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Remarks on degree 4 projective curves
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Abstract

In this paper we characterize the degree 4 multiple lines with generic
embedding dimension 3 and among them the ones with very degenerate
hyperplane section, and the ones which contain a degree 3 planar sub-
curve. Using that characterization, we prove that the degree 4 curves
containing a planar subcurve of degree 3 are the general element of an
irreducible component of the Hilbert scheme. Moreover, we show that all
the multiple lines we consider belong to the same connected component
of the corresponding Hilbert scheme.

1. Introduction

A classical method to study curves embedded in projective spaces is to
consider their general hyperplane section. For example, bounds on the postu-
lation of the general hyperplane section give bounds on the cohomology (see
[7] for curves in P

3 and [2] for curves in P
n, n ≥ 3) as well as bounds on the

arithmetic genus of the curve (see [2] for locally Cohen-Macaulay curves or [5]
for smooth curves).

Conversely, the lifting problem for curves consists in obtaining information
on the curve assuming analogous properties of its general hyperplane section.
In particular, in [3], the authors studied the existence of planar subcurves of
a curve C under the assumption that the general hyperplane section C ∩ H
of C contains a large linear subscheme. One of the main result of [3] is that
the planar subcurve exists and it has the expected degree if the degree r of
the linear subscheme exceeds (d + 3)/2 where d = deg(C) is the degree of
C. For r = d − 1 and d ≥ 5 their result implies the equivalence between
“C ∩H contains a linear subscheme of degree d− 1” and “C contains a degree
d − 1 planar subcurve”. This equivalence was used in [14] to prove that the
curves satisfying the previous hypothesis, called curves with very degenerate
hyperplane section, are the general element of an irreducible component of the
corresponding Hilbert scheme, whatever the genus of the curve is.

One of the aim of this paper is to prove an analogous result for curves of
degree 4. The main problem in proving it is that in this case there exist curves
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with very degenerate hyperplane section which do not contain planar subcurves
of degree 3, as proved in [3]. Those exceptional curves are multiple lines of
degree 4 and generic embedding dimension 3. So, we were forced to study
those multiple lines in great detail. After stating notation and preliminaries in
Section 2, in Section 3 we characterize the possible general hyperplane section
of such a curve, we compute its Cohen-Macaulay filtration, a classical tool to
study multiple lines, and we show how to construct such a curve. Moreover,
we obtain some numerical information on the curve in terms of the data of
the filtration. In Section 4, we characterize the multiple lines which have very
degenerate hyperplane section, and among those, the ones which contain a
degree 3 planar subcurve.

From their description, it follows that there are a lot of different algebraic
families parameterizing those multiple lines. In Section 5, we describe those
algebraic families, and we address the natural problem of understanding if all
those families belong to the same connected component of the corresponding
Hilbert scheme. Of course, we consider two more algebraic families, the degree
4 ropes supported on a line and the curves containing a degree 3 planar sub-
curve, studied respectively in [11] and [14], which appear in projective spaces of
dimension at least 4. The problem of the connectedness of the Hilbert scheme
parameterizing locally Cohen-Macaulay curves, up to now, was considered only
for curves in P

3, and the results obtained by various authors suggest that the
answer to that problem should be positive. See, for example, [12] and [13] for
the connectedness of Hilbert schemes of degree 3 and 4 curves, respectively, in
P

3, of whatever genus. In proving that all the families we consider belong to
the same connected component we study the deformation of one parameter flat
families, following an approach analogous to the one in [12].

In last Section 6, we prove that the degree 4 curves containing a planar
subcurve of degree 3 fill an irreducible component of the Hilbert scheme, giving
an affirmative answer to our initial question.

Both the authors would like to warmly thank Silvio Greco for suggesting
them the study of such interesting curves. Furthermore, the second author prof-
ited of a stay at the Department of Mathematics of the University of Messina
during the preparation of this paper, and he would like to thank that institution
for the warm hospitality.

2. Preliminaries and notation

In this section, we collect the notation we’ ll use throughout the paper and
the known results we need to develop the subject.

2.1. Notation
K is an algebraically closed field of characteristic zero, R = K[x0, . . . , xn]

is the polynomial ring in n + 1 unknowns of degree 1, and P
n = Proj(R) is

the n-dimensional projective space. P
n is our ambient space. The structure

sheaf of a closed scheme X ⊂ P
n is OX while its ideal sheaf is IX . The

saturated ideal IX defining a closed scheme X is equal to IX = H0
∗ (Pn, IX) =
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⊕j∈ZH
0(Pn, IX(j)). The dimension of the degree j homogeneous piece of

IX is h0(IX(j)) = dimK [IX ]j , while the Hilbert function of X is defined as
hX(j) = dimK [R/IX ]j =

(
n+j
j

)− h0(IX(j)).
A curve C ⊂ P

n is a locally Cohen-Macaulay closed scheme of pure di-
mension 1, i.e., C has no embedded or isolated zero-dimensional component.
Two very important discrete invariants of a projective curve are the degree
deg(C) and the arithmetic genus gC . Another important object to be stud-
ied for a curve C is the Hartshorne-Rao module defined as H1

∗ (Pn, IC) =
⊕j∈ZH

1(Pn, IC(j)). It is a finite length R-module. The Rao function of C
is h1(IC(j)) = dimK H

1(Pn, IC(j)), as K-vector space.

2.2. Multiple lines
In this subsection, we adapt some results by Banica and Forster [1] to

multiplicity structures on lines. For a survey on the construction of Cohen-
Macaulay scheme structures on a smooth variety, see [6].

Definition 2.1. If L is a line, a multiple line C supported on L is a
curve C whose ideal sheaf satisfies IkL ⊆ IC ⊆ IL, for some integer k.

A multiple line C admits a filtration via multiple lines with the same
support and smaller degrees which can be constructed as follows. Let L(i) be
the curve defined by the ideal sheaf IiL. Let Ci denote the subscheme obtained
by removing embedded points from C ∩L(i). Ci is the largest Cohen-Macaulay
subscheme contained in C ∩ L(i), and it is uniquely determined. If k is the
smallest integer such that IkL ⊆ IC , then

L = C1 ⊂ C2 ⊂ · · · ⊂ Ck = C

is the Cohen-Macaulay filtration of C.
The sheaves Lj = ICj

/ICj+1 are associated to the filtration and they
are OL-modules. In fact, for each i, j ≥ 1 such that 1 ≤ i + j ≤ k it holds
ICi

ICj
⊆ ICi+j

. Moreover, they are locally free, and so free because the support
is a line. All those sheaves are related by the short exact sequences

(2.1) 0 → ICi+1 −→ ICi
−→ Li → 0.

2.3. Ropes supported on lines
In this subsection, we collect some results from [10] and [11] on the multiple

lines which have a Cohen-Macaulay filtration as short as possible.

Definition 2.2. A rope Z supported on a line is a multiple line that
satisfies I2

L ⊂ IZ ⊂ IL.

In [10, Theorem 2.4, Remark 2.5], the authors proved that every rope Z
of degree d with 2 ≤ d ≤ n− 1 is uniquely determined by fixing the supporting
line L and an exact sequence

(2.2) 0 →
n−d⊕
j=1

OL(−βj − 1)
ϕB−→ On−1

L (−1)
ϕA−→

d−2⊕
i=0

OL(αi − 1) → 0.
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The arithmetic genus of Z is gZ = −∑d−2
i=0 αi = −∑n−d

j=1 βj . Furthermore, if
IL = (x0, . . . , xn−2) and S = K[xn−1, xn], the saturated ideal of Z is generated
by IZ = (I2

L, [x0, . . . , xn−2]B), where B is a matrix which represents the map
ϕB and does not drop rank in codimension 1, i.e., the ideal In−d(ϕB) ⊂ S
generated by the maximal minors of B contains a regular sequence of length
2, or equivalently, the map ϕB ⊗KP is injective for each closed point P ∈ L,
where KP is the residual field of the local ring OL,P . Of course, the entries
of B are in S. The Hartshorne-Rao module of Z is an S-module because it is
annihilated by IL, and it is isomorphic to coker(ϕA) as S-module. The Rao
function of Z is

(2.3) h1(IZ(j)) =
d−2∑
i=0

(
j + αi

1

)
− (n− 1)

(
j

1

)
+
n−d∑
i=1

(
j − βi

1

)
.

