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Instability of standing waves for nonlinear
Schrödinger equations with inhomogeneous

nonlinearities

By

Reika Fukuizumi and Masahito Ohta

1. Introduction

In this paper we study the nonlinear Schrödinger equations

(1.1) i∂tu = −∆u− g(x, |u|2)u, (t, x) ∈ R
1+n.

When g(x, |u|2) = V (x)|u|p−1, equation (1.1) can model beam propagation in
an inhomogeneous medium where V (x) is proportional to the electron den-
sity ([18]). Akhmediev [1], Jones [14] and Grillakis, Shatah and Strauss [12]
studied the existence and stability of solitary waves of (1.1) for the case where
g(x, |u|2) describes three layered media where the outside two are nonlinear
and the sandwiched one is linear. Also, Merle [19] investigated the existence
and nonexistence of blowup solutions of (1.1) for certain types of inhomo-
geneities in case that g(x, |u|2) = V (x)|u|4/n. In this paper, we consider the
case g(x, |u|2) = V (x)|u|p−1 with the following type of V (x), assuming that
n ≥ 3, 0 < b < 2 and 1 < p < 1 + (4 − 2b)/(n− 2).

(V1) V (x) ≥ 0, V (x) �≡ 0, V (x) ∈ C2(Rn,R),

(V2) There exist C > 0 and a > {(n+ 2) − (n− 2)p}/2 > b such that
∣∣∣∣xα∂α

x

(
V (x) − 1

|x|b
)∣∣∣∣ ≤ C

|x|a

for |x| ≥ 1 and |α| ≤ 2.

The main purpose in this paper is to show that under the above as-
sumptions on V (x), the standing wave solution of (1.1) is unstable for p >
1 + (4 − 2b)/n and sufficiently small frequency.

By a standing wave, we mean a solution of (1.1) of the form

uω(t, x) = eiωtφω(x),
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146 Reika Fukuizumi and Masahito Ohta

where ω > 0, and φω(x) is a ground state of the following stationary problem

(1.2)
{−∆φ+ ωφ− V (x)|φ|p−1φ = 0, x ∈ R

n,
φ ∈ H1(Rn), φ �≡ 0.

We recall previous results. Several authors have been studying the problem
of stability and instability of standing waves for (1.1) (see, e.g., [2, 5, 6, 7, 8,
9, 10, 12, 17, 22, 25, 26]). First, we consider the case V (x) ≡ 1, namely,

(1.3) i∂tu = −∆u− |u|p−1u, (t, x) ∈ R
1+n,

where 1 < p <∞ if n = 1, 2, and 1 < p < 1 + 4/(n− 2) if n ≥ 3.

For ω > 0, there exists a unique positive radial solution ψω(x) of

(1.4)
{−∆ψ + ωψ − |ψ|p−1ψ = 0, x ∈ R

n,
ψ ∈ H1(Rn), ψ �≡ 0.

(see Strauss [23] and Berestycki and Lions [3] for the existence, and Kwong [15]
for the uniqueness). It is known that a positive solution of (1.4) is a ground
state. In [5] Cazenave and Lions proved that if p < 1 + 4/n then the standing
wave solution eiωtψω(x) is stable for any ω > 0. On the other hand, it is shown
that if p ≥ 1 + 4/n then the standing wave solution eiωtψω(x) is unstable for
any ω > 0 (see Berestycki and Cazenave [2] for p > 1+4/n, and Weinstein [25]
for p = 1 + 4/n).

We define the energy functional E and the charge Q on H1(Rn) by

E(v) :=
1
2
‖∇v‖2

2 −
1

p+ 1

∫
Rn

V (x)|v(x)|p+1dx, Q(v) :=
1
2
‖v‖2

2.

We remark that by the assumptions (V 1) and (V 2), the functional E is well-
defined on H1(Rn).

The time local well-posedness for the Cauchy problem to (1.1) in H1(Rn),
the conservation of energy and L2(Rn)-norm, and the virial identity hold (see,
e.g., Theorem 4.4.6 and Section 6.5 of Cazenave [4]). That is, we have the
following proposition.

