
u satisfying

u ∈ C([0,∞);L2),

sup
t≥1

(td‖u(t) − UE(t)e−i|·|2/2te−iS(t,−i∇)φ‖L2) <∞,

sup
t≥1

[
td

(∫ ∞

t

‖U(s)(UE(−s)u(s) − e−i|·|2/2se−iS(s,−i∇)φ)‖4
Yn
ds

)1/4
]
<∞,

where

(1.4) S(t, x) = λ0|φ(x)|2/n log t

and d is a constant satisfying n/4 < d < 1, Y1 = L∞
x and Y2 = L4

x.
Furthermore the modified wave operator W̃+ : φ �→ u(0) is well-defined.
A similar result holds for negative time.

Remark 1.1. Since the multiplication operator e−i|·|2/2t converges the
identity strongly in L2 as t → ∞, the solution obtained in Theorem 1.1 ap-
proaches UE(t)e−iS(t,−i∇)φ in L2. Noting the phase correction S depends only
on the gauge invariant nonlinearity Gn(u), we see that the contribution of the
non-gauge invariant term Ñn(u) is a short range interaction, that is, it is neg-
ligible as t → ∞, under our assumptions. We also note that the assumption
φ ∈ H2 is needed only if Ñn(u) �= 0 (see Lemma 3.3 below).
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Remark 1.2. If we consider the asymptotic behavior of solutions to the
Cauchy problem for the equation (1.1) with initial data u(0, x) = φ0(x), x ∈ Rn,
then we see from Theorem 1.1 that for any initial data φ0 belonging to the
range of the modified wave operator W̃+, there exists a unique global solution
u ∈ C([0,∞);L2) of the Cauchy problem for the equation (1.1) which has the
modified free profile UE(t)e−i|·|2/2te−iS(t,−i∇)φ. More precisely, u satisfies the
asymptotic formula of Theorem 1.1. However it is not clear how to describe
the initial data belonging to the range of the operator W̃+.

The outline of this paper is as follows. In Section 2, we reduce the scat-
tering problem for the equation (1.1) to that of the equation (1.3), and we
solve the Cauchy problem at infinite initial time for the equation (1.3) under
suitable decay and approximate conditions on va. In Section 3, we show that
the asymptotics va satisfies the assumptions of this Cauchy problem at infinite
initial time and prove Theorem 1.1.

2. The Cauchy Problem at Infinite Initial Time

First we reduce the scattering problem for the equation (1.1) to that of the
non-autonomous nonlinear Schrödinger equation (1.3) without a potential as
mentioned in Section 1. By a direct calculation, we obtain the following relation
between a solution to the equation (1.1) and that to the equation (1.3). The
following proposition is not essentially new but almost well-known (see Cycon,
Froese, Kirsch and Simon [3]).

Proposition 2.1. If v solves the equation (1.3), then

u(t, x) = v

(
t, x+

t2

2
E

)
e−i(tE·x+t3|E|2/6)

solves the equation (1.1).
Conversely, if u solves the equation (1.1), then

v(t, x) = u

(
t, x− t2

2
E

)
ei(tE·x−t3|E|2/3)

solves the equation (1.3).

Remark 2.1. Recently, the above change of variables has been applied
to the nonlinear Schrödinger equation with the Stark effects and the gauge
invariant nonlinearity by Carles and Nakamura [2].

According to Proposition 2.1, Theorem 1.1 is an immediate consequence
of Proposition 2.2 below.

Proposition 2.2. Assume that φ satisfies all the assumptions of Theo-
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rem 1.1. Then there exists a unique solution v for the equation (1.3) satisfying

v ∈ C([0,∞);L2),

sup
t≥1

(
td‖v(t) − U(t)e−i|·|2/2te−iS(t,−i∇)φ‖L2

)
<∞,

sup
t≥1

[
td

(∫ ∞

t

‖v(s) − U(s)e−i|·|2/2se−iS(s,−i∇)φ‖Yn
ds

)1/4
]
<∞,

where S is defined by (1.4), d is a constant satisfying n/4 < d < 1, Y1 = L∞
x

and Y2 = L4
x.

A similar result holds for negative time.

In what follows, we shall prove Proposition 2.2.
Let n = 1, 2, and let va be a given asymptotic profile of the equation (1.3),

namely an approximate solution for that equation as t→ ∞. We introduce the
following function:

R = Lva − Fn(t, va),(2.1)

where

L = i∂t +
1
2
∆.

The function R is difference between the left hand sides and the right hand
ones in the equation (1.3) substituted v = va.