Definition 2.3. Given a rope Z of degree d and genus g, the sequence
α = (α0, . . . , αd−2) with α0 ≤ · · · ≤ αd−2 is called the right-type of Z. Anal-
ogously, if β1 ≤ · · · ≤ βn−d, the sequence β = (β1, . . . , βn−d) is called the
left-type of Z.

The ropes of degree d and right-type α form an irreducible family into
the corresponding Hilbert scheme parameterized by the closure Rn,d,α of j(Vα)
where Vα is the product of the affine space A

2(n−1) isomorphic to the open sub-
setW0,...,n−2 of the Grassmannian Grass(1, n) of lines in P

n and the open subset
of the affine space parameterizing the homogeneous matrices giving surjective
maps Sn−1(−1) → ⊕d−2

i=0 S(αi − 1) which do not drop rank in codimension 1,
and j : Vα → Hilbd,g(Pn) is the natural map.

The dimension of Rn,d,α [11, Proposition 6.7] is equal to

(2.4) dimRn,d,α = (n− 1)(d+ 1 − g) − dim Aut

(
d−2⊕
i=0

OL(αi − 1)

)
.

All these families in the Hilbert scheme lie into the closure of one of them,
the one with “balanced” right type. Let Hd,g(Pn) be the closure into the
Hilbert scheme of their union, where we consider as Hilbert scheme only the
one parameterizing the locally Cohen-Macaulay closed schemes.

Under some hypotheses on the genus, Hd,g(Pn) is an irreducible component
of the Hilbert scheme Hilb(n, d, g) parameterizing the curves in P

n of degree d
and genus g, and this component is generically smooth.

2.4. Curves with very degenerate hyperplane section
In [9], the author proved that the general hyperplane section of a non-

degenerate projective curve spans a linear space of dimension at least 2.

Definition 2.4. If the general hyperplane section of a degree d curve
contains a degree d − 1 subscheme spanning a line, we say that C has very
degenerate hyperplane section.
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If the degree of a curve with the worst general hyperplane section is at
least 5, then such a curve contains a planar subcurve of degree one less. The
curves of degree d containing a planar subcurve of degree d− 1 mostly consist
of a planar curve of degree d − 2 and a degree 2 rope supported on a line
contained in the same plane. Those curves were studied in [14]. In particular,
the saturated ideal IC of such a curve C is generated by

(2.5) IC = (ILID, [x0, . . . , xn−3, xn−2f ]B)

where IL = (x0, . . . , xn−2) defines the line support of the rope, ID = (x0, . . . ,
xn−3, xn−2f) defines the union of the plane curve of degree d− 2 and the line
L, and B is a matrix with entries in S which represents a map ϕB that fits into
the short exact sequence

(2.6) 0 →
n−2⊕
i=1

OL(−bi − 1)
ϕB−→ On−2

L (−1) ⊕OL(−d+ 1)
ϕA−→ OL(a− 1) → 0.

Furthermore, the arithmetic genus of C is g =
(
d−2
2

)− a, and the Hartshorne-
Rao module of C is an S-module isomorphic to coker(ϕA) [14, Theorems 2.1,
3.2, Remark 3.4, Proposition 3.7].

The curves with very degenerate hyperplane section of degree d and genus g
form an irreducible family parameterized by a smooth, quasi-projective variety
Vn,d,g of dimension

(2.7) dimVn,d,g = n

[(
d− 2

2

)
+ 4 − g

]
+ 3(d− 4) + g

defined analogously to the case of ropes (see [14, Section 7]). In [14], Theorems
7.8, and 7.11, it is proved that those curves are the general element of an
irreducible component of the corresponding Hilbert scheme if d ≥ 5.

2.5. Generic embedding dimension of curves
For the definitions and results of this subsection we refer to [3].

Definition 2.5. If (A,M, k) is a local ring, the embedding dimension of
A is the integer emdim(A) = dimk(M/M2). If X is a scheme and x is a point of
X, the embedding dimension of X at x is equal to emdimx(X) = emdim(OX,x).
If X is irreducible with generic point η, the generic embedding dimension of X
is the integer ged(X) = emdimη(X) + dimX.

The generic embedding dimension of an irreducible scheme X is related to
the embedding dimension of the closed points of X. In fact, it holds [3, Lemma
2.2].

Lemma 2.1. Let X be an irreducible algebraic K-scheme. Then
(i) there is a non-empty open set U ⊆ X such that ged(X) = emdimx(X)

for all closed points x ∈ U ;



�

�

�

�

�

�

�

�

164 Giovanni Molica Bisci and Roberto Notari

(ii) ged(X) = min{emdimx(X), x ∈ X,x closed}.
Moreover, the embedding dimension of a curve C at a point x is related

to the embedding dimension of C ∩H at x ∈ C ∩H. In fact, we have (see, [3,
Remark 2.3 (i)])

Lemma 2.2. Let C be an irreducible curve, H a general hyperplane for
C and x ∈ C ∩H. Then, emdimx(C) = 1 + emdimx(C ∩H).

A classical method to study curves consists in studying their general hy-
perplane sections and then in lifting the information to the curves themselves.
In particular, in [3], the authors address the problem of finding a planar sub-
curve if the general hyperplane section contains a large subscheme spanning a
line. Among other results, they proved

Proposition 2.1. Assume char(K) = 0. Let C ⊆ P
n(n ≥ 4) be a non

degenerate curve of degree d ≥ 4 such that for every general hyperplane H the
section C ∩H contains a subscheme of degree d − 1 spanning a line. Then C
contains a planar subcurve E of degree d − 1, with the following exception: C
is a multiple line with deg(C) = 4, ged(C) = 3.

Now, we give two examples to show that such curves can contain a planar
degree 3 subcurve, but this is not always the case, and so they are really
exceptions to Proposition 2.1.

Example 2.1 ([3, Remark 4.13]). Let C ⊂ P
4 = Proj(K[x, y, z, t, w])

be the multiple line defined by the ideal

IC = (y2 − 4xz, 2xzt+ yzw, yzt + 2z2w, 2x2t+ xyw, xyt+ 2xzw,

xt2 + ytw + zw2, z3, yz2, xz2, xyz, x3, x2y, x2z).

C has degree 4, genus −5 and ged(C) = 3. Furthermore, as explained in [3,
Remark 4.13], C does not contain a degree 3 planar subcurve.

Example 2.2. Let C ⊂ P
4 be the multiple line defined by the ideal

IC =


x2, xy, y2, xz, yz, z4, (x, y, z3)


w6 0
t6 0
0 1




 .

As before, C has degree 4 and genus −5. Moreover, H = V (t−w) is a general
hyperplane for C and C ∩H|H is defined by (x+ y, y2, yz, z3). By Lemma 2.2,
ged(C) = 3, because emdim(C ∩H) = 2.

C contains a degree 3 planar subcurve, because IC ⊂ (x, y, z3). However,
it is easy to prove that C is a flat limit of a one parameter family contained in
V4,4,−5. To this end, we consider the family {Ca}a∈A1 defined by the ideal

Ia =


(x, y, z)(x, y, z2(z2 + atw)), (x, y, z(z2 + atw))


w6 0
t6 0
0 1




 .
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When a → 0, we have that Ia → IC , and if a 
= 0, Ia defines a curve Ca ∈
V4,4,−5.