Proposition 1.1. For any u0 ∈ H1(Rn), there exist T = T (‖u0‖H1) >
0 and a unique solution u(t) ∈ C([0, T ], H1(Rn)) of (1.1) with u(0) = u0 satis-
fying

E(u(t)) = E(u0), Q(u(t)) = Q(u0), t ∈ [0, T ].

In addition, if u0 ∈ H1(Rn) satisfies |x|u0 ∈ L2(Rn), then the virial identity

d2

dt2
‖xu(t)‖2

2 = 8P (u(t))
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holds for t ∈ [0, T ], where

P (v) : = ‖∇v‖2
2 −

n(p− 1)
2(p+ 1)

∫
Rn

V (x)|v(x)|p+1dx(1.5)

+
1

p+ 1

∫
Rn

x · ∇V (x)|v(x)|p+1dx.

Before we state our theorem, we give some precise definitions.

Definition 1.1. For ω > 0, we define two functionals on H1(Rn):

Sω(v) := E(v) + ωQ(v) (action),

Iω(v) := ‖∇v‖2
2 + ω‖v‖2

2 −
∫

Rn

V (x)|v(x)|p+1dx.

Let Gω be the set of all non-negative minimizers for

(1.6) inf{Sω(v) : v ∈ H1(Rn) \ {0}, Iω(v) = 0}.
The existence of non-negative minimizers for (1.6) is proved by the stan-

dard variational argument since V (x) vanishes as |x| → ∞ (see Stuart [24]). In
Section 3, we prove the following lemma for the sake of completeness.

Lemma 1.1. Let n ≥ 3 and 1 < p < 1 + 4/(n− 2). Assume (V 1) and
lim

|x|→∞
V (x) = 0. Then Gω is not empty for ω > 0.

Remark 1. (i) We note that

Iω(v) = ∂λSω(λv)|λ=1 = 〈S′
ω(v), v〉, P (v) = ∂λSω(vλ)|λ=1,

where vλ(x) := λn/2v(λx) for λ > 0.
(ii) Let φω ∈ Gω. Then, there exists a Lagrange multiplier Λ ∈ R such
that S′

ω(φω) = ΛI ′ω(φω). Thus, we have 〈S′
ω(φω), φω〉 = Λ〈I ′ω(φω), φω〉. Since

〈S′
ω(φω), φω〉 = Iω(φω) = 0 and 〈I ′ω(φω), φω〉 = −(p− 1)

∫
V (x)|φω|p+1 < 0,

we have Λ = 0. Namely, φω satisfies (1.2). Moreover, for any v ∈ H1(Rn) \ {0}
satisfying S′

ω(v) = 0, we have Iω(v) = 0. Thus, by the definition of Gω, we have
Sω(φω) ≤ Sω(v). Namely, φω ∈ Gω is a ground state (minimal action solution)
of (1.2) in H1(Rn). It is easy to see that a ground state of (1.2) in H1(Rn) is
a minimizer of (1.6).

The stability and the instability in this paper are formulated as follows.

Definition 1.2. For φω ∈ Gω and δ > 0, we put

Uδ(φω) :=
{
v ∈ H1(Rn) : inf

θ∈R

‖v − eiθφω‖H1 < δ

}
.

We say that a standing wave solution eiωtφω(x) of (1.1) is stable in H1(Rn) if
for any ε > 0 there exists δ > 0 such that for any u0 ∈ Uδ(φω), the solution
u(t) of (1.1) with u(0) = u0 satisfies u(t) ∈ Uε(φω) for any t ≥ 0. Otherwise,
eiωtφω(x) is said to be unstable in H1(Rn).
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The following theorem is our main result in this paper.

Theorem 1.1. Let n ≥ 3 and 1+(4−2b)/n < p < 1+(4−2b)/(n−2).
Assume (V 1) and (V 2). Let φω ∈ Gω. Then, there exists ω∗ > 0 such that
eiωtφω(x) is unstable in H1(Rn) for any ω ∈ (0, ω∗).