We can prove the following proposition (see Propositions 3.4 and 3.5 in
[10]).

Proposition 2.3. Assume that there exists a constant η′ > 0 such that

‖va(t)‖L2 ≤ η′,

‖va(t)‖L∞ ≤ η′(1 + t)−n/2,∥∥∥∥∫ ∞

t

U(t− s)R(s) ds
∥∥∥∥

L2
x

+
∥∥∥∥∫ ∞

τ

U(τ − s)R(s) ds
∥∥∥∥

L4
τ ((t,∞);Yn)

≤ η′(1 + t)−d,

for t ≥ 0, where Y1 = L∞
x and Y2 = L4

x, and assume that η′ > 0 is sufficiently
small. Then there exists a unique solution v for the equation (1.3) satisfying

v ∈ C([0,∞);L2),

sup
t≥1

(
td‖v(t) − va(t)‖L2

)
<∞,

sup
t≥1

[
td

(∫ ∞

t

‖v(s) − va(s)‖4
Yn
ds

)1/4
]
<∞,

where d is a constant satisfying n/4 < d < 1, Y1 = L∞
x and Y2 = L4

x.
A similar result holds for negative time.
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3. Remainder Estimates and Proof of Theorem 1.1

In this section, we prove Proposition 2.2 to obtain Theorem 1.1.
First we introduce the Strichartz estimate for the free Schrödinger equation

obtained by Yajima [13]. We define the linear operator

(Γh)(t) =
∫ ∞

t

U(t− s)h(s) ds,

where h is a function of (t, x).

Lemma 3.1. Let n denote the space dimension, and let (q, r) and (q̃, r̃)
be pairs of positive numbers satisfying 2/q = n(1/2 − 1/r), 2 < q ≤ ∞,
2/q̃ = n(1/2 − 1/r̃) and 2 < q̃ ≤ ∞. Then Γ is a bounded operator from
Lq̃′

t ((T0,∞);Lr̃′
x (Rn)) into Lq

t ((T0,∞);Lr
x(Rn)) with norm uniformly bounded

with respect to T0, where (q̃′, r̃′) is a pair of positive numbers satisfying 1/q̃ +
1/q̃′ = 1 and 1/r̃ + 1/r̃′ = 1. Furthermore, if h ∈ Lq̃′

t ((T0,∞);Lr̃′
x (Rn)), then

Γh ∈ Ct([T0,∞);L2
x(Rn)).

Let

va(t, x) =(U(t)e−i|·|2/2te−iS(t,−i∇)φ)(x)

=
1

(it)n/2
φ̂

(x
t

)
ei|x|2/2t−iS(t,x/t),

(3.1)

where S is defined by (1.4). This modified free dynamics was introduced by
Ozawa [8] for the ordinary nonlinear Schrödinger equation with a nonlinearity
λ|u|2u in one space dimension. In order to prove Proposition 2.2, we show that
va satisfies the assumptions in Proposition 2.3. It is sufficient to show only the
estimates

‖va(t)‖L2 ≤ η′,(3.2)

‖va(t)‖L∞ ≤ η′t−n/2,(3.3) ∥∥∥∥∫ ∞

t

U(t− s)R(s) ds
∥∥∥∥

L2
x

+
∥∥∥∥∫ ∞

s

U(s− τ )R(τ ) dτ
∥∥∥∥

L4
s((t,∞);Yn)

≤ η′t−d,

(3.4)

where R is defined by (2.1). In fact, in order to avoid a singularity at t = 0,
multiplying a cut off function θ ∈ C∞(R) such that θ(t) = 0 if t ≤ 1/2 and
θ(t) = 1 if t ≥ 3/4 to va, we easily see from the estimates (3.2)–(3.4) that the
resulting function satisfies the assumptions in Proposition 2.3.

First we consider the gauge invariant nonlinearity Gn(u).
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Lemma 3.2. There exists a constant C > 0 such that for t ≥ 1,

‖va(t)‖L2 = ‖φ‖L2 ,

‖va(t)‖L∞ ≤ C‖φ‖L1t−n/2,

‖Lva(t) −Gn(va(t))‖L2 ≤C(‖φ‖H0,2 + ‖φ‖3
H0,2)

(log t)2

t2
.

Since we can prove this lemma in the same way as Lemma 2.2 in [10], we
omit the proof.

We next consider the non-gauge invariant and non-autonomous nonlin-
earity Nn(t, u). In order to obtain the estimate (3.4), we need the following
lemma.