3. Degree 4 multiple lines with ged = 3

In this section we construct all the multiple lines of degree 4 and generic
embedding dimension 3 by giving the Cohen-Macaulay filtration of such curves.
Moreover, we bound the genus and the Rao function of such curves in terms of
the data of the filtration.

To study multiple lines of degree 4 and generic embedding dimension 3,
we start from the possible general hyperplane section of such a curve. Hence,
let H be a hyperplane, general for C. The scheme C ∩H|H is a degree 4 zero-
dimensional scheme not contained in a line. Then, its Hilbert function can be
either

h1(j) =

{
1 if j = 0
4 if j ≥ 1

or

h2(j) =




1 if j = 0
3 if j = 1
4 if j ≥ 2.

Now, we consider the two cases, one at a time. To start with, we consider the
function h1.

Lemma 3.1. Let C ⊂ P
n be a multiple line of degree 4 and assume that

the Hilbert function of its general hyperplane section C ∩ H|H is h1. Then
ged(C) = 3 if, and only if, as subscheme of P

3 = Proj(K[x, y, z, t]), the ideal
IC∩H|H is generated by x2−a1t�, xy−a2t�, y

2−a3t�, xz−a4t�, yz−a5t�, z
2−a6t�

for some non zero � ∈ [K[x, y, z]]1 and ai ∈ K not all of them equal to zero.

Proof. Because of the Hilbert function h1 of the general hyperplane sec-
tion C ∩ H|H there exist a P

3 ⊂ H such that C ∩ H ⊂ P
3. Assume that

P
3 = Proj(K[x, y, z, t]) and that C ∩ H is supported on P = (0 : 0 : 0 : 1).

Because of the Hilbert function, IC∩H|P3 is generated by 6 quadrics, and IkP ⊂
IC∩H|P3 ⊂ IP . Then, there exist 6 linear forms �1, . . . , �6 ∈ K[x, y, z] such that
IC∩H|P3 is generated by x2 − t�1, xy − t�2, y

2 − t�3, xz − t�4, yz − t�5, z
2 − t�6.

If ged(C) = 3, then we can assume that emdimP (C ∩ H) = 2, and then
dimK L(�1, . . . , �6) = 1, because only one indeterminate can be computed in
terms of the others. Hence, �i = ai� for some non zero � ∈ K[x, y, z] and for
some ai ∈ K not all of them equal to zero.

Conversely, if IC∩H|P3 is generated by the quadrics x2 −a1t�, . . . , z
2 −a6t�

then the embedding dimension of C ∩ H at P is equal to 2 and so ged(C) =
3.

If the Hilbert function of the general hyperplane section of C is h2, we
have the following lemma, that we state in more general hypotheses.
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Lemma 3.2. Let C ⊂ P
n, n ≥ 4, be a multiple line of degree d ≥ 4

with very degenerate hyperplane section. Then, ged(C) = 3 if, and only if, C ∩
H|H is defined by the ideal (y1, . . . , yn−3, y

2
n−2, yn−2yn−1, y

d−1
n−1) up to suitably

choosing the coordinate system in H = Proj(K[y1, . . . , yn]).

If C has degree 4, it is equivalent to assume that C has very degener-
ate hyperplane section, or to assume that the Hilbert function of the general
hyperplane section of C is h2.

Proof. The linear span 〈C ∩ H〉 of C ∩ H has dimension 2, and so we
can work in P

2 = Proj(K[x, y, z]). Assume that (C ∩H)red = (0 : 0 : 1) = P ,
and assume that the line L = V (x) contains the linear subscheme of C ∩H of
degree d− 1. Then, we have the following exact sequence

0 → IP (−1) −→ IC∩H|P2 −→ IC∩H∩L|L → 0

where the first map is the multiplication by x. Then,

IC∩H|P2 = (x2, xy, yd−1 + axzd−2)

for some a ∈ K. It is straightforward that the embedding dimension of C∩H|H
is 2 if, and only if, a = 0, and so the claim follows by Lemma 2.2.

Now, we are ready to construct the Cohen-Macaulay filtration of the mul-
tiple lines we are interested in.

Proposition 3.1. Let C ⊂ P
n be a degree 4 multiple line supported on

a line L. If ged(C) = 3 then there exists a rope Z of degree 3 supported on L
such that the Cohen-Macaulay filtration of C is L ⊂ Z ⊂ C.

Proof. To construct the Cohen-Macaulay filtration of C we have to in-
tersect C with the various infinitesimal neighborhoods L(i) of L. The first
one to be considered is L(2), defined by the ideal I2

L. Let H be a hyperplane
general both for C and for L(2). C ∩ L(2) ∩ H is defined, in H, by the ideal(
IC + I2

L + IH/IH
)sat. But it holds

Claim 1.
(
IC+I2L+IH

IH

)sat
=
((

IC+IH

IH

)sat
+
(
I2L+IH

IH

)sat)sat
.

Before proving the claim, we show how the statement follows from the
claim.

By Lemma 3.1 and Lemma 3.2, (IC + IH/IH)sat is defined either by
y1, . . . , yn−4, y

2
n−3−a1yn�, . . . , y

2
n−1−a6yn�, or by y1, . . . , yn−3, y

2
n−2, yn−2yn−1,

y3
n−1, while it is easy to show that (I2

L+IH/IH)sat is defined by (y1, . . . , yn−1)2.
Then, the general hyperplane section of C∩L(2) is defined either by y1, . . . , yn−4,
�, y2

n−2, yn−2yn−1, y
2
n−1 if � = yn−3 + . . . , or by y1, . . . , yn−3, y

2
n−2, yn−2yn−1,

y2
n−1. So deg(C ∩ L(2)) = 3. Let Z be the largest locally Cohen-Macaulay

scheme contained in C ∩ L(2). The previous argument shows that deg(Z) = 3,
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because we can always choose H in such a way that it does not contain any
embedded point of C ∩ L(2). Hence, the Cohen-Macaulay filtration of C is
L ⊂ Z ⊂ C, and furthermore, C ⊂ L(3).

Proof of the Claim. It is trivial that

IC + I2
L + IH
IH

⊂
(
IC + IH
IH

)sat
+
(
I2
L + IH
IH

)sat

and so the first inclusion follows by taking the saturation of both sides.
To prove the inverse inclusion, at first we notice that I2

L + IH/IH is satu-
rated because L(2) is an arithmetically Cohen-Macaulay scheme.

Now, if F ∈ (IC + IH/IH)sat+(I2
L+ IH/IH), there exists G ∈ I2

L+ IH/IH
such that F − G ∈ (IC + IH/IH)sat. Hence, there exist integers m1, . . . ,mn

such that (F −G)ymi
i ∈ (IC + IH/IH), for each i = 1, . . . , n. This is equivalent

to say that Fymi
i ∈ IC +I2

L+IH/IH , i.e., F ∈ (IC +I2
L+IH/IH)sat. By taking

the saturation of both the ideals, we get the claim.

Now, we want to emphasize the data we need to construct such a degree
4 multiple line, because of the properties of the Cohen-Macaulay filtration.

Corollary 3.1. Let C ⊂ P
n be a degree 4 multiple line supported on L

with generic embedding dimension 3. Then there exist two short exact sequences
of OL-modules

(3.1) 0 →
n−3⊕
j=1

OL(−βj − 1)
ϕB−→ On−1

L (−1)
ϕA−→ F1 =

OL(α0 − 1)
⊕

OL(α1 − 1)
→ 0

and

(3.2) 0 → F2 −→

S2(F1)
⊕

n−3⊕
j=1

OL(−βj − 1)

(µ1,µ2)−→ OL(γ) → 0.

where S2(F1) is the second symmetric power of F1, and µ1 is not the null map.