For the proof of Theorem 1.1, we use the virial identity and the following
sufficient condition for instability, which is a modification of Theorem 3 in Ohta
[20] (see also [9, 11, 17, 22]).

Proposition 1.2. Let n ≥ 3 and 1 < p < 1 + 4/(n− 2). Assume (V 1)
and lim

|x|→∞
V (x) = 0. Let φω ∈ Gω. If

(1.7) ∂2
λE(φλ

ω)|λ=1 < 0,

then the standing wave solution eiωtφω(x) of (1.1) is unstable in H1(Rn). Here,
vλ(x) := λn/2v(λx) for λ > 0.

Since ‖vλ‖2
2 = ‖v‖2

2 for any λ > 0, (1.7) implies that φω(x) is not a local
minimizer of E on {v ∈ H1(Rn) : ‖v‖2 = ‖φω‖2}.

Remark 2. We do not require p < 1 + (4− 2b)/(n− 2) with 0 < b < 2,
but p < 1 + 4/(n− 2) in Propositions 1, 2 and Lemma 1.1.

Grillakis, Shatah and Strauss [12, 13] gave an almost sufficient and neces-
sary condition for the stability and instability of stationary states for the Hamil-
tonian systems under certain assumptions. By the abstract theory in Grillakis,
Shatah and Strauss [12, 13], under some assumptions on the spectrum of lin-
earized operators, eiω0tφω0(x) is stable (resp. unstable) if the function ‖φω‖2

2 is
strictly increasing (resp. decreasing) at ω = ω0. In the papers of Shatah [21],
Shatah and Strauss [22], they used the variational characterization of ground
states instead of assumptions on the spectrum of linearized operators. In the
case V (x) ≡ 1, by the scaling ψω(x) = ω1/(p−1)ψ1(

√
ωx), it is easy to check

the increase and decrease of ‖ψω‖2
2. However, it seems difficult to check this

property of ‖φω‖2
2 for V (x) �≡ constant in general.

By applying another sufficient condition as in Proposition 1.2, we may
avoid such difficulty. However still, it is not easy to verify condition (1.7)
directly. Therefore, we first study a limiting problem. We investigate the
rescaling limit of φω(x) as ω → 0. We show that as ω → 0, the rescaled
function φ̃ω(x) defined by φω(x) = ω(2−b)/2(p−1)φ̃ω(

√
ωx) tends to the unique

positive radial solution ψ1,b(x) of (1.2) with ω = 1 and V (x) = |x|−b. From
known stability properties of ψ1,b(x), we are able to prove (1.7) in the limit. For
that reason, in Section 2, we review and summarize the properties of standing
wave solution for the case where V (x) = |x|−b in (1.1). In Section 3, we verify
the convergence property of the rescaled function φ̃ω(x), using its variational
characterization. In Section 4, we check the condition (1.7) and we prove
Theorem 1.1.
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2. Case V (x) = |x|−b

Let n ≥ 3 and 0 < b < 2. Stability and instability of the standing wave
solution for (1.1) with V (x) = |x|−b follows from the method of Shatah [21],
Shatah and Strauss [22].

Let 1 < p < 1 + (4 − 2b)/(n − 2). For any ω > 0 there exists a unique
positive radial solution ψω,b(x) ∈ H1(Rn) of

(2.1) −∆ψ + ωψ − 1
|x|b |ψ|

p−1ψ = 0, x ∈ R
n.

See Stuart [24] and Remark 3 below for existence. The positivity of solutions
follows from the maximum principle. Radial symmetry of solutions was showed
by Li and Ni [16] and Yanagida [27] proved the uniqueness.

The unique positive solution ψω,b(x) is a minimizer of

(2.2) db(ω) := inf{Sω,b(v) : v ∈ H1(Rn) \ {0}, Iω,b(v) = 0},
where

Sω,b(v) :=
1
2
‖∇v‖2

2 +
ω

2
‖v‖2

2 −
1

p+ 1

∫
Rn

1
|x|b |v(x)|

p+1dx,

Iω,b(v) := ‖∇v‖2
2 + ω‖v‖2

2 −
∫

Rn

1
|x|b |v(x)|

p+1dx.