Lemma 3.3. Assume that ‖φ‖H2∩H0,2 ≤ 1. Then, there exists a con-
stant C > 0 such that for t ≥ 1,∥∥∥∥∫ ∞

t

U(t− s)Nn(s, va(s)) ds
∥∥∥∥

L2
x

+
∥∥∥∥∫ ∞

s

U(s− τ )Nn(τ, va(τ )) dτ
∥∥∥∥

L4
s((t,∞);Yn)

≤ C‖φ‖H2∩H0,2t−d,

where 0 < d < 1.

Proof. It is sufficient to prove for a single power nonlinearity of the form

Nn(t, v) = λvlv̄me−i(α−1)(tE·x−t3|E|2/3),

where λ ∈ C,

(l,m) = (3, 0) or (0, 3), when n = 1,
(l,m) = (2, 0), (1, 1) or (0, 2) when n = 2,

α = l −m.

Note that l +m = 1 + 2/n and α �= ±1. Then

Nn(t, va)

=
1

t1+n/2
P

(x
t

)
eiαθ1(t,x)ei(α−1)(θ2(t,x)+θ3(t))

=
1

i(α− 1)|E|2
1

t3+n/2
P

(x
t

)
eiαθ1(t,x)ei(α−1)θ2(t,x)∂t(ei(α−1)θ3(t)),

(3.5)

where

P (x) = i−αn/2φ̂(x)lφ̂(x)
m

,

θ1(t, x) =
|x|2
2t

− S
(
t,
x

t

)
, θ2(t, x) = −tE · x, θ3(t) =

t3|E|2
3

.
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We calculate the integrand U(−s)Nn(s, va(s)):

U(−s)
{

1
s3+n/2

P
(x
s

)
eiαθ1(s,x)ei(α−1)θ2(s,x)∂s(ei(α−1)θ3(s))

}
=∂s

[
U(−s)

{
1

s3+n/2
P

(x
s

)
eiαθ1(s,x)ei(α−1)(θ2(s,x)+θ3(s))

}]
+
i

2
U(−s)

{
∆

(
1

s3+n/2
P

(x
s

)
eiαθ1(s,x)

)
ei(α−1)(θ2(s,x)+θ3(s))

}
+ iU(−s)

{
∇

(
1

s3+n/2
P

(x
s

)
eiαθ1(s,x)

)
· ∇

(
ei(α−1)(θ2(s,x)+θ3(s))

)}
+
i

2
U(−s)

{
1

s3+n/2
P

(x
s

)
eiαθ1(s,x)∆

(
ei(α−1)(θ2(s,x)+θ3(s))

)}
− U(−s)

{
∂s

(
1

s3+n/2
P

(x
s

)
eiαθ1(s,x)ei(α−1)θ2(s,x)

)
ei(α−1)θ3(s)

}
.

Noting the relation

∆
(
ei(α−1)(θ2(s,x)+θ3(s))

)
= i(α− 1)ei(α−1)θ2(s,x)∂s(ei(α−1)θ3(s)),

we have

U(−s)
{

1
s3+n/2

P
(x
s

)
eiαθ1(s,x)ei(α−1)θ2(s,x)∂s(ei(α−1)θ3(s))

}
=∂s

[
U(−s)

{
1

s3+n/2
P

(x
s

)
eiαθ1(s,x)ei(α−1)(θ2(s,x)+θ3(s))

}]
+
i

2
U(−s)

{
∆

(
1

s3+n/2
P

(x
s

)
eiαθ1(s,x)

)
ei(α−1)(θ2(s,x)+θ3(s))

}
+ iU(−s)

{
∇

(
1

s3+n/2
P

(x
s

)
eiαθ1(s,x)

)
· ∇

(
ei(α−1)(θ2(s,x)+θ3(s))

)}
− α− 1

2
U(−s)

{
1

s3+n/2
P

(x
s

)
eiαθ1(s,x)ei(α−1)θ2(s,x)∂s(ei(α−1)θ3(s))

}
− U(−s)

{
∂s

(
1

s3+n/2
P

(x
s

)
eiαθ1(s,x)ei(α−1)θ2(s,x)

)
ei(α−1)θ3(s)

}
.