We denote µ the map µ = (µ1, µ2).

Proof. If C is a degree 4 multiple line supported on L with ged(C) = 3
then its Cohen-Macaulay filtration is

L ⊂ Z ⊂ C

where Z is a degree 3 rope supported on L, by Proposition 3.1.
The rope Z is uniquely determined by the supporting line L and by the

exact sequence (2.2) with d = 3. Hence, we get the first sequence of the two
ones we need.
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Because of the properties of the Cohen-Macaulay filtration of a multiple
line, we have the inclusion ILIZ ⊂ IC , and that there exists a free OL-module
L that fits into the exact sequence

0 → IC → IZ → L → 0.

By comparing the Euler characteristics of the three sheaves, we deduce that L
has rank 1, and so there exists γ ∈ Z such that L = OL(γ). Moreover, if we
factor out ILIZ from the first two items of the previous exact sequence, we still
get an exact sequence of OL-modules

0 → IC
ILIZ → IZ

ILIZ → L → 0.

IZ/ILIZ can be computed as coker(ε2) ⊗OL where

. . . −→ P2
ε2−→ P1 −→ IZ → 0

is a free resolution of IZ . Thanks to the explicit knowledge of ε2 [11, Theorem
3.4], we have that IZ/ILIZ ∼= S2(F1) ⊕ ⊕n−3

j=1OL(−1 − βj), where S2(F1) is
the second symmetric power of F1 = OL(α0 − 1) ⊕ OL(α1 − 1). If we set
IC/ILIZ ∼= F2 as OL-modules, we get the second exact sequence. The map
µ1 cannot be zero because otherwise S2(F1) would be a free addendum of F2.
So IC ⊃ I2

L and C would be a rope.

Now, we can prove the converse of Proposition 3.1 and Corollary 3.1.

Theorem 3.1. Let L ⊂ P
n be a line. Assume that the two short exact

sequences (3.1) and (3.2) of OL-modules are given. Then, there exists a mul-
tiple line C supported on L, with deg(C) = 4 and ged(C) = 3 such that its
associated sequences are the given ones.

Proof. Let Z be the degree 3 rope supported on L and defined by the short
exact sequence (3.1). Its defining ideal is IZ = (I2

L, [IL]B) by [10, Theorem 2.4],
where [IL] is a row matrix whose entries are the generators of IL in the ordering
given by the basis of On−1

L (−1), and B represents the map ϕB.
By [11, Theorem 3.4], IZ has a presentation given by

O(n
2)

Pn (−2) ⊕
n−3⊕
j=1

OPn(−1 − βj) −→ IZ → 0.

Then, IZ ⊗OPn OL
∼= IZ/ILIZ has a presentation given by

O(n
2)
L (−2) ⊕

n−3⊕
j=1

OL(−1 − βj) −→ IZ/ILIZ → 0.
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Moreover, O(n
2)
L (−2) = S2(On−1

L (−1)), and so there exists a surjective map

O(n
2)
L (−2)
⊕

n−3⊕
j=1

OL(−1 − βj)

φA−→

S2(F1)
⊕

n−3⊕
j=1

OL(−1 − βj)

where φA =
(
S2ϕA 0

0 id

)
.

Let ψD = µ ◦ φA : O(n
2)
L (−2)⊕⊕n−3

j=1OL(−1− βj) → OL(γ), and let ψE be
the map which resolves it. Then we have the following exact sequence

(3.3) 0 → G ψE−→
O(n

2)
L (−2)
⊕

n−3⊕
j=1

OL(−1 − βj)

ψD−→ OL(γ) → 0

where G is a suitable OL−module of rank
(
n+1

2

)− 4.
Let [IZ ] be a row matrix whose entries correspond to the elements of a

basis of O(n
2)
L (−2)⊕⊕n−3

j=1OL(−1− βj) and let E be a matrix which represents
the map ψE . We can construct the ideal IC = (ILIZ , [IZ ]E), and let IC and OC

be the ideal sheaf and the structure sheaf of the corresponding closed scheme.
Then, we have the following properties.

(a) IC and OC fit into the exact sequences

(3.4) 0 → IC → IZ → OL(γ) → 0

and

(3.5) 0 → OL(γ) → OC → OZ → 0

because the exact sequence (3.3) can be rewritten as

0 → IC
ILIZ → IZ

ILIZ → OL(γ) → 0

from which we get the exact sequence (3.4). The second exact sequence (3.5)
is then straightforward.

By computing the Hilbert polynomials of the items of (3.5), we get that

pC(z) = 4z + 1 − (gz − γ − 1)

and so C has dimension 1 and degree 4.
(b) Taking the cohomology sequence associated to (3.4), we get the se-

quence

· · · → H0(OL(j + γ)) → H1(IC(j)) → H1(IZ(j)) → . . .
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and so H1(IC(j)) = 0 for j << 0, that is to say, C is a curve.
(c) I3

L ⊂ IC ⊂ IL because I2
L ⊂ IZ ⊂ IL. Then, C is a multiple line

supported on L, that admits a Cohen-Macaulay filtration given by L ⊂ Z ⊂ C,
where Z is a degree 3 rope supported on L.

(d) From (3.4), we deduce the exact sequence

0 → IC∩H|H → IZ∩H|H → OP (γ) → 0

where H is a hyperplane general both for C and for Z, and P = H ∩L. Hence,
we have

0 → H0(IC∩H|H(j)) → H0(IZ∩H|H(j)) → H0(OP (j + γ)) → . . .

The ideal IZ∩H|H is generated by y1, . . . , yn−3, (yn−2, yn−1)2 up to suitably
choosing the coordinate system in H = Proj(K[y1, . . . , yn]), while h0(OP (j +
γ)) = 1, for each j ∈ Z.

For j = 1, there are two possible cases: the map δ : H0(IZ∩H|H(1)) →
H0(OP (1 + γ)) is zero, or it is surjective.

Case 1: δ is the null map.
In this case, H0(IC∩H|H(1)) = H0(IZ∩H|H(1)) = (y1, . . . , yn−3). Then,

the Hilbert function of C ∩H|H is h2 and C has very degenerate hyperplane
section. Hence, we can lift two quadrics from (IZ∩H|H)2 with a common factor.
Assume we lift y2

n−2, and yn−2yn−1. Then, we can lift y3
n−1 too, and so IC∩H|H

is the one computed in Lemma 3.2. Then, we get that ged(C) = 3. Notice that
lifting a different cubic form forces the scheme C ∩H|H not to be supported
only on (0 : . . . : 0 : 1).

Case 2: δ is surjective.
In this case, h0(IC(1)) = n− 4. Without loss of generality, we can assume

that H0(IC(1)) is generated by y1, . . . , yn−4. Moreover, the Hilbert function
of IC∩H|H is h1, and we can lift 6 quadrics from H0(IZ(2)) which have the
shape y2

n−3 + a1yn−3yn, . . . , y
2
n−1 + a6yn−3yn, because IC∩H|H is a saturated

ideal and because a different choice forces the Cohen-Macaulay filtration to be
different. Hence, emdimP (C ∩H) = 2 and ged(C) = 3.

Summarizing the results, we have that C is a multiple line supported on
L with deg(C) = 4 and ged(C) = 3. Furthermore, the sequences associated to
C according to Corollary 3.1 are the ones given as hypotheses.

Now, we want to investigate the numerical data involved in the construc-
tion of such curves.

Corollary 3.2. Let C ⊂ P
n be a multiple line supported on L, with

deg(C) = 4 and ged(C) = 3. Then, gC = gZ − γ − 1, where Z is the degree 3
rope which appears in the Cohen-Macaulay filtration of C.