We apply the method of [21, 22] to the present case using the variational char-
acterization db(ω) and we check the sufficient condition for stability d′′b (ω) >
0 in [21] and instability d′′b (ω) < 0 in [22]. Since ψω,b(x) is a solution of
S′

ω,b(v) = 0, we have d′b(ω) = Q(ψω,b). In this case, by the scaling ψω,b(x) =
ω(2−b)/2(p−1)ψ1,b(

√
ωx), we have

2Q(ψω,b) = ‖ψω,b‖2
2 = ω(2−b)/2(p−1)−n/2‖ψ1,b‖2

2.

Therefore, for any ω > 0, the standing wave solution is stable if 1 < p <
1 + (4 − 2b)/n, and unstable if 1 + (4 − 2b)/n < p < 1 + (4 − 2b)/(n− 2). We
have also blow-up instability for the case p ≥ 1+(4−2b)/n following Weinstein
[25] and Berestycki and Cazenave [2].

3. Convergence property of variational problems

First, we briefly explain the proof of Lemma 1.1 for the completeness. We
know that the problem (1.6) is equivalent to the minimizing problem

inf{‖∇v‖2
2 + ω‖v‖2

2 : v ∈ H1(Rn) \ {0}, Iω(v) = 0},
and also equivalent to

(3.1) dV (ω) := inf{‖∇v‖2
2 +ω‖v‖2

2 : v ∈ H1(Rn),
∫

Rn

V (x)|v(x)|p+1dx = 1},
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by (V1) (See Proposition 4.1 of [9]).

Proof of Lemma 1.1. Let {vj} ⊂ H1(Rn) be a minimizing sequence
for the problem (3.1). Then, the sequence {vj} is bounded in H1(Rn). Thus,
there exists a subsequence (still denoted by {vj}) and v0 ∈ H1(Rn) such that
vj → v0 weakly in H1(Rn). Here we put

ϕ(u) :=
∫

Rn

V (x)|u(x)|p+1dx,

and we show that ϕ(vj) → ϕ(v0) as j → ∞. Since lim|x|→∞ V (x) = 0, for any
ε > 0 there exists C(ε) > 0 such that V (x) ≤ ε for |x| > C(ε). For C(ε) ≡ C >
0, we define B(C) := {x ∈ R

n : |x| ≤ C}. By the compactness of the Sobolev
embeddings on bounded domains, we have that ‖vj −v0‖Lp+1(B(C)) → 0 as j →
∞ for 1 ≤ p < 1+4/(n−2). This also means that ‖|vj |p−|v0|p‖Lp+1/p(B(C)) → 0
as j → ∞. By (V1), we have∣∣∣∣∣

∫
|x|≤C

(V (x)|vj(x)|p+1 − V (x)|v0(x)|p+1)dx

∣∣∣∣∣
≤

∣∣∣∣∣
∫
|x|≤C

V (x)(|vj(x)|p − |v0(x)|p)|vj(x)|dx
∣∣∣∣∣

+

∣∣∣∣∣
∫
|x|≤C

V (x)|v0(x)|p(|vj(x)| − |v0(x)|)dx
∣∣∣∣∣

≤M‖|vj |p − |v0|p‖p/(p+1)

Lp+1/p(B(C))
‖vj‖p+1 +M‖v0‖p/(p+1)

p+1 ‖vj − v0‖1/(p+1)
Lp+1(B(C)),

where M = supx∈B(C) V (x). For the part |x| > C,
∣∣∣∣∣
∫
|x|>C

(V (x)|vj(x)|p+1 − V (x)|v0(x)|p+1)dx

∣∣∣∣∣ ≤ ε(‖vj‖p+1
p+1 + ‖v0‖p+1

p+1).