Since α �= −1, we have

U(−s)
{

1
s3+n/2

P
(x
s

)
eiαθ1(s,x)ei(α−1)θ2(s,x)∂s(ei(α−1)θ3(s))

}
=

2
α+ 1

∂s

[
U(−s)

{
1

s3+n/2
P

(x
s

)
eiαθ1(s,x)ei(α−1)(θ2(s,x)+θ3(s))

}]
+

i

α+ 1
U(−s)

{
∆

(
1

s3+n/2
P

(x
s

)
eiαθ1(s,x)

)
ei(α−1)(θ2(s,x)+θ3(s))

}
+

2i
α+ 1

U(−s)
{
∇

(
1

s3+n/2
P

(x
s

)
eiαθ1(s,x)

)
· ∇

(
ei(α−1)(θ2(s,x)+θ3(s))

)}
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− 2
α+ 1

U(−s)
{
∂s

(
1

s3+n/2
P

(x
s

)
eiαθ1(s,x)ei(α−1)θ2(s,x)

)
ei(α−1)θ3(s)

}
.

By the identity (3.5), the above identity is equivalent to

U(−s)Nn(s, va(s))

=
1

i(α− 1)|E|2

∂s(U(−s)I1(s)) +
4∑

j=2

U(−s)Ij(s)
 ,

(3.6)

where

I1(s) =
2

α+ 1

{
1

s3+n/2
P

(x
s

)
eiαθ1(s,x)ei(α−1)(θ2(s,x)+θ3(s))

}
,

I2(s) =
i

α+ 1

{
∆

(
1

s3+n/2
P

(x
s

)
eiαθ1(s,x)

)
ei(α−1)(θ2(s,x)+θ3(s))

}
,

I3(s) =
2i

α+ 1

{
∇

(
1

s3+n/2
P

(x
s

)
eiαθ1(s,x)

)
· ∇

(
ei(α−1)(θ2(s,x)+θ3(s))

)}
,

I4(s) = − 2
α+ 1

{
∂s

(
1

s3+n/2
P

(x
s

)
eiαθ1(s,x)ei(α−1)θ2(s,x)

)
ei(α−1)θ3(s)

}
.

Integrating the identity (3.6) over the interval (t,∞) and applying U(t) to the
resulting equality, we have∫ ∞

t

U(t− s)Nn(s, va(s)) ds

=
1

i(α− 1)|E|2

−I1(t) +
4∑

j=2

∫ ∞

t

U(t− s)Ij(s) ds

 .

(3.7)

By the definitions of I1, I2, I3 and I4, we have

‖I1(t)‖L2 ≤ Ct−3‖φ̂‖L2‖φ̂‖2/n
L∞ ,

‖I1(t)‖L∞ ≤ Ct−7/2‖φ̂‖3
L∞ , when n = 1,

‖I1(t)‖L4 ≤ Ct−4‖φ̂‖2
L8 , when n = 2,

‖I2(s)‖L2 ≤ Cs−3(log s)2‖φ‖H2∩H0,2 ,

‖I3(s)‖L2 ≤ Cs−2(log s)‖φ‖H2∩H0,2 ,

‖I4(s)‖L2 ≤ Cs−2(log s)‖φ‖H2∩H0,2 .

We have used Hölder’s inequality, the Sobolev embedding and the assumption
‖φ‖H2∩H0,2 ≤ 1. We note that the L2-norms of I2, I3 and I4 are integrable
over the interval (t,∞). Applying the above inequalities and Lemma 3.1 to the
identity (3.7), we obtain this lemma.

Proof of Theorem 1.1. Assume all the assumptions in Theorem 1.1. Let
va be the function defined by (3.1). According to Proposition 2.3, as mentioned



�

�

�

�

�

�

�

�

Nonlinear Schrödinger equations with Stark effects 215

before, it is sufficient to show the estimates (3.2) through (3.4). The estimates
(3.2) and (3.3) immediately follow from the definition of va. We prove the
estimate (3.4). Since

R = Lva −Gn(va) −Nn(t, va),

by Lemmas 3.1, 3.2 and 3.3, we have∥∥∥∥∫ ∞

t

U(t− s)R(s) ds
∥∥∥∥

L2
x

+
∥∥∥∥∫ ∞

s

U(s− τ )R(τ ) ds
∥∥∥∥

L4
s((t,∞);Yn)

≤ C

∫ ∞

t

‖Lva(s) −Gn(va(s))‖L2 ds

+
∥∥∥∥∫ ∞

t

U(t− s)Nn(s, va(s)) ds
∥∥∥∥

L2
x

+
∥∥∥∥∫ ∞

s

U(s− τ )Nn(τ, va(τ )) dτ
∥∥∥∥

L4
s((t,∞);Yn)

≤ C‖φ‖H2∩H0,2t−d,

where n/4 < d < 1 appearing in the assumption of Theorem 1.1. Taking
η′ = C‖φ‖H2∩H0,2 , we see that the condition (3.4) is satisfied. According to
Proposition 2.3, this completes the proof of Theorem 1.1.
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