Proof. See the proof of previous Theorem 3.1, where we computed the
Hilbert polynomial of C.
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Corollary 3.3. Let C ⊂ P
n be a multiple line as before. Then

h1(IC(j)) ≤ dimK

(
S

(D)

)
j+γ

+ h1(IZ(j))

for every j ∈ Z, where (D) is the ideal in S generated by the entries of a matrix
D which represents the map ψD.

Proof. In the proof of previous Theorem 3.1, we considered the exact
sequence (3.4) and the associated cohomology sequence. The result follows
from it, because we can rewrite that sequence as

0 →
(

S

(D)

)
j+γ

→ H1(IC(j)) → H1(IZ(j))

where (D) is the ideal generated by the entries of the matrix D which represents
the map ψD.

Remark 3.1. The dimension dimK(S/(D))j+γ can be computed from
the sequence (3.3).

Corollary 3.4. In the same hypotheses as before, if Z is an arithmeti-

cally Cohen-Macaulay curve, then H1
∗ (IC) ∼= S

(D)
(γ).

Proof. If Z is arithmetically Cohen-Macaulay then H1
∗ (IZ) = 0, and the

claim follows from the previous Corollary.

Remark 3.2. Z is arithmetically Cohen-Macaulay if, and only if, gZ = 0,
or, equivalently, α0 = α1 = β1 = · · · = βn−3 = 0.

Now, we look for bounds for γ in terms of the other data.

Proposition 3.2. Let C ⊂ P
n be a multiple line supported on L with

deg(C) = 4, ged(C) = 3, and let Z be the degree 3 rope which appears in the
Cohen-Macaulay filtration of C. Then γ ≥ 2α0 − 2 and gZ ≥ gc − 1.

Proof. The genus of the degree 3 rope Z is gZ = −α0 − α1 where 0 ≤
α0 ≤ α1. Then, gZ ≤ 0. Assume that β1 ≤ · · · ≤ βn−3.

To compute the bound for γ, we have to consider the existence of a surjec-
tive map µ as in the sequence (3.2), with µ1 
= 0. This is possible if either there
exists a retraction or in the image of µ there is a regular sequence of length 2.

We recall that the domain of µ is

OL(2α0−2)⊕OL(α0+α1−2)⊕OL(2α1−2)⊕OL(−1−β1)⊕· · ·⊕OL(−1−βn−3),

and so the degrees of the entries of µ are γ − 2α0 + 2 ≥ γ − α0 − α1 + 2 ≥
γ − 2α1 + 2, γ + 1 + β1 ≤ · · · ≤ γ + 1 + βn−3.
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Hence, γ ≥ 2α0 − 2. Moreover, gZ − gC − 1 = γ ≥ 2α0 − 2 ≥ − 2, and the
bound for gZ follows.

4. Characterization of some multiple lines

In this section, we want to characterize the multiple lines of degree 4
and generic embedding dimension 3 which have a very degenerate hyperplane
section, or which contain a degree 3 planar subcurve. Of course, we characterize
them in terms of the sequences (3.2) and (3.3).

At first, we characterize the multiple lines with very degenerate hyperplane
section.

Theorem 4.1. Let C ⊂ P
n be a multiple line supported on L with

deg(C) = 4 and ged(C) = 3. C has very degenerate hyperplane section if,
and only if, µ2 : ⊕n−3

j=1OL(−1 − βj) → OL(γ) is the null map.

Proof. Assume that µ2 is the null map. Then, the map ψD restricted
to ⊕n−3

j=1OL(−1 − βj) is zero, too, and so the free module G splits as G =
G′ ⊕⊕n−3

j=1OL(−1 − βj) and ψE restricted to ⊕n−3
j=1OL(−1 − βj) is the identity

map. To fix notation, the map ψE restricted to G′ is represented by the matrix
E′.

By Theorem 3.1, we have that IC = (I3
L, [I

2
L]E′, [IL]B) defines a degree 4

multiple line supported on L with ged(C) = 3.
Let H = V (xn − axn−1) be a general hyperplane for C, for a suitable a ∈

K. Then, IC∩H|H = (I3
L, [I

2
L]E′

P , [IL]BP )sat where E′
P (resp. BP ) is obtained

from E′ (resp. B) by setting xn = axn−1, and the saturation is computed in
K[x0, . . . , xn−1].

B does not drop rank in codimension 1, and so BP has rank n − 3, i.e.,
[IL]BP = (xβ1

n−1�1, . . . , x
βn−3
n−1 �n−3) where �1, . . . , �n−3 ∈ (IL)1 are linearly in-

dependent. Hence, the Hilbert function of C ∩ H|H is h2 and C has very
degenerate hyperplane section.

Conversely, assume that µ2 : ⊕n−3
j=1OL(−1 − βj) → OL(γ) is not the null

map. Then, ψD| : ⊕n−3
j=1OL(−1 − βj) → OL(γ) is represented by a matrix

D2 = (d1, . . . , dn−3) which is non zero. Without loss of generality, assume that
dn−3(P ) 
= 0 for some P = (0 : . . . : 0 : 1 : a) ∈ L.

Let H = V (xn − axn−1) be a hyperplane. We want to compute IC∩H|H .
Let us consider the sequence (3.3). By the Hilbert-Burch Theorem [4, Theorem
20.15], the maximal minors of the matrix E are equal to the entries of the matrix
D = (D1|D2) which represents the map ψD, up to their sign. Of course, D1

represents the map ψD restricted to O(n
2)
L (−2).

We want to prove that IC∩H|H = ([IZ ]PEP )sat, where the subscript P
means that we substitute xn with axn−1 and the saturation is computed in
K[x0, . . . , xn−1].

Let E• be the last row of E and let Ẽ be the submatrix of E obtained by
erasing its last row. Then, det(Ẽ) = dn−3, if we assume we choose the signs
in such a way that they agree. Moreover, let [IL]B = (F1, . . . , Fn−3) be the
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generators of IZ not in I2
L. Then, in IC there are the polynomials

[IZ ]E = [I2
L, F1, . . . , Fn−4]Ẽ + Fn−3E•.

If we multiply by adj(Ẽ), classical adjoint matrix of Ẽ, we get that

det(Ẽ)[I2
L, F1, . . . , Fn−4]Id+ Fn−3E•adj(Ẽ)

are polynomials in IC .
It is a classical result that

E•adj(Ẽ) = (δ1, . . . , δ(n
2), d1, . . . , dn−4) =: D̃,

where D1 = (δ1, . . . , δ(n
2)), and so we can rewrite the previous polynomials as

(4.1) dn−3[I2
L, F1, . . . , Fn−4] + Fn−3D̃.

If we substitute xn = axn−1 in F1, . . . , Fn−3 and D, and we denote Fi(P ), i =
1, . . . , n−3, andD(P ) the results, we get that Fi(P ) = xβi

n−1�i, for i = 1, . . . , n−
3, where �1, . . . , �n−3 ∈ (IL)1 are linearly independent, and δi(P ) = pix

γ+2
n−1, for

i = 1, . . . ,
(
n
2

)
, with pi ∈ K, and di(P ) = qix

γ+βi+1
n−1 for i = 1, . . . , n − 3, with

qi ∈ K, and qn−3 
= 0. Hence, if we substitute as before xn = axn−1 in the
polynomials in (4.1), we get

qn−3x
γ+βn−3+1
n−1 [I2

L, x
β1
n−1�1, . . . , x

βn−4
n−1 �n−4] + x

βn−3
n−1 �n−3D̃(P ) ∈ IC∩H|H .