Accordingly, we have

|ϕ(vj) − ϕ(v0)| =

∣∣∣∣∣
∫
|x|≤C

(V (x)|vj(x)|p+1 − V (x)|v0(x)|p+1)dx

∣∣∣∣∣
+

∣∣∣∣∣
∫
|x|>C

(V (x)|vj(x)|p+1 − V (x)|v0(x)|p+1)dx

∣∣∣∣∣
≤ ε(‖vj‖p+1

p+1 + ‖v0‖p+1
p+1) +M‖|vj |p − |v0|p‖p/(p+1)

Lp+1/p(B(C))
‖vj‖p+1

+M‖v0‖p/(p+1)
p+1 ‖vj − v0‖1/(p+1)

Lp+1(B(C)) → 0, j → ∞

for 1 ≤ p < 1 + 4/(n− 2) since vj is bounded in Lp+1(Rn).
It follows from the above argument that∫

Rn

V (x)|v0(x)|p+1dx = lim
j→∞

∫
Rn

V (x)|vj(x)|p+1dx = 1.
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By the definition of (3.1), we have

dV (ω) ≤ ‖∇v0‖2
2 + ω‖v0‖2

2 ≤ lim inf
j→∞

(‖∇vj‖2
2 + ω‖vj‖2

2) = dV (ω).

Namely, v0 is a minimizer and vj → v0 strongly in H1(Rn) as j → ∞.

Remark 3. This proof is valid for the case V (x) = |x|−b with 0 < b < 2.
However, we have to assume p < 1 + (4 − 2b)/(n − 2) so that we can have
|x|−b ∈ Lθ(B(C)) where θ = 2n/{(n+ 2)− (n− 2)p}. Actually we use the fact
that |vj |p+1 converges to |v0|p+1 weakly in L2n/(n−2)(p+1)(Rn) which follows
from vj → v0 weakly in L2n/(n−2)(Rn). The exponent θ is the conjugate relation
with 2n/(n− 2)(p+ 1).

Now, we shall prove a certain convergence property of φω ∈ Gω as ω → 0.
We rescale φω ∈ Gω as follows:

(3.2) φω(x) = ω(2−b)/{2(p−1)}φ̃ω(
√
ωx), ω > 0.

Then, the rescaled function φ̃ω(x) satisfies

(3.3) −∆φ̃ω + φ̃ω = ω−b/2V

(
x√
ω

)
|φ̃ω|p−1φ̃ω, x ∈ R

n.

The main claim in this section is the following.

Proposition 3.1. Let n ≥ 3, 0 < b < 2 and 1 < p < 1+(4−2b)/(n−2).
Assume (V 1) and (V 2). Let φω ∈ Gω, φ̃ω(x) be the rescaled function and ψ1,b(x)
be the unique positive radial solution of (2.1) with ω = 1 in H1(Rn). Then, we
have

lim
ω→0

‖φ̃ω − ψ1,b‖H1 = 0.

To prove this proposition, we consider the following functionals.

Ĩω(v) := ‖∇v‖2
2 + ‖v‖2

2 − ω−b/2

∫
Rn

V

(
x√
ω

)
|v(x)|p+1dx,

I1,b(v) := ‖∇v‖2
2 + ‖v‖2

2 −
∫

Rn

1
|x|b |v(x)|

p+1dx,

where 0 < b < 2.

Lemma 3.1. Let n ≥ 3, 0 < b < 2 and 1 < p < 1 + (4 − 2b)/(n − 2).
Assume (V 1) and (V 2). Let φω ∈ Gω, φ̃ω(x) be the rescaled function and
ψ1,b(x) be the unique positive radial solution of (2.1) with ω = 1 in H1(Rn).
Then, we have

(i) lim
ω→0

‖φ̃ω‖2
H1 = ‖ψ1,b‖2

H1 , (ii) lim
ω→0

I1,b(φ̃ω) = 0.



�

�

�

�

�

�

�

�

152 Reika Fukuizumi and Masahito Ohta

Proof. First of all, we remark that φ̃ω(x) is a minimizer of

inf{‖v‖2
H1 : v ∈ H1(Rn) \ {0}, Ĩω(v) ≤ 0},

and ψ1,b(x) is a minimizer of

(3.4) inf{‖v‖2
H1 : v ∈ H1(Rn) \ {0}, I1,b(v) ≤ 0}.