By taking saturation, we have that

[I2
L] + �n−3

xn−1

qn−3
[p1, . . . , p(n

2)]

and

�i +
qi
qn−3

�n−3 i = 1, . . . , n− 4,

belong to IC∩H|H . Set J be the ideal generated by those polynomials.
Other generators of IC are I3

L and IL(F1, . . . , Fn−3).
At first, we prove that xjFi(P ) = xjx

βi

n−1�i ∈ J .
Of course, the claim is equivalent to xjx

βi

n−1
qi

qn−3
�n−3 ∈ J .

xj�n−3 ∈ I2
L and the coefficients are reordered in such a way that they are

a syzygy of (S2ϕA)P . Hence, xjx
βi

n−1�i ∈ J for all i, j.
In the same way, we have that I3

L ⊂ J and so IC∩H|H = Jsat. Moreover,
the generators of J are a Grobner basis with respect to the reverse lexicographic
order of the variables because their S-polynomials are in J for the same argu-
ment as before. Then, the initial ideal of J is saturated and so J is saturated,
too. Hence, dn−3(P ) 
= 0 implies that the Hilbert function of C ∩H|H is equal
to 4 for j ≥ 1, and so C does not have very degenerate hyperplane section, and
the claim follows.

Now, we describe the Hartshorne-Rao module and the global sections of
the structure sheaf of a multiple line with very degenerate hyperplane section.
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Proposition 4.1. Let C ⊂ P
n be a multiple line supported on a line L

with deg(C) = 4, ged(C) = 3, and very degenerate hyperplane section. Then
(a) 0 → H0

∗ (OL(γ)) → H0
∗ (OC) → H0

∗ (OZ) → 0 is exact;
(b) 0 → S

(D)(γ) → H1
∗ (IC) → H1

∗ (IZ) → 0 is exact.

Proof. To prove (a), we recall some results on H0
∗ (OZ) from [11, Lemma

4.2, Remark 4.4, Theorem 4.5].
H0

∗ (OZ) is a free S-module, S = K[xn−1, xn], with basis 1, Z0, Z1, Zi of
degree 1 − αi, i = 0, 1, where Z0, Z1 are defined by [IL] = (Z0, Z1)A in OZ .

In our hypotheses, the total ideal of the multiple line C is IC = (I3
L, [I

2
L]E′,

[IL]B). Then, in OC , [IL]B = 0, and so we can define two sections z0, z1 of
degrees 1 − α0, 1 − α1, such that [IL] = (z0, z1)A, because AB = 0. Of course,
we have that 1 is a global section of OC of degree 0, where 1 is the image of
the unit in R/IC → H0

∗ (OC). Hence, the natural map H0
∗ (OC) → H0

∗ (OZ)
induced by the inclusion of the ideals is surjective, because all the generators
of H0(OZ) are in the image.

(b) follows from (a) and the proof of Corollary 3.3, because the surjec-
tion H0

∗ (OC) → H0
∗ (OZ) induces a surjective map H1

∗ (IC) → H1
∗ (IZ), being

H1
∗ (IZ) generated by the images of Z0 and Z1.

The second kind of multiple lines we want to characterize are the multiple
lines containing a planar subcurve of degree 3.

Theorem 4.2. Let C ⊂ P
n be a multiple line supported on a line L

with deg(C) = 4, ged(C) = 3, and very degenerate hyperplane section. Then,
C contains a planar subcurve of degree 3 if, and only if, an addendum splits
off both from ϕA : On−1

L (−1) → OL(α0 − 1) ⊕ OL(α1 − 1) and from ψD :

O(n
2)
L (−2) → OL(γ).

Proof. The only degree 3 planar curves supported on L are generated by
�0, . . . , �n−3, �

3
n−2 where �0, . . . , �n−2 generate IL. Without loss of generality,

we can assume that �i = xi, i = 0, . . . , n− 2.
If C satisfies the hypotheses, its saturated ideal is IC = (I3

L, [I
2
L]E′, [IL]B),

by Theorem 4.1.
Now, assume that C contains the planar subcurve D defined by ID =

(x0, .., xn−3, x
3
n−2). Then, [IL]B ⊂ ID, and [I2

L]E′ ⊂ ID. Hence, the last row
of both B and E′ is zero, and so the claim follows.

Conversely, if one addendum splits off both in ϕA and in ψD, then we can
choose a basis in On−1

L (−1) in such a way that one row of B is zero, and so
IZ = (I2

L, [IL]B) = (I2
L, F1, . . . , Fn−3) satisfies Fi ∈ (x0, . . . , xn−3), without loss

of generality. Moreover, either α0 = 0 or α1 = 0. Assume α0 = 0.
By hypothesis, the map ψD = µ ◦ S2ϕA has a retraction, and so γ = − 2.

Of course, the addendum which splits off is OL(2α0 − 2) = OL(−2) and so
[I2
L]E′ ⊂ (x0, . . . , xn−3). Hence, IC ⊂ ID, and the claim follows.

In this last case, we can describe more precisely the Hartshorne-Rao mod-
ule.



�

�

�

�

�

�

�

�

Remarks on degree 4 projective curves 175

Corollary 4.1. In the same hypotheses as Theorem 4.2, the Hartshorne
-Rao module of C is

H1
∗ (IC) ∼=

(
S

(A)

)
(α1 − 1)

where (A) is the ideal generated by the entries of a matrix A which represents
the map ϕ̃A : On−2

L (−1) → OL(α1−1) obtained from ϕA by canceling the extra
addendum.

Proof. In our hypotheses, ψD has a retraction and so S/(D) = 0. Hence,
by Proposition 4.1(b), H1

∗ (IC) ∼= H1
∗ (IZ). By [10], Proposition 3.1, H1

∗ (IZ) ∼=
coker(ϕA) and because of our hypotheses, we get the claim.

Remark 4.1. If the four-tuple line C contains a planar subcurve D of
degree 3, then gC = 1 + gZ , because γ = −2, and Corollary 3.2.

5. A connectedness problem

In this section, we construct suitable parameter spaces for the multiple
lines of degree 4 and generic embedding dimension 3. Because of the universal
property of the Hilbert scheme, we can embed these parameter spaces into
the corresponding Hilbert scheme parameterizing only locally Cohen-Macaulay
schemes, and we can consider their closures. A natural problem is the following:
is the union of those closed subschemes connected?

This problem was considered, up to now, only for curves in the projective
three space. In that ambient, it is not known if the Hilbert scheme of locally
Cohen-Macaulay schemes is connected, also if, in various papers, some authors
gave partial results in that direction. Of course, we do not consider all the de-
gree 4 curves of fixed genus, but only the multiple lines with generic embedding
dimension 3, and so we don’ t give a general answer for the degree 4 curves.
To prove the connectedness, we consider one more family, the ropes of degree
4 and right genus, which appears in projective spaces of dimension higher than
3.

At first, we describe the parameter spaces.
A multiple line C supported on a line L, with deg(C) = 4, and ged(C) = 3,

is known when we know the sequences (3.1) and (3.2). Then, we can parame-
terize them using the parameter space for the degree 3 ropes and a parameter
space for the map µ. To specify the map µ, we need that the left-type β of the
rope Z is fixed. Hence, we notice Rn,3,α(β) the locally closed subset of Rn,3,α

where the left-type is β. It is locally closed because we fixed the Rao function
of the rope.

Definition 5.1. Every multiple line C of degree 4, genus gC and generic
embedding dimension 3, which is filtered via a degree 3 rope of right-type α
and left-type β corresponds to a closed point of an open subset of a P

N -bundle
over Rn,3,α(β), where gZ = −α0 − α1, N = n(gZ − gC + 1) − 2gZ + 2, with
fibers corresponding to surjective maps µ : S2(OL(α0 − 1) ⊕ OL(α1 − 1)) ⊕
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⊕n−3
j=1OL(−βj − 1) → OL(gZ − gC − 1) which do not drop rank in codimension

1, modulo an automorphism of OL(gZ − gC − 1).

With abuse of notation, we denote with L... both the parameter space and
its embedding into the corresponding Hilbert scheme.

Remark 5.1. The maximal genus for non planar curves of degree 4 is
gC = 1. If C is a multiple line with deg(C) = 4, ged(C) = 3 and gC = 1, then
the degree 3 rope which appears in its filtration has genus gZ = 0, because of
Proposition 3.2. Hence, there is only one choice for the right-type and for the
left-type of Z, and so there is only one family of multiple lines to consider. In
this case, the connectedness is trivial.

From now on, we assume that gC ≤ 0.
At first, we consider the case n ≥ 5.

Proposition 5.1. Let n ≥ 5. Every family Ln,α,β,gC
such that there

exists a surjective map µ2 connects to Rn,4,gC
.

Proof. Set C a multiple line corresponding to a closed point of La,α,β,gC

such that the associated map µ = (µ1, µ2) has µ2 surjective. Here, we need
n ≥ 5 and some restrictions on the left- and right-type.

Set Ct the multiple line defined by the same degree 3 rope Z and by the
map µt = (tµ1, µ2), t ∈ A

1. If t 
= 0, then Ct is a multiple line of degree 4,
generic embedding dimension 3 and genus gC . If t = 0, C0 is a degree 4 rope of
genus gC . In fact, µ1 = 0 implies that I2

L ⊂ IC0 and the genus can be computed
by resolving the map µ2. Hence, we can connect the two families.

Remark 5.2. From a numerical point of view, there exists a surjective
map µ2 if γ − 2α0 + 2 ≤ γ + 1 + βn−4, or if the right-type and the left-type are
zero (i.e. gZ = 0) and γ ≥ −1. Then, we have to consider the complementary
cases, i.e. α0 = βn−4 = 0, α1 > 0.

Proposition 5.2. Let gZ ≤ 0. Set α′ = (0,−gZ), β′ = (0, . . . , 0,−gZ),
and α′′= (0, 1−gZ), β′′= (0, . . . , 0, 1,−gZ). Then, the families L′ = Ln,α′,β′,gC

and L′′ = Ln,α′′,β′′,gC
are in the same connected component.

Proof. We exhibit a flat family whose general member is in L′′ and whose
special member is in L′.

We choose Zt, t ∈ A
1, to be the degree 3 rope defined over L = V (x0, . . . ,

xn−2) by the matrix

At =
(

0 · · · 0 tx1−gZ
n xn−1x

−gZ
n x1−gZ

n−1 0
0 · · · 0 0 0 0 1

)
.

Then, the saturated ideal of Zt is

IZt
= ((IL)2, x0, . . . , xn−6, xn−5xn−1 − txn−4xn, xn−4x

−gZ

n−1 − xn−3x
−gZ
n ).
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To define a multiple line, we have to define the map µt. We choose

µ1,t = (0, 0, xgZ−gC+1
n−1 )

and

µ2,t = (0, . . . , 0, xgZ−gC+1
n , 0)

for every t 
= 0. Notice that the only non zero entry of µ2,t corresponds to the
degree 2 generator of IZt

. If we compute the map ψDt
and the map ψEt

which
resolves it, we get the following ideal that defines a multiple line Ct

ICt
= (x0, . . . , xn−6, x

2
n−5, xn−5xn−4, x

2
n−4, . . . , xn−3xn−2, x

3
n−2,

x2
n−2x

gZ−gC+1
n − xgZ−gC+1

n−1 (xn−5xn−1 − txn−4xn), xn−4x
−gZ

n−1 − xn−3x
−gZ
n ).

If we let t→ 0, we get the ideal

I0 = (x0, . . . , xn−6, x
2
n−5, . . . , xx−3xx−2, x

3
n−2,

x2
n−2x

gZ−gC+1
n − xn−5x

gZ−gC+2
n−1 , xn−4x

−gZ

n−1 − xn−3x
−gZ
n )

that defines a multiple line C0 of degree 4, generic embedding dimension 3,
whose filtration is L ⊂ Z0 ⊂ C0, where Z0 is defined by

IZ0 = ((IL)2, x0, . . . , xn−6, xn−5, xn−4x
−gZ

n−1 − xn−3x
−gZ
n )

and

µ1,0 = (0, 0, xgZ−gC+2
n−1 )

while

µ2,0 = (0, . . . , 0, xgZ−gC+1
n , 0).

Hence, C0 has genus gC and the right-type of Z0 is (0,−gZ), while its
left-type is (0, . . . , 0,−gZ), and so the claim holds.

Now, we consider the case n = 4. In this case, the left-type of the rope is
−gZ because n− d = 1. Moreover, in P

4 the degree 4 ropes are L(2) and so we
have degree 4 ropes only if gZ = 0. Then, we have to follow a different strategy
to get the claim.

Proposition 5.3. Let n = 4, and let gC , gZ ∈ Z such that gC ≤ 0, gC −
1 ≤ gZ ≤ 0. Then the families L′ = L4,(α0,α1),−gZ ,gC

and L′′ = L4,0,0,gC
are in

the same connected component, whatever 0 ≤ α0 ≤ α1, with α0 + α1 = −gZ .

Proof. We construct a flat family of multiple lines whose general member
belongs to L′ and whose special member is in L′′.

Let Zt, t ∈ A
1 be the rope supported on the line L = V (x, y, z) ⊂ P

4 =
Proj(K[x, y, z, u, v]) defined by the matrix

At =
(
vα0 tuα0 0
0 vα1 uα1

)
.
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Its saturated ideal is

IZt
= ((x, y, z)2, t2xu−gZ − tyuα1vα0 + zv−gZ ).

To define the multiple line we choose the map µt = (v−3α0−α1−gC+1, 0, 0,
u−gC ). The exponent of v is non negative because of Proposition 3.2.

We can compute the ideal of Ct using the usual procedure, and we get

ICt
= (x3, x2y, xy2, y3, xz, yz, z2, tx2uα0 − xyvα0 , txyuα0 − y2vα0 ,

y2u−gC−2α0 − t2v−3α0−α1−gC+1(t2xu−gZ − tyuα1vα0 + zv−gZ )).

In ICt
there are also the polynomials p such that tp ∈ ICt

, because we
flatten the family over K[t]. Then, we have to add two more forms

p1 = xyu−gC−α0 − t3xu−gZv−2α0−α1−gC+1 + t2yuα1vgZ−gC+1 − tzv−α0−gC+1

obtained as u−gC−2α0 times the second last generator plus vα0 times the last
generator of ICt

, and

p2 = x2u−gC − zv1−gC + tyuα1v−α1−gC+1 − t2xu−gZvgZ−gC+1

obtained as u−gC−α0 times the third last generator plus vα0 times p1.
If we let t → 0, and we take the saturation of the ideal we get, we obtain

the ideal

IC0 = (x3, xy, y2, xz, yz, z2, x2u−gC − zv1−gC )

that defines a multiple line of degree 4, generic embedding dimension 3, genus
gC whose associated Cohen-Macaulay filtration is L ⊂ Z0 ⊂ C0, where Z0 is

IZ0 = ((x, y, z)2, z)

and so its left-type is 0, while its right-type is (0, 0).

Remark 5.3. If gC = 0, we have two possible genera for the associ-
ated degree 3 rope, namely, gZ = 0, or gZ = −1. If gZ = 0, the multiple
lines either are arithmetically Cohen-Macaulay if their general hyperplane sec-
tion is not very degenerate, or they have very degenerate hyperplane section
and Hartshorne-Rao module isomorphic to K in degree 0. The arithmetically
Cohen-Macaulay curves of degree 4 in P

4 where studied in [8], and in [15]. In
the first quoted paper, the authors proved that these curves fill an irreducible
component of dimension 21, and the ropes are singular in that component.
Then, the family L4,(0,0),0,0 is contained in the closure of that irreducible com-
ponent, and so we find curves with very degenerate hyperplane section in that
closure.