In order to prove (i), we show that for any µ > 1, there exists ω(µ) > 0
such that

(3.5) Ĩω(µψ1,b) < 0

and

(3.6) I1,b(µφ̃ω) < 0

hold for any ω ∈ (0, ω(µ)). If this is true, then the above variational character-
izations of φ̃ω(x) and ψ1,b(x) yield that

1
µ2

‖ψ1,b‖2
H1 ≤ ‖φ̃ω‖2

H1 ≤ µ2‖ψ1,b‖2
H1 , ω ∈ (0, ω(µ)).

Since µ > 1 is arbitrary, we conclude (i). First, we show (3.5). We put Vω(x) :=
ω−b/2V (x/

√
ω) and V0(x) := |x|−b. From I1,b(ψ1,b) = 0, we have

µ−2Ĩω(µψ1,b) = −(µp−1−1)‖ψ1,b‖2
H1 +µp−1

∫
Rn

(V0(x)−Vω(x))|ψ1,b(x)|p+1dx.

Since

lim
ω→0

∫
Rn

(V0(x) − Vω(x))|ψ1,b(x)|p+1dx = 0

for any µ > 1, there exists ω1(µ) > 0 such that Ĩω(µψ1,b) < 0 for any ω ∈
(0, ω1(µ)). Namely, we have

(3.7) ‖φ̃ω‖2
H1 ≤ µ2‖ψ1,b‖2

H1

for any ω ∈ (0, ω1(µ)). Indeed, we have
∫

Rn

(Vω(x) − V0(x))|ψ1,b(x)|p+1dx ≤ ω(n/2−bθ/2)/θ‖V − V0‖Lθ‖ψ1,b‖p+1
2n/(n−2),

where θ = 2n/{(n+ 2) − (n− 2)p} and n/2 − bθ/2 > 0.
Next, we prove (3.6). Similarly to above, using Ĩω(φ̃ω) = 0, we have

(3.8) µ−2I1,b(µφ̃ω) = ‖φ̃ω‖2
H1 − µp−1

∫
Rn

V0(x)|φ̃ω(x)|p+1dx

= −(µp−1 − 1)‖φ̃ω‖2
H1 + µp−1

∫
Rn

(Vω(x) − V0(x))|φ̃ω(x)|p+1dx.
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We also have∫
Rn

(Vω(x) − V0(x))|φ̃ω(x)|p+1dx ≤ ω(n/2−bθ/2)/θ‖V − V0‖Lθ‖φ̃ω‖p+1
2n/(n−2).

Therefore, by Sobolev embedding,

(3.8) ≤ −(µp−1 − 1)‖φ̃ω‖2
H1 + µp−1ω(n/2−bθ/2)/θ‖V − V0‖Lθ‖φ̃ω‖p+1

2n/(n−2)

≤ −(µp−1 − 1)‖∇φ̃ω‖2
2 + Cµp−1ω(n/2−bθ/2)/θ‖V − V0‖Lθ‖∇φ̃ω‖p+1

2 .

Taking µ = 2 in (3.7), we have ‖∇φ̃ω‖p−1
2 ≤ 2p−1‖ψ1,b‖p−1

H1 for any ω ∈
(0, ω1(2)). Accordingly,

(3.8) ≤ −{(µp−1 − 1) − Cµp−1ω(n/2−bθ/2)/θ‖V − V0‖Lθ‖ψ1,b‖p−1
H1 }‖∇φ̃ω‖2

2,

for any ω ∈ (0, ω1(2)). Thus, for any µ > 1 there exists ω2(µ) ∈ (0, ω1(2)) such
that I1,b(µφ̃ω) < 0 for any ω ∈ (0, ω2(µ)).

(ii) follows from the same proof as Lemma 2.1 of [9].

Finally, we are in position to prove Proposition 3.1.

Proof of Proposition 3.1. Let φω ∈ Gω. By (V1), φω(x) is positive in
R

n. By Lemma 3.1, for any {ωj} → 0, { ˜φωj
} is a minimizing sequence of (3.4).