As last result of the section, we want to prove that the family of degree
4 curves containing a planar subcurve of degree 3 is in the same connected
component as the multiple lines we studied in previous Sections 3 and 4.
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Proposition 5.4. Vn,4,gC
and Ln,(0,1−gC),(0,...,0,1−gC),gC

are in the sa-
me connected component.

Proof. We construct a suitable flat family whose general member is a
degree 4 curve of genus gC containing a plane subcurve of degree 3, and whose
special member is a degree 4 multiple line with generic embedding dimension 3,
genus gC , filtered via a degree 3 rope with right-type (0, 1 − gC) and left-type
(0, . . . , 0, 1 − gC).

Let L be the line defined by IL = (x0, . . . , xn−2), and let Pt the plane
conic defined by the ideal IPt

= (x0, . . . , xn−3, x
2
n−2 + txn−1xn), t ∈ A

1. Set
Dt = L ∪ Pt for t 
= 0. To define a curve with very degenerate hyperplane
section we have to define a surjective map ϕA as in (2.6). We choose ϕA to be
represented by A = (0, . . . , 0, x1−gC

n , x1−gC

n−1 , 0) because a = 1 − gC being d = 4
and g = gC . Then, the matrix B which resolves A is

B =



I 0 0
0 x1−gC

n−1 0
0 −x1−gC

n 0
0 0 1


 .

The curve Ct we are constructing is then defined by

ICt
= (ILIDt

, [IDt
]B)

where IDt
= (x0, . . . , xn−3, xn−2(x2

n−2 + txn−1xn)).
When t→ 0 we get the ideal IC0 = (ILID0 , [ID0 ]B) = (x0, . . . , xn−5, x

2
n−4,

xn−4xn−3, x
2
n−3, xn−4xn−2, xn−3xn−2, x

3
n−2, xn−4x

1−gC

n−1 − xn−3x
1−gC
n ).

It is evident that C0 is a curve of degree 4, genus gC , that I3
L ⊂ IC0 ⊂ IL,

i.e., C0 is a multiple line, and that its general hyperplane section is the one
described in Lemma 3.2, i.e., ged(C0) = 3. The Cohen-Macaulay filtration of
C0 is L ⊂ Z0 ⊂ C0 where Z0 is a degree 3 rope defined by

IZ0 = ((IL)2, x0, . . . , xn−5, xn−4x
1−gC

n−1 − xn−3x
1−gC
n ),

and so its left-type is (0, . . . , 0, 1 − gC). The syzygies of the associated matrix
B0 are

A0 =
(

0 . . . 0 x1−gC
n x1−gC

n−1 0
0 . . . 0 0 0 1

)
and so the right-type of Z0 is (0, 1− gC). As last remark, of course C0 contains
D0 and so it contains a degree 3 plane subcurve.

We can summarize the previous results in the statement

Theorem 5.1. The families of degree 4 ropes of genus gC , of curves
with very degenerate hyperplane sections of degree 4 and genus gC , and the
families of degree 4 multiple lines with generic embedding dimension 3 and
genus gC are in the same connected component of the corresponding Hilbert
scheme of locally Cohen-Macaulay curves.
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6. An openness problem

In this section, we want to prove that the family of curves of degree 4
containing a planar subcurve of degree 3 corresponds to an open subset of an
irreducible component of the corresponding Hilbert scheme, whatever genus
the curves have. An analogous result was proved in [14] for curves of degree
d ≥ 5. There, the main geometrical ingredient was the equivalence between
the hypothesis on the curve and the fact that the curve has very degenerate
hyperplane section. As showed in Section 4, for degree 4 curves the equivalence
does not hold, and so we have to use a different argument.

At first, we characterize the curves containing a planar subcurve.

Proposition 6.1. Let C ⊂ P
n be a non degenerate degree 4 curve of

genus gC . Assume that either n ≥ 5 and gC ≤ 0, or n = 4 and gC ≤ −1.
Then, the following are equivalent

(a) C contains a planar subcurve of degree 3;
(b) h1IC(gC) 
= 0.

In our hypotheses, the curves we are considering are exactly the ones in
Vn,4,gC

.

Proof. In [14] there is a description of the curves containing a planar
subcurve of degree one less, and in particular, there is a description of their
Hartshorne-Rao module. It holds that, as K[xn−1, xn]-module, H1

∗IC is iso-
morphic to coker(ϕA) as described in the exact sequence (2.6). Then, it is
trivial that h1IC(gC) = 1.

Conversely, if C does not contain a degree 3 planar subcurve, we have two
possibilities: either the general hyperplane section of C is non degenerate, or
C is a multiple line with ged(C) = 3 and very degenerate hyperplane section,
but C does not contain a planar subcurve of degree 3.

In the first case, we use the Castelnuovo method to compute the Rao
function of C in degree 0. At first, we get the following upper bound

h2IC(0) ≤
∑
t≥1

h1IC∩H|H(t).

The general hyperplane section of C is non degenerate and so h1IC∩H|H(t) = 0
for t ≥ 1. Hence, h2IC(0) = 0. Of course, h0IC(0) = 0, and so we can
compute h1IC(0). In fact, h0IC(0) − h1IC(0) + h2IC(0) = gC , that is to say,
h1IC(0) = −gC . But the Rao function is strictly increasing in negative degrees
and so h1IC(gC) = 0.

In the second case, let L ⊂ Z ⊂ C be the Cohen-Macaulay filtration of the
multiple line C where L is the line support of C and Z is a degree 3 rope. C does
not contain a planar subcurve of degree 3 and so either ϕA has no retraction,
or ψD has no retraction (see Theorem 4.2). Furthermore, by Proposition 4.1,
for j = gC ,

h1IC(gC) = h1IZ(gC) + dimK(S/D)γ+gC
.
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We want to prove that both the addenda are zero.
By Corollary 3.2, γ + gC = gZ − 1, and so γ + gC ≤ −1 because gZ ≤ 0.

Hence dimK(S/D)γ+gC
= 0.

By formula (2.3), h1IZ(gC) =
(
α0+gC

1

)
+
(
α1+gC

1

)
. Hence, it is non zero

only in the case α0 = 0, α1 = 1 − gC and gZ = −1 + gC . Because of the
surjectivity of ϕA, it has a retraction. Moreover, the map µ1 that defines the
curve C is non zero and this forces the map ψD to have a retraction, too. Hence,
C contains a degree 3 planar subcurve, and the claim follows.

Now, we can prove the main result of the section.

Theorem 6.1. Let n, g be integers such that g ≤ 0 if n ≥ 5 or g ≤ −1
if n = 4. Then, Vn,4,g is an open subset of an irreducible component of the
corresponding Hilbert scheme.

Proof. The proof is essentially the same as [14, Theorem 7.11], with the
remark that there are no integral curves in P

n of degree 4 and genus g which
satisfies our hypotheses.

Now, we consider the last case, namely n = 4, g = 0.

Proposition 6.2. The Hilbert scheme parameterizing curves in P
4 with

Hilbert polynomial p(z) = 4z + 1 consists of two irreducible components of
dimension 21.

Proof. In this case, we are interested in curves of genus g = 0. Following
Remark 5.3, if C has non degenerate general hyperplane section, then C is
arithmetically Cohen-Macaulay and it lies in the component studied in [8] of
dimension 21. The other component corresponds to the union of a planar curve
of degree 3 and a line skew with the plane. Also this component has dimension
21. If C has very degenerate hyperplane section and is not arithmetically
Cohen-Macaulay, then, either it contains a planar subcurve of degree 3 and
so it lies in this second component, or it does not contain a degree 3 planar
subcurve and so it lies in the closure of the component containing arithmetically
Cohen-Macaulay curves (see Remark 5.3). These last curves are multiple lines
with ged 3 by Proposition 2.1.
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