As we mentioned at the beginning of this section, it follows from a similar proof
to Proposition 4.1 of [9] that (3.4) is equivalent to

(3.9) inf
{
‖v‖2

H1 : v ∈ H1(Rn),
∫

Rn

1
|x|b |v(x)|

p+1dx = 1
}
.

Thus, by the proof of Lemma 1.1, we obtain a minimum of (3.9) to which a
subsequence of { ˜φωj

} converges. It follows from uniqueness result by Yanagida
[27] that such minimum is a unique solution of (2.1), namely ψ1,b(x).

4. Orbital instability

In this section we check the sufficient condition for instability (1.7) in
Proposition 1.2. By simple computations, we have

E(vλ) =
λ2

2
‖∇v‖2

2 −
λn(p−1)/2

p+ 1

∫
Rn

V
(x
λ

)
|v(x)|p+1dx,

∂2
λE(φλ

ω)|λ=1 = ‖∇φω‖2
2 −

n(p− 1)
2(p+ 1)

{
n(p− 1)

2
− 1

}∫
Rn

V (x)|φω(x)|p+1dx

+
n(p− 1) − 2

p+ 1

∫
Rn

x · ∇V (x)|φω(x)|p+1dx

− 1
p+ 1

∫
Rn

n∑
j,k=1

xjxk∂j∂kV (x)|φω(x)|p+1dx.
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Since P (φω) = ∂λSω(φλ
ω)|λ=1 = 0 (see (1.5) and Remark 1), we have

∂2
λE(φλ

ω)|λ=1 =
n(p− 1)
2(p+ 1)

{
2 − n(p− 1)

2

}∫
Rn

V (x)|φω(x)|p+1dx

+
n(p− 1) − 3

p+ 1

∫
Rn

x · ∇V (x)|φω(x)|p+1dx

− 1
p+ 1

∫
Rn

n∑
j,k=1

xjxk∂j∂kV (x)|φω(x)|p+1dx.

(4.1)

Here, we rescale φω(x) as in (3.3) and we have

(4.1) = ωγ


n(p− 1)

2(p+ 1)

{
2 − n(p− 1)

2

}∫
Rn

ω−b/2V

(
x√
ω

)
|φ̃ω(x)|p+1dx

+
n(p− 1) − 3

p+ 1

∫
Rn

ω−b/2 x√
ω
· ∇V

(
x√
ω

)
|φ̃ω(x)|p+1dx

− 1
p+ 1

∫
Rn

ω−b/2
n∑

j,k=1

xj√
ω

xk√
ω
∂j∂kV

(
x√
ω

)
|φ̃ω(x)|p+1dx


 ,

where γ = (2 − b)(p + 1)/2(p− 1) − n/2 + b/2 > 0. Therefore, it suffices to
show the following.

Lemma 4.1. There exists ω3 > 0 such that Kω < 0 for any ω ∈ (0, ω3),
where

Kω :=
n(p− 1)
2(p+ 1)

{
2 − n(p− 1)

2

}∫
Rn

ω−b/2V

(
x√
ω

)
|φ̃ω(x)|p+1dx

+
n(p− 1) − 3

p+ 1

∫
Rn

ω−b/2 x√
ω
· ∇V

(
x√
ω

)
|φ̃ω(x)|p+1dx

− 1
p+ 1

∫
Rn

ω−b/2
n∑

j,k=1

xj√
ω

xk√
ω
∂j∂kV

(
x√
ω

)
|φ̃ω(x)|p+1dx.

We need the following lemma to prove Lemma 4.1.

Lemma 4.2. Let n ≥ 3, 0 < b < 2 and 1 < p < 1 + (4 − 2b)/(n − 2).
Assume (V 1) and (V 2). Let φω ∈ Gω. Then the followings hold.

(i) lim
ω→0

ω−b/2

∫
Rn

V

(
x√
ω

)
|φ̃ω(x)|p+1dx =

∫
Rn

1
|x|b |ψ1,b(x)|p+1dx,

(ii) lim
ω→0

ω−b/2

∫
Rn

x√
ω
· ∇V

(
x√
ω

)
|φ̃ω(x)|p+1dx = −

∫
Rn

b

|x|b |ψ1,b(x)|p+1dx,

(iii) lim
ω→0

ω−b/2

∫
Rn

n∑
j,k=1

xj√
ω

xk√
ω
∂j∂kV

(
x√
ω

)
|φ̃ω(x)|p+1dx

= b(b+ 1)
∫

Rn

1
|x|b |ψ1,b(x)|p+1dx.
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Proof. We put V0(x) := |x|−b. Then V0(x) satisfies

ω−b/2V0

(
x√
ω

)
= V0(x), ω−b/2 x√

ω
· ∇V0

(
x√
ω

)
= −bV0(x),

ω−b/2
n∑

j,k=1

xj√
ω

xk√
ω
∂j∂kV0

(
x√
ω

)
= b(b+ 1)V0(x).

Since φ̃ω → ψ1,b strongly inH1(Rn) as ω → 0, we see that φ̃ω → ψ1,b strongly in
L2n/n−2(Rn), so that φ̃ω

p+1 → ψp+1
1,b strongly in L2n/{(n−2)(p+1)}(Rn). There-

fore, it is enough for (i), (ii) and (iii) if we prove

lim
ω→0

∥∥∥∥ω−b/2V

(
x√
ω

)
− V0(x)

∥∥∥∥
Lθ

= 0,(4.2)

lim
ω→0

∥∥∥∥ω−b/2 x√
ω
· ∇V

(
x√
ω

)
− (−bV0(x))

∥∥∥∥
Lθ

= 0,(4.3)

lim
ω→0

∥∥∥∥∥∥ω
−b/2

n∑
j,k=1

xj√
ω

xk√
ω
∂j∂kV

(
x√
ω

)
− b(b+ 1)V0(x)

∥∥∥∥∥∥
Lθ

= 0,(4.4)

where θ = 2n/{(n+ 2) − (n− 2)p}. Indeed,

∫
Rn

∣∣∣∣ω−b/2V

(
x√
ω

)
− V0(x)

∣∣∣∣
θ

dx =
∫

Rn

∣∣∣∣ω−b/2V

(
x√
ω

)
− ω−b/2V0

(
x√
ω

)∣∣∣∣
θ

dx

= ω−bθ/2+n/2

∫
Rn

|V (x) − V0(x)|θdx.

On the other hand, by the assumptions (V1) and (V2),

we see that
∫

Rn

|V (x) − V0(x)|θdx is finite and independent of ω. Indeed,

∫
Rn

|V (x) − V0(x)|θdx =
∫
|x|≤1

|V (x) − V0(x)|θdx+
∫
|x|≥1

|V (x) − V0(x)|θdx

≤
∫
|x|≤1

|V (x)|θdx+ C

∫ 1

0

r−bθ+n−1dr + C

∫ ∞

1

r−αθ+n−1dr <∞

if p < 1+(4−2b)/(n−2). Also, we have −bθ/2+n/2 > 0 if p < 1+(4−2b)/(n−
2), which concludes (4.2). (4.3) and (4.4) follow from the same reason.

Proof of Lemma 4.1. By Lemma 4.2, we have

lim
ω→0

4(p+ 1)Kω = −{n(p− 1) + 2b}{n(p− 1) + 2(b− 2)}
∫

Rn

1
|x|b |ψ1,b|p+1dx.

Therefore, limω→0Kω < 0 since p > 1 + (4− 2b)/n, which implies that Lemma
4.1 holds.
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Proof of Proposition 1.2 is similar to that of Proposition 1.1 of [9], except
for a point that we have used the constraint ‖v‖p+1 = ‖φω‖p+1 in Lemma 3.1
of [9]. However, we may instead apply the constraint ‖v‖H1 = ‖φω‖H1 for our
present case.
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équations de Schrödinger et de Klein-Gordon non linéaires, C. R. Acad.
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33–85.

[20] M. Ohta, Instability of standing waves for the generalized Davey-
Stewartson system, Ann. Inst. Henri Poincaré. Phys. Théor. 62 (1995),